WorldWideScience

Sample records for controlling hypoxic sensitivity

  1. New avenues in hypoxic cell sensitization

    International Nuclear Information System (INIS)

    Huilgol, N.G.; Chatterjee, N.A.; Singh, B.B.

    1995-01-01

    Hypoxic cells in tumors represent a population of cells that are resistant to radiotherapy. Bio-reductive agents like RSU 1069, RBU 6145 and EOg and vasoactive drugs in conjunction with hypoxic cell sensitizers are being evaluated as hypoxic cell cytotoxins. Chlorpromazine a membrane active drug and AK-2123- a nitrotriazole with a potential to deplete intracellular thiols induced vasoconstriction and sensitize hypoxic cells have stretched the boundaries of innovation. A preliminary experience with these drugs is discussed. 8 refs., 2 tabs., 2 figs

  2. Hypoxic-cell sensitizers

    International Nuclear Information System (INIS)

    Dische, S.

    1983-01-01

    There is now 6 years of clinical experience with misonidazole as a hypoxic-cell sensitizer. Neurotoxicity limits the total dose which may be given, and so relatively low concentrations of radiosensitizing drugs are likely to be achieved in hypoxic cells in man as compared with those in animal tumors. It is likely that benefit will only be shown in those situations where radioresistant hypoxic cells strongly dominate as a cause of radiation failure. Many clinical trials are underway, and thus far some show no benefit while in others there is a definite advantage to the patients given the drug. These trials must be continued to their conclusion, but misonidazole must be regarded as the first of a series of radiosensitizers to reach the clinic for trial. There is a promise of more effective drugs becoming available within the next few years. Those showing a lower lipophilicity than misonidazole have been found to have a shorter half-life and a lower uptake in neural tissue in animal studies. One such drug, desmethylmisonidazole, is presently undergoing clinical trial

  3. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  4. Potentially three distinct roles for hypoxic cell sensitizers in the clinic

    International Nuclear Information System (INIS)

    Chapman, J.D.; Raleigh, J.A.; Pedersen, J.E.; Ngan, J.; Shum, F.Y.

    1979-01-01

    Nitroaromatic drugs have been applied to radiation therapy on the basis of their effectiveness to enhance radiation damages selectively in hypoxic mammalian cells at nontoxic concentration. Such sensitizers could improve the rate of local tumor control by conventional radiotherapy in such cases that the resistance due to hypoxia in a limiting factor. The selective cytotoxicity of the drug to hypoxic cells is the second distinct action. A third potential role for nitroaromatic drugs could involve their use for the diagnosis of the number and location of hypoxic cells within tumors. The gain in therapeutic ratio by a factor from 5 to 10 is necessary before the full clinical impact of hypoxic cell radiosensitizers can be evaluated. The drugs selected for the use as clinical radiosensitizers were originally developed as the antibacterial agents with selective activity against anaerobes. The hypoxic cells in tumors are usually resistant to chemotherapy as well as resistant to radiation, and this specific drug action of sensitizers combined with that of an agent effective against oxygenated and cycling cells could possibly produce improved tumor cures. Electron-affinitive chemicals become selectively bound to the macromolecules of hypoxic mammalian cells by radiation-induced chemical reaction. This technique was used to identify by autoradiographic procedures the location of the radioactive nitrofurazone bound to hypoxic cells within multicellular spheroids. (Yamashita, S.)

  5. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  6. Clinical evaluation of hypoxic cell sensitizer (Misonidazole)

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Hiroshi (Miyagi Prefectural Adult Disease Center, Natori (Japan)); Watarai, Jiro; Hoshino, Toshiaki

    1984-06-01

    Clinical effectiveness and toxicity of Misonidazole were analyzed and discussed in 22 cases of carcinoma of uterine cervix, 17 cases of esophageal cancer and 11 with other malignancies treated by radiation. By clinical and histologic examination in the controlled trial, it was shown that radiation response of tumor was slightly sensitized in the treated group with this drug, compared with that in the control group. It was confirmed that there was no significant difference between radiation response of tumor in both groups. Peripheral neuropathy was a complication in 10% and toxicodermatitis in 12% even if the total dose administered was below 10 g/m/sup 2/. From these results, it was strongly suggested that this drug is not suitable in combination with simple fractionated irradiation as a hypoxic cell sensitizer.

  7. Hypoxic sensitizers (A review)

    International Nuclear Information System (INIS)

    Ohno, Tadao; Shikita, Mikio

    1976-01-01

    Since the early works of Bridges (1960) and Adams (1963), electron-affinic compounds have long been the subject of a number of studies in the search for a drug which sensitizes radio-resistant hypoxic tumor cells for improvement of radiotherapy of cancer. However, clinical application of this kind of drugs has been hampered by the fact that most of the compounds which exhibited radiosensitizing action in vitro exerted no such action against hypoxic tumor cells in vivo, because of rapid metabolical decomposition or because of great toxicity in vivo. Low solubility of these compounds in aqueous solution was another problem which made it difficult to use the compounds in proper concentrations. The authors have found that furylfuramide (AF-2), possesses a typical radiosensitizing potency. The radiosensitizing action of AF-2 was demonstrated in hypoxic yeasts as well as in mouse leukemic cells (L-5178 Y). Injection of 4.7 μg of AF-2 into a mouse mammary carcinoma 5 min before a single dose (3500 rad) of x-irradiation reduced regrowth of the tumors to a greater extent than irradiation alone, giving an enhancing ratio of 1.6. The effect of AF-2 was insignificant when radiation was given in divided doses (800 rad for 5 times) with the drug injected each time prior to irradiation. (auth.)

  8. In vivo assay of the radiation sensitivity of hypoxic tumour cells. Influence of radiation quality and hypoxic sensitization

    International Nuclear Information System (INIS)

    Porschen, W.; Bosiljanoff, P.; Gewehr, K.; Muehlensiepen, H.; Feinendegen, L.E.

    1977-01-01

    In order to measure quantitatively tumour cell kinetics in living mice, tumour bearing animals (sarcoma-180) received intravenously 5-iodo-2'-deoxyuridine (IUdR), a thymidine analogue, which was labelled with 125 I or with 131 I, both of which can be easily externally counted by their gamma emission. IUdR is stably bound to DNA, reutilization is minimal and the measured activity loss from the tumour later than 50 hours after injection signals cell loss or cell death. The effect of irradiation on euoxic and average tumour cells was studied by sequentially labelling the tumour bearing animals first with 125 IUdR and, 70 hours later, with 131 IUdR. At the time of the second injection the average tumour cell population is labelled by the first injection of 125 IUdR, and the second injection of 131 IUdR nearly exclusively tags the perivascular tumour cells; these are euoxic in contrast to the average tumour cell, a large proportion of which is hypoxic. The radiation-induced activity loss rates from the two labelled tumour cell populations indicate the sensitivities of the two populations. At dose levels that cause identical effects on euoxic cells, the ratio of radiation-induced enhancement of cell loss rates for euoxic cells to average cells was 2.6 for 60 Co gamma radiation, 1.4 for 15MeV neutron irradiation, and 1.0 for alpha irradiation (1.5.MeV). The effect of five hypoxic cell sensitizers was analysed. The sensitization was limited to hypoxic cells, and the most effective drug was Ro-07-0582, showing at the 50% level of maximum effect a dose modifying factor of 1.5. Sensitization was highest when the drug was given 15 min prior to irradiation. Hyperthermia affected nearly exclusively hypoxic cells and showed a dose modifying factor of about 2 when the tumours were heated at 42 0 C for 30 min immediately after irradiation. The resulting enhancement of effect was reduced when hyperthermia was applied prior to irradiation. (author)

  9. Clusterin and chemotherapy sensitivity under normoxic and graded hypoxic conditions in colorectal cancer.

    LENUS (Irish Health Repository)

    Kevans, David

    2012-06-01

    In vitro studies have shown that clusterin modulates treatment sensitivity in a number of human cancers; however, the interaction between clusterin expression and hypoxia in controlling treatment response in CRC has not previously been examined. The aim of this study was to assess the effect of clusterin overexpression in CRC cells on sensitivity to 5-fluorouracil (5-FU), oxaliplatin and FOLFOX treatment under normoxic and graded hypoxic conditions.

  10. Preclinical assessment of hypoxic marker specificity and sensitivity

    International Nuclear Information System (INIS)

    Iyer, Renuka V.; Engelhardt, Edward L.; Stobbe, Corinne C.; Schneider, Richard F.; Chapman, J. Donald

    1998-01-01

    Purpose: In the search for a sensitive, accurate, and noninvasive technique for quantifying human tumor hypoxia, our laboratory has synthesized several potential radiodiagnostic agents. The purpose of this study was to assess and compare the hypoxic marking properties of both radioiodinated and Tc-99m labeled markers in appropriate test systems which can predict for in vivo activity. Materials and Methods: Preclinical assessment of hypoxic marker specificity and sensitivity employed three laboratory assays with tumor cells in vitro and in vivo. Radiolabeled marker uptake and/or binding to whole EMT-6 tumor cells under extremely hypoxic and aerobic conditions was measured and their ratio defined hypoxia-specific factor (HSF). Marker specificity to hypoxic tumor tissue was estimated from its selective avidity to two rodent tumors in vivo, whose radiobiologic hypoxic fractions (HF) had been measured. The ratios of % injected dose/gram (%ID/g) of marker at various times in EMT-6 tumor tissue relative to that in the blood and muscle of scid mice were used to quantify hypoxia-specific activity. This tumor in this host exhibited an average radiobiologic HF of ∼35%. As well, nuclear medicine images were acquired from R3327-AT (HF ≅15%) and R3327-H (no measurable HF) prostate carcinomas growing in rats to distinguish between marker avidity due to hypoxia versus perfusion. Results: The HSF for FC-103 and other iodinated markers were higher (5-40) than those for FC-306 and other Tc-99m labeled markers. The latter did not show hypoxia-specific uptake into cells in vitro. Qualitative differences were observed in the biodistribution and clearance kinetics of the iodinated azomycin nucleosides relative to the technetium chelates. The largest tumor/blood (T/B) and tumor/muscle (T/M) ratios were observed for compounds of the azomycin nucleoside class in EMT-6 tumor-bearing scid mice. These markers also showed a 3-4 x higher uptake into R3327-AT tumors relative to the well

  11. Investigation of the modifying effects of vitamin A and hypoxic cell sensitizers in radiation carcinogenesis in mice

    International Nuclear Information System (INIS)

    Mian, T.A.

    1982-01-01

    The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed. In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100 g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. Mice were killed, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet. In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2 mg/g and 0.6 mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased in the higher dose group (0.6 mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group

  12. Testing of new hypoxic cell sensitizers in vivo

    International Nuclear Information System (INIS)

    Stone, H.B.; Sinesi, M.S.

    1982-01-01

    We tested five agents as potential sensitizers of hypoxic cells in vivo in mammary tumors in C3H mice in comparison with misonidazole. The LD/sub 50/2/ for desmethylmisonidazole was 2.7 mg/g body wt, compared to 1.3 for misonidazole. It was as effective in reducing the TCD 50 of MDAH-MCa-4 as were equitoxic doses of misonidazole. the LD/sub 50/2/ of SR-2508 was 3.3 mg/g and was as effective a sensitizer as misonidazole. Ro 07-0741 was more toxic, with an LD/sub 50/2/ of 0.6 mg/g, but was as effective as misonidazole at equitoxic doses. NP-1 was also more toxic than misonidazole (LA/sub 50/2/ = 04 mg/g) but was a less effective sensitizer. Rotenone, which causes sensitization by inhibiting cellular respiration, thus increasing the diffusion distance of oxygen, was extremely toxic (LD/sub 50/2/ - 0.003 mg/g), and systemic respiratory inhibition and the radioprotective effects of the dimethyl sulfoxide used to dissolve it rendered it totally ineffective as a sensitizer in vivo

  13. Hypoxic radiosensitization: adored and ignored

    DEFF Research Database (Denmark)

    Overgaard, Jens

    2007-01-01

    resistance can be eliminated or modified by normobaric or hyperbaric oxygen or by the use of nitroimidazoles as hypoxic radiation sensitizers. More recently, attention has been given to hypoxic cytotoxins, a group of drugs that selectively or preferably destroys cells in a hypoxic environment. An updated......Since observations from the beginning of the last century, it has become well established that solid tumors may contain oxygen-deficient hypoxic areas and that cells in such areas may cause tumors to become radioresistant. Identifying hypoxic cells in human tumors has improved by the help of new...

  14. N-ethylmaleimide sensitization of x-irradiated hypoxic Chinese hamster cells

    International Nuclear Information System (INIS)

    Kimler, B.F.; Sinclair, W.K.; Elkind, M.M.

    1977-01-01

    Chinese hamster cells were x irradiated either aerobically or hypoxically, after flushing with nitrogen plus carbon dioxide. In agreement with earlier data, for asynchronous cells, the oxygen enhancement ratio (OER) was approximately three. If the sulfhydryl-binding agent N-ethylmaleimide (NEM) was present during or immediately after irradiation, the principal effect was a pronounced decrease in the extrapolation number of the survival curve of NEM-treated cells compared to nontreated cells. This was observed with hypoxic as well as aerobic cells and the OER for NEM-treated cells was also about three. For NEM treatments which were essentially nontoxic, NEM acts synergistically with X rays, suggestive of an inhibition by NEM of a cell's ability to repair sublethal damage. For synchronous cells obtained by mitotic selection, a result consistent with the above was obtained; a dose three times as large was necessary to reduce survival to the same level for hypoxic cells as for aerobic cells, whether or not the cells were treated with NEM. Thus the OER was independent of NEM treatment throughout the cell cycle, with the possible exception of mitosis which could not be studied with the methods used. It is concluded that the action of NEM at low concentrations (0.75 μM) is largely independent of oxygen tension. Oxygen acts to produce more damage per unit dose in the cell while NEM sensitizes apparently by preventing the repair of sublethal damage

  15. Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dische, S [Mount Vernon Hospital, Northwood (UK)

    1985-02-01

    The clinical work with chemical agents to restore the radiosensitivity of hypoxic cells began in 1973 with metronidazole, misonidazole was first given in 1974. The results so far recorded of the clinical trials with misonidazole have been generally disappointing. Hypoxic cells must exist in all human tumours presenting for treatment and it is, however, probable that the oxygen effect is an important one at all dose fractionation regimes employed in radiotherapy but, after conventional fractionated radiotherapy, hypoxia may be a reason for failure in only a proportion of cases. The most important factor underlying the failure of misonidazole to acheive useful advantage is undoubtedly the low radiosensitizing concentrations achievable with the permitted dose of this neurotoxic drug. New drugs are under development and some have different dose-limiting toxicity. Those showing promise at this time are the Stanford compound, SR-2508 and the Roche compounds, Ro 03-8799. It is possible that the greatest sensitization with the greatest tolerance will be achieved by a combination of drugs.

  16. Cardiac biomarkers in neonatal hypoxic ischaemia.

    LENUS (Irish Health Repository)

    Sweetman, D

    2012-04-01

    Following a perinatal hypoxic-ischaemic insult, term infants commonly develop cardiovascular dysfunction. Troponin-T, troponin-I and brain natriuretic peptide are sensitive indicators of myocardial compromise. The long-term effects of cardiovascular dysfunction on neurodevelopmental outcome following perinatal hypoxic ischaemia remain controversial. Follow-up studies are warranted to ensure optimal cardiac function in adulthood. CONCLUSION: Cardiac biomarkers may improve the diagnosis of myocardial injury, help guide management, estimate mortality risk and may also aid in longterm neurodevelopmental outcome prediction following neonatal hypoxic-ischaemia.

  17. Radioresistance and hypoxic cells

    International Nuclear Information System (INIS)

    Ando, Koichi

    1989-01-01

    Current progress to explore further understanding of tumor hypoxia was reviewed. At subcellular level, hypoxia induces specific proteins, inhibits DNA synthesis as well as initiation of DNA replicon. Radioresistant characteristics of hypoxic cells is questioned in condition where irradiated cells were kept hypoxia during colony formation. Chronically hypoxic cells recovered from the inner layer of V79 multicellular spheroids are more sensitive to radiation than those from the oxic, outer layer. A novel sandwich culture method, which enables to reoxygenate chronic hypoxia, implies that chronically hypoxic cells are less sensitive to radiation after reoxygenation than oxic cells. For in vivo tumor, two types of tumor hypoxia are reported: diffusion-limited, chronic hypoxia and perfusion-limited, acute hypoxia. Evidence supporting the existence of perfusion-limited hypoxia is provided by an elegant method using vital staining and cell sorter. Data of our own laboratory also implies 2 types of tumor hypoxia; fractional hypoxia and incomplete hypoxia. Fractional hypoxia corresponds to a radioresistant tail on a biphasic tumor cell survival curves while tumors with incomplete hypoxia demonstrate only single component with radioresistant characteristics, instead. (author)

  18. [Sensitivity and specificity of the cerebral blood flow reactions to acupuncture in the newborn infants presenting with hypoxic ischemic encephalopathy].

    Science.gov (United States)

    Filonenko, A V; Vasilenko, A M; Khan, M A

    2015-01-01

    To evaluate the effects of acupuncture integrated into the standard therapy, the condition of cerebral blood flow, and other syndromes associated with cerebral ischemia in the newborn infants. MATERIAL AND METHODS. A total of 131 pairs of puerperae and newborns with hypoxic ischemic encephalopathy were divided into four treatment groups. 34 children of the first group were given standard therapy (control), in the second group comprised of 33 mothers and children the standard treatment was supplemented by acupuncture, the third group included only 32 mothers given the acupuncture treatment alone, and the fourth group contained only 32 newborn infants treated by acupuncture. Each course of acupuncture treatment consisted of five sessions. Sensitivity and specificity of cerebral blood flow reactions were determined based on the results of the ROC-analysis and the area under the curve before and after the treatment. The treatment with the use of acupuncture greatly improved the cerebrospinal hemodynamics (p newborn babies. The high level of sensitivity (84.4-94.8%) associated with good specificity makes it possible to distinguish between the true positive and true negative cases. Acupuncture integrated into the treatment of "mother-baby" pairs presenting with hypoxic ischemic encephalopathy can be used to improve the initially low level of cerebral blood flow in neonates presenting with this condition.

  19. Effect of fractionated hyperthermia on hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Nielson, O.S.

    1981-01-01

    The lethal response of asynchronous exponentially growing mouse lung (L1A2) cells heated to 42 0 C under hypoxic conditions was demonstrated in vitro. Acutely hypoxic cells (i.e. heated immediately after 30 min of N 2 +CO 2 gassing) and aerobic cells treated under the same extracellular pH were equally sensitive to a single hyperthermic treatment, and incubation under hypoxia for up to 24 hours prior to treatment did not influence cell survival. Similarly, under controlled pH conditions (pH within 7.0 to 7.4) recovery from hyperthermic damage demonstrated by two-dose hyperthermic fractionation (each of 1.5 hours at 42 0 C) was identical in hypoxic and aerobic cells, and the highest recovery was found at a 10-hour interval Preheating for 1.5 hours at 42 0 C induced thermal resistance. to a second treatment at 42 0 C (thermotolerance). At the 10-hour interval the degree of thermotolerance was not influenced by incubation under hypoxic conditions (thermotolerance ratio, TTR = 4.7 in both aerobic and hypoxic cells). The data indicate that hypoxic conditions do not influence the heat response in L1A2 cells to either a single or a two-dose fractionated hyperthermic treatment in which hypoxia or aerobic conditions were maintained in the interval between the heat treatments. (author)

  20. Physiologic basis for intermittent hypoxic episodes in preterm infants.

    Science.gov (United States)

    Martin, R J; Di Fiore, J M; Macfarlane, P M; Wilson, C G

    2012-01-01

    Intermittent hypoxic episodes are typically a consequence of immature respiratory control and remain a troublesome challenge for the neonatologist. Furthermore, their frequency and magnitude are commonly underestimated by clinically employed pulse oximeter settings. In extremely low birth weight infants the incidence of intermittent hypoxia [IH] progressively increases over the first 4 weeks of postnatal life, with a subsequent plateau followed by a slow decline beginning at weeks six to eight. Over this period of unstable respiratory control, increased oxygen-sensitive peripheral chemoreceptor activity has been associated with a higher incidence of apnea of prematurity. In contrast, infants with bronchopulmonary dysplasia [chronic neonatal lung disease] exhibit decreased peripheral chemosensitivity, although the effect on respiratory stability in this population is unclear. Such episodic hypoxia/reoxygenation in early life has the potential to sustain a proinflammatory cascade with resultant multisystem, including respiratory, morbidity. Therapeutic approaches for intermittent hypoxic episodes comprise careful titration of baseline or supplemental inspired oxygen as well as xanthine therapy to prevent apnea of prematurity. Characterization of the pathophysiologic basis for such intermittent hypoxic episodes and their consequences during early life is necessary to provide an evidence-based approach to their management.

  1. Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions.

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-08-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of a hypoxic cell sensitizer doranidazole on the radiation-induced apoptosis of mouse L5178Y lymphoma cells

    International Nuclear Information System (INIS)

    Aoki, Mizuho; Furusawa, Yoshiya; Shibamoto, Yuta

    2002-01-01

    We investigated the sensitizing effect of the 2-nitroimidazole analogue doranidazole, a new hypoxic radiosensitizer, on radiation-induced apoptosis in L5178Y cells. Apoptosis was assessed by checking DNA ladder formation, the presence of sub-G1 peaks in flow cytometry, and chromation condensation. A radiosensitizing effect of doranidazole was also confirmed by a soft-agar colony assay of surviving cells. In the assay of DNA ladder formation, DNA fragmentation was observed following irradiation under an aerobic or hypoxic condition with or without doranidazole. The proportions of the cells at the sub-G1 peak in a flow cytometric measurement was not very different among the irradiations at 5 Gy under the aerobic condition, 15 Gy under hypoxia, and 10 Gy with 1 mM doranidazole under hypoxia. The fraction of cells with chromatin condensation was found to be significantly increased with doranidazole up to 3 mM when applied under hypoxic irradiation, but did not increase even at 10 mM. The sensitizer enhancement ratio was estimated to be about 1.7 with a concentration of 1 mM. This enhancement ratio was not different from that observed by assaying cell survivals. On the other hand, doranidazole showed no radiosensitizing effect under aerobic conditions with 1 mM. In conclusion, the radiation-induced apoptosis of L5178Y cells was enhanced by doranidazole under hypoxia. (author)

  3. Radiosensitization of hypoxic tumor cells by simultaneous administration of hyperthermia and nitroimidazoles

    International Nuclear Information System (INIS)

    Hofer, K.G.; Hofer, M.G.; Ieracitano, J.; McLaughlin, W.H.

    1977-01-01

    The radiation response of oxygenated and hypoxic L1210 leukemia cells subjected to in vivo treatments with hyperthermia and/or chemical radiosensitizers was evaluated with the [ 125 I]iododeoxyuridine prelabeling assay. X irradiation of L1210 cells at body temperatures of 41 0 C or higher resulted in strongly enhanced tumor cell death. The magnitude of this thermal effect increased with increasing temperatures. Hypoxic L1210 cells were particularly sensitive to heat induced enhancement of radiation damage, i.e., the sensitizing effects were more pronounced and occurred at lower temperatures. Chemical radiosensitizers (metronidazole, Ro 7-0582) selectively sensitized hypoxic L1210 populations; fully oxygenated cells were not affected. Considerable radiosensitization was achieved at nontoxic dose levels of the two sensitizers. Experiments designed to determine the degree of radiosensititization as a function of drug dose showed that Ro 7-0582 was consistently more effective than metronidazole in sensitizing hypoxic tumor populations. At the highest drug dose used (3 mg/g body wt) the DMF was 2.2 for metronidazole and 2.8 for Ro 7-0582. Combined administration of hyperthermia and Ro 7-0582 (or metronidazole) produced synergistic potentiation of radiation damage in hypoxic L1210 populations (DMF of 4.2). Under optimal conditions, hypoxic L1210 cells subjected simultaneously to both modes of radiosensitization became more radiosensitive than untreated, fully oxygenated L1210 cells. Experiments on two other tumor lines (BP-8 murine sarcoma and Ehrlich ascites cells) indicate that such synergistic radiosensitization effects are not unique to L1210 cells

  4. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters

    International Nuclear Information System (INIS)

    Carlson, David J.; Stewart, Robert D.; Semenenko, Vladimir A.

    2006-01-01

    The poor treatment prognosis for tumors with high levels of hypoxia is usually attributed to the decreased sensitivity of hypoxic cells to ionizing radiation. Mechanistic considerations suggest that linear quadratic (LQ) survival model radiosensitivity parameters for hypoxic (H) and aerobic (A) cells are related by α H =α A /oxygen enhancement ratio (OER) and (α/β) H =OER(α/β) A . The OER parameter may be interpreted as the ratio of the dose to the hypoxic cells to the dose to the aerobic cells required to produce the same number of DSBs per cell. The validity of these expressions is tested against survival data for mammalian cells irradiated in vitro with low- and high-LET radiation. Estimates of hypoxic and aerobic radiosensitivity parameters are derived from independent and simultaneous least-squares fits to the survival data. An external bootstrap procedure is used to test whether independent fits to the survival data give significantly better predictions than simultaneous fits to the aerobic and hypoxic data. For low-LET radiation, estimates of the OER derived from the in vitro data are between 2.3 and 3.3 for extreme levels of hypoxia. The estimated range for the OER is similar to the oxygen enhancement ratios reported in the literature for the initial yield of DSBs. The half-time for sublethal damage repair was found to be independent of oxygen concentration. Analysis of patient survival data for cervix cancer suggests an average OER less than or equal to 1.5, which corresponds to a pO 2 of 5 mm Hg (0.66%) in the in vitro experiments. Because the OER derived from the cervix cancer data is averaged over cells at all oxygen levels, cells irradiated in vivo under extreme levels of hypoxia (<0.5 mm Hg) may have an OER substantially higher than 1.5. The reported analyses of in vitro data, as well as mechanistic considerations, provide strong support for the expressions relating hypoxic and aerobic radiosensitivity parameters. The formulas are also useful

  5. Effects of sensitizers on cell respiration. 3. The effects of hypoxic cell radiosensitizers on oxidative metabolism and the radiation response of an in vitro tumour model

    Energy Technology Data Exchange (ETDEWEB)

    Durand, R E [Wisconsin Clinical Cancer Center, Madison (USA). Dept. of Human Oncology; Biaglow, J E; Greenstock, C L

    1978-06-01

    Physiological factors are important when considering the effects of radiosensitizers on the radiation response of complex systems such as multi-cellular spheroids. In this system, under conditions of unlimited nutrient supply, cells are rendered hypoxic by metabolism. Thus, using the spheroid system as an in vitro model of the tumour-cell microenvironment, we have determined the relative contribution of radiosensitization and respiratory effects of a number of electron-affinic sensitizers having potential clinical use. These studies are indicative of physiological responses at the cellular level, and suggest optimal drug administration schemes for obtaining maximal radiation response in vivo with hypoxic cell sensitizers.

  6. A scenario and forecast model for Gulf of Mexico hypoxic area and volume

    Science.gov (United States)

    Scavia, Donald; Evans, Mary Anne; Obenour, Daniel R.

    2013-01-01

    For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties, corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5,000 km2, to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.

  7. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis.

    Science.gov (United States)

    Nanduri, Jayasri; Makarenko, Vladislav; Reddy, Vaddi Damodara; Yuan, Guoxiang; Pawar, Anita; Wang, Ning; Khan, Shakil A; Zhang, Xin; Kinsman, Brian; Peng, Ying-Jie; Kumar, Ganesh K; Fox, Aaron P; Godley, Lucy A; Semenza, Gregg L; Prabhakar, Nanduri R

    2012-02-14

    Recurrent apnea with intermittent hypoxia is a major clinical problem in preterm infants. Recent studies, although limited, showed that adults who were born preterm exhibit increased incidence of sleep-disordered breathing and hypertension, suggesting that apnea of prematurity predisposes to autonomic dysfunction in adulthood. Here, we demonstrate that adult rats that were exposed to intermittent hypoxia as neonates exhibit exaggerated responses to hypoxia by the carotid body and adrenal chromaffin cells, which regulate cardio-respiratory function, resulting in irregular breathing with apneas and hypertension. The enhanced hypoxic sensitivity was associated with elevated oxidative stress, decreased expression of genes encoding antioxidant enzymes, and increased expression of pro-oxidant enzymes. Decreased expression of the Sod2 gene, which encodes the antioxidant enzyme superoxide dismutase 2, was associated with DNA hypermethylation of a single CpG dinucleotide close to the transcription start site. Treating neonatal rats with decitabine, an inhibitor of DNA methylation, during intermittent hypoxia exposure prevented oxidative stress, enhanced hypoxic sensitivity, and autonomic dysfunction. These findings implicate a hitherto uncharacterized role for DNA methylation in mediating neonatal programming of hypoxic sensitivity and the ensuing autonomic dysfunction in adulthood.

  8. The use of drugs which deplete intracellular glutathione in hypoxic cell radiosensitization

    International Nuclear Information System (INIS)

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-01-01

    Diethylmaleate (DEM) is a thiol-biding reagent with specificity toward glutathione. Treatment of chinese hamster ovary (CHO) cells in vitro with 2 x 10 -4 M DEM for one hour results in a decrease in glutathione content to less than 5% of control, without cytotoxicity. This treatment results in dose-modifying sensitization to radiation under hypoxic conditions, with no effect on the shoulder of the radiation survival curve. No effect on the radiation sensitivity of oxygenated cells was seen. DEM pretreatment enhances the radiosensitization of hypoxic cells by misonidazole, as well. Similar results were obtained in vivo with EMT6 tumors in BALB/c mice. Analysis of DNA damage by the alkaline elution assay indicates that DEM enhances radiation-induced single-strand breaks, but does not significantly affect repair, while diamide and N-ethylmaleimide inhibit repair, in addition to enhancing radiation-induced single-strand breaks

  9. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Yoshii, Hanako; Watanabe, Masami

    2009-01-01

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  10. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells

    International Nuclear Information System (INIS)

    Chapman, J.D.; Lee, J.; Meeker, B.E.

    1989-01-01

    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3[2,2,2-trifluoroethoxy]-2-propanol). 45 references

  11. Hypoxic stress-induced changes in ribosomes of maize seedling roots

    International Nuclear Information System (INIS)

    Bailey-Serres, J.; Freeling, M.

    1990-01-01

    The hypoxic stress response of Zea mays L. seedling roots involves regulation of gene expression at transcriptional and posttranscriptional levels. We investigated the effect of hypoxia on the translational machinery of seedling roots. The levels of monoribosomes and ribosomal subunits increased dramatically within 1 hour of stress. Prolonged hypoxia resulted in continued accumulation of nontranslating ribosomes, as well as increased levels of small polyribosomes. The return of seedlings to normal aerobic conditions resulted in recovery of normal polyribosome levels. Comparison of ribosomal proteins from control and hypoxic roots revealed differences in quantity and electrophoretic mobility. In vivo labeling of roots with [ 35 S]methionine revealed variations in newly synthesized ribosomal proteins. In vivo labeling of roots with [ 32 P]orthophosphate revealed a major reduction in the phosphorylation of a 31 kilodalton ribosomal protein in hypoxic stressed roots. In vitro phosphorylation of ribosomal proteins by endogenous kinases was used to probe for differences in ribosome structure and composition. The patterns of in vitro kinased phosphoproteins of ribosomes from control and hypoxic roots were not identical. Variation in phosphoproteins of polyribosomes from control and hypoxic roots, as well as among polyribosomes from hypoxic roots were observed. These results indicate that modification of the translational machinery occurs in response to hypoxic stress

  12. Activation of radiosensitizers by hypoxic cells

    Energy Technology Data Exchange (ETDEWEB)

    Olive, P L; Durand, R E [Wisconsin Clinical Cancer Center, Madison (USA). Dept. of Human Oncology

    1978-06-01

    Hypoxic cells metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighboring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitro-reductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the 'active' specie(s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells.

  13. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  14. Activation of radiosensitizers by hypoxic cells

    International Nuclear Information System (INIS)

    Olive, P.L.; Durand, R.E.

    1978-01-01

    Hypoxic cells metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighboring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitro-reductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the 'active' specie(s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. (author)

  15. New strategy of cancer therapy by targeting the hypoxic circumstances

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Yamamori, Tohru; Meike, Shunsuke; Eitaki, Masato; Kuwabara, Mikinori; Inanami, Osamu; Iizuka, Daisuke

    2010-01-01

    Described are studies on the sensitization of tumor cells in hypoxic circumstances (known as radio-resistant cells) by authors' recent molecular targeting to adaptive response as well as by the usual agents like nitro-imidazole compounds, and on the intermittent hypoxia, a new topic in this field. The hypoxia-inducible factor-1 (HIF-1) is a transcriptional factor and has been known to activate its many downstream genes to cause adoptive response of hypoxic cells. Authors have studied the anti-tumor and radiation sensitizing effects of ethynyl-cytidine (EC) which is found to suppress RNA synthesis through cytidine kinase (CK) inhibition, and the compound is of specificity to tumor cells as they have 5-10 times higher CK activity than normal cells. Authors have also found that EC is of the sensitizing efficacy to normoxic and hypoxic cells by enhancing the radiation-induced apoptosis essentially through inhibition of HIF-1 expression. Intermittent hypoxia in the tumor which has characteristic abnormal vascular morphology and function, occurs by the transient reduction of blood flow and occlusion of vessels in the tissue within minute to hour time cycles. Little is known about the regional hypoxic region and its distribution in the tumor due to difficulty of their detection and quantification. For this, authors have measured the temporal changes of oxygen levels in the mouse tumor with triaryl methyl radical, an oxygen-sensitive contrast compound continuously injected, by microwave-pulsed electron spin resonance imaging (EPRI). By superimposing the EPRI and T2-weighted MRI, the oxymetric imaging is possible in the tumor, which reveals the difference of oxygen level variation depending on the cell type and tissue size. Findings in the field are expected to give important information for more effective cancer therapy and its prognostic prediction in future. (T.T.)

  16. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress

    Directory of Open Access Journals (Sweden)

    Wu Yonghong

    2010-09-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is both sensitive and tolerant to hypoxic stress, particularly when the evolutionarily conserved hypoxia response pathway HIF-1/EGL-9/VHL is involved. Hypoxia-induced changes in the expression of a number of genes have been analyzed using whole genome microarrays in C. elegans, but the changes at the protein level in response to hypoxic stress still remain unclear. Results Here, we utilized a quantitative proteomic approach to evaluate changes in the expression patterns of proteins during the early response to hypoxia in C. elegans. Two-dimensional difference gel electrophoresis (2D-DIGE was used to compare the proteomic maps of wild type C. elegans strain N2 under a 4-h hypoxia treatment (0.2% oxygen and under normoxia (control. A subsequent analysis by MALDI-TOF-TOF-MS revealed nineteen protein spots that were differentially expressed. Nine of the protein spots were significantly upregulated, and ten were downregulated upon hypoxic stress. Three of the upregulated proteins were involved in cytoskeletal function (LEV-11, MLC-1, ACT-4, while another three upregulated (ATP-2, ATP-5, VHA-8 were ATP synthases functionally related to energy metabolism. Four ribosomal proteins (RPL-7, RPL-8, RPL-21, RPS-8 were downregulated, indicating a decrease in the level of protein translation upon hypoxic stress. The overexpression of tropomyosin (LEV-11 was further validated by Western blot. In addition, the mutant strain of lev-11(x12 also showed a hypoxia-sensitive phenotype in subsequent analyses, confirming the proteomic findings. Conclusions Taken together, our data suggest that altered protein expression, structural protein remodeling, and the reduction of translation might play important roles in the early response to oxygen deprivation in C. elegans, and this information will help broaden our knowledge on the mechanism of hypoxia response.

  17. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Science.gov (United States)

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  18. Cytotoxic properties of a 4-nitroimidazole (NSC 38087): a radiosensitizer of hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Stratford, I.J.; Williamson, C.; Hardy, C.

    1981-01-01

    5-Phenoxysulphonyl-1-methyl-4-nitroimidazole (NSC 38087) can act as a sensitizer of hypoxic mammalian cells to radiation in vitro. The degree of sensitization achieved is greater than would be predicted from the drug's electron affinity. Cytotoxicity studies have shown that 5sub(μM) NSC 38087 can reduce the surviving fraction of log-phase V79 cells in air at 37 0 C to 10 -2 after 2 h exposure. This toxicity is considerably increased by small rises in temperature. In contrast to other nitroheterocyclic radiosensitizers, NSC 38087 and related 5-substituted 4-nitroimidazoles show greater toxicity towards aerobic than to hypoxic cells. Log-phase cells show the highest sensitivity to the toxic action of NSC 38087, with plateau-phase cells, cells with a history of chronic hypoxia, and thermotolerant cells showing greater resistance. These toxicity data are compared to those for the 2-nitroimidazole hypoxic-cell sensitizer misonidazole. (author)

  19. Understanding Hypoxic Drive and the Release of Hypoxic Vasoconstriction.

    Science.gov (United States)

    Inkrott, Jon C

    2016-01-01

    Understanding the hypoxic drive and release of hypoxic vasoconstriction in the chronic obstructive pulmonary disease population can be somewhat confusing and misunderstood. Furthermore, the hypoxic drive theory is one in which there really is no scientific evidence to support and yet continues to prosper in every aspect of care in regard to the chronic lung patient, from prehospital all the way to intensive care unit and home care therapy. This subject review will hopefully enhance some understanding of what exactly goes on with these patients and the importance of providing oxygen when it is desperately needed. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  20. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors.

    Science.gov (United States)

    Ditte, Peter; Dequiedt, Franck; Svastova, Eliska; Hulikova, Alzbeta; Ohradanova-Repic, Anna; Zatovicova, Miriam; Csaderova, Lucia; Kopacek, Juraj; Supuran, Claudiu T; Pastorekova, Silvia; Pastorek, Jaromir

    2011-12-15

    In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment.

  1. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    International Nuclear Information System (INIS)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita; Begg, Adrian C.

    2006-01-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity

  2. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide

    International Nuclear Information System (INIS)

    Griffin, Robert J.; Makepeace, Carol M.; Hur, Won-Joo; Song, Chang W.

    1996-01-01

    Purpose: The effects of nitric oxide (NO) on the radiosensitivity of SCK tumor cells in oxic and hypoxic environments in vitro were studied. Methods and Materials: NO was delivered to cell suspensions using the NO donors 2,2-diethyl-1-nitroso-oxyhydrazine sodium salt (DEA/NO), and a spermine/nitric oxide complex (SPER/NO), which release NO at half-lives of 2.1 min and 39 min at pH 7.4, respectively. The cells were suspended in media containing DEA/NO or SPER/NO for varying lengths of time under oxic or hypoxic conditions, irradiated, and the clonogenicity determined. Results: Both compounds markedly radiosensitized the hypoxic cells. The drug enhancement ratios (DER) for 0.1, 1.0, and 2.0 mM DEA/NO were 2.0, 2.3 and 3.0, respectively, and those for 0.1, 1.0, and 2.0 mM SPER/NO were 1.6, 2.3, and 2.8, respectively. Aerobic cells were not radiosensitized by DEA/NO or SPER/NO. When DEA/NO and SPER/NO were incubated in solution overnight to allow release of NO, they were found to have no radiosensitizing effect under hypoxic or oxic conditions indicating the sensitization by the NO donors was due to the NO molecule released from these drugs. At the higher concentrations, SPER/NO was found to be cytotoxic in aerobic conditions but not in hypoxic conditions. DEA/NO was only slightly toxic to the cells in both aerobic and hypoxic conditions. Conclusions: NO released from NO donors DEA/NO and SPER/NO is as effective as oxygen to radiosensitize hypoxic cells in vitro. Its application to the radiosensitization of hypoxic cells in solid tumors remains to be investigated

  3. Introduction to altitude/hypoxic training symposium.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    Altitude/hypoxic training has traditionally been an intriguing and controversial area of research and sport performance. This controversial aspect was evident recently in the form of scholarly debates in highly regarded professional journals, as well as the World Anti-Doping Agency's (WADA) consideration of placing "artificially-induced hypoxic conditions" on the 2007 Prohibited List of Substances/Methods. In light of the ongoing controversy surrounding altitude/hypoxic training, this symposium was organized with the following objectives in mind: 1) to examine the primary physiological responses and underlying mechanisms associated with altitude/hypoxic training, including the influence of genetic predisposition; 2) to present evidence supporting the effect of altitude/hypoxic acclimatization on both hematological and nonhematological markers, including erythrocyte volume, skeletal muscle-buffering capacity, hypoxic ventilatory response, and physiological efficiency/economy; 3) to evaluate the efficacy of several contemporary simulated altitude modalities and training strategies, including hypoxic tents, nitrogen apartments, and intermittent hypoxic exposure (IHE) or training, and to address the legal and ethical issues associated with the use of simulated altitude; and 4) to describe different altitude/hypoxic training strategies used by elite-level athletes, including Olympians and military special forces. In addressing these objectives, papers will be presented on the topics of: 1) effect of hypoxic "dose" on physiological responses and sea-level performance (Drs. Benjamin Levine and James Stray-Gundersen), 2) nonhematological mechanisms of improved performance after hypoxic exposure (Dr. Christopher Gore), 3) application of altitude/hypoxic training by elite athletes (Dr. Randall Wilber), and 4) military applications of hypoxic training (Dr. Stephen Muza).

  4. Radiosensitization effect of CMNa on hypoxic pancreatic cancer cell in vitro

    International Nuclear Information System (INIS)

    Yin Lijie; Zhang Li; Ding Tiangui; Peng Zhaoxiang; Yu Huan; Gao Yuwei

    2006-01-01

    Objective: To investigate the effects of glycodidazolum natrium (CMNa) on pancreatic cancer cells under hypoxic condition. Methods: The human pancreatic cancer Panc-1 cells were exposed to a single fraction of high-dose γ-ray radiation either with CMNa or under hypoxic condition. The percentage of dead cells was detected with a multiwell plated reader, and fluorescence intensities of propidium iodide were measured before and after digitonin treatment. The sensitizing effect of CMNa on cell killing induced by high-dose irradiation was evaluated by time and concentration dependence. The selective radiosensitive effect of CMNa on hypoxia was evaluated by flow cytometry. Results: The death rate of pancreatic cancer Panc-1 cells paralleled with the increasing concentration of CMNa under hypoxic condition after 30 gray irradiation. The selective radiosensitive effect of CMNa on hypoxia was time-dependent. Conclusions: CMNa can enhance the radiosensitivity of pancreatic cancer Pane-1 cells under hypoxic condition with high-dose irradiation. (authors)

  5. SUMO Signaling by Hypoxic Inactivation of SUMO-Specific Isopeptidases

    Directory of Open Access Journals (Sweden)

    Kathrin Kunz

    2016-09-01

    Full Text Available Post-translational modification of proteins with ubiquitin-like SUMO modifiers is a tightly regulated and highly dynamic process. The SENP family of SUMO-specific isopeptidases comprises six cysteine proteases. They are instrumental in counterbalancing SUMO conjugation, but their regulation is not well understood. We demonstrate that in hypoxic cell extracts, the catalytic activity of SENP family members, in particular SENP1 and SENP3, is inhibited in a rapid and fully reversible process. Comparative mass spectrometry from normoxic and hypoxic cells defines a subset of hypoxia-induced SUMO1 targets, including SUMO ligases RanBP2 and PIAS2, glucose transporter 1, and transcriptional regulators. Among the most strongly induced targets, we identified the transcriptional co-repressor BHLHE40, which controls hypoxic gene expression programs. We provide evidence that SUMOylation of BHLHE40 is reversed by SENP1 and contributes to transcriptional repression of the metabolic master regulator gene PGC-1α. We propose a pathway that connects oxygen-controlled SENP activity to hypoxic reprogramming of metabolism.

  6. Development of a real-time imaging system for hypoxic cell apoptosis

    Directory of Open Access Journals (Sweden)

    Go Kagiya

    2016-01-01

    Full Text Available Hypoxic regions within the tumor form due to imbalances between cell proliferation and angiogenesis; specifically, temporary closure or a reduced flow due to abnormal vasculature. They create environments where cancer cells acquire resistance to therapies. Therefore, the development of therapeutic approaches targeting the hypoxic cells is one of the most crucial challenges for cancer regression. Screening potential candidates for effective diagnostic modalities even under a hypoxic environment would be an important first step. In this study, we describe the development of a real-time imaging system to monitor hypoxic cell apoptosis for such screening. The imaging system is composed of a cyclic luciferase (luc gene under the control of an improved hypoxic-responsive promoter. The cyclic luc gene product works as a caspase-3 (cas-3 monitor as it gains luc activity in response to cas-3 activation. The promoter composed of six hypoxic responsible elements and the CMV IE1 core promoter drives the effective expression of the cyclic luc gene in hypoxic conditions, enhancing hypoxic cell apoptosis visualization. We also confirmed real-time imaging of hypoxic cell apoptosis in the spheroid, which shares properties with the tumor. Thus, this constructed system could be a powerful tool for the development of effective anticancer diagnostic modalities.

  7. Further evidence for the absence of a hypoxic fraction in the 9L rat tumour multicellular spheroid system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Barcellos, M.H.; Shrieve, D.C.; Sano, Y.; Bernstein, M.; Deen, D.F.

    1982-01-01

    The 9L gliosarcoma is an N-methylnitrosourea-induced rat brain tumour that has served as a predictive model for the efficacy of various chemotherapeutic agents against human brain tumours. Because it is one of two known animal tumour models that has no hypoxic fraction, the 9L model is of questionable value for the study of the radiobiology of hypoxic cell sensitizers. Hypoxic 9L monolayer cells are sensitive to misonidazole, as shown by the abrupt decrease in survival after a 2-4 h radiation exposure. However, when 9L spheroids in the size ranges of 200-300, 300-400, 500-600 and 1027+-33μm were incubated in euoxic spinner culture for up to 96 h in 1.5 or 3.0 mM misonidazole, there was no effect on the survival of the dissociated cells over a dose range 0-20 Gy. It is concluded that, in view of the demonstrated sensitivity to misonidazole of hypoxic 9L cells in monolayer culture, this finding provides further evidence that there are no hypoxic cells even in large 9L spheroids with a histologically distinct zone of central necrosis. Moreover, 9L spheroids irradiated in the presence of 3.0 mM misonidazole showed no dose enhancement. (U.K.)

  8. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    Science.gov (United States)

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  9. Induced hypothermia for infants with hypoxic- ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study.

    Science.gov (United States)

    Horn, Alan; Thompson, Clare; Woods, David; Nel, Alida; Bekker, Adrie; Rhoda, Natasha; Pieper, Clarissa

    2009-06-01

    Several trials suggest that hypothermia is beneficial in selected infants with hypoxic-ischemic encephalopathy. However, the cooling methods used required repeated interventions and were either expensive or reported significant temperature variation. The objective of this pilot study was to describe the use, efficacy, and physiologic impact of an inexpensive servo-controlled cooling fan blowing room-temperature air. A servo-controlled fan was manufactured and used to cool 10 infants with hypoxic-ischemic encephalopathy to a rectal temperature of 33 degrees C to 34 degrees C. The infants were sedated with phenobarbital, but clonidine was administered to some infants if shivering or discomfort occurred. A servo-controlled radiant warmer was used simultaneously with the fan to prevent overcooling. The settings used on the fan and radiant warmer differed slightly between some infants as the technique evolved. A rectal temperature of 34 degrees C was achieved in a median time of 58 minutes. Overcooling did not occur, and the mean temperature during cooling was 33.6 degrees C +/- 0.2 degrees C. Inspired oxygen requirements increased in 6 infants, and 5 infants required inotropic support during cooling, but this was progressively reduced after 1 to 2 days. Dehydration did not occur. Five infants shivered when faster fan speeds were used, but 4 of the 5 infants had hypomagnesemia. Shivering was controlled with clonidine in 4 infants, but 1 infant required morphine. Servo-controlled fan cooling with room-temperature air, combined with servo-controlled radiant warming, was an effective, simple, and safe method of inducing and maintaining rectal temperatures of 33 degrees C to 34 degrees C in sedated infants with hypoxic-ischemic encephalopathy. After induction of hypothermia, a low fan speed facilitated accurate temperature control, and warmer-controlled rewarming at 0.2 degrees C increments every 30 minutes resulted in more appropriate rewarming than when 0.5 degrees C

  10. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  11. Hypoxic enhancement of exosome release by breast cancer cells

    International Nuclear Information System (INIS)

    King, Hamish W; Michael, Michael Z; Gleadle, Jonathan M

    2012-01-01

    Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O 2 ) or severe (0.1% O 2 ) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O 2 ) and severe (0.1% O 2 ) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release

  12. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Silveira, Rita C; Procianoy, Renato S

    2015-01-01

    Therapeutic hypothermia reduces cerebral injury and improves the neurological outcome secondary to hypoxic ischemic encephalopathy in newborns. It has been indicated for asphyxiated full-term or near-term newborn infants with clinical signs of hypoxic-ischemic encephalopathy (HIE). A search was performed for articles on therapeutic hypothermia in newborns with perinatal asphyxia in PubMed; the authors chose those considered most significant. There are two therapeutic hypothermia methods: selective head cooling and total body cooling. The target body temperature is 34.5 °C for selective head cooling and 33.5 °C for total body cooling. Temperatures lower than 32 °C are less neuroprotective, and temperatures below 30 °C are very dangerous, with severe complications. Therapeutic hypothermia must start within the first 6h after birth, as studies have shown that this represents the therapeutic window for the hypoxic-ischemic event. Therapy must be maintained for 72 h, with very strict control of the newborn's body temperature. It has been shown that therapeutic hypothermia is effective in reducing neurologic impairment, especially in full-term or near-term newborns with moderate hypoxic-ischemic encephalopathy. Therapeutic hypothermia is a neuroprotective technique indicated for newborn infants with perinatal asphyxia and hypoxic-ischemic encephalopathy. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  13. Experimental investigations on the relationship between radiation dose and sensitization of hypoxic cells by electron affinic compounds. Coordinated programme on improvement in radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Revesz, L.

    1981-12-01

    The investigations concern experimental studies on the factors which determine the inherent radiation response of mammalian cells, and the mechanism by which treatment with radiation protectors and hypoxic sensitizers modifies the response. Several mammalian cell lines including some derived from humans, were used in the tests of the biological response to radiation. Especially, the establishment of glutathione-deficient cell lines opened new experimental approaches to the question on the role of aminothiols in determining cellular radiation response. As the endpoints for the effect of radiation, single-strand DNA breaks by means of the sucrose gradient centrifugation and the unwinding technique in weak alkali, and colony forming ability of the cells were chosen. Radical reactions were also studied by the pulse-radiolysis technique. The enhancement of cellular radiosensitivity by oxygen and hypoxic cell sensitizers was found to be directly related to the glutathione level in the cells. Some particular aminothiols could substitute for the effect of glutathione in protecting against sensitization by oxygen and oxygen mimic sensitizers. The post irradiation repair of some DNA lesions induced by oxygen or hypoxic cell sensitizers was also associated with the level of glutathione and some specific aminothiols in the cells. The experiments revealed an efficient cellular cooperation in the repair of radiation induced DNA damage. Pulse radiolysis studies showed radical reactions characteristic for glutathione and not shared by other naturally occurring aminothiols. Inherent glutathione appears to play an important role in determining the intrinsic radiosensitivity of cells and the result of treatment with radioprotective and radiosensitizing substances. In particular, glutathione participates in both immediate radical reactions following exposure to ionizing radiation, and in the subsequent biochemical processes, and functions in promoting repair of the radiation damage

  14. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions)

    International Nuclear Information System (INIS)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T.; Lagarde, P.; Pooter, C.M.J. de; Chomy, F.

    1995-01-01

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs

  15. The effect of dexamethasone on the radiation survival response and misonidazole-induced hypoxic-cell cytotoxicity in Chinese hamster cells V-79-753B in vitro

    International Nuclear Information System (INIS)

    Millar, B.C.; Jinks, S.

    1981-01-01

    Overnight exposure of Chinese hamster cells, V-79-753B, to microgram quantities of the synthetic corticosteroid, dexamethasone, resulted in a decrease in sensitivity towards radiation, both in air and in hypoxia. The effect was dose-modifying and the oxygen enhancement ratio did not change appreciably. Similarly, when dexamethasone-treated hypoxic cells were irradiated in the presence of misonidazole, a hypoxic cell radiosensitizer, there was a decrease in radiation sensitivity compared with untreated hypoxic cells irradiated with misonidazole. (author)

  16. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    OpenAIRE

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic indu...

  17. Effect of electron affinic hypoxic cell sensitizers on the radiolytic depletion of oxygen in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.

    1982-01-01

    When CHO cells are equilibrated with a low level of oxygen (e.g. 0.4% O 2 ) and irradiated with single 3 ns pulses of electrons, a breaking survival curve is observed. This effect is believed to be the result of radiolytic oxygen depletion and can be prevented by the presence of a relatively low concentraton of hypoxic cell radiosensitizer. This prevention of the breaking survival curve has been observed for 2- and 5-nitroimidazoles, nitrofurans, and diamide. It is hypothesized that the sensitizer acts by competing wth oxygen for the radiation-induced intracellular oxygen-binding species, perhaps a hydrated electron adduct, leaving oxygen free to participate in radiosensitization reactions during the lifetime of the oxygen-sensitive radiation-induced target sites for lethal damage, probably DNA radicals produced by hydroxyl radical attack. The proposed role of the sensitizer in the interference with oxygen depletion is a transient phenomenon, occuring on the microsecond to millisecond time scale

  18. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.

    Science.gov (United States)

    Zheng, Y; Wang, X-M

    2017-04-01

    As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.

  19. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    Science.gov (United States)

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  20. The effect of ploidy on the modification of the shoulder region of hypoxic cell-survival curves by the biradical, Ro.03-6061

    International Nuclear Information System (INIS)

    Millar, B.C.; Millar, J.L.

    1977-01-01

    The biradical nitroxyl, Ro.03-6061, sensitized two lines of mouse L cell to ionizing radiation when the cells were rendered hypoxic. Although the biradical reduced the D 0 value of the hypoxic cell-survival curve in each instance, it had no significant effect on the shoulder region. A hybrid line produced from these two strains was more radioresistant than either parent. In this instance, the biradical suppressed the shoulder region of the hypoxic cell-survival curve, but had no effect on the D 0 value. In a second system, the biradical selectivity sensitized hypoxic cells of a diploid and a tetraploid clone of Syrian hamster cells (BHK21/C15). The survival-curve characteristics of both clones were similar. The biradical reduced the D 0 value but did not significantly change the shoulder region of the hypoxic cell-survival curve. An aneuploid line sub-cultured from the tetraploid clone was much more resistant to radiation. In this instance, there was a decrease in the D 0 value of hypoxic cells in the presence of the biradical, but the extrapolation number was increased to a value similar to that for cells irradiated in air. (author)

  1. Perceptual relearning of binocular fusion after hypoxic brain damage: four controlled single-case treatment studies.

    Science.gov (United States)

    Schaadt, Anna-Katharina; Schmidt, Lena; Kuhn, Caroline; Summ, Miriam; Adams, Michaela; Garbacenkaite, Ruta; Leonhardt, Eva; Reinhart, Stefan; Kerkhoff, Georg

    2014-05-01

    Hypoxic brain damage is characterized by widespread, diffuse-disseminated brain lesions, which may cause severe disturbances in binocular vision, leading to diplopia and loss of stereopsis, for which no evaluated treatment is currently available. The study evaluated the effects of a novel binocular vision treatment designed to improve binocular fusion and stereopsis as well as to reduce diplopia in patients with cerebral hypoxia. Four patients with severely reduced convergent fusion, stereopsis, and reading duration due to hypoxic brain damage were treated in a single-subject baseline design, with three baseline assessments before treatment to control for spontaneous recovery (pretherapy), an assessment immediately after a treatment period of 6 weeks (posttherapy), and two follow-up tests 3 and 6 months after treatment to assess stability of improvements. Patients received a novel fusion and dichoptic training using 3 different devices designed to slowly increase fusional and disparity angle. After the treatment, all 4 patients improved significantly in binocular fusion, subjective reading duration until diplopia emerged, and 2 of 4 patients improved significantly in local stereopsis. No significant changes were observed during the pretherapy baseline period and the follow-up period, thus ruling out spontaneous recovery and demonstrating long-term stability of treatment effects. This proof-of-principle study indicates a substantial treatment-induced plasticity after hypoxia in the relearning of binocular vision and offers a viable treatment option. Moreover, it provides new hope and direction for the development of effective rehabilitation strategies to treat neurovisual deficits resulting from hypoxic brain damage.

  2. Radiation-induced changes in nucleoid halo diameteres of aerobic and hypoxic SF-126 human brain tumor cells

    International Nuclear Information System (INIS)

    Wang, J.; Basu, H.S.; Hu, L.; Feuerstein, B.G.; Deen, D.F.

    1995-01-01

    Nucleoid halo diameters were measured to assay changes in DNA supercoiling in human brain tumor cell line SF-126 after irradiation under aerobic or hypoxic conditions. In unirradiated aerobic cells, a typical propidium iodide titration curve showed that with increasing concentrations of propodium iodide, the halo diameter increased and then decreased with the unwinding and subsequent rewinding of DNA supercoils. In irradiated cells, the rewinding of DNA supercoils was inhibited, resulting in an increased halo diameter, in a radiation dose-dependent manner. To produce equal increases in halo diameter required about a threefold higher radiation dose in hypoxic cells than in aerobic cells. Quantitatively similiar differences in the radiation sensitivities of hypoxic and aerobic cells were demonstrated by a colony-forming efficiency assay. These findings suggest that the nucleoid halo assay may be used as a rapid measure of the inherent radiation sensitivity of human tumors. 22 refs., 5 figs

  3. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    Science.gov (United States)

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors. PMID:21393866

  4. Effects of bleomycin and irradiation on euoxic and hypoxic cells

    International Nuclear Information System (INIS)

    Shrieve, D.C.; Harris, J.W.

    1979-01-01

    EMT6 cells in vitro were exposed to bleomycin (BLM), either alone (under euoxic or hypoxic conditions) or in conjunction with x-radiation. Hypoxic and euoxic cells were equally sensitive to the drug in both of the systems used to induce hypoxia (ampules or chambers). Exposure to BLM immediately before x-irradiation altered the shape of the radiation survival curve decreasing the D 0 by a factor of 1.3. Simultaneous exposure to x-ray and BLM resulted in lower survivals than when radiation was given either before or after drug treatment. Cells recovered quickly from BLM damage if trypsinization was delayed. The results indicate that BLM and x-rays interact to lower cell survival but that cells recover from this effect if trypsinization is delayed

  5. Deregulation of cap-dependent mRNA translation increases tumour radiosensitivity through reduction of the hypoxic fraction

    International Nuclear Information System (INIS)

    Rouschop, Kasper M.A.; Dubois, Ludwig; Schaaf, Marco B.E.; Beucken, Twan van den; Lieuwes, Natasja; Keulers, Tom G.H.; Savelkouls, Kim G.M.; Bussink, Johan; Kogel, Albert J. van der; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Tumour hypoxia is an important limiting factor in the successful treatment of cancer. Adaptation to hypoxia includes inhibition of mTOR, causing scavenging of eukaryotic initiation factor 4E (eIF4E), the rate-limiting factor for cap-dependent translation. The aim of this study was to determine the effect of preventing mTOR-dependent translation inhibition on hypoxic cell survival and tumour sensitivity towards irradiation. Material and methods: The effect of eIF4E-overexpression on cell proliferation, hypoxia-tolerance, and radiation sensitivity was assessed using isogenic, inducible U373 and HCT116 cells. Results: We found that eIF4E-overexpression significantly enhanced proliferation of cells under normal conditions, but not during hypoxia, caused by increased cell death during hypoxia. Furthermore, eIF4E-overexpression stimulated overall rates of tumour growth, but resulted in selective loss of hypoxic cells in established tumours and increased levels of necrosis. This markedly increased overall tumour sensitivity to irradiation. Conclusions: Our results demonstrate that hypoxia induced inhibition of translational control through regulation of eIF4E is an important mediator of hypoxia tolerance and radioresistance of tumours. These data also demonstrate that deregulation of metabolic pathways such as mTOR can influence the proliferation and survival of tumour cells experiencing metabolic stress in opposite ways of nutrient replete cells.

  6. Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad.

    Science.gov (United States)

    Gao, Yuansheng; Chen, Zhengju; Leung, Susan W S; Vanhoutte, Paul M

    2015-06-01

    In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5'-triphosphate and in the synthesis of inosine 3',5'-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5'-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.

  7. Ultrastructural alterations in hypoxic EMT-6/RO cells treated with misonidazole

    International Nuclear Information System (INIS)

    Wilbur, D.C.; Mulcahy, R.T.

    1984-01-01

    Ultrastructural alterations in hypoxic EMT-6 tumor cells were quantitatively analyzed as a function of time in the presence and absence of 1.0mM MISO. Control and MISO-treated monolayer cultures were maintained in hypoxic chambers at 37 0 C. At intervals after initiation of hypoxia, the cells were fixed and prepared for electron microscopy. The major ultrastructural alterations observed in untreated and MISO-treated hypoxic cells included mitochondrial swelling and accumulation of cytoplasmic lipid vacuoles. Mean mitochondrial area and relative cytoplasmic area occupied by lipid vacuoles were determined morphometrically. Mitochondrial damage was also scored qualitatively based on distortions in configuration. In the absence of MISO both parameters of mitochondrial injury increased over a period of two hours, after which little further change was noted. A progressive increase in lipid vacuolization was also seen. In the presence of MISO, mitochondrial swelling and lipid vacuole formation were significantly increased. The proportion of irreversibly damaged mitochondria was markedly enhanced. MISO treatment also accelerated the expression of these changes. The accelerated expression of hypoxic-related injury in MISO treated cells suggests that cytotoxicity is related to accentuation of hypoxic injury, perhaps by inhibition of glycolysis

  8. Risk factor for hypoxic ischemic encephalopathy in children

    International Nuclear Information System (INIS)

    Butt, T.K.; Farooqui, R.; Khan, U.; Farooqui, R.

    2008-01-01

    To determine underlying risk factors in neonates with hypoxic ischemic encephalopathy. All neonates (153) with the diagnosis of Hypoxic Ischemic Encephalopathy (HIE) were included in the study. Controls (187) were selected from admissions on the same day. Possible risk factors such as maternal age, parity, antenatal monitoring, place of delivery, prolonged second stage of labour, type of delivery, type of attendant at delivery and the gestational age were noted and compared. Sixty one (39.9%) mothers of asphyxiated babies reported no antenatal visits compared to 24.1% in the control group (OR 2.1, 95% CI 1.3-3.2; p=0.002). Only 6.5% of cases were born in government hospitals (teaching and district) in comparison to 20.9% of controls (OR 3.8, 95% CI 1.9-7.6; p=0.001). In 28.1% of cases, mothers had history of prolonged 2nd stage of labour in comparison to 5.9% of controls (OR 6.3, 95% CI 3.3-11.9; p<0.001). Fifty five cases (35.9%) were delivered by unskilled birth attendants compared to 28 (14.9%) controls (OR 3.2, 95% CI 1.9-5.3; p<0.001). No significant difference was found in maternal age, maternal parity, gestational age and the mode of delivery between the two groups. Delivery by unskilled birth attendant, prolonged second stage of labour, birth in a non-government hospital setup and absence of antenatal care were significant risk factors for hypoxic ischemic encephalopathy in neonates. Improvement in antenatal and intrapartum care may be helpful in decreasing the frequency of this problem. (author)

  9. The hypoxic tumor microenvironment and drug resistance against EGFR inhibitors: preclinical study in cetuximab-sensitive head and neck squamous cell carcinoma cell lines.

    Science.gov (United States)

    Boeckx, Carolien; Van den Bossche, Jolien; De Pauw, Ines; Peeters, Marc; Lardon, Filip; Baay, Marc; Wouters, An

    2015-06-02

    Increased expression of the epidermal growth factor receptor (EGFR) is observed in more than 90% of all head and neck squamous cell carcinomas (HNSCC). Therefore, EGFR has emerged as a promising therapeutic target. Nevertheless, drug resistance remains a major challenge and an important potential mechanism of drug resistance involves the hypoxic tumor microenvironment. Therefore, we investigated the cytotoxic effect of the EGFR-targeting agents cetuximab and erlotinib under normoxia versus hypoxia. Three cetuximab-sensitive HNSCC cell lines (SC263, LICR-HN2 and LICR-HN5) were treated with either cetuximab or erlotinib. Cells were incubated under normal or reduced oxygen conditions (<0.1% O2) for 24 or 72 h immediately after drug addition. Cell survival was assessed with the sulforhodamine B assay. Cetuximab and erlotinib established a dose-dependent growth inhibition under both normal and prolonged reduced oxygen conditions in all three HNSCC cell lines. However, a significantly increased sensitivity to cetuximab was observed in SC263 cells exposed to hypoxia for 72 h (p = 0.05), with IC50 values of 2.38 ± 0.59 nM, 0.64 ± 0.38 nM, and 0.10 ± 0.05 nM under normoxia, hypoxia for 24 h and hypoxia for 72 h, respectively. LICR-HN5 cells showed an increased sensitivity towards erlotinib when cells were incubated under hypoxia for 24 h (p = 0.05). Our results suggest that both EGFR-inhibitors cetuximab and erlotinib maintain their growth inhibitory effect under hypoxia. These results suggest that resistance to anti-EGFR therapy in HNSCC is probably not the result of hypoxic regions within the tumor and other mechanisms are involved.

  10. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  11. Radiosensitizing and toxic effects of the 2-nitroimidazole Ro-07-0582 in different phases of the cell cycle of extremely hypoxic human cells in vitro

    International Nuclear Information System (INIS)

    Petterson, E.O.

    1978-01-01

    The radiosensitizing effect of 5 and 30 mM of Ro-07-0582 (misonidazole) has been studied at different stages of the cell cycle of mitotically selected NHIK 3025 cells under aerobic and extremely hypoxic conditions. For cells irradiated under aerobic conditions no sensitizing effect was seen at any stage of the cell cycle. For cells irradiated under extremely hypoxic conditions there was a lower sensitizing effect in mid-G1 than in mid-S for low radiation doses (in the initial region of the dose-response curves). For high radiation doses, however, no significant difference in sensitizing effect on cells in mid-G1 and in mid-S was seen. For cells in mid-G1 the sensitizing effect increased with increasing radiation dose. The toxic effect of 30 mM Ro-07-0582 as measured by loss of reproductive capacity was studied at room temperature for contact times up to 6 hours under aerobic conditions and 3 hours under extremely hypoxic conditions. While no effect was seen under aerobic conditions there was a toxic effect for contact intervals above 1 hour under extremely hypoxic conditions. Cells in S were more sensitive to the toxic effect of Ro-07-0582 than cells in G1. Implications for clinical use are discussed

  12. The Effects of Sympathetic Inhibition on Metabolic and Cardiopulmonary Responses to Exercise in Hypoxic Conditions.

    Science.gov (United States)

    Scalzo, Rebecca L; Peltonen, Garrett L; Binns, Scott E; Klochak, Anna L; Szallar, Steve E; Wood, Lacey M; Larson, Dennis G; Luckasen, Gary J; Irwin, David; Schroeder, Thies; Hamilton, Karyn L; Bell, Christopher

    2015-12-01

    Pre-exertion skeletal muscle glycogen content is an important physiological determinant of endurance exercise performance: low glycogen stores contribute to premature fatigue. In low-oxygen environments (hypoxia), the important contribution of carbohydrates to endurance performance is further enhanced as glucose and glycogen dependence is increased; however, the insulin sensitivity of healthy adult humans is decreased. In light of this insulin resistance, maintaining skeletal muscle glycogen in hypoxia becomes difficult, and subsequent endurance performance is impaired. Sympathetic inhibition promotes insulin sensitivity in hypoxia but may impair hypoxic exercise performance, in part due to suppression of cardiac output. Accordingly, we tested the hypothesis that hypoxic exercise performance after intravenous glucose feeding in a low-oxygen environment will be attenuated when feeding occurs during sympathetic inhibition. On 2 separate occasions, while breathing a hypoxic gas mixture, 10 healthy men received 1 hour of parenteral carbohydrate infusion (20% glucose solution in saline; 75 g), after which they performed stationary cycle ergometer exercise (~65% maximal oxygen uptake) until exhaustion. Forty-eight hours before 1 visit, chosen randomly, sympathetic inhibition via transdermal clonidine (0.2 mg/d) was initiated. The mean time to exhaustion after glucose feeding both with and without sympathetic inhibition was not different (22.7 ± 5.4 minutes vs 23.5 ± 5.1 minutes; P = .73). Sympathetic inhibition protects against hypoxia-mediated insulin resistance without influencing subsequent hypoxic endurance performance. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    Science.gov (United States)

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals.

  14. Irradiation combined with Bleomycin treatment of synchronized cells in culture under oxic and hypoxic conditions

    International Nuclear Information System (INIS)

    Midander, J.; Littbrand, B.; Edsmyr, F.

    1980-01-01

    Bleomycin-treated cells are sensitized to radiation delivered under oxic conditions both in the early S and G 2 phases of the cycle, irradiated under hypoxic conditions, sensitization occurs only in the early S phase. This difference in the sensitizing effect of the drug is discussed in regard to the possible clinical advantages of a combined treatment of tumours with irradiation and Bleomycin. (Auth.)

  15. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE

    Directory of Open Access Journals (Sweden)

    Benjamin Harding

    2016-12-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI insult in neonatal rats via intracerebroventricular (ICV injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional

  16. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Science.gov (United States)

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  17. Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction

    International Nuclear Information System (INIS)

    Dasu, Alexandru; Denekamp, Juliana

    1999-01-01

    Purpose: A dose 'window of opportunity' has been identified in an earlier modeling study if the inducible repair variant of the LQ model is adopted instead of the pure LQ model, and if all survival curve parameters are equally modified by the presence or absence of oxygen. In this paper we have extended the calculations to consider survival curve parameters from 15 sets of data obtained for cells tested at low doses using clonogenic assays. Methods and Materials: A simple computer model has been used to simulate the response of each cell line to various doses per fraction in multifraction schedules, with oxic and hypoxic cells receiving the same fractional dose. We have then used pairs of simulated survival curves to estimate the effective hypoxic protection (OER') as a function of the dose per fraction. Results: The resistance of hypoxic cells is reduced by using smaller doses per fraction than 2 Gy in all these fractionated clinical simulations, whether using a simple LQ model, or the more complex LQ/IR model. If there is no inducible repair, the optimum dose is infinitely low. If there is inducible repair, there is an optimum dose per fraction at which hypoxic protection is minimized. This is usually around 0.5 Gy. It depends on the dose needed to induce repair being higher in hypoxia than in oxygen. The OER' may even go below unity, i.e. hypoxic cells may be more sensitive than oxic cells. Conclusions: If oxic and hypoxic cells are repeatedly exposed to doses of the same magnitude, as occurs in clinical radiotherapy, the observed hypoxic protection varies with the fractional dose. The OER' is predicted to diminish at lower doses in all cell lines. The loss of hypoxic resistance with superfractionation is predicted to be proportional to the capacity of the cells to induce repair, i.e. their intrinsic radioresistance at a dose of 2 Gy

  18. Radiosensitization conferred by oxygen and hypoxic cell sensitizers on human cells cultivated in vitro

    International Nuclear Information System (INIS)

    Pettersen, E.O.

    1978-01-01

    The main purpose was to provide additional information on two questions; (1) How does the radiosensitising effect of oxygen depend on oxygen concentration and cellular age, and (2) How does the radiosensitising effect of hypoxic cell sensitisers depend on concentration of sensitiser and cellular age. The general conclusions reached were as follows. The radiosensitising effect of oxygen on NHIK 3025 cells in G1 increased with increasing dose of radiation. For cells irradiated in S oxygen acted as a dose-modifying agent. For small doses of radiation the sensitising effect of oxygen was weaker for cells irradiated in G1 than for cells irradiated in S. The capacity of NHIK 3025 cells to repair sublethal damage after irradiation under extremely hypoxic conditions was low or even lost (even though the cells were subsequently incubated under aerobic conditions). The radiosensitising effect conferred by TMPN, diamide and misonidazole on NHIK 3025 cells was higher at high doses of radiation than at small doses of radiation (except for the dose-modifying radiosensitisation of cells in S by misonidazole). This observation supports arguments for using high dose fractions in fractionated radiotherapy where such chemicals are involved. (JIW)

  19. Insulin-like growth factor stimulation increases radiosensitivity of a pancreatic cancer cell line through endoplasmic reticulum stress under hypoxic conditions

    International Nuclear Information System (INIS)

    Isohashi, Fumiaki; Endo, Hiroko; Mukai, Mutsuko; Inoue, Masahiro; Inoue, Takehiro

    2008-01-01

    Tumor hypoxia is an obstacle to radiotherapy. Radiosensitivity under hypoxic conditions is determined by molecular oxygen levels, as well as by various biological cellular responses. The insulin-like growth factor (IGF) signaling pathway is a widely recognized survival signal that confers radioresistance. However, under hypoxic conditions the role of IGF signaling in radiosensitivity is still poorly understood. Here, we demonstrate that IGF-II stimulation decreases clonogenic survival under hypoxic conditions in the pancreatic cancer cell lines AsPC-1 and Panc-1, and in the human breast cancer cell line MCF-7. IGF treatment under hypoxic conditions suppressed increased radiation sensitivity in these cell lines by pharmacologically inhibiting the phosphoinositide 3-kinase-mammalian target of rapamycin pathway, a major IGF signal-transduction pathway. Meanwhile, IGF-II induced the endoplasmic reticulum stress response under hypoxia, including increased protein levels of CHOP and ATF4, mRNA levels of CHOP, GADD34, and BiP as well as splicing levels of XBP-1. The response was suppressed by inhibiting phosphoinositide 3-kinase and mammalian target of rapamycin activity. Overexpression of CHOP in AsPC-1 cells increased radiation sensitivity by IGF-II simulation under hypoxic conditions, whereas suppression of CHOP expression levels with small hairpin RNA or a dominant negative form of a proline-rich extensin-like receptor protein kinase in hypoxia decreased IGF-induced radiosensitivity. IGF-induced endoplasmic reticulum stress contributed to radiosensitization independent of cell cycle status. Taken together, IGF stimulation increased radiosensitivity through the endoplasmic reticulum stress response under hypoxic conditions. (author)

  20. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.

    Science.gov (United States)

    Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D

    2004-08-06

    Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.

  1. OUTCOMES in CHILDHOOD FOLLOWING THERAPEUTIC HYPOTHERMIA for NEONATAL HYPOXIC-ISCHEMIC ENCEPHALOPATHY (HIE)

    Science.gov (United States)

    Natarajan, Girija; Pappas, Athina; Shankaran, Seetha

    2017-01-01

    In this chapter we review the childhood outcomes of neonates with birth depression and/or hypoxic-ischemic encephalopathy. The outcomes of these children prior to the era of hypothermia for neuroprotection will first be summarized, followed by discussion of results from randomized controlled trials of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. The predictors of outcome in childhood following neonatal HIE using clinical and imaging biomarkers following hypothermia therapy will be described. PMID:27863707

  2. Hypoxic Living and Exercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats

    Directory of Open Access Journals (Sweden)

    Yingli Lu

    2016-11-01

    Full Text Available Background: Hypobaric hypoxia results in weight loss in obese individuals, and exercise training is advocated for the treatment of obesity and its related metabolic dysfunctions. The purpose of this study was to investigate the effects of hypoxic living and exercise training on obesity and adipose tissue leptin/leptin receptor in dietary-induced obese rats. Methods: One hundred and thirty high-fat diet fed Sprague-Dawley rats were assigned into one of the following groups (n=10 each: control, sedentary hypoxic living for 1 to 4 weeks (SH1, SH2, SH3, and SH4, living and exercise training in normoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4, and living and exercise training in hypoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4. Epididymal adipose tissue expression levels of leptin and leptin receptor were determined. Results: Compared to hypoxic living and living and exercise training in normoxic conditions, living and exercise training in hypoxic conditions for 3-4 weeks resulted in lower Lee index (P<0.05 to P<0.01, and higher expression of leptin and leptin receptor (P<0.05 to P<0.01 in adipose tissue. Conclusion: In a rodent model of altitude training, living and exercise training in hypoxic conditions resulted in greater alterations in obesity and adipose tissue leptin/leptin receptor than hypoxic living alone and living and exercise training in normoxic conditions.

  3. Clinical significance of changes of serum NSE, TNF-α and IL-6 levels in patients with hypoxic ischemic encephalopathy

    International Nuclear Information System (INIS)

    Zhang Yuhong; Zhang Yujuan; Zhou Xiujuan; Shan Huali

    2010-01-01

    Objective: To study the clinical significance of changes of serum NSE, TNF-α and IL-6 levels in neonates with hypoxic ischemic encephalopathy. Methods: Serum NSE (with ELISA) and TNF-α, IL-6 (with RIA) levels were measured in 30 neonates with hypoxic ischemic encephalopathy and 30 controls. Results: Serum NSE, TNF-α and IL-6 levels were significantly higher in neonates with hypoxic-ischemic encephalopathy than those in controls (P<0.01). Serum NSE levels were positively correlated with those of TNF-α, IL-6 (r=0.5812, 0.6014, P<0.01). Conclusion: Serum NSE, TNF-α and IL-6 levels were closely related to the diseases process of hypoxic-ischemic encephalopathy. (authors)

  4. Hypoxic training: Clinical benefits on cardiometabolic risk factors.

    Science.gov (United States)

    Wee, Justin; Climstein, Mike

    2015-01-01

    The main aim of this review was to evaluate the effectiveness of hypoxic training on the modulation of cardiometabolic risk factors. Literature review. An electronic search encompassing five databases (PUBMED, EMBASE, MEDLINE, CINAHL, and SPORTDiscus) was conducted. A total of 2138 articles were retrieved. After excluding non-relevant articles, duplications and outcomes not related to cardiometabolic risk factors, 25 articles were chosen for review. Body weight and body composition were reported to be significantly improved when hypoxic training (≥1700 m) was used in conjunction with exercise regimes, at least three times a week, however extreme altitudes (>5000 m) resulted in a loss of fat-free muscle mass. Fasting blood glucose levels generally improved over time (≥21 days) at moderate levels of altitude (1500 m-3000 m), although reductions in blood glucose tolerance were observed when subjects were exposed to extreme hypoxia (>4000 m). Resting systolic and diastolic blood pressure levels improved as much as 26 mmHg and 13 mmHg respectively, with hypoxic training (1285 m-2650 m) in medicated, stable hypertensive subjects. Effects of hypoxic training when used in combination with exercise training on cholesterol levels were mixed. While there were improvements in total cholesterol (-4.2% to -30%) and low-density lipoprotein (-2.6% to -14.3%) reported as a result of hypoxic training, available evidence does not substantiate hypoxic training for the improvement of high-density lipoprotein and triglycerides. In conclusion, hypoxic training may be used as an adjunct treatment to modify some cardiometabolic risk factors. Measurement of hypoxic load may be used to individualize and ascertain appropriate levels of hypoxic training. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Sodium Pyruvate Reduced Hypoxic-Ischemic Injury to Neonatal Rat Brain

    OpenAIRE

    Pan, Rui; Rong, Zhihui; She, Yun; Cao, Yuan; Chang, Li-Wen; Lee, Wei-Hua

    2012-01-01

    Background Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to hypoxia-ischemia, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy (HIE), but its effects have not been evaluated in ...

  6. Intermittent hypoxic episodes in preterm infants: do they matter?

    Science.gov (United States)

    Martin, Richard J; Wang, Katherine; Köroğlu, Ozge; Di Fiore, Juliann; Kc, Prabha

    2011-01-01

    Intermittent hypoxic episodes are typically a consequence of immature respiratory control and remain a troublesome challenge for the neonatologist. Furthermore, their frequency and magnitude are underestimated by clinically employed pulse oximeter settings. In extremely low birth weight infants the incidence of intermittent hypoxia progressively increases over the first 4 weeks of postnatal life, with a subsequent plateau followed by a slow decline beginning at weeks 6-8. Such episodic hypoxia/reoxygenation has the potential to sustain a proinflammatory cascade with resultant multisystem morbidity. This morbidity includes retinopathy of prematurity and impaired growth, as well as possible longer-term cardiorespiratory instability and poor neurodevelopmental outcome. Therapeutic approaches for intermittent hypoxic episodes comprise determination of optimal baseline saturation and careful titration of supplemental inspired oxygen, as well as xanthine therapy to prevent apnea of prematurity. In conclusion, characterization of the pathophysiologic basis for such intermittent hypoxic episodes and their consequences during early life is necessary to provide an evidence-based approach to their management. Copyright © 2011 S. Karger AG, Basel.

  7. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-01-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba 2+ -sensitive inward rectifier K + current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca 2+ imaging study revealed that the hypoxic stress enhanced store-operated Ca 2+ (SOC) entry, which was significantly reduced in the presence of 100 μM Ba 2+ . On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba 2+ . We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca 2+ entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca 2+ (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia.

  8. Radiolabeled cypoxic cell sensitizers: tracer for assessment of ischemia

    International Nuclear Information System (INIS)

    Mathias, C.J.; Welch, M.J.; Kilbourn, M.R.; Jerabek, P.A.; Patrick, T.B.; Raichle, M.E.; Krohn, K.A.; Rasey, J.S.; Shaw, D.W.

    1987-01-01

    Hypoxic, non-functional, but viable, tissue may exist in heart and brain following an arterial occlusion. Identification of such tissue in vivo is crucial to the development of effective treatment strategies. It has been suggested that certain compounds capable of sensitizing hypoxic tumor cells to killing by x-rays (i.e., misonidazole) might serve as in vivo markers of hypoxic tissue in ischemic myocardium or brain if properly radiolabeled. To this end the authors have radiolabeled two fluorinated analogs of nitroimidazole based hypoxic cell sensitizers with the 110 minute half-lived positron-emitting fluorine-18. The ability of these tracers to quantitate the presence of hypoxic tissue has been studied in a gerbil stroke model. The in vivo uptake of one of these tracers [F-18]-fluoronormethyoxymisonidazole is dependent on the extent of tissue hypoxia, and thus, appears to have potential as a diagnostic indicator of non-functional but viable tissue when the tracer is used in conjunction with positron emission tomography. 80 references, 2 figures, 1 table

  9. Hypoxic hypoxia as a means of modifying radiosensibility

    International Nuclear Information System (INIS)

    Neumeister, K.; Niemiec, C.; Bolck, M.; Jahns, J.; Kamprad, F.; Arnold, P.; Johannsen, U.; Koch, F.; Mehlhorn, G.

    1977-01-01

    Following an overview of the various possibilities of creating hypoxia in mammals, the problem of reducing radioresistance of hypoxic tumor cells is treated. Furthermore, the results of irradiation experiments with mice, rats and pigs breathing hypoxic mixtures of O 2 and N 2 are given and discussed with a view to applying hypoxic hypoxia in the radiotherapy of human tumors. (author)

  10. Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic γ-irradiation

    International Nuclear Information System (INIS)

    Paterson, M.C.; Anderson, A.K.; Smith, B.P.; Smith, P.J.

    1979-01-01

    We have measured the sensitivity to γ-ray inactivation of diploid skin fibroblasts cultured from 10 persons in four families with ataxia telangiectasia (AT). Persons heterozygous for AT, including parents of afflicted patients, are not as yet detectable by any specific clinical or laboratory marker but are believed to constitute a substantial portion of the middle-aged cancer population. In one AT family, fibroblast strains from both parents exhibited a colony-forming ability after hypoxic irradiation which was intermediate between that displayed by five control strains from normal children and that from the affected child. In the remaining three families, cultures from only one parent were available; one parental strain displayed an intermediate survival capacity as above, whereas the other two responded normally. The homozygous recessive strains from the five afflicted children in the four families were all equally hypersensitive to hypoxic γ-ray inactivation. The three presumed AT heterozygous strains that displayed intermediate rayiosensitivity also carried out γ-rad-induced DNA repair replication to an extent intermediate between those in normals and AT homozygotes. These findings suggest that a numerically significant, cancer-prone subpopulation of humans carrying one normal and one abnormal AT gene may also be moderately sensitive to lethal effects of hypoxic γ-rays due to a defect in the enzymatic repair of DNA

  11. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE).

    Science.gov (United States)

    Natarajan, Girija; Pappas, Athina; Shankaran, Seetha

    2016-12-01

    In this article, we review the childhood outcomes of neonates with birth depression and/or hypoxic-ischemic encephalopathy. The outcomes of these children prior to the era of hypothermia for neuroprotection will first be summarized, followed by discussion of results from randomized controlled trials of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. The predictors of outcome in childhood following neonatal HIE using clinical and imaging biomarkers following hypothermia therapy will be described. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Clinical significance of determination of changes of plasma ET and SS contents in neonates with hypoxic-ischemic encephalopathy (HIE)

    International Nuclear Information System (INIS)

    Zhang Yuhong; Chen Chuanbing; Li Hua

    2008-01-01

    Objective: To explore the clinical significance of changes of plasma ET and somatostatin (SS) levels in neonates with hypoxic-ischemic encephalopathy (HIE). Methods: Plasma ET and SS contents were determined with RIA in 63 neonates with hypoxic-ischemic encephalopathy and 35 controls. Results: In neonates with HIE, the plasma ET levels were significantly higher than those in the controls (P<0.01), while the plasma SS levels were significantly lower (P<0.01). Conclusion: Development of hypoxic-ischemic encephalopathy in newborn infants was closely associated with increase of plasma ET and SS levels. (authors)

  13. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Directory of Open Access Journals (Sweden)

    Ryan T Cleary

    Full Text Available Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+-K(+-2 Cl(- cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  14. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    Science.gov (United States)

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  15. The current status of drug development of hypoxic cell radiosensitizers and their potential role in gynecologic oncology

    International Nuclear Information System (INIS)

    Coleman, C.N.; Ballon, S.C.; Howes, A.E.; Martinez, A.; Halsey, J.; Hirst, V.K.

    1984-01-01

    Both laboratory and clinical data suggest that hypoxia contributes to the failure of radiotherapy to achieve local control of bulky gynecologic tumors. As part of a Phase I trial of hypoxic cell radiosensitizers, 19 women at Stanford University with advanced (n . 6) or recurrent (n . 13) pelvic neoplasms were treated with radiotherapy plus desmethylmisonidazole. Complete or partial response occurred in 42% of patients with some patients achieving local control for over 1 year. It is unknown if the sensitizer added to the results of radiotherapy alone. A Phase I trial of a theoretically superior sensitizer, SR-2508, is soon to begin. It is anticipated that the dose-limiting neurotoxicity seen with misonidazole and desmethylmisonidazole will either be eliminated or will occur at a much higher total dose of drug. Many patients with gynecologic tumors could potentially benefit from participation in the new drug trials

  16. Anti-hypoxic activity of the ethanol extract from Portulaca oleracea in mice.

    Science.gov (United States)

    Chen, Cheng-Jie; Wang, Wan-Yin; Wang, Xiao-Li; Dong, Li-Wei; Yue, Yi-Tian; Xin, Hai-Liang; Ling, Chang-Quan; Li, Min

    2009-07-15

    To investigate the effects of the ethanol extract from Portulaca oleracea (EEPO) on hypoxia models mice and to find the possible mechanism of its anti-hypoxic actions so as to elucidate the anti-hypoxia activity and provide scientific basis for the clinical use of Portulaca oleracea. EEPO was evaluated on anti-hypoxic activity in several hypoxia mice models, including closed normobaric hypoxia and sodium nitrite or potassium cyanide toxicosis. To verify the possible mechanism(s), we detected the activities of pyruvate kinase (PK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and the level of adenosine triphosphate (ATP) in mice cortices. Given orally, the EEPO at doses of 100, 200, 400 mg/kg could dose-dependently enhance the survival time of mice in both of the normobaric and chemical hypoxia models. The activity of the glycolysis enzymes and the level of ATP were higher than those of the control. In the pentobarbital sodium-induced sleeping time test and the open-field test, EEPO neither significantly enhanced the pentobarbital sodium-induced sleeping time nor impaired the motor performance, indicating that the observed anti-hypoxic activity was unlikely due to sedation or motor abnormality. These results demonstrated that the EEPO possessed notable anti-hypoxic activity, which might be related to promoting the activity of the key enzymes in glycolysis and improving the level of ATP in hypoxic mice.

  17. Reduced hypoxic ventilatory response in newborn mice knocked-out for the progesterone receptor.

    Science.gov (United States)

    Potvin, Catherine; Rossignol, Orlane; Uppari, NagaPraveena; Dallongeville, Arnaud; Bairam, Aida; Joseph, Vincent

    2014-11-01

    Recent studies showed that progesterone stimulates the hypoxic ventilatory response and may reduce apnoea frequency in newborn rats, but so far we still do not know by what mechanisms and whether endogenous progesterone might contribute to respiratory control in neonates. We therefore determined the role of the nuclear progesterone receptor (PR; member of the steroid receptor superfamily) by using wild-type (WT) and PR knock-out (PRKO) mice at postnatal days (P) 1, 4 and 10. We measured the hypoxic ventilatory response (14 and 12% O2, 20 min each) and apnoea frequency in both male and female mice by using whole-body plethysmography. In response to hypoxia, WT male mice had a marked hypoxic ventilatory response at P1 and P10, but not at P4. At P1 and P10, PRKO male mice had a lower hypoxic ventilatory response than WT males. Wild-type female mice had a marked hypoxic ventilatory response at P10, but not at P1 and P4. At P1 and P10, PRKO female mice had a lower hypoxic ventilatory response than WT females. In basal conditions, apnoea frequency was similar in WT and PRKO mice at P1, P4 and P10. During hypoxia, apnoea frequency was higher in WT male mice compared with PRKO male mice and WT female mice at P1. We conclude that PR is a key contributor to the hypoxic ventilatory response in newborn mice, but PR deletion does not increase the frequency of apnoea during normoxia or hypoxia. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  18. The effect of radiosensitizers on the survival response of hypoxic mammalian cells: The low X-ray dose region, hypersensitivity and induced radioresistance

    International Nuclear Information System (INIS)

    Skov, K.A.; MacPhail, H.S.; Marples, B.

    1994-01-01

    It has been shown previously that the extent of chemical modification of the hypoxic radiation response is dependent on dose. Some types of sensitizer are more effective at low doses (to 4 Gy) than at higher doses. Since such drugs are possible adjuvants to radiotherapy, the mechanisms responsible for the variable response at clinical doses are summarized, and the effects of cisplatin and buthionine sulfoximine on the purported induced response to radiation in hypoxic cells are presented. Cisplatin at a low, nontoxic concentration (1 μM) appears to abolish the increased radioresistant portion of the survival response. A role for high-mobility-group protein binding by platinum drugs is hypothesized to explain their interaction with radiation, and conversely, it is suggested that the heretofore unexplained different behavior of certain hypoxic sensitizers at low doses could be, at least in part, an effect on the induction of resistance. 36 refs., 2 figs

  19. Reoxygenation of hypoxic cells by tumor shrinkage during irradiation. A computer simulation

    International Nuclear Information System (INIS)

    Kocher, M.; Treuer, H.

    1995-01-01

    A 3-dimensional computer simulation was developed in order to estimate the impact of tumor shrinkage on reoxygenation of chronic hypoxic tumor cells during a full course of fractionated irradiation. The growth of a small tumor situated in a vascularized stroma with 350 capillary cross-sections/mm 3 which were displaced by the growing tumor was simulated. Tumors contained 10 4 cells when irradiation started, intrinsic radiosensitivity was set to either low (α=0.3 Gy -1 , β=0.03 Gy -2 ) or high (α=0.4 Gy -1 , β=0.04 Gy -2 ) values. Oxygen enhancement ratio was 3.0, potential tumor doubling time T pot =1, 2 or 5 days. A simulated fractionated radiotherapy was carried out with daily fractions of 2.0 Gy, total dose 50 to 70 Gy. The presence or absence of factors preventing tumor cord shrinkage was also included. During the growth phase, all tumors developed a necrotic core with a hypoxic cell fraction of 25% under these conditions. During irradiation, the slower growing tumors (T pot =2 to 5 days) showed complete reoxygenation of the hypoxic cells after 30 to 40 Gy independent from radiosensitivity, undisturbed tumor shrinkage provided. If shrinkage was prevented, the hypoxic fraction rose to 100% after 30 to 50 Gy. Local tumor control, defined as the destruction of all clonogenic and hypoxic tumor cells increased by 20 to 100% due to reoxygenation and 50 Gy were enough in order to sterilize the tumors in these cases. In the fast growing tumors (T pot =1 day), reoxygenation was only observed in the case of high radiosensitivity and undisturbed tumor shrinkage. In these tumors reoxygenation increased the control rates by up to 60%. (orig./MG) [de

  20. How far is cancer cured by radiation sensitization?

    International Nuclear Information System (INIS)

    Ando, Koichi; Sasaki, Takehito; Ikeda, Hiroshi

    1990-01-01

    Some types of cancer are not cured by radiation alone in view of histology, location, and size. In facing so-called radioresistant cancer, antineoplastic agents, hypoxic cell sensitizers, biological response modifiers, or hyperthermia are used in combination with radiation, with the aim of cancer cure. First of all, this chapter discusses the subject of 'what is tumor cure by radiation therapy'. Current conditions of the aforementioned combined modalities and the future perspectives are presented. The following subjects are covered: (1) tumor control - significance of the number of stem cells; (2) biological evaluation of chemo-radiotherapy with cisplatin; (3) clinical results and experience with combination of radiotherapy and radiosensitizers; (4) radiosensitization with hypoxic cell radiosensitizers - present status (5) hypoxic cell radiosensitizers - present status and problems from the viewpoint of clinical radiotherapy; (6) thermal radiosensitization in vitro and its implications for radiotherapy; (7) clinical assessment of thermoradiotherapy for breast cancer and cancer of the urinary bladder; (8) interactions of radiation and biological response modifiers in the treatment of malignant tumor; (9) improvement in the effects of radiation therapy with biological response modifiers. (N.K.)

  1. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  2. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tetsuo; Ishikawa, Hitoshi [Gunma Univ., Maebashi (Japan). School of Medicine; Mitsuhashi, Norio [Tokyo Women' s Medical Coll. (Japan)

    2001-12-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  3. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ishikawa, Hitoshi

    2001-01-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  4. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  5. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P; Hedley, David W

    2016-06-07

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX).The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche.

  6. The toxicokinetics of cadmium in carp under normoxic and hypoxic conditions

    International Nuclear Information System (INIS)

    Hattink, Jasper; Boeck, Gudrun De; Blust, Ronny

    2005-01-01

    Temporal depletion of oxygen, i.e. hypoxic events, frequently occurs in natural waters. It has been suggested that accumulation of micro-pollutants increases in aquatic animals as a result of an increased ventilation rate during such occasions. The observed increased toxicity under hypoxia of micro-pollutants may support this hypothesis, but for heavy metals the available uptake studies are contradictory. The present study tests whether accumulation of cadmium in common carp, Cyprinus carpio (L.) is increased under hypoxia and if the toxicokinetics are altered. A cadmium toxicity study was performed in which the cadmium uptake rates were determined using the radiotracer 109 Cd under hypoxia and normoxia. The cadmium toxicokinetics were studied with radiotracer experiments at 100% air saturation, 50%, and 25% saturation from 6.5 nmol/L Cd at 25 deg C. We could confirm the higher sensitivity of carp to cadmium under hypoxia. Hypoxic conditions did not influence the uptake rates or the accumulation dynamics. Therefore, the increased sensitivity of carp for Cd under hypoxia cannot be explained by a higher Cd body burden, initiated by a higher uptake rate or lower elimination rate under hypoxia. Additional, possible indirect effects, such as internal anoxia due to gill damage, could play a role in Cd toxicity under hypoxia

  7. The toxicokinetics of cadmium in carp under normoxic and hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hattink, Jasper [University of Antwerp, Department of Biology, Laboratory of Ecophysiology, Biochemistry, and Toxicology, Groenenborgerlaan 171, 2020 Antwerp (Belgium)]. E-mail: jasper.hattink@ua.ac.be; Boeck, Gudrun De [University of Antwerp, Department of Biology, Laboratory of Ecophysiology, Biochemistry, and Toxicology, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Blust, Ronny [University of Antwerp, Department of Biology, Laboratory of Ecophysiology, Biochemistry, and Toxicology, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2005-10-05

    Temporal depletion of oxygen, i.e. hypoxic events, frequently occurs in natural waters. It has been suggested that accumulation of micro-pollutants increases in aquatic animals as a result of an increased ventilation rate during such occasions. The observed increased toxicity under hypoxia of micro-pollutants may support this hypothesis, but for heavy metals the available uptake studies are contradictory. The present study tests whether accumulation of cadmium in common carp, Cyprinus carpio (L.) is increased under hypoxia and if the toxicokinetics are altered. A cadmium toxicity study was performed in which the cadmium uptake rates were determined using the radiotracer {sup 109}Cd under hypoxia and normoxia. The cadmium toxicokinetics were studied with radiotracer experiments at 100% air saturation, 50%, and 25% saturation from 6.5 nmol/L Cd at 25 deg C. We could confirm the higher sensitivity of carp to cadmium under hypoxia. Hypoxic conditions did not influence the uptake rates or the accumulation dynamics. Therefore, the increased sensitivity of carp for Cd under hypoxia cannot be explained by a higher Cd body burden, initiated by a higher uptake rate or lower elimination rate under hypoxia. Additional, possible indirect effects, such as internal anoxia due to gill damage, could play a role in Cd toxicity under hypoxia.

  8. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung-Soo [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Park, Jun-Ik [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Dao, Trong Tuan; Oh, Won Keun [BK21 Project Team, College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Kang, Chi-Dug, E-mail: kcdshbw@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Sun-Hee, E-mail: ksh7738@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  9. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    International Nuclear Information System (INIS)

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-01-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  10. Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers

    Directory of Open Access Journals (Sweden)

    Hun-Young Park, Kiwon Lim

    2017-12-01

    Full Text Available In swimming competition, optimal swimming performance is characterized by a variety of interchangeable components, such as aerobic exercise capacity, anaerobic power and muscular function. Various hypoxic training methods would potentiate greater performance improvements compared to similar training at sea-level. Therefore, this study aimed to evaluate the effects of six-weeks of hypoxic training on exercise performance in moderately trained competitive swimmers. Twenty swimmers were equally divided into a normoxic training group (n = 10 for residing and training at sea-level (PIO2 = 149.7 mmHg, and a hypoxic training group (n = 10 for residing at sea-level but training at 526 mmHg hypobaric hypoxic condition (PIO2 = 100.6 mmHg. Aerobic exercise capacity, anaerobic power, muscular function, hormonal response and 50 and 400 m swimming performance were measured before and after training, which was composed of warm-up, continuous training, interval training, elastic resistance training, and cool-down. The training frequency was 120 min, 3 days per week for 6 weeks. Muscular function and hormonal response parameters showed significant interaction effects (all p 0.288 in muscular strength and endurance, growth hormone; GH, insulin like growth factor-1; IGF-1, and vascular endothelial growth factor; VEGF. The other variables demonstrated no significant interaction effects. However, a hypoxic training group also showed significantly increased maximal oxygen consumption; VO2max (p = 0.001, peak anaerobic power (p = 0.001, and swimming performances for 50 m (p = 0.000 and 400 m (p = 0.000. These results indicated that the hypoxic training method proposed in our study is effective for improvement of muscular strength and endurance in moderately trained competitive swimmers compared to control group. However, our hypoxic training method resulted in unclear changes in aerobic exercise capacity (VO2max, anaerobic power, and swimming performance of 50 m and

  11. Comparison of radiation-induced DNA-protein cross-links formed in oxic, hypoxic, and glutathione depleted cells

    International Nuclear Information System (INIS)

    Xue, L.; Friedman, L.R.; Chiu, S.; Ramakrishnan, N.; Oleinick, N.L.

    1987-01-01

    Treatment of cells with L-buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH). Subsequent metabolism depletes the cells of GSH. GSH-depletion sensitizes both oxic and hypoxic cells to the lethal effects of ionizing radiation. DNA-protein cross-links (DPC) are formed preferentially between DNA sequences active in transcription and a subset of proteins of the nuclear matrix. Thus, DPC may be an indicator lesion of damage in sensitive regions of the genome. The interrelationships between GSH level, oxic vs. hypoxic status, and the yield of DPC have been studied in terms of number of lesions and repair rate in Chinese hamster V79 and in human lung carcinoma A549 cells. The data suggest that elevated background levels of DPC are indicative of a reduced repair capacity, and greater radiation-induced yields of DPC in hypoxia may also be indicative of a compromised repair mechanism

  12. Post-hypoxic recovery of respiratory rhythm generation is gender dependent.

    Directory of Open Access Journals (Sweden)

    Alfredo J Garcia

    Full Text Available The preBötzinger complex (preBötC is a critical neuronal network for the generation of breathing. Lesioning the preBötC abolishes respiration, while when isolated in vitro, the preBötC continues to generate respiratory rhythmic activity. Although several factors influence rhythmogenesis from this network, little is known about how gender may affect preBötC function. This study examines the influence of gender on respiratory activity and in vitro rhythmogenesis from the preBötC. Recordings of respiratory activity from neonatal mice (P10-13 show that sustained post-hypoxic depression occurs with greater frequency in males compared to females. Moreover, extracellular population recordings from the preBötC in neonatal brainstem slices (P10-13 reveal that the time to the first inspiratory burst following reoxygenation (TTFB is significantly delayed in male rhythmogenesis when compared to the female rhythms. Altering activity of ATP sensitive potassium channels (KATP with either the agonist, diazoxide, or the antagonist, tolbutamide, eliminates differences in TTFB. By contrast, glucose supplementation improves post-hypoxic recovery of female but not male rhythmogenesis. We conclude that post-hypoxic recovery of respiration is gender dependent, which is, in part, centrally manifested at the level of the preBötC. Moreover, these findings provide potential insight into the basis of increased male vulnerability in a variety of conditions such as Sudden Infant Death Syndrome (SIDS.

  13. Absence of sensitization of reversions in yeast by metronidazole

    International Nuclear Information System (INIS)

    Krishnan, D.; Singh, D.R.; Mahajan, J.M.; Madhvanath, U.

    1977-01-01

    Metronidazole (Flagyl; 2-methyl-5-nitroimidazole-1-ethanol) is of potential clinical application as a radiosensitizer. Studies have been made of the effect of 1mM metronidazole on γ-induced heteroallelic recombination (reversion) under euoxic or hypoxic conditions in yeast strain BZ34, and compared with the effect on survival. The o.e.r. for reversions was 2.2, and very close to that for survival (2.3), indicating that oxygen equally sensitized gross cellular events such as killing, and genetic phenomena like reversions. The introduction of metronidazole during irradiation sensitized cells with killing as the end point only in hypoxic condition, whereas with reversion as the end point no sensitization due to the chemical was observed either in euoxic or hypoxic conditions. Since DNA damage is responsible for both cell-killing and mutations, the sensitizer might have been expected to have had an equal effect on both these end-points. The results show that only in a limited sense can metronidazole be considered to be an oxygen mimic. (U.K.)

  14. CT diagnosis of hypoxic ischemic encephalopathy

    International Nuclear Information System (INIS)

    Zhao Xiang; Ma Jiwei; Wu Lide

    2004-01-01

    Objective: To explore CT characteristics of hypoxic ischemic encephalopathy (HIE), and to improve the accuracy of CT diagnosis. Methods: 50 cases of neonatal asphyxia in perinatal period diagnosed as hypoxic ischemic encephalopathy by CT was analyzed. Results: The main manifestation of hypoxic ischemic encephalopathy is cerebral edema and intracranial hemorrhage. Focal or diffuse hypo-dense lesion and hyper-dense area in various location and morphology were seen on CT images. (1) Localized diffuse hypo-dense area in 1 or 2 cerebral lobe were found in 17 cases, and the lesions were localized in frontal lobe (n=6), in frontotemporal lobe (n=5), and in temporo-occipital lobe (n=6). (2) Hypo-density region involving more than three cerebral lobes were found in 18 cases, and abnormalities were found in frontotemporal and parietal lobe (n=8), accompanying with subarachnoid hemorrhage (n=2); in frontal, temporal and occipital lobe (n=6), in which cerebral hemorrhage was complicated (n=1); and in other cerebral lobe (n=4). (3) Diffuse low-density region in all cerebral lobe were found in 15 cases, in which subarachnoid hemorrhage was complicated in 4 cases, and ventricular hemorrhage was found in 2 case. Conclusion: CT imaging plays an important role in diagnosis of hypoxic ischemic encephalopathy and has shown its clinical value

  15. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Cauley, Keith A.; Filippi, Christopher G.

    2014-01-01

    Diffusion-weighted imaging is a valuable tool in the assessment of the neonatal brain, and changes in diffusion are seen in normal development as well as in pathological states such as hypoxic-ischemic encephalopathy (HIE). Various methods of quantitative assessment of diffusion values have been reported. Global ischemic injury occurring during the time of rapid developmental changes in brain myelination can complicate the imaging diagnosis of neonatal HIE. To compare a quantitative method of histographic analysis of brain apparent coefficient (ADC) maps to the qualitative interpretation of routine brain MR imaging studies. We correlate changes in diffusion values with gestational age in radiographically normal neonates, and we investigate the sensitivity of the method as a quantitative measure of hypoxic-ischemic encephalopathy. We reviewed all brain MRI studies from the neonatal intensive care unit (NICU) at our university medical center over a 4-year period to identify cases that were radiographically normal (23 cases) and those with diffuse, global hypoxic-ischemic encephalopathy (12 cases). We histographically displayed ADC values of a single brain slice at the level of the basal ganglia and correlated peak (s-sD av ) and lowest histogram values (s-sD lowest ) with gestational age. Normative s-sD av values correlated significantly with gestational age and declined linearly through the neonatal period (r 2 = 0.477, P av and s-sD lowest ADC values than were reflected in the normative distribution; several cases of HIE fell within a 95% confidence interval for normative studies, and one case demonstrated higher-than-normal s-sD av . Single-slice histographic display of ADC values is a rapid and clinically feasible method of quantitative analysis of diffusion. In this study normative values derived from consecutive neonates without radiographic evidence of ischemic injury are correlated with gestational age, declining linearly throughout the perinatal period. This

  16. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Stivaros, Stavros M. [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom); University of Manchester, Centre for Imaging Sciences, Institute of Population Health, Manchester (United Kingdom); Radon, Mark R. [The Walton Centre NHS Foundation Trust, Department of Neuroradiology, Liverpool (United Kingdom); Mileva, Reneta; Gledson, Ann; Keane, John A. [University of Manchester, School of Computer Science, Manchester (United Kingdom); Connolly, Daniel J.A.; Batty, Ruth [Sheffield Children' s Hospital NHS Foundation Trust, Department of Neuroradiology, Sheffield (United Kingdom); Cowell, Patricia E. [University of Sheffield, Department of Human Communication Sciences, Sheffield (United Kingdom); Hoggard, Nigel; Griffiths, Paul D. [University of Sheffield, Academic Unit of Radiology, Sheffield (United Kingdom); Wright, Neville B.; Tang, Vivian [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom)

    2016-01-15

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  17. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    Science.gov (United States)

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Stivaros, Stavros M.; Radon, Mark R.; Mileva, Reneta; Gledson, Ann; Keane, John A.; Connolly, Daniel J.A.; Batty, Ruth; Cowell, Patricia E.; Hoggard, Nigel; Griffiths, Paul D.; Wright, Neville B.; Tang, Vivian

    2016-01-01

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  19. Hypoxic training methods for improving endurance exercise performance

    Directory of Open Access Journals (Sweden)

    Jacob A. Sinex

    2015-12-01

    Full Text Available Endurance athletic performance is highly related to a number of factors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillary density, and economy. Physiological adaptations in response to acute and chronic exposure to hypoxic environments are well documented and range from short-term detrimental effects to longer-term adaptations that can improve performance at altitude and in sea-level competitions. Many altitude and hypoxic training protocols have been developed, employing various combinations of living and training at sea-level, low, moderate, and high altitudes and utilizing natural and artificial altitudes, with varying degrees of effectiveness. Several factors have been identified that are associated with individual responses to hypoxic training, and techniques for identifying those athletes most likely to benefit from hypoxic training continue to be investigated. Exposure to sufficiently high altitude (2000–3000 m for more than 12 h/day, while training at lower altitudes, for a minimum of 21 days is recommended. Timing of altitude training related to competition remains under debate, although general recommendations can be considered.

  20. [Follow-up of newborns with hypoxic-ischaemic encephalopathy].

    Science.gov (United States)

    Martínez-Biarge, M; Blanco, D; García-Alix, A; Salas, S

    2014-07-01

    Hypothermia treatment for newborn infants with hypoxic-ischemic encephalopathy reduces the number of neonates who die or have permanent neurological deficits. Although this therapy is now standard of care, neonatal hypoxic-ischaemic encephalopathy still has a significant impact on the child's neurodevelopment and quality of life. Infants with hypoxic-ischaemic encephalopathy should be enrolled in multidisciplinary follow-up programs in order to detect impairments, to initiate early intervention, and to provide counselling and support for families. This article describes the main neurodevelopmental outcomes after term neonatal hypoxic-ischaemic encephalopathy. We offer recommendations for follow-up based on the infant's clinical condition and other prognostic indicators, mainly neonatal neuroimaging. Other aspects, such as palliative care and medico-legal issues, are also briefly discussed. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  1. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  2. Current Theory on the Cerebral Mechanisms of Hypoxic PRE- and Postconditioning.

    Science.gov (United States)

    Rybnikova, E A; Samoilov, M O

    2016-01-01

    An exposure of the organism to several episodes of mild hypoxia results in the development of brain hypoxic/ischemic tolerance, as well as cross-tolerance to the stressful factors of psychoemotional nature. Such kind of preconditioning by mild hypoxia functions as “alarm signalization” by I.P. Pavlov, preparing the organism and, in particularly, brain to the forthcoming harmful event. Dose-dependent action of hypoxia on the brain can be considered as one particular case of the general phenomenon termed hormesis, or neurohormesis. Endogenous defense processes launched by the hypoxic preconditioning and leading to the development of cerebral tolerance are associated with activation of intracellular signal cascades, transcriptional factors, regulatory proteins and expression of pro-adaptive genes and their products in the susceptible brain regions. Important mechanism of systemic adaptation induced by hypoxic preconditioning includes modifications of pituitary-adrenal axis aimed at enhancement of its adaptive resources. All these components are involved in the neuroprotective processes in three sequential phases - initiation, induction, and expression. Important role belongs also to epigenetic mechanisms controlling the activity of pro-adaptive genes. In contrast to the preconditioning, hypoxic postconditioning is comparatively novel phenomenon and therefore its mechanisms are less studied. The involvement of hypoxia-inducible factor HIF-1, and non-specific protective processes as up-regulation of anti-apoptotic factors and neurotrophines.

  3. Seizure Severity Is Correlated With Severity of Hypoxic-Ischemic Injury in Abusive Head Trauma.

    Science.gov (United States)

    Dingman, Andra L; Stence, Nicholas V; O'Neill, Brent R; Sillau, Stefan H; Chapman, Kevin E

    2017-12-12

    The objective of this study was to characterize hypoxic-ischemic injury and seizures in abusive head trauma. We performed a retrospective study of 58 children with moderate or severe traumatic brain injury due to abusive head trauma. Continuous electroencephalograms and magnetic resonance images were scored. Electrographic seizures (51.2%) and hypoxic-ischemic injury (77.4%) were common in our cohort. Younger age was associated with electrographic seizures (no seizures: median age 13.5 months, interquartile range five to 25 months, versus seizures: 4.5 months, interquartile range 3 to 9.5 months; P = 0.001). Severity of hypoxic-ischemic injury was also associated with seizures (no seizures: median injury score 1.0, interquartile range 0 to 3, versus seizures: 4.5, interquartile range 3 to 8; P = 0.01), but traumatic injury severity was not associated with seizures (no seizures: mean injury score 3.78 ± 1.68 versus seizures: mean injury score 3.83 ± 0.95, P = 0.89). There was a correlation between hypoxic-ischemic injury severity and seizure burden when controlling for patient age (r s =0.61, P interquartile range 0 to 0.23 on magnetic resonance imaging done within two days versus median restricted diffusion ratio 0.13, interquartile range 0.01 to 0.43 on magnetic resonance imaging done after two days, P = 0.03). Electrographic seizures are common in children with moderate to severe traumatic brain injury from abusive head trauma, and therefore children with suspected abusive head trauma should be monitored with continuous electroencephalogram. Severity of hypoxic-ischemic brain injury is correlated with severity of seizures, and evidence of hypoxic-ischemic injury on magnetic resonance imaging may evolve over time. Therefore children with a high seizure burden should be reimaged to evaluate for evolving hypoxic-ischemic injury. Published by Elsevier Inc.

  4. Application of altitude/hypoxic training by elite athletes.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as used by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high+train high (LH+TH), 2) live high+train low (LH+TL), and 3) live low+train high (LL+TH). The LH+TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and hypobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH+TL is the altitude/hypoxic training strategy of LL+TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.

  5. Hypoxic ventilatory sensitivity in men is not reduced by prolonged hyperoxia (Predictive Studies V and VI)

    Science.gov (United States)

    Gelfand, R.; Lambertsen, C. J.; Clark, J. M.; Hopkin, E.

    1998-01-01

    Potential adverse effects on the O2-sensing function of the carotid body when its cells are exposed to toxic O2 pressures were assessed during investigations of human organ tolerance to prolonged continuous and intermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxic ventilatory responses (HVR) were determined at 1.0 ATA before and after severe hyperoxic exposures: 1) continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and 2) intermittent O2 breathing at 2.0 ATA (30 min O2-30 min normoxia) for 14.3 O2 h within 30-h total time. Postexposure curvature of HVR hyperbolas was not reduced compared with preexposure controls. The hyperbolas were temporarily elevated to higher ventilations than controls due to increments in respiratory frequency that were proportional to O2 exposure time, not O2 pressure. In humans, prolonged hyperoxia does not attenuate the hypoxia-sensing function of the peripheral chemoreceptors, even after exposures that approach limits of human pulmonary and central nervous system O2 tolerance. Current applications of hyperoxia in hyperbaric O2 therapy and in subsea- and aerospace-related operations are guided by and are well within these exposure limits.

  6. Thallium-201: quantitation of right ventricular hypertrophy in chronically hypoxic rats

    International Nuclear Information System (INIS)

    Rabinovitch, M.; Fisher, K.; Gamble, W.; Reid, L.; Treves, S.

    1979-01-01

    Sprague Dawley rats were divided into two groups. Ten were kept in room air and 10 in hypobaric hypoxia (air at 380 m Hg). After two weeks all were injected intravenously with 50 μCi of 201 Tl and sacrificed. The right and left ventricles were separated, weighed, and measured for radioactivity in a gamma well counter. Left and right ventricular mass ratios (MR) correlated with 201 Tl radioactivity ratios (TAR) in both control and hypoxic rats: r = 0.962 where MR = 0.863 TAR + 0.27. Myocardial 201 Tl uptake reflects and quantitates normal and abnormal ventricular mass, the abnormal mass in this model consisting of right ventricular hypertrophy associated with hypoxic pulmonary hypertension

  7. Hypoxic Episodes in Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Martin, Richard J; Di Fiore, Juliann M; Walsh, Michele C

    2015-12-01

    Hypoxic episodes are troublesome components of bronchopulmonary dysplasia (BPD) in preterm infants. Immature respiratory control seems to be the major contributor, superimposed on abnormal respiratory function. Relatively short respiratory pauses may precipitate desaturation and bradycardia. This population is predisposed to pulmonary hypertension; it is likely that pulmonary vasoconstriction also plays a role. The natural history has been well-characterized in the preterm population at risk for BPD; however, the consequences are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney.

    Science.gov (United States)

    Engbersen, R; Moons, M M; Wouterse, A C; Dijkman, H B; Kramers, C; Smits, P; Russel, F G

    2000-08-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 microM) and glibenclamide (10 microM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3+/-1.5 for hypoxic perfusions vs 4.9+/-1.6 for normoxic perfusions, mean +/- s.e. mean, P<0.05), which could be completely restored by 200 microM tolbutamide (5.7+/-0.4 for tolbutamide vs 14.3+/-1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220+/-100 mU for tolbutamide vs. 1220+/-160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 microM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations.

  9. Clinical significance of determination of plasma endothelin (ET), thromboxane A2(TXA2) and prostacyclin (PGI2) contents in neonates with hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Liu Hui; Chen Jing; Wang Haifeng; Zhu Hongyan

    2008-01-01

    Objective: To explore the role of plasma ET, TXA 2 , PGI 2 in the intensification of neonates hypoxic-ischemic encephalopathy. Methods: The concentrations of plasma ET, TXB 2 , 6-keto-PGF 1α were detected with radioimmunoassay in 33 neonates with hypoxic-ischemic encephalopathy and 30 controls. Results: The plasma ET, TXB 2 levels in neonates with hypoxic-ischemic encephalopathy were significantly higher than those in controls (P 1α levels were significantly lower (P 2 but negatively correlated with those of 6-keto-PGF 1α (both P 2 with disturbance of the normal feedback modulation mechanism might play an important role in the pathogenesis of neonates hypoxic-ischemic encephalopathy. (authors)

  10. Neuro-overprotection? A functional evaluation of clomethiazole-induced neuroprotection following hypoxic-ischemic injury.

    Science.gov (United States)

    Gilby, K L; Kelly, M E; McIntyre, D C; Robertson, H A

    2005-01-01

    Hypoxic-ischemic (H-I) injury produces extensive damage to the hippocampus of young rats. We have recently shown that administration of 125 mg kg-1 clomethiazole (CMZ), a GABA(A)-agonist, provides complete histological protection against H-I injury if administered 3 h post-H-I (Brain Res 1035 (2005) 194). However, whether that histological protection translates into lasting functional preservation is unclear. To determine whether hippocampal-based circuits remain functionally intact in CMZ-protected H-I rats, we administered 125 mg kg-1 (high dose [CMZ-HD]) or 65 mg kg-1 (low dose [CMZ-LD]) CMZ, 3 h post-H-I, and examined numerous kindling parameters in the dorsal hippocampus 60 days following H-I. Kindling parameters included afterdischarge (AD) thresholds (ADTs), AD durations and kindling rates. Additional groups assessed included vehicle-injected H-I (VIH), hypoxic, ligated and naive rats. VIH, CMZ-HD, CMZ-LD and hypoxic rats all exhibited significantly faster kindling rates than naive rats. Thus, a previous traumatic event, even hypoxia alone, facilitated subsequent seizure propagation. Still, a significantly slower kindling rate was evident in CMZ-HD rats than in hypoxic, VIH or CMZ-LD rats. Moreover, while longer pre-kindling AD durations were observed in the damaged hippocampus of VIH compared with naive rats, this was not true for either CMZ-treated groups, hypoxic or ligated rats. Collectively, these findings suggest CMZ can suppress the epileptogenic effects of H-I. Surprisingly, however, both groups of CMZ-treated rats exhibited a four to nine times greater ADT than any other group and this effect was most profound in the CMZ-protected hippocampus. Thus, CMZ administration protected local neurons against terminal insult and left network excitability relatively normal with respect to seizure offset mechanisms but also caused profound elevation of local ADTs, which suggests a local hypoexcitability/increased inhibition. Finally, this study demonstrates

  11. Inhibition of glycolysis by misonidazole in hypoxic cells

    International Nuclear Information System (INIS)

    Ling, L.; Sutherland, R.

    1984-01-01

    Inhibition of glycolysis has been postulated to be a mechanism of misonidazole (MISO) toxicity in hypoxic cells. To investigate the effect of MISO on glycolysis, glucose transport and its consumption and lactate formation were measured. Exponential EMT6 cells (10/sup 6/ cells/ml) were made hypoxix by continuous gassing in 3% CO/sub 2/ in N/sub 2/. They were then treated with 5mM MISO for various times, then washed and analysed for their rates of anaerobic glycolysis. Glucose and lactate content were determined enzymatically. The rates of both glucose consumption and lactate formation decreased after 30 min hypoxic incubation with MISO. After 90 min, the rates were not measurable even though the cells still excluded Trypan Blue. There was, however, a parallel decrease in plating efficiency. These data suggest that the inhibition of glycolysis is an important mechanism of hypoxic toxicity of MISO. To locate the site of inhibition, studies were initiated to look at glucose transport by following the uptake of /sup 14/-C-3-0-methyl-glucose, a nonmetabolised glucose analog. Results obtained so far indicate that up to 90 min of hypoxic incubation with MISO, there was no change in the kinetics of the uptake of his analog. Therefore, the results showed that in hypoxic cells treated with MISO, the glucose transport system was unaffected. However, there was a rapid decrease in anaerobic glycolysis

  12. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanić Šamija, R. [Department of Pediatrics, University Hospital Split, Split (Croatia); Primorac, D. [School of Medicine Split, University of Split, Split (Croatia); Department of Pediatrics, School of Medicine, University of Osijek, Osijek (Croatia); Eberly College of Science, Penn State University, University Park, PA (United States); St. Catherine Speciality Hospital, Zabok (Croatia); Rešić, B. [School of Medicine Split, University of Split, Split (Croatia); Pavlov, V. [Department of Neonatology, University Hospital Split, Split (Croatia); Čapkun, V. [Department of Nuclear Medicine, University Hospital Split, Split (Croatia); Punda, H. [School of Medicine Split, University of Split, Split (Croatia); Lozić, B. [Department of Pediatrics, University Hospital Split, Split (Croatia); Zemunik, T. [Department of Medical Biology, School of Medicine Split, University of Split, Split (Croatia)

    2014-08-15

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  13. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Kuzmanić Šamija, R.; Primorac, D.; Rešić, B.; Pavlov, V.; Čapkun, V.; Punda, H.; Lozić, B.; Zemunik, T.

    2014-01-01

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children

  14. Hypoxic conditioning as a new therapeutic modality

    Directory of Open Access Journals (Sweden)

    Samuel eVerges

    2015-06-01

    Full Text Available Preconditioning refers to a procedure by which a single noxious stimulus below the threshold of damage is applied to the tissue in order to increase resistance to the same or even different noxious stimuli given above the threshold of damage. Hypoxic preconditioning relies on complex and active defenses that organisms have developed to counter the adverse consequences of oxygen deprivation. The protection it confers against ischemic attack for instance as well as the underlying biological mechanisms have been extensively investigated in animal models. Based on these data, hypoxic conditioning (consisting in recurrent exposure to hypoxia has been suggested a potential non-pharmacological therapeutic intervention to enhance some physiological functions in individuals in whom acute or chronic pathological events are anticipated or existing. In addition to healthy subjects, some benefits have been reported in patients with cardiovascular and pulmonary diseases as well as in overweight and obese individuals. Hypoxic conditioning consisting in sessions of intermittent exposure to moderate hypoxia repeated over several weeks may induce hematological, vascular, metabolic and neurological effects. This review addresses the existing evidence regarding the use of hypoxic conditioning as a potential therapeutic modality and emphasizes on many remaining issues to clarify and future researches to be performed in the field.

  15. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  16. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Hur, T. R.; Lee, Y. M.; Park, J. W.; Sohn, E. J.

    2006-05-01

    The physical properties of charged particles such as protons are uniquely suited to target the radiation dose precisely in the tumor. In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well defined target volume at a given depth. Due to heterogeneity in the various tumors and end-points as well as in the physical properties of the beams considered, it is difficult to fit the various results into a clear general description of the biological effect of proton in tumor therapy. Tumor hypoxia is a main obstacle to radiotherapy, including gamma-ray. Survived tumor cells under hypoxic region are resistant to radiation and more aggressive to be metastasized. To investigate the dose of proton beam to induce cell death of various tumor cells and hypoxic tumor cells at the Bragg peak in vitro, we used 3 kinds of tumor cells, lung cancer, leukemia and hepatoma cells. Proton beam induces apoptosis in Lewis lung carcinoma cells dose dependently and, slightly in leukemia but not in hepatoma cells at all. Above 1000 gray of proton beam, 60% of cells died even the hypoxic cells in Lewis lung carcinoma cells. But the Molt-4 leukemia cells showed milder effect, 20% cell death by the above 1000 Gray of proton beam and typical resistant pattern (5-10%) of hypoxia in desferrioxamine treated cells. Hepatoma cells (HepG2) were not responsive to proton beam even in rather higher dose (4000G). However, by the gamma-irradiation, Molt-4 was more sensitive than hepatoma or lung cancer cells, but still showed hypoxic resistance. The cell death by proton beam in Lewis lung carcinoma cells was confirmed by PARP cleavage and may be mediated by increased p53. Pro-caspases were also activated and cleaved by the proton beam irradiations for lung cancer cell death. In conclusion, high dose of proton beam (above 1000 gray) may be a good therapeutic radiation even in hypoxic region at the Bragg peak, but further investigations about the

  17. Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors.

    Science.gov (United States)

    Thiersch, Markus; Lange, Christina; Joly, Sandrine; Heynen, Severin; Le, Yun Zheng; Samardzija, Marijana; Grimm, Christian

    2009-06-01

    Hypoxic preconditioning stabilizes hypoxia-inducible factor (HIF) 1 alpha in the retina and protects photoreceptors against light-induced cell death. HIF-1 alpha is one of the major transcription factors responding to low oxygen tension and can differentially regulate a large number of target genes. To analyse whether photoreceptor-specific expression of HIF-1 alpha is essential to protect photoreceptors by hypoxic preconditioning, we knocked down expression of HIF-1 alpha specifically in photoreceptor cells, using the cyclization recombinase (Cre)-lox system. The Cre-mediated knockdown caused a 20-fold reduced expression of Hif-1 alpha in the photoreceptor cell layer. In the total retina, RNA expression was reduced by 65%, and hypoxic preconditioning led to only a small increase in HIF-1 alpha protein levels. Accordingly, HIF-1 target gene expression after hypoxia was significantly diminished. Retinas of Hif-1 alpha knockdown animals did not show any pathological alterations, and tolerated hypoxic exposure in a comparable way to wild-type retinas. Importantly, the strong neuroprotective effect of hypoxic preconditioning against light-induced photoreceptor degeneration persisted in knockdown mice, suggesting that hypoxia-mediated survival of light exposure does not depend on an autocrine action of HIF-1 alpha in photoreceptor cells. Hypoxia-mediated stabilization of HIF-2 alpha and phosphorylation of signal transducer and activator of transcription 3 (STAT 3) were not affected in the retinas of Hif-1 alpha knockdown mice. Thus, these factors are candidates for regulating the resistance of photoreceptors to light damage after hypoxic preconditioning, along with several potentially neuroprotective genes that were similarly induced in hypoxic knockdown and control mice.

  18. Synthesis of a fluorine-18 labeled hypoxic cell sensitizer

    International Nuclear Information System (INIS)

    Jerabek, P.A.; Dischino, D.D.; Kilbourn, M.R.; Welch, M.J.

    1984-01-01

    The objective of this work was to synthesize a positron emitting radiosensitizing agent as a potential in vivo marker of hypoxic regions within tumors, and ischemic areas of the heart and brain. The method involved radiochemical synthesis of fluorine-18 labeled 1-(2-nitro-imidazolyl)-3-fluoro-2-propanol via nucleophilic ring opening of 1-(2,3-epoxypropyl)2-nitro-imidzole by fluorine-18 labeled tetrabutylammonium fluoride (TBAF). Fluroine-18 TBAF was prepared by the exchange reaction of TBAF with aqueous flourine-18 produced by proton bombardment of enriched oxygen-18 water. The aqueous solution was evaporated carefully by azeotropic distillation with acetonitrile. The fluorine-18 labeled TBAF was taken up in N,N-dimethylacetamide or dimethysulfoxide, then reacted with the episode at 60C for 30 minutes. Separation and identification of the fluorine-18 labeled products by high performance liquid chromatography showed a radioactive peak with a retention time identical to that of 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol and a second radioactive peak with a retention time three minutes longer in addition to unreacted fluorine-18 labeled TBAF. The second radioactive peak may represent fluorine-18 labeled 1-2-nitro-1-imidazolyl)-2-fluoro-3-propanol. The average radiochemical yield from reactions run in N,N-dimethylacetamide using 20 micromoles of TBAF and 1-2 mg of the epoxide was l7% in a synthesis time of about 40 minutes. The synthesis of fluorohydrins by the reaction of fluorine-18 labeled TBAF on epoxides represents a new method for the preparation of fluorine-18 labeled fluorohydrins

  19. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cauley, Keith A. [University of Massachusetts Medical School, Department of Radiology, Worcester, MA (United States); New York Presbyterian Hospital, Columbia University Medical Center, Department of Radiology, New York, NY (United States); Filippi, Christopher G. [New York Presbyterian Hospital, Columbia University Medical Center, Department of Radiology, New York, NY (United States)

    2014-06-15

    Diffusion-weighted imaging is a valuable tool in the assessment of the neonatal brain, and changes in diffusion are seen in normal development as well as in pathological states such as hypoxic-ischemic encephalopathy (HIE). Various methods of quantitative assessment of diffusion values have been reported. Global ischemic injury occurring during the time of rapid developmental changes in brain myelination can complicate the imaging diagnosis of neonatal HIE. To compare a quantitative method of histographic analysis of brain apparent coefficient (ADC) maps to the qualitative interpretation of routine brain MR imaging studies. We correlate changes in diffusion values with gestational age in radiographically normal neonates, and we investigate the sensitivity of the method as a quantitative measure of hypoxic-ischemic encephalopathy. We reviewed all brain MRI studies from the neonatal intensive care unit (NICU) at our university medical center over a 4-year period to identify cases that were radiographically normal (23 cases) and those with diffuse, global hypoxic-ischemic encephalopathy (12 cases). We histographically displayed ADC values of a single brain slice at the level of the basal ganglia and correlated peak (s-sD{sub av}) and lowest histogram values (s-sD{sub lowest}) with gestational age. Normative s-sD{sub av} values correlated significantly with gestational age and declined linearly through the neonatal period (r {sup 2} = 0.477, P < 0.01). Six of 12 cases of known HIE demonstrated significantly lower s-sD{sub av} and s-sD{sub lowest} ADC values than were reflected in the normative distribution; several cases of HIE fell within a 95% confidence interval for normative studies, and one case demonstrated higher-than-normal s-sD{sub av}. Single-slice histographic display of ADC values is a rapid and clinically feasible method of quantitative analysis of diffusion. In this study normative values derived from consecutive neonates without radiographic evidence of

  20. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    Science.gov (United States)

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  1. Postnatal morphology of hematoencephalic barrier in hypoxic lesion

    Directory of Open Access Journals (Sweden)

    E. V. Kikhtenko

    2012-12-01

    Full Text Available In infants with perinatal hypoxic lesion of the central nervous system swelling and death of the endothelium, thickening of the capillary basement membranes, karyorrhexis and plasmorrhexis of astrocytes are observed. The severity and degree of pathological changes depends on the time of hypoxic exposure (antenatal or intrapartum period and the term of postnatal life.

  2. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  3. Intervention with the hypoxic tumor cell sensitizer etanidazole in the combined modality treatment of limited stage small-cell lung cancer. A one-institution study

    International Nuclear Information System (INIS)

    Urtasun, Raul C.; Palmer, Martin; Kinney, Brenda; Belch, Andrew; Hewitt, Joanne; Hanson, John

    1998-01-01

    myelotoxicity over and above what has been routinely observed with this radio/chemotherapy regimen. There were no treatment related deaths. Conclusion: The moderate increase in etanidazole-related transient peripheral neuropathies could have been related to the concomitant use of etanidazole with vincristine and cisplatin. Although the almost 50% improvement in the incidence of tumor failure rate in the thorax in this small group of patients did not correlate with an equal marked improvement in their survival, the 5-year survival outcome in our series is at least equal or better than the best reports in the literature of larger clinical trials. We believe there is sufficient data from this study, particularly the improvement of local tumor control, to warrant a large randomized controlled clinical trial, using the most current systemic chemotherapy with concomitant thoracic irradiation with or without the most effective available hypoxic cell cytotoxic/sensitizer

  4. Relative survival of hybrid x-ray-resistant, and normally sensitive mammalian cells exposed to x rays and protons under aerobic and hypoxic conditions

    International Nuclear Information System (INIS)

    Williams, J.R.; Gould, R.G.; Flynn, D.; Robertson, J.B.; Little, J.B.

    1978-01-01

    Survival of an x-ray-resistant hybrid cell line (HD 1 ) and a normally responsive cell line (H 4 ) have been compared when irradiated under induced hypoxia by both protons and X rays. The two cell lines are similarly protected when irradiated under hypoxic conditions with oxygen enhancement ratios of 2.8 and 2.7, respectively. The protection is consistent with a dose-modifying factor. No statistically significant difference is observed between cell inactivation by x rays and protons in either cell line, whether irradiated under aerobic or hypoxic conditions

  5. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    Science.gov (United States)

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  6. Adapting radiotherapy to hypoxic tumours

    International Nuclear Information System (INIS)

    Malinen, Eirik; Soevik, Aste; Hristov, Dimitre; Bruland, Oeyvind S; Olsen, Dag Rune

    2006-01-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO 2 -related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO 2 -related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO 2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO 2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure

  7. Adapting radiotherapy to hypoxic tumours

    Science.gov (United States)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  8. Clinical significance of determination of changes of plasma ET and CGRP contents in neonates with hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Liu Hui; Wang Haifeng; Zhu Hongyan; Chou Weimin; Chen Jing

    2007-01-01

    Objective: To investigate the clinical significance of changes of plasma ET and CGRP levels in neonates with hypoxic-ischemic encephalopathy (HIE). Methods: Plasma ET and CGRP contents were determined with RIA in 68 neonates with hypoxic -ischemic encephalopathy and 30 controls. Results: In neonates with HIE, the plasma ET levels were significantly higher than those in the controls (P<0.01), while the plasma CGRP levels were significantly lower(P <0.01). Conclusion: Development of hypoxie -isehemic encephalopathy in newborn infants was closely related to the plasma ET and CGRP levels. (authors)

  9. Early cerebral hemodynamic, metabolic and histological changes in hypoxic-ischemic fetal lambs during postnatal life

    Directory of Open Access Journals (Sweden)

    Carmen eRey-Santano

    2011-09-01

    Full Text Available The hemodynamic, metabolic and biochemical changes produce during transition from fetal to neonatal life could be aggravated if asphyctic event occur during fetal life. The aim of the study was to examine the regional cerebral blood flow (RCBF, histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress for the first hours of postnatal life following severe fetal asphyxia. 18 chronically instrumented fetal lambs were assigned to: hypoxic-ischemic group, following fetal asphyxia animals were delivered and maintained on intermittent-positive-pressure-ventilation for 3 hours, and non-injured animals that were managed similarly to the previous group and used as control group. During hypoxic-ischemic insult, injured group developed acidosis, hypoxia, hypercapnia, latacidaemia and tachycardia in comparison to control group, without hypotension. Intermittent-positive-pressure-ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilation-support, the increased RCBF in inner zones was maintained for hypoxic-ischemic group, but cortical flow did not exhibit differences compared to the control group. Also, the increase of TUNEL positive cells (apoptosis and antioxidant enzymes, and decrease of ATP reserves was significantly higher in the brain regions where the RCBF were not increased.In conclusion, early metabolic, histological and hemodynamic changes involved in brain damage have been intensively investigated and reported in premature asphyctic lambs for the first 3 hours of postnatal life. Those changes have been described in human neonates, so our model could be useful to test the security and the effectiveness of different neuroprotective or ventilatory strategies when are applied in the first hours after fetal hypoxic-ischemic injury.

  10. Effect of Intermittent Hypercapnia on Respiratory Control in Rat Pups

    Science.gov (United States)

    Steggerda, Justin A.; Mayer, Catherine A.; Martin, Richard J.; Wilson, Christopher G.

    2010-01-01

    Preterm infants are subject to fluctuations in blood gas status associated with immature respiratory control. Intermittent hypoxia during early postnatal life has been shown to increase chemoreceptor sensitivity and destabilize the breathing pattern; however, intermittent hypercapnia remains poorly studied. Therefore, to test the hypothesis that intermittent hypercapnia results in altered respiratory control, we examined the effects of daily exposure to intermittent hypercapnia on the ventilatory response to subsequent hypercapnic and hypoxic exposure in neonatal rat pups. Exposure cycles consisted of 5 min of intermittent hypercapnia (5% CO2, 21% O2, balance N2) followed by 10 min of normoxia. Rat pups were exposed to 18 exposure cycles each day for 1 week, from postnatal day 7 to 14. We analyzed diaphragm electromyograms (EMGs) from pups exposed to subsequent acute hypercapnic (5% CO2) and hypoxic (12% O2) challenges. In response to a subsequent hypercapnia challenge, there was no significant difference in the ventilatory response between control and intermittent hypercapnia-exposed groups. In contrast, intermittent hypercapnia-exposed rat pups showed an enhanced ventilatory response to hypoxic challenge with an increase in minute EMG to 118 ± 14% of baseline versus 107 ± 13% for control pups (p < 0.05). We speculate that prior hypercapnic exposure may increase peripheral chemoreceptor response to subsequent hypoxic exposures and result in perturbed neonatal respiratory control. PMID:19752577

  11. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    Science.gov (United States)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  12. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    Science.gov (United States)

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  13. Radiosensitization of normoxic and hypoxic h1339 lung tumor cells by heat shock protein 90 inhibition is independent of hypoxia inducible factor-1α.

    Science.gov (United States)

    Schilling, Daniela; Bayer, Christine; Li, Wei; Molls, Michael; Vaupel, Peter; Multhoff, Gabriele

    2012-01-01

    Ionizing irradiation is a commonly accepted treatment modality for lung cancer patients. However, the clinical outcome is hampered by normal tissue toxicity and tumor hypoxia. Since tumors often have higher levels of active heat shock protein 90 (Hsp90) than normal tissues, targeting of Hsp90 might provide a promising strategy to sensitize tumors towards irradiation. Hsp90 client proteins include oncogenic signaling proteins, cell cycle activators, growth factor receptors and hypoxia inducible factor-1α (HIF-1α). Overexpression of HIF-1α is assumed to promote malignant transformation and tumor progression and thus might reduce the accessibility to radiotherapy. Herein, we describe the effects of the novel Hsp90 inhibitor NVP-AUY922 and 17-allylamino-17-demethoxygeldanamycin (17-AAG), as a control, on HIF-1α levels and radiosensitivity of lung carcinoma cells under normoxic and hypoxic conditions. NVP-AUY922 exhibited a similar biological activity to that of 17-AAG, but at only 1/10 of the dose. As expected, both inhibitors reduced basal and hypoxia-induced HIF-1α levels in EPLC-272H lung carcinoma cells. However, despite a down-regulation of HIF-1α upon Hsp90 inhibition, sensitivity towards irradiation remained unaltered in EPLC-272H cells under normoxic and hypoxic conditions. In contrast, treatment of H1339 lung carcinoma cells with NVP-AUY922 and 17-AAG resulted in a significant up-regulation of their initially high HIF-1α levels and a concomitant increase in radiosensitivity. In summary, our data show a HIF-1α-independent radiosensitization of normoxic and hypoxic H1339 lung cancer cells by Hsp90 inhibition.

  14. Intermittent Hypoxic Episodes in Preterm Infants: Do They Matter?

    OpenAIRE

    Martin, Richard J.; Wang, Katherine; Köroğlu, Özge; Di Fiore, Juliann; Kc, Prabha

    2011-01-01

    Intermittent hypoxic episodes are typically a consequence of immature respiratory control and remain a troublesome challenge for the neonatologist. Furthermore, their frequency and magnitude are underestimated by clinically employed pulse oximeter settings. In extremely low birth weight infants the incidence of intermittent hypoxia progressively increases over the first 4 weeks of postnatal life, with a subsequent plateau followed by a slow decline beginning at weeks 6–8. Such episodic hypoxi...

  15. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  16. Early predictors of brain damage in full-term newborns with hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Alkholy UM

    2017-08-01

    Full Text Available Usama M Alkholy,1 Nermin Abdalmonem,1 Ahmed Zaki,2 Yasser F Ali,1 Soma Abdalla Mohamed,3 Nasser I Abdelsalam,1 Mustafa Ismail Abu Hashim,1 Mohamed Abou Sekkien,3 Yasser Makram Elsherbiny4 1Pediatric Department, Zagazig University, Egypt; 2Pediatric Department, Mansoura University, Egypt; 3Pediatric Department, Al Azhar University, Egypt; 4Clinical Pathology Department, Menoufia University, Egypt Objective of the study: To evaluate the value of serum creatine phosphokinase-brain specific (CK-BB and urinary lactate/creatinine (L/C ratio as early indicators of brain damage in full-term newborns with hypoxic ischemic encephalopathy (HIE.Patients and methods: A case–control study including 25 full-term new-born infants with perinatal asphyxia who were admitted to neonatal intensive care unit (NICU with a proven diagnosis of HIE, compared to 20 healthy age- and sex-matched full-term newborns. All newborn infants were subjected to full history taking, clinical examination, routine investigations (cord blood gases and complete blood picture, and assessment of serum CK-BB (cord blood, 6 and 24 hours after birth and urinary L/C ratio (collected within the first 6 hours, on the 2nd and 3rd day after birth.Results: The serum CK-BB and urinary L/C ratio in infants with HIE were significantly higher in samples collected throughout the monitoring period when compared with the control group (all P<0.001. The cord CK-BB and urinary L/C ratio within the first 6 hours were significantly higher in infants with severe HIE than in infants with mild and moderate HIE (P<0.001. Cord CK-BB level at 12.5 U/L had 100% sensitivity and 84% specificity in the detection of severe HIE infants. Urinary L/C ratio of more than 10.5 collected within the first 6 hours after birth had 100% sensitivity and 78% specificity for the detection of severe HIE infants.Conclusion: The serum CK-BB and urinary L/C ratio in HIE infants were significantly increased early in the course of the

  17. microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Pocock, Roger

    2015-01-01

    Layered strategies to combat hypoxia provide flexibility in dynamic oxygen environments. Here we show that multiple miRNAs are required for hypoxic survival responses during C. elegans embryogenesis. Certain miRNAs promote while others antagonize the hypoxic survival response. We found...... of the full mRNA target repertoire of these miRNAs will reveal the miRNA-regulated network of hypoxic survival mechanisms in C. elegans....

  18. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  19. Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells.

    Science.gov (United States)

    Liu, Hong-Lan; Liu, Dang; Ding, Guang-Rong; Liao, Peng-Fei; Zhang, Jun-Wen

    2015-09-01

    The present study aimed to examine the association between hypoxia-inducible factor (HIF)-1α and the Wnt/β-catenin signaling pathway in a hypoxic environment. The study also aimed to explore the possible mechanisms underlying the invasion of hypoxic gastric cancer cells in vitro and in vivo. The pcDNA™ 6.2‑GW/EmGFP‑miR‑β‑catenin plasmid was transfected into SGC‑7901 gastric cancer cells, resulting in cells with stable suppression of β‑catenin expression. The biological characteristics of the control, liposome, negative control, β‑catenin knockdown, hypoxia and hypoxia β‑catenin knockdown groups were tested using an invasion assay. The differences in the invasive capacity of the control, negative control and liposome groups were not statistically significant. However, the hypoxia group demonstrated a significantly enhanced invasive capacity, as compared with that in the control group (Phypoxic and control cells was high alongside increased HIF‑1α, β‑catenin, uPA and MMP‑7 levels according to western blot and immunohistochemical analyses, while growth and protein levels of tumors from hypoxic β‑catenin knockdown cells were significantly lower and those of β‑catenin knockdown cells were lowest. In conclusion, these results suggested that HIF‑1α activation was able to regulate the Wnt/β‑catenin pathway, and that HIF‑1α may be controlled by the Wnt/β‑catenin pathway. A potential mechanism underlying SGC‑7901 tumorigenicity is the activation of the Wnt/β‑catenin signaling pathway, which activates uPA and MMP‑7 expression and contributes to the enhanced invasion of hypoxic cancer cells.

  20. Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat

    Science.gov (United States)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    1. We sought to determine whether hypoxic stimulation of neurons of the rostral ventrolateral reticular nucleus (RVL) would elevate regional cerebral blood flow (rCBF) in anaesthetized paralysed rats. 2. Microinjection of sodium cyanide (NaCN; 150-450 pmol) into the RVL rapidly (within 1-2 s), transiently, dose-dependently and site-specifically elevated rCBF1 measured by laser Doppler flowmetry, by 61.3 +/- 22.1% (P < 0.01), increased arterial pressure (AP; +30 +/- 8 mmHg; P < 0.01)1 and triggered a synchronized 6 Hz rhythm of EEG activity. 3. Following cervical spinal cord transection, NaCN and also dinitrophenol (DNP) significantly (P < 0.05) elevated rCBF and synchronized the EEG but did not elevate AP; the response to NaCN was attenuated by hyperoxia and deepening of anaesthesia. 4. Electrical stimulation of NaCN-sensitive sites in the RVL in spinalized rats increased rCBF measured autoradiographically with 14C iodoantipyrine (Kety method) in the mid-line thalamus (by 182.3 +/- 17.2%; P < 0.05) and cerebral cortex (by 172.6 +/- 15.6%; P < 0.05) regions, respectively, directly or indirectly innervated by RVL neurons, and in the remainder of the brain. In contrast regional cerebral glucose utilization (rCGU), measured autoradiographically with 14C-2-deoxyglucose (Sokoloff method), was increased in proportion to rCBF in the mid-line thalamus (165.6 +/- 17.8%, P < 0.05) but was unchanged in the cortex. 5. Bilateral electrolytic lesions of NaCN sensitive sites of RVL, while not altering resting rCBF or the elevation elicited by hypercarbia (arterial CO2 pressure, Pa,CO2, approximately 69 mmHg), reduced the vasodilatation elicited by normocapnic hypoxaemia (arterial O2 pressure, Pa,O2, approximately 27 mmHg) by 67% (P < 0.01) and flattened the slope of the Pa,O2-rCBF response curve. 6. We conclude that the elevation of rCBF produced in the cerebral cortex by hypoxaemia is in large measure neurogenic, mediated trans-synaptically over intrinsic neuronal pathways, and

  1. The lifetime of hypoxic human tumor cells

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Sham, Edward

    1998-01-01

    Purpose: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. Materials and Methods: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. Results: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. Conclusion: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system

  2. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport.

    Directory of Open Access Journals (Sweden)

    Samata M Kakkad

    Full Text Available Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1 fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions.

  3. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gang, QiangQiang, E-mail: rousikang@163.com; Zhang, Jianing, E-mail: 1325916060@qq.com; Hao, Peng, E-mail: 1043600590@qq.com; Xu, Yikai, E-mail: yikaivip@163.com

    2013-11-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy.

  4. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    International Nuclear Information System (INIS)

    Gang, QiangQiang; Zhang, Jianing; Hao, Peng; Xu, Yikai

    2013-01-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy

  5. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions

    International Nuclear Information System (INIS)

    Jain, Suneil; Coulter, Jonathan A.; Butterworth, Karl T.; Hounsell, Alan R.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; Hirst, David G.; O’Sullivan, Joe M.

    2014-01-01

    Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy

  6. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α.

    Science.gov (United States)

    Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Gao, Jian; Miao, Feng; Xu, Hui-Mian

    2014-12-01

    Peritoneal dissemination is the most common cause of death in gastric cancer patients. The hypoxic microenvironment plays a major role in controlling the tumor stem cell phenotype and is associated with patients' prognosis through hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor that responds to hypoxic stimuli. During the peritoneal dissemination process, gastric cancer stem/progenitor cells (GCSPCs) are thought to enter into and maintained in peritoneal milky spots (PMSs), which have hypoxic microenvironments. However, the mechanism through which the hypoxic environment of PMSs regulated GCSPC maintenance is still poorly understood. Here, we investigated whether hypoxic PMSs were an ideal cancer stem cell niche suitable for GCSPC engraftment. We also evaluated the mechanisms through which the HIF-1α-mediated hypoxic microenvironment regulated GCSPC fate. We observed a positive correlation between HIF-1α expression and gastric cancer peritoneal dissemination (GCPD) in gastric cancer patients. Furthermore, the GCSPC population expanded in primary gastric cancer cells under hypoxic condition in vitro, and hypoxic GCSPCs showed enhanced self-renewal ability, but reduced differentiation capacity, mediated by HIF-1α. In an animal model, GCSPCs preferentially resided in the hypoxic zone of PMSs; moreover, when the hypoxic microenvironment in PMSs was destroyed, GCPD was significantly alleviated. In conclusion, our results demonstrated that PMSs served as a hypoxic niche and favored GCSPCs peritoneal dissemination through HIF-1α both in vitro and in vivo. These results provided new insights into the GCPD process and may lead to advancements in the clinical treatment of gastric cancer. © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Hypoxic fraction and binding of misonidazole in EMT6/Ed multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Franko, A.J.

    1985-01-01

    Misonidazole has been shown to bind selectively to hypoxic cells in tissue culture and to cells which are presumed to be chronically hypoxic in EMT6 spheroids and tumors. Thus it has considerable potential as a marker of hypoxic cells in vivo. To further evaluate this potential EMT6/Ed spheroids were used to quantitate misonidazole binding under conditions which resulted in hypoxic fractions between 0 and 1. The patterns of binding of 14 C-labeled misonidazole determined by autoradiography were consistent with the regions of radiobiological hypoxia as predicted by oxygen diffusion theory. The overall uptake of 3 H-labeled misonidazole by spheroids correlated well with the hypoxic fraction, although binding to aerobic cells and necrotic tissue contributed appreciably to the total label in the spheroids. It is concluded that misonidazole is an excellent marker of hypoxia in EMT6/Ed spheroids at the microscopic level, and the total amount bound per spheroid provides a potentially useful measure of the hypoxic fraction

  8. Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia.

    Science.gov (United States)

    Ohmura, Hajime; Mukai, Kazutaka; Takahashi, Yuji; Takahashi, Toshiyuki; Jones, James H

    2017-01-01

    Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O 2 max) more than normoxic training in untrained horses. However, the effects of hypoxic training on well-trained horses are unclear. We measured the effects of hypoxic training on V̇O 2 max of 5 well-trained horses in which V̇O 2 max had not increased over 3 consecutive weeks of supramaximal treadmill training in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O 2 ) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of hypoxic training. Mass-specific V̇O 2 max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O 2 (STPD)/(kg × min), Phorses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the potential to enhance normoxic performance of Thoroughbred horses.

  9. A low protein diet increases the hypoxic tolerance in Drosophila.

    Directory of Open Access Journals (Sweden)

    Paul Vigne

    2006-12-01

    Full Text Available Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O(2 and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses.

  10. Considerations on hypoxic conditions. On the past setback of classic radiation biology

    International Nuclear Information System (INIS)

    Nakatsugawa, Shigekazu; Klimova, S.V.; Tamasu, Shogo; Nakamura, Hideaki; Murayama, Chieko

    2002-01-01

    Considerations on hypoxic cancer cell environment are made on classic radiation biology concept and on a new proposal of the anti-cancer strategy. Classic radiation biology knowledge of hypoxic cancer cells has produced many of clinical trials, which, however, have failed after all. This is because the knowledge is that the cells are recognized to be in a rather static hypoxic condition. Based on authors' investigations, made is the proposal that improvement of dynamic, acute hypoxic conditions yielded via blood circulation between the heterogeneous malignant cancer cells and the dynamic homeostatic systems of normal cells including immunity is important as one of cancer therapy approaches. (N.I.)

  11. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure.

    Science.gov (United States)

    Foster, Gary P; Westerdahl, Daniel E; Foster, Laura A; Hsu, Jeffrey V; Anholm, James D

    2011-12-15

    Ischemic pre-condition of an extremity (IPC) induces effects on local and remote tissues that are protective against ischemic injury. To test the effects of IPC on the normal hypoxic increase in pulmonary pressures and exercise performance, 8 amateur cyclists were evaluated under normoxia and hypoxia (13% F(I)O(2)) in a randomized cross-over trial. IPC was induced using an arterial occlusive cuff to one thigh for 5 min followed by deflation for 5 min for 4 cycles. In the control condition, the resting pulmonary artery systolic pressure (PASP) increased from a normoxic value of 25.6±2.3 mmHg to 41.8±7.2 mmHg following 90 min of hypoxia. In the IPC condition, the PASP increased to only 32.4±3.1 mmHg following hypoxia, representing a 72.8% attenuation (p=0.003). No significant difference was detected in cycle ergometer time trial duration between control and IPC conditions with either normoxia or hypoxia. IPC administered prior to hypoxic exposure was associated with profound attenuation of the normal hypoxic increase of pulmonary artery systolic pressure. Published by Elsevier B.V.

  12. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.

    Science.gov (United States)

    Copple, Bryan L; Bustamante, Juan J; Welch, Timothy P; Kim, Nam Deuk; Moon, Jeon-Ok

    2009-08-01

    During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B and plasminogen activator inhibitor-1 (PAI-1) in the liver, during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1alpha in liver cell types. Accordingly, the hypothesis was tested that HIF-1alpha is activated in hypoxic hepatocytes and regulates the production of profibrotic mediators by these cells. In this study, hepatocytes were isolated from the livers of control and HIF-1alpha- or HIF-1beta-deficient mice and exposed to hypoxia. Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1alpha and upregulated PAI-1, vascular endothelial cell growth factor and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, the levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1alpha-deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2alpha, may also regulate these genes. In support of this, HIF-2alpha was activated in hypoxic hepatocytes, and exposure of HIF-1beta-deficient hepatocytes to 1% oxygen completely prevented upregulation of PAI-1, vascular endothelial cell growth factor and ADM-1, suggesting that HIF-2alpha may also contribute to upregulation of these genes in hypoxic hepatocytes. Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.

  13. Heart-rate mediated blood pressure control in preterm fetal sheep under normal and hypoxic-ischemic conditions

    NARCIS (Netherlands)

    Zwanenburg, A.A.; Jellema, R.K.; Jennekens, W.; Ophelders, D.; Vullings, R.; Hunnik, van A.; Pul, van C.; Bennet, L.; Delhaas, T.; Kramer, B.W.; Andriessen, P.

    2013-01-01

    Background: The understanding of hypoxemia-induced changes in baroreflex function is limited and may be studied in a fetal sheep experiment before, during, and after standardized hypoxic conditions. Methods: Preterm fetal lambs were instrumented at 102 d gestation (term: 146 d). At 106 d,

  14. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat

    International Nuclear Information System (INIS)

    Rabinovitch, M.; Mullen, M.; Rosenberg, H.C.; Maruyama, K.; O'Brodovich, H.; Olley, P.M.

    1988-01-01

    Angiotensin II, a vasoconstrictor, has been previously demonstrated to produce a secondary vasodilatation due to release of prostaglandins. Because of this effect, the authors investigated whether infusion of exogenous angiotensin II via miniosmopumps in rats during a 1-wk exposure to chronic hypobaric hypoxia might prevent pulmonary hypertension, right ventricular hypertrophy, and vascular changes. They instrumented the rats with indwelling cardiovascular catheters and compared the hemodynamic and structural response in animals given angiotensin II, indomethacin in addition to angiotensin II (to block prostaglandin production), or saline with or without indomethacin. They then determine whether angiotensin II infusion also prevents acute hypoxic pulmonary vasoconstriction. They observed that exogenous angiotensin II infusion abolished the rise in pulmonary artery pressure, the right ventricular hypertrophy, and the vascular changes induced during chronic hypoxia in control saline-infused rats with or without indomethacin. The protective effects of angiotensin II was lost when indomethacin was given to block prostaglandin synthesis. During acute hypoxia, both antiotensin II and prostacyclin infusion similarly prevented the rise in pulmonary artery pressure observed in saline-infused rats and in rats given indomethacin or saralasin in addition to angiotensin II. Thus exogenous angiotensin II infusion prevents chronic hypoxic pulmonary hypertension, associated right ventricular hypertrophy, and vascular changes and blocks acute hypoxic pulmonary hypertension, and this is likely related to its ability to release vasodilator prostaglandins

  15. Concordance between hypoxic challenge testing and predictive equations for hypoxic flight assessment in chronic obstructive pulmonary disease patients prior to air travel

    Directory of Open Access Journals (Sweden)

    Mohie Aldeen Abd Alzaher Khalifa

    2016-10-01

    Conclusions: The present study supports on-HCT as a reliable, on-invasive and continuous methods determining the requirement for in-flight O2 are relatively constant. Predictive equations considerably overestimate the need for in-flight O2 compared to hypoxic inhalation test. Predictive equations are cheap, readily available methods of flight assessment, but this study shows poor agreement between their predictions and the measured individual hypoxic responses during HCT.

  16. Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival

    Directory of Open Access Journals (Sweden)

    Frelin Christian

    2010-05-01

    Full Text Available Abstract Background Recent attention has been given to the relationships between diet, longevity, aging and resistance to various forms of stress. Flies do not simply ingest calories. They sense different concentrations of carbohydrate and protein macronutrients and they modify their feeding behavior in response to changes in dietary conditions. Chronic hypoxia is a major consequence of cardiovascular diseases. Dietary proteins have recently been shown to decrease the survival of chronically hypoxic Drosophila. Whether flies modify their feeding behavior in response to hypoxia is not currently known. This study uses the recently developed capillary feeding assay to analyze the feeding behavior of normoxic and chronically hypoxic Drosophila melanogaster. Results The intakes rates of sucrose and yeast by normoxic or chronically hypoxic flies (5% O2 were analyzed under self selecting and "no choice" conditions. Chronically hypoxic flies fed on pure yeast diets or mixed diets under self selection conditions stopped feeding on yeast. Flies fed on mixed diets under "no choice" conditions reduced their food intakes. Hypoxia did not modify the adaptation of flies to diluted diets or to imbalanced diets. Mortality was assessed in parallel experiments. Dietary yeast had two distinct effects on hypoxic flies (i a repellent action which eventually led to starvation and which was best observed in the absence of dietary sucrose and (ii a toxic action which led to premature death. Finally we determined that hypoxic survivals were correlated to the intakes of sucrose, which suggested that dietary yeast killed flies by reducing their intake of sucrose. The feeding preferences of adult Drosophila were insensitive to NO scavengers, NO donor molecules and inhibitors of phosphodiesterases which are active on Drosophila larvae. Conclusion Chronically hypoxic flies modify their feeding behavior. They avoid dietary yeast which appears to be toxic. Hypoxic survival is

  17. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  18. The radiosensitizing effects of ornidazole in hypoxic mammalian tissue: an in vivo study

    International Nuclear Information System (INIS)

    Okkan, S.; Uzel, R.

    1982-01-01

    In this study the sensitizing effects of ornidazole is investigated in vivo. The selected test system is the acute killing effect of radiation within 4-6 days after abdominal irradiation ranging from 9 to 24 Gy, in groups of C 57 black mice. Ornidazole is given intraperitoneally in 500 mg/kg, 100 mg/kg, 20 mg/kg doses prior to irradiation of animals breathing air, oxygen or nitrogen. A decreae of LD 50 dose is observed from 24.39 +/- 5.66 to 16.38 +/- 1.86 and 18.04 +/- 2.48 Gy, respectively, in nitrogen breathing animals. No sensitizing effect was observed in doses of 20 mg/kg. Enhancement Ratio (ER) was found to be 1.48 +/- 0.25 and 1.35 +/- 0.27; relative sensitizing efficiency (RSE) was 40% and 29% respectively. No sensitizing effect was observed in animals irradiated in oxic conditions. These results showed that ornidazole (Ro-7-0207) has a sensitizing effect on hypoxic cells in vivo. It is worthwhile to try this drug in a clinical study

  19. AT-406, an IAP inhibitor, activates apoptosis and induces radiosensitization of normoxic and hypoxic cervical cancer cells.

    Science.gov (United States)

    Lu, Jing; Qin, Qin; Zhan, Liang-Liang; Liu, Jia; Zhu, Hong-Cheng; Yang, Xi; Zhang, Chi; Xu, Li-Ping; Liu, Zhe-Ming; Wang, Di; Cui, He-Qing; Meng, Ciu-Ciu; Cai, Jing; Cheng, Hong-Yan; Sun, Xin-Chen

    2014-01-01

    IAP antagonists increased the antitumor efficacy of X-irradiation in some types of cancers, but their effects on hypoxic cancer cells remain unclarified. We aims to investigate the radiosensitizing effect of an IAP inhibitor AT-406 on cervical cancer cell lines under both normoxia and hypoxia conditions. Hela and Siha cells were treated to investigate the effects of drug administration on cell proliferation, apoptosis, and radiosensitivity. Western blot analysis was used to determine the role of AT-406 in inhibition of IAPs. The pathway of apoptosis was characterized by caspases activity assay. AT-406 potently sensitized Hela cells but not Siha cells to radiation under normoxia. Notably, the radiosensitizing effect of AT-406 on hypoxic cells was more evident than on normoxic cells in both cell lines. Further mechanism studies by western blot showed that under normoxia AT-406 decreased the level of cIAP1 in Hela cells in a dose-dependent manner; while additional downregulation of XIAP expression was induced by AT-406 treatment under hypoxia in both cell lines. Finally, AT-406 works on both extrinsic death receptor and intrinsic mitochondrial apoptosis pathways to activate apoptosis. Totally, AT-406 acts as a strong radiosensitizer in human cervical cancer cells, especially in hypoxic condition.

  20. Changes in lactate dehydrogenase are associated with central gray matter lesions in newborns with hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Yum, Sook Kyung; Moon, Cheong-Jun; Youn, Young-Ah; Sung, In Kyung

    2017-05-01

    Biomarkers may predict neurological prognosis in infants with hypoxic-ischemic encephalopathy (HIE). We evaluated the relationship between serum lactate dehydrogenase (LDH) and brain magnetic resonance imaging (MRI), which predicts neurodevelopmental outcomes, in order to assess whether LDH levels are similarly predictive. Medical records were reviewed for infants with HIE and LDH levels were assessed on the first (LDH 1 ) and third (LDH 3 ) days following birth. Receiver operating characteristic curves were obtained in relation to central gray matter hypoxic-ischemic lesions. Of 92 patients, 52 (56.5%) had hypoxic-ischemic lesions on brain MRI, and 21 of these infants (40.4%) had central gray matter lesions. LDH 1 and LDH 3 did not differ; however, the percentage change (ΔLDH%) was significantly higher in infants with central gray matter lesions (36.9% versus 6.6%, p = 0.006). With cutoffs of 187 (IU/L, ΔLDH) and 19.4 (%, ΔLDH%), the sensitivity, specificity, positive predictive value and negative predictive value were 71.4, 69.0, 40.5 and 89.1%, respectively. The relative risk was 5.57 (p = 0.001). Changes in serum LDH may be a useful biomarker for predicting future neurodevelopmental prognosis in infants with HIE.

  1. Developmental Expression and Hypoxic Induction of Hypoxia Inducible Transcription Factors in the Zebrafish.

    Science.gov (United States)

    Köblitz, Louise; Fiechtner, Birgit; Baus, Katharina; Lussnig, Rebecca; Pelster, Bernd

    2015-01-01

    The hypoxia inducible transcription factor (HIF) has been shown to coordinate the hypoxic response of vertebrates and is expressed in three different isoforms, HIF-1α, HIF-2α and HIF-3α. Knock down of either Hif-1α or Hif-2α in mice results in lethality in embryonic or perinatal stages, suggesting that this transcription factor is not only controlling the hypoxic response, but is also involved in developmental phenomena. In the translucent zebrafish embryo the performance of the cardiovascular system is not essential for early development, therefore this study was designed to analyze the expression of the three Hif-isoforms during zebrafish development and to test the hypoxic inducibility of these transcription factors. To complement the existing zfHif-1α antibody we expressed the whole zfHif-2α protein and used it for immunization and antibody generation. Similarly, fragments of the zfHif-3α protein were used for immunization and generation of a zfHif-3α specific antibody. To demonstrate presence of the Hif-isoforms during development [between 1 day post fertilization (1 dpf) and 9 dpf] affinity-purified antibodies were used. Hif-1α protein was present under normoxic conditions in all developmental stages, but no significant differences between the different developmental stages could be detected. Hif-2α was also present from 1 dpf onwards, but in post hatching stages (between 5 and 9 dpf) the expression level was significantly higher than prior to hatching. Similarly, Hif-3α was expressed from 1 dpf onwards, and the expression level significantly increased until 5 dpf, suggesting that Hif-2α and Hif-3α play a particular role in early development. Hypoxic exposure (oxygen partial pressure = 5 kPa) in turn caused a significant increase in the level of Hif-1α protein even at 1 dpf and in later stages, while neither Hif-2α nor Hif-3α protein level were affected. In these early developmental stages Hif-1α therefore appears to be more important for

  2. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    Science.gov (United States)

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Cheyne-Stokes respiration: hypoxia plus a deep breath that interrupts hypoxic drive, initiating cyclic breathing.

    Science.gov (United States)

    Guntheroth, Warren G

    2011-11-01

    In the 19th Century, Cheyne and Stokes independently reported cycles of respiration in patients with heart failure, beginning with apnea, followed by a few breaths. However Cheyne-Stokes respiration (C-SR) can also occur in healthy individuals with sleep, and was demonstrated in 1908 with voluntary hyperventilation, followed by apnea that Haldane blamed on hypoxia, subsequently called post-hyperventilation apnea. Additional theories explaining C-SR did not appear until 1954, based on control theory, specifically a feed-back regulator controlling CO(2). This certainly describes control of normal respiration, but to produce an unstable state such as C-SR requires either a very long transit time (3½ min) or an increase of the controller gain (13 times), physiologically improbable. There is general agreement that apnea initiates C-SR but that has not been well explained except for post-hyperventilation apnea, and that explanation is not compatible with a study by Nielsen and Smith in 1951. They plotted the effects of diminished oxygen on ventilation (V) in relation to CO(2) (Fig. 1). They found that the slope of V/CO(2) (gain) increased with hypoxia, but it flattened at a moderate CO(2) level and had nointercept with zero (apnea). It is also incompatible with our published findings in 1975 that showed that apnea did not occur until an extreme level of hypoxia occurred (the PO(2) fell below 10 mmHg), followed shortly by gasping. Much milder hypoxia underlies most cases of C-SR, when hypoxic drive replaces the normal CO(2)-based respiratory drive, in a failsafe role. I hypothesize that the cause of apnea is a brief interruption of hypoxic drive caused by a pulse of oxygen from a stronger than average breath, such as a sigh. The rapidity of onset of apnea in response to a pulse of oxygen, reflects the large pressure gradient for oxygen from air to lung with each breath, in contrast to CO(2). With apnea, there is a gradual fall in oxygen, resulting in a resumption of

  4. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors.

    Science.gov (United States)

    Szablowski, Jerzy O; Raskatov, Jevgenij A; Dervan, Peter B

    2016-04-01

    Hypoxic gene expression contributes to the pathogenesis of many diseases, including organ fibrosis, age-related macular degeneration, and cancer. Hypoxia-inducible factor-1 (HIF1), a transcription factor central to the hypoxic gene expression, mediates multiple processes including neovascularization, cancer metastasis, and cell survival. Pyrrole-imidazole polyamide 1: has been shown to inhibit HIF1-mediated gene expression in cell culture but its activity in vivo was unknown. This study reports activity of polyamide 1: in subcutaneous tumors capable of mounting a hypoxic response and showing neovascularization. We show that 1: distributes into subcutaneous tumor xenografts and normal tissues, reduces the expression of proangiogenic and prometastatic factors, inhibits the formation of new tumor blood vessels, and suppresses tumor growth. Tumors treated with 1: show no increase in HIF1α and have reduced ability to adapt to the hypoxic conditions, as evidenced by increased apoptosis in HIF1α-positive regions and the increased proximity of necrotic regions to vasculature. Overall, these results show that a molecule designed to block the transcriptional activity of HIF1 has potent antitumor activity in vivo, consistent with partial inhibition of the tumor hypoxic response. Mol Cancer Ther; 15(4); 608-17. ©2015 AACR. ©2015 American Association for Cancer Research.

  5. Enhanced induction of SCEs in hypoxic mammalian cells by ionizing radiation

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Meyn, R.E.

    1985-01-01

    Ionizing radiation is, in general, a poor inducer of sister chromatoid exchanges (SCEs). However, the authors previously observed an increase in X-ray induced DNA-protein crosslinks in hypoxic cells, as compared to aerated cells, suggesting that in the absence of oxygen, X rays induce a qualitatively different DNA lesion. Therefore, they examined the effect of X-rays on SCE induction under hypoxic conditions. CHO cells were rendered hypoxic by incubation at 37 0 for 3 hr. in evacuated glass ampules and irradiated with graded doses of X-rays. After irradiation, cells were incubated in medium containing BrdUrd and the SCE assay performed. At each dose tested (0-900 rads) the number of SCEs induced by X-rays in hypoxic cells was approximately 2.5 fold the number induced in aerated cells. When a 16-hr. repair-incubation interval was allowed between irradiation and BrdUrd labeling, the number of SCEs returned to background levels. In further experiments, repair-deficient cells, incapable of completely removing crosslinks from their DNA, did not completely restore SCE levels to background within the repair period. These data provide further evidence suggesting that hypoxic cells respond differently to radiation in a qualitative sense, in addition to the well known quantitative sense

  6. Characteristics of fluorinated nitroazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Shibamoto, Y.; Nishimoto, S.; Shimokawa, K.

    1989-01-01

    Types of 2-nitroimidazoles and 3-nitro-1,2,4-triazoles bearing one or two fluorine atoms on their side chains were synthesized to evaluate their physicochemical properties, radiosensitizing effects, and toxicity. The reduction potential of the compounds containing one fluorine was similar to that of misonidazole (MISO), whereas that of the difluorinated compounds was slightly higher. Both mono- and difluorinated compounds had an in vitro sensitizing activity comparable to or slightly higher than that of MISO. The fluorinated 3-nitrotriazoles were almost as efficient as the 2-nitroimidazoles with the same substituent. In vivo, some of the compounds were up to twice more efficient than MISO, whereas others were as efficient as MISO. Toxicity in terms of LD50/7 in mice was quite variable depending on the side-chain structure; the amide derivatives were less toxic than MISO, whereas the alcohol and ether derivatives were more toxic. In view of the radiosensitizing effect and toxicity in vivo, at least one compound, KU-2285 (a 2-nitroimidazole with an N1-substituent of: CH2CF2CONHCH2CH2OH) has been found to be as useful a hypoxic cell sensitizer as SR-2508

  7. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark.

    Science.gov (United States)

    Nilsson, Göran E; Renshaw, Gillian M C

    2004-08-01

    Especially in aquatic habitats, hypoxia can be an important evolutionary driving force resulting in both convergent and divergent physiological strategies for hypoxic survival. Examining adaptations to anoxic/hypoxic survival in hypoxia-tolerant animals may offer fresh ideas for the treatment of hypoxia-related diseases. Here, we summarise our present knowledge of two fishes that have evolved to survive hypoxia under very different circumstances. The crucian carp (Carassius carassius) is of particular interest because of its extreme anoxia tolerance. During the long North European winter, it survives for months in completely oxygen-deprived freshwater habitats. The crucian carp also tolerates a few days of anoxia at room temperature and, unlike anoxia-tolerant freshwater turtles, it is still physically active in anoxia. Moreover, the crucian carp does not appear to reduce neuronal ion permeability during anoxia and may primarily rely on more subtle neuromodulatory mechanisms for anoxic metabolic depression. The epaulette shark (Hemiscyllium ocellatum) is a tropical marine vertebrate. It lives on shallow reef platforms that repeatedly become cut off from the ocean during periods of low tides. During nocturnal low tides, the water [O(2)] can fall by 80% due to respiration of the coral and associated organisms. Since the tides become lower and lower over a period of a few days, the hypoxic exposure during subsequent low tides will become progressively longer and more severe. Thus, this shark is under a natural hypoxic preconditioning regimen. Interestingly, hypoxic preconditioning lowers its metabolic rate and its critical P(O(2)). Moreover, repeated anoxia appears to stimulate metabolic depression in an adenosine-dependent way.

  8. Metabolic adaptations may counteract ventilatory adaptations of intermittent hypoxic exposure during submaximal exercise at altitudes up to 4000 m.

    Directory of Open Access Journals (Sweden)

    Martin Faulhaber

    Full Text Available Intermittent hypoxic exposure (IHE has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7 × 1 hour at 4500 m. The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05. There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = -0.72, p<0.05. Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01 and minute ventilation (r = 0.54, p<0.01. Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.

  9. Hypoxic-Ischemic Encephalopathy-Associated Liver Fatty Degeneration and the Effects of Therapeutic Hypothermia in Newborn Piglets.

    Science.gov (United States)

    Kubo, Hiroyuki; Shimono, Ryuichi; Nakamura, Shinji; Koyano, Kosuke; Jinnai, Wataru; Yamato, Satoshi; Yasuda, Saneyuki; Nakamura, Makoto; Tanaka, Aya; Fujii, Takayuki; Kanenishi, Kenji; Chiba, Yoichi; Miki, Takanori; Kusaka, Takashi; Ueno, Masaki

    2017-01-01

    Although liver can be injured under the hypoxic-ischemic encephalopathy (HIE) condition, there is currently no histopathological evidence. Therapeutic hypothermia is used to protect the brain; however, the therapeutic potential for concomitant liver injury is unknown. This study aimed to histopathologically prove HIE-associated liver injury and to investigate the influence of therapeutic hypothermia in a newborn piglet HIE model. Eighteen newborn piglets were divided into 3 groups: control (n = 4), HIE (n = 8), and therapeutic hypothermia (n = 6) groups. The hypoxic insult was induced by decreasing the fraction of inspiratory oxygen from 21 to 2-4% over 40 min while monitoring cerebral blood volume and cerebral hemoglobin oxygen saturation. For therapeutic hypothermia, whole-body cooling at 33-34°C was administered for 24 h after the hypoxic insult. We hematologically and histopathologically investigated the liver injury in all groups. Alanine transaminase and lactate dehydrogenase levels in the HIE group were significantly elevated compared with those in the control group. Micro-lipid droplet accumulation in the periportal zone, but not in the perivenous zone, was significantly greater in the HIE group than in the control group and significantly smaller in the therapeutic hypothermia group than in the HIE group. We demonstrated that micro-lipid droplet accumulation in the cytoplasm of hepatocytes in the periportal zone occurs under the HIE condition and that this accumulation is suppressed by therapeutic hypothermia. © 2016 S. Karger AG, Basel.

  10. The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes - a meta-analysis.

    Science.gov (United States)

    Park, Hun-Young; Hwang, Hyejung; Park, Jonghoon; Lee, Seongno; Lim, Kiwon

    2016-03-31

    This study was designed as a meta-analysis of randomized controlled trials comparing effectiveness of altitude/hypoxic training (experimental) versus sea-level training (control) on oxygen delivery capacity of the blood and aerobic exercise capacity of elite athletes in Korea. Databases (Research Information Service System, Korean studies Information Service System, National Assembly Library) were for randomized controlled trials comparing altitude/hypoxic training versus sea-level training in elite athletes. Studies published in Korea up to December 2015 were eligible for inclusion. Oxygen delivery capacity of the blood was quantified by red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), erythropoietin (EPO); and aerobic exercise capacity was quantified by maximal oxygen consumption (VO2max). RBC, Hb, Hct, VO2max represented heterogeneity and compared post-intervention between altitude/hypoxic training and sea-level training in elite athletes by a random effect model meta-analysis. EPO represented homogeneity and meta-analysis performed by a fixed effect model. Eight independent studies with 156 elite athletes (experimental: n = 82, control: n = 74) were included in the metaanalysis. RBC (4.499×10(5) cell/ul, 95 % CI: 2.469 to 6.529), Hb (5.447 g/dl, 95 % CI: 3.028 to 7.866), Hct (3.639 %, 95 % CI: 1.687 to 5.591), EPO (0.711 mU/mL, 95% CI: 0.282 to 1.140), VO2max (1.637 ml/kg/min, 95% CI: 0.599 to 1.400) showed significantly greater increase following altitude/hypoxic training, as compared with sea-level training. For elite athletes in Korea, altitude/ hypoxic training appears more effective than sea-level training for improvement of oxygen delivery capacity of the blood and aerobic exercise capacity.

  11. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    BACKGROUND AND PURPOSE: Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood...... originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS: We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc...

  12. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    Science.gov (United States)

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  13. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    Science.gov (United States)

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  14. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    Energy Technology Data Exchange (ETDEWEB)

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  15. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects.

    Science.gov (United States)

    Chacaroun, Samarmar; Borowik, Anna; Morrison, Shawnda A; Baillieul, Sébastien; Flore, Patrice; Doutreleau, Stéphane; Verges, Samuel

    2016-01-01

    Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m -2 ) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO 2 ), continuously adjusted to reach arterial oxygen saturations (SpO 2 ) of 70-80% for 1 h. IH sessions consisted of 5 min with reduced FiO 2 (SpO 2 = 70-80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results : Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min -1 ) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (-8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH -6 ± 5%, IH -3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (-13 ± 3% vs. -6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in heart

  16. Radiobiological hypoxic fraction does not correlate with pO2 measurements in eight human tumor xenografts into nude mice

    International Nuclear Information System (INIS)

    Taghian, A.; Huang, P.; Griffon, G.; Hartford, A.; Allam, A.; Costa, A. da; Kozin, S.; Suit, H.D.

    1997-01-01

    Purpose/Objective: Clinical and laboratory reports suggest that hypoxia limits local control probability in tumors treated by radiation. Significant increase in the TCD 50 (the dose of radiation needed to control 50% of the tumors) was obtained in a number of tumor models when the tumors were rendered hypoxic by clamping. Furthermore, recent data have shown the value of measuring the pO2 using electrodes in predicting the tumor response to radiation in cervical cancer. The aim of this study is to investigate the correlation between the radiobiological hypoxic fraction (HF) and the pO2 measurements of human tumor xenografts. Materials and Methods: Eight human tumor xenografts (five glioblastoma, one squamous cell carcinoma, one colon cancer, and one soft tissue sarcoma) were used in these experiments. Tumor chunks 2 mm in diameter were implanted into the hindleg of 5 Gy whole-body irradiated nude mice. When the tumor size reached 110 mm 3 , radiation was administered in a single dose ranging from 17.5 Gy to 90 Gy in hypoxic conditions. Acute hypoxia was induced by clamping the tumor bearing leg three minutes before and during the treatment. When aerobic conditions were required, the tumor bearing leg was immobilized by a hook which fitted around the ankle. Seven to 10 tumors were assigned to each dose level in each assay; there were 6 to 8 dose levels per assay. Starting at 2-3 weeks after irradiation, the animals were examined once per week and scored for presence of local tumor; if present, tumor diameters were measured. Tumor response is described in terms of radiation dose (in Gy) required to control 50% of the xenografts (TCD 50 ). The (HF) was determined using the formula of Howes (HF=e - ((TCD 50 hypoxic-TCD 50 air)(Do hypoxic)) and assuming an oxygen enhancement ratio of 3.0: (D o hyp=D o air x 3.0) (the D o air was separately determined in vitro for the corresponding cell lines). The pO2 measurements used electrodes as published (Boucher et al

  17. Hemin offers neuroprotection through inducing exogenous neuroglobin in focal cerebral hypoxic-ischemia in rats

    Science.gov (United States)

    Song, Xue; Xu, Rui; Xie, Fei; Zhu, Haiyuan; Zhu, Ji; Wang, Xin

    2014-01-01

    Objective: To investigate the inducible effect of hemin on exogenous neuroglobin (Ngb) in focal cerebral hypoxic-ischemia in rats. Methods: 125 healthy SD rats were randomly divided into five groups: sham-operation control group, operation group, hemin treatment group, exogenous Ngb treatment group, and hemin and exogenous Ngb joint treatment group. Twenty-four hours after focal cerebral hypoxic-ischemia, Ngb expression was evaluated by immunocytochemistry, RT-PCR, and western blot analyses, while the brain water content and infarct volume were examined. Results: Immunocytochemistry, RT-PCR, and western blot analyses showed more pronounced Ngb expression in the hemin and exogenous Ngb joint operation group than in the hemin or exogenous Ngb individual treatment groups, thus producing significant differences in brain water content and infarct volume (p exogenous Ngb. PMID:24966924

  18. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions

    Science.gov (United States)

    Felfoul, Ouajdi; Mohammadi, Mahmood; Taherkhani, Samira; de Lanauze, Dominic; Zhong Xu, Yong; Loghin, Dumitru; Essa, Sherief; Jancik, Sylwia; Houle, Daniel; Lafleur, Michel; Gaboury, Louis; Tabrizian, Maryam; Kaou, Neila; Atkin, Michael; Vuong, Té; Batist, Gerald; Beauchemin, Nicole; Radzioch, Danuta; Martel, Sylvain

    2016-11-01

    Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref. 4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in severe combined immunodeficient beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.

  19. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis

    Directory of Open Access Journals (Sweden)

    De-An Zhao

    Full Text Available Abstract Background and objectives: Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. Methods: A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Results: Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Conclusions: Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis.

  20. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  1. The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes – a meta-analysis

    Science.gov (United States)

    Park, Hun-young; Hwang, Hyejung; Park, Jonghoon; Lee, Seongno; Lim, Kiwon

    2016-01-01

    [Purpose] This study was designed as a meta-analysis of randomized controlled trials comparing effectiveness of altitude/hypoxic training (experimental) versus sea-level training (control) on oxygen delivery capacity of the blood and aerobic exercise capacity of elite athletes in Korea. [Methods] Databases (Research Information Service System, Korean studies Information Service System, National Assembly Library) were for randomized controlled trials comparing altitude/hypoxic training versus sea-level training in elite athletes. Studies published in Korea up to December 2015 were eligible for inclusion. Oxygen delivery capacity of the blood was quantified by red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), erythropoietin (EPO); and aerobic exercise capacity was quantified by maximal oxygen consumption (VO2max). RBC, Hb, Hct, VO2max represented heterogeneity and compared post-intervention between altitude/hypoxic training and sea-level training in elite athletes by a random effect model meta-analysis. EPO represented homogeneity and meta-analysis performed by a fixed effect model. Eight independent studies with 156 elite athletes (experimental: n = 82, control: n = 74) were included in the metaanalysis. [Results] RBC (4.499×105 cell/ul, 95 % CI: 2.469 to 6.529), Hb (5.447 g/dl, 95 % CI: 3.028 to 7.866), Hct (3.639 %, 95 % CI: 1.687 to 5.591), EPO (0.711 mU/mL, 95% CI: 0.282 to 1.140), VO2max (1.637 ml/kg/min, 95% CI: 0.599 to 1.400) showed significantly greater increase following altitude/hypoxic training, as compared with sea-level training. [Conclusion] For elite athletes in Korea, altitude/ hypoxic training appears more effective than sea-level training for improvement of oxygen delivery capacity of the blood and aerobic exercise capacity. PMID:27298808

  2. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions); Effets in vitro du piracetam sur la radiosensibilite des cellules hypoxiques (adapatation du test au MTT aux conditions d`hypoxie)

    Energy Technology Data Exchange (ETDEWEB)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Lagarde, P. [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Institut Bergonie, 33 - Bordeaux (France); Pooter, C.M.J. de [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Hopital de Middelheim, Anvers (Belgium); Chomy, F. [Institut Bergonie, 33 - Bordeaux (France)

    1995-12-31

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs.

  3. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ui Seok; Koh, Won Gun [Dept. of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.

  4. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    International Nuclear Information System (INIS)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub; Chung, Ui Seok; Koh, Won Gun

    2016-01-01

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors

  5. Cooling for newborns with hypoxic ischaemic encephalopathy.

    Science.gov (United States)

    Jacobs, Susan E; Berg, Marie; Hunt, Rod; Tarnow-Mordi, William O; Inder, Terrie E; Davis, Peter G

    2013-01-31

    Newborn animal studies and pilot studies in humans suggest that mild hypothermia following peripartum hypoxia-ischaemia in newborn infants may reduce neurological sequelae without adverse effects. To determine the effect of therapeutic hypothermia in encephalopathic asphyxiated newborn infants on mortality, long-term neurodevelopmental disability and clinically important side effects. We used the standard search strategy of the Cochrane Neonatal Review Group as outlined in The Cochrane Library (Issue 2, 2007). Randomised controlled trials evaluating therapeutic hypothermia in term and late preterm newborns with hypoxic ischaemic encephalopathy were identified by searching the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, 2007, Issue 2), MEDLINE (1966 to June 2007), previous reviews including cross-references, abstracts, conferences, symposia proceedings, expert informants and journal handsearching. We updated this search in May 2012. We included randomised controlled trials comparing the use of therapeutic hypothermia with standard care in encephalopathic term or late preterm infants with evidence of peripartum asphyxia and without recognisable major congenital anomalies. The primary outcome measure was death or long-term major neurodevelopmental disability. Other outcomes included adverse effects of cooling and 'early' indicators of neurodevelopmental outcome. Four review authors independently selected, assessed the quality of and extracted data from the included studies. Study authors were contacted for further information. Meta-analyses were performed using risk ratios (RR) and risk differences (RD) for dichotomous data, and weighted mean difference for continuous data with 95% confidence intervals (CI). We included 11 randomised controlled trials in this updated review, comprising 1505 term and late preterm infants with moderate/severe encephalopathy and evidence of intrapartum asphyxia

  6. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    International Nuclear Information System (INIS)

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-01

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγ null (NOG) mice. Hypoxic culture (1% O 2 ) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34 + CD38 - cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  7. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    Science.gov (United States)

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  8. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  9. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  10. The hTERT promoter enhances the antitumor activity of an oncolytic adenovirus under a hypoxic microenvironment.

    Directory of Open Access Journals (Sweden)

    Yuuri Hashimoto

    Full Text Available Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin, in which the human telomerase reverse transcriptase (hTERT promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5. In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen or a hypoxic (1% oxygen condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.

  11. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.

    Science.gov (United States)

    Espinoza, I; Peschke, P; Karger, C P

    2015-01-01

    In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was

  12. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    International Nuclear Information System (INIS)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  13. Studies of 99mTc-BnAO (HL-91): a non-nitroaromatic compound for hypoxic cell detection

    International Nuclear Information System (INIS)

    Zhang, X.; Melo, T.; Ballinger, J.R.; Rauth, A.M.

    1998-01-01

    Purpose: Solid tumours of similar type and stage can vary widely in their hypoxic cell fraction. Such cells may be prognostic for aggressive, metastatic, and radiation-resistant disease. A 99m technetium ( 99m Tc)-labelled non-nitroaromatic agent, butyleneamine oxime ( 99m Tc-BnAO) or HL-91 (Amersham International, Inc., Amersham, UK) has been evaluated both in vitro and in vivo for its possible efficacy as a noninvasive marker for the clinical detection of hypoxic cells in solid tumours. Materials and Methods: Suspension cultures of Chinese hamster ovary (CHO) cells under controlled levels of oxygen were used to measure the oxygen dependency of 99m Tc-BnAO accumulation. V79 cells grown as multilayers on a semipermeable membrane served as an in vitro model for drug penetration through the extravascular space of the tumour. C3H mice bearing KHT-C leg tumours were the in vivo models for selective drug accumulation as a function of time after i.v. administration of 99m Tc-BnAO. Results: 99m Tc accumulated selectively in hypoxic vs. aerobic cells, resulting in a 9 ± 2-fold differential in radioactivity per cell at 4 h. The k m for this selective accumulation was 20 ppm of oxygen. The labelled drug was equally effective in penetrating the cellular multilayer under aerobic or hypoxic conditions. In vivo measurements indicated favourable labelling of solid tumours containing hypoxic cells with 1% of the total activity per g of tumour, a tumour-to-blood ratio of 1.2, and a tumour-to-muscle ratio of 4.6 at 4 to 6 h after drug administration. In contrast to more lipophilic 99m Tc- labelled compounds, excretion was primarily via the urinary tract. Nitro-L-arginine selectively increased solid tumour labelling over normal tissue. Conclusions: 99m Tc-BnAO or HL-91 is a promising agent for clinical studies of tumour hypoxia, although the mechanism of its selective hypoxic cell accumulation remains unexplained

  14. [Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis].

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis.

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Gupta, Charu; Massaro, An N; Ray, Patricio E

    2016-07-01

    Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≥50 % and/or reached SCr levels of ≤0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI-KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of newborns in the other two groups required more days of mechanical ventilation and vasopressor drugs and had higher gentamicin levels, more fluid overload, lower urinary epidermal growth factor levels, and a prolonged length of stay. The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life.

  17. Hypoxic ischemic encephalopathy in newborns linked to placental and umbilical cord abnormalities.

    Science.gov (United States)

    Nasiell, Josefine; Papadogiannakis, Nikos; Löf, Erika; Elofsson, Fanny; Hallberg, Boubou

    2016-03-01

    Birth asphyxia and hypoxic ischemic encephalopathy (HIE) of the newborn remain serious complications. We present a study investigating if placental or umbilical cord abnormalities in newborns at term are associated with HIE. A prospective cohort study of the placenta and umbilical cord of infants treated with hypothermia (HT) due to hypoxic brain injury and follow-up at 12 months of age has been carried out. The study population included 41 infants treated for HT whose placentas were submitted for histopathological analysis. Main outcome measures were infant development at 12 months, classified as normal, cerebral palsy, or death. A healthy group of 100 infants without HIE and normal follow-up at 12 months of age were used as controls. A velamentous or marginal umbilical cord insertion and histological abruption was associated with the risk of severe HIE, OR = 5.63, p = 0.006, respectively, OR = 20.3, p = 0.01 (multiple-logistic regression). Velamentous or marginal umbilical cord insertion was found in 39% among HIE cases compared to 7% in controls. Placental and umbilical cord abnormalities have a profound association with HIE. A prompt examination of the placentas of newborns suffering from asphyxia can provide important information on the pathogenesis behind the incident and contribute to make a better early prognosis.

  18. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.

    Science.gov (United States)

    Hill, Corey B; Grandgeorge, Samuel H; Bavis, Ryan W

    2013-12-01

    Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR), but the relative contributions of carotid body-initiated CNS mechanisms versus central hypoxia on ventilatory depression during the late phase of the HVR are not well understood. Neonatal rats (P4-5 or P13-15) were treated with a nonselective P2 purinergic receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, or PPADS; 125mgkg(-1), i.p.) to pharmacologically denervate the peripheral chemoreceptors. At P4-5, rats reared in normoxia showed a progressive decline in ventilation during a 10-min exposure to 12% O2 (21-28% decrease from baseline). No hypoxic ventilatory depression was observed in the older group of neonatal rats (i.e., P13-15), suggesting that the contribution of central hypoxia to hypoxic ventilatory depression diminishes with age. In contrast, rats reared in moderate hyperoxia (60% O2) from birth exhibited no hypoxic ventilatory depression at either age studied. Systemic PPADS had no effect on the ventilatory response to 7% CO2, suggesting that the drug did not cross the blood-brain barrier. These findings indicate that (1) CNS hypoxia depresses ventilation in young, neonatal rats independent of carotid body activation and (2) hyperoxia alters the development of CNS pathways that modulate the late phase of the hypoxic ventilatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Detection of hypoxic fractions in murine tumors by comet assay: Comparison with other techniques

    International Nuclear Information System (INIS)

    Hu, Q.; Kavanagh, M.C.; Newcombe, D.

    1995-01-01

    The alkaline comet assay was used to detect the hypoxic fractions of murine tumors. A total of four tumor types were tested using needle aspiration biopsies taken immediately after a radiation dose of 15 Gy. Initial studies confirmed that the normalized tail moment, a parameter reflecting single-strand DNA breaks induced by the radiation, was linearly related to radiation dose. Further, it was shown that for a mixed population (1:1) of cells irradiated under air-breathing or hypoxic conditions, the histogram of normal tail moment values obtained from analyzing 400 cells in the population had a double peak which, when fitted with two Gaussian distributions, gave a good estimate of the proportion of the two subpopulations. For the four tumor types, the means of the calculated hypoxic fractions from four or five individual tumors were 0.15 ± 0.04 for B16F1, 0.08 ± 0.04 for KHT-LP1, 0.17 ± 0.04 for RIF-1 and 0.04 ± 0.01 for SCCVII. Analysis of variance showed that the hypoxic fraction in KHT-LP1 tumors is significantly lower than those of the other three tumors (P = 0.026) but that there is no significant difference in hypoxic fraction between B16F1, RIF-1 and SCCVII tumors (P = 0.574). Results from multiple samples taken from each of five RIF-1 tumors showed that the intertumor heterogeneity of hypoxic fractions was greater than that within the same tumor. The mean hypoxic fraction obtained using the comet assay for the four tumor types was compared with the hypoxic fraction determined by the clonogenic assay, or median pO 2 values, or [ 3 H]misonidazole binding in the same tumor types. The values of hypoxic fraction obtained with the comet assay were two to four times lower than those measured by the paired survival method. Preliminary results obtained with a dose of 5 Gy were consistent with those obtained using 15 Gy. These results suggest the further development of the comet assay for clinical studies. 21 refs., 7 figs., 5 tabs

  20. Acute Liver Impairment in a Young, Healthy Athlete: Hypoxic Hepatitis and Rhabdomyolysis following Heat Stroke

    Directory of Open Access Journals (Sweden)

    Neville Azzopardi

    2012-08-01

    Full Text Available Any process that substantially diminishes arterial blood flow or arterial oxygen content to the liver can result in hypoxic (ischaemic hepatitis. 90% of hypoxic hepatitis occurs in unstable patients in intensive care units with haemodynamic failure secondary to heart failure, respiratory failure and toxic shock. The rate of in-hospital mortality in hypoxic hepatitis is very high with studies recording mortalities of 61.5%. It tends to be very uncommon in healthy, young patients with no underlying medical problems. We report here the case of a young healthy athlete who developed heat stroke associated with rhabdomyolysis and hypoxic hepatitis while he was running the final stages of a marathon. The patient required intensive care admission and inotropic support for a few hours after he was admitted with heat stroke. He underwent a rapid recovery after he was resuscitated with fluids. N-acetyl cysteine was also given during the acute stage of the hepatitis. This case highlights an uncommon case of hypoxic hepatitis in a young, healthy patient secondary to hypotension and heat stroke. Inotropic support might have precipitated the hypoxic hepatitis in this young patient.

  1. Transcriptome analysis of severe hypoxic stress during development in zebrafish

    Directory of Open Access Journals (Sweden)

    I.G. Woods

    2015-12-01

    Full Text Available Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015 in G3: Genes|Genomes|Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.

  2. More than meets the eye: infant presenting with hypoxic ischaemic encephalopathy.

    Science.gov (United States)

    Sen, Kuntal; Agarwal, Rajkumar

    2018-04-05

    We report a newborn infant who presented with poor Apgar scores and umbilical artery acidosis leading to the diagnosis of hypoxic ischaemic encephalopathy. During the course of the infant's hospitalisation, subsequent workup revealed an underlying genetic cause that masqueraded as hypoxic ischaemic encephalopathy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  4. Hypoxic cytotoxicity of chlorpromazine and the modification of radiation response in E. coli B/r

    International Nuclear Information System (INIS)

    Shenoy, M.A.; Singh, B.B.

    1978-01-01

    Chlorpromazine (0.1 mM) was cytotoxic to E. coli B/r cells under hypoxic but not euoxic conditions. Under nitrogen bubbling, there was no further enhancement in cellular lethality beyond 45 min contact time. The presence of the free drug seemed necessary for the cytocidal action to be demonstrated. Hypoxic cytotoxicity increased steadily with temperature between 30 and 37 0 C. Treatment of cells with N-ethyl maleimide (0.5 mM) completely abolished the subsequent hypoxic cytotoxicity of chlorpromazine (0.1 mM). Hypoxic gamma irradiation of cells pretreated for 45 min with chlorpromazine under nitrogen bubbling gave a DMF for survival of almost twice that produced by oxygen. Irradiation under aerobic conditions of cells subjected to the same pretreatment produced only the normal oxygen effect. The results indicate that the differential cytotoxicity of chlorpromazine is due to its effect on the changes induced in the membrane-associated biochemical state of the cells under euoxic and hypoxic conditions. (U.K.)

  5. Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide

    Directory of Open Access Journals (Sweden)

    Heikal L

    2016-08-01

    Full Text Available Lamia Heikal,1 Pietro Ghezzi,1 Manuela Mengozzi,1 Blanka Stelmaszczuk,2 Martin Feelisch,2 Gordon AA Ferns1 1Brighton and Sussex Medical School, Falmer, Brighton, 2Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and Institute for Life Sciences, Southampton, UK Abstract: The cytoprotective effects of erythropoietin (EPO and an EPO-related nonerythropoietic analog, pyroglutamate helix B surface peptide (pHBSP, were investigated in an in vitro model of bovine aortic endothelial cell injury under normoxic (21% O2 and hypoxic (1% O2 conditions. The potential molecular mechanisms of these effects were also explored. Using a model of endothelial injury (the scratch assay, we found that, under hypoxic conditions, EPO and pHBSP enhanced scratch closure by promoting cell migration and proliferation, but did not show any effect under normoxic conditions. Furthermore, EPO protected bovine aortic endothelial cells from staurosporine-induced apoptosis under hypoxic conditions. The priming effect of hypoxia was associated with stabilization of hypoxia inducible factor-1α, EPO receptor upregulation, and decreased Ser-1177 phosphorylation of endothelial nitric oxide synthase (NOS; the effect of hypoxia on the latter was rescued by EPO. Hypoxia was associated with a reduction in nitric oxide (NO production as assessed by its oxidation products, nitrite and nitrate, consistent with the oxygen requirement for endogenous production of NO by endothelial NOS. However, while EPO did not affect NO formation in normoxia, it markedly increased NO production, in a manner sensitive to NOS inhibition, under hypoxic conditions. These data are consistent with the notion that the tissue-protective actions of EPO-related cytokines in pathophysiological settings associated with poor oxygenation are mediated by NO. These findings may be particularly relevant to atherogenesis and postangioplasty restenosis. Keywords

  6. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    International Nuclear Information System (INIS)

    Jung, Myung Hwan; Kim, Kye Ryung

    2013-01-01

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  7. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  8. Dinitrobenzamide mustard prodrugs - hypoxic cytotoxins and dual substrates for E.coli nitroreductase

    International Nuclear Information System (INIS)

    Patterson, A.V.; Hogg, A.; Pullen, S.; Degenkolbe, A.; Li, D.; Chappell, A.; Ying, S.; Atwell, G.J.; Denny, W.A.; Anderson, R.F.; Wilson, W.R.

    2003-01-01

    Conditional replicating adenoviral vectors (CRAds) have received considerable attention as therapeutic tools in combination with radiotherapy. Viral distribution and micro-regional geometry are likely to be important issues in the treatment of human solid tumours with gene therapy, particularly following intravenous virus administration. The use of CRAds that are 'armed' with enzyme/prodrug systems may overcome some of the perceived limitations; CRAds can redistribute and self-amplify in a cytolytic fashion whilst prodrug metabolites may elicit a local bystander effect. Either or both of these cytotoxic properties could have favourable interactions with radiotherapy (IR). Nevertheless, they may be insufficient to avoid pockets of vector-naive tumour cells beyond the diffusion limits of cytotoxic prodrug metabolites, such as when perivascular seeding occurs. Under such circumstances hypoxic tumour cells may represent the least accessible compartment for vector transfection; the same tumour subpopulation that is likely to be radioresistant. E.coli nitroreductase (NTR) can bioactivate dinitrobenzamide mustards (DNBMs) and is a promising enzyme/prodrug system for 'arming' CRAds. Notably DNMBs can also be activated by endogenous human reductases under low oxygen conditions providing an opportunity to identify dual hypoxic cytotoxins/NTR substrates that may circumvent some of the geometry issues and provide complementarity with IR. To identify a prodrug for NTR that is also active as a hypoxic cytotoxin in vivo. From a set of 164 DNB prodrugs, 19 with favourable activity in vitro against a panel of four NTR-expressing cancer cells were selected and screened for activity as hypoxic cytotoxins in vitro. Measured E17 values ranged from -444 to -366 mV. Seven DNBMs possessed acceptable hypoxic selectivity against the human NSCLC cell line A549WT or clones engineered to overexpress either a human single-electron reductase, cytochrome P450 reductase (A549P450R), or oxic

  9. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role.

    Science.gov (United States)

    Yang, Yan-Ming; Fang, Fang; Li, Xin; Yu, Lei; Wang, Zhi-Cheng

    2017-01-01

    Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E‑hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.

  10. CHANGES IN THE GLUTATHIONE SYSTEM IN P19 EMBRYONAL CARCINOMA CELLS UNDER HYPOXIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    D. S. Orlov

    2015-01-01

    Full Text Available Introduction. According to modern perceptions, tumor growth, along with oxidative stress formation, is accompanied by hypoxia. Nowadays studying the regulation of cellular molecular system functioning by conformational changes in proteins appears to be a topical issue. Research goal was to evaluate the state of the glutathione system and the level of protein glutathionylation in P19 embryonal carcinoma (EC cells under hypoxic conditions.Material and methods. P19 EC cells (mouse embryonal carcinoma cultured under normoxic and hypox-ic conditions served the research material.The concentration of total, oxidized, reduced and protein-bound glutathione, the reduced to oxidized thiol ratio as well as glutathione peroxidase and glutathione reductase activity were determined by spectropho-tometry.Results. Glutathione imbalance was accompanied by a decrease in P19 EC cell redox status under hypox-ic conditions against the backdrop of a rise in protein-bound glutathione.Conclusions. As a result of the conducted study oxidative stress formation was identified when modeling hypoxia in P19 embryonal carcinoma cells. The rise in the concentration of protein-bound glutathione may indicate the role of protein glutathionylation in regulation of P19 cell metabolism and functions un-der hypoxia. 

  11. Probabilistic Sensitivity Amplification Control for Lower Extremity Exoskeleton

    Directory of Open Access Journals (Sweden)

    Likun Wang

    2018-03-01

    Full Text Available To achieve ideal force control of a functional autonomous exoskeleton, sensitivity amplification control is widely used in human strength augmentation applications. The original sensitivity amplification control aims to increase the closed-loop control system sensitivity based on positive feedback without any sensors between the pilot and the exoskeleton. Thus, the measurement system can be greatly simplified. Nevertheless, the controller lacks the ability to reject disturbance and has little robustness to the variation of the parameters. Consequently, a relatively precise dynamic model of the exoskeleton system is desired. Moreover, the human-robot interaction (HRI cannot be interpreted merely as a particular part of the driven torque quantitatively. Therefore, a novel control methodology, so-called probabilistic sensitivity amplification control, is presented in this paper. The innovation of the proposed control algorithm is two-fold: distributed hidden-state identification based on sensor observations and evolving learning of sensitivity factors for the purpose of dealing with the variational HRI. Compared to the other state-of-the-art algorithms, we verify the feasibility of the probabilistic sensitivity amplification control with several experiments, i.e., distributed identification model learning and walking with a human subject. The experimental result shows potential application feasibility.

  12. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    Purpose/Objective: In a previous publication we reported that laboratory assays of tumor clonogen number, in combination with intrinsic radiosensitivity measured in-vitro, accurately predicted the rank-order of single fraction 50% tumor control doses, in six rodent and xenografted human tumors. In these studies, tumor hypoxia influenced the absolute value of the tumor control doses across tumor types, but not their rank-order. In the present study we hypothesize that determinants of the single fraction tumor control dose, may also strongly influence the fractionaled tumor control doses, and that knowledge of tumor clonogen number and their sensitivity to fractionated irradiation, may be useful for predicting the relative sensitivity of tumors treated by conventional fractionated irradiation. Methods/Materials: Five tumors of human origin were used for these studies. Special care was taken to ensure that all tumor control dose assays were performed over the same time frame, i.e., in-vitro cells of a similar passage were used to initiate tumor sources which were expanded and used in the 3rd or 4th generation. Thirty fraction tumor control doses were performed in air breathing mice, under normal blood flow conditions (two fractions/day). The results of these studies have been previously published. For studies under uniformly (clamp) hypoxic conditions, tumors arising from the same transplantation were randomized into single or fractionated dose protocols. For estimation of the fractionated TCD50 under hypoxic conditions, tumors were exposed to six 5.4 Gy fractions (∼ 2 Gy equivalent under air), followed by graded 'top-up' dose irradiation for determination of the TCD50; the time interval between doses was 6-9 hours. The single dose equivalent of the six 5.4 Gy doses was used to calculate an extrapolated 30 fraction hypoxic TCD50. Results: Fractionation substantially increased the dose required for tumor control in 4 of the 5 tumors investigated. For these 4 tumors

  13. Hypothermia for neonatal hypoxic-ischemic encephalopathy: NICHD Neonatal Research Network contribution to the field.

    Science.gov (United States)

    Shankaran, Seetha; Natarajan, Girija; Chalak, Lina; Pappas, Athina; McDonald, Scott A; Laptook, Abbot R

    2016-10-01

    In this article, we summarize the NICHD Neonatal Research Network (NRN) trial of whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy in relation to other randomized controlled trials (RCTs) of hypothermia neuroprotection. We describe the NRN secondary studies that have been published in the past 10 years evaluating clinical, genetic, biochemical, and imaging biomarkers of outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Interstitial administration of perfluorochemical emulsions for reoxygenation of hypoxic tumor cells

    International Nuclear Information System (INIS)

    Woo, D.V.; Seegenschmiedt, H.; Schweighardt, F.K.; Emrich, J.; McGarvey, K.; Caridi, M.; Brady, L.W.

    1987-01-01

    Microparticulate perfluorochemical (PFC) emulsions have the capacity to solubilize significant quantities of oxygen compared to water. Although systemic administration of such emulsions may enhance oxygen delivery to some tissues, hypoxic tumor cells have marginal vascular supplies. The authors report studies which directly attempt to oxygenate hypoxic tumor cells by interstitial administration of oxygenated PFC emulsions followed by radiation therapy. Fortner MMI malignant melanomas (21 day old) grown in Syrian Golden hamsters were injected directly with either oxygenated PFC emulsions or Ringers solution. The volume of test substance administered was equal to 50% of the tumor volume. The tumors were immediately irradiated with 25 Gy of 10 MeV photons (Clinac 18). The tumor dimensions were measured daily post irradiation and the tumor doubling time determined. The results suggest that interstitial administration of oxygenated PFC emulsions directly into tumors followed by radiation therapy may increase the likelihood of killing hypoxic tumor cells

  15. Absolute hypoxic exercise training enhances in vitro thrombin generation by increasing procoagulant platelet-derived microparticles under high shear stress in sedentary men.

    Science.gov (United States)

    Chen, Yu-Wen; Chen, Yi-Ching; Wang, Jong-Shyan

    2013-05-01

    HS (high shear) stress associated with artery stenosis facilitates TG (thrombin generation) by increasing the release of procoagulant PDMPs (platelet-derived microparticles). Physical exercise and hypoxia may paradoxically modulate vascular thrombotic risks. The aim of the present study was to investigate how exercise training with/without hypoxia affected TG mediated by PDMPs under physio-pathological shear flows. A total of 75 sedentary males were randomly divided into five groups (n=15 in each group): 21% O2 [NC (normoxic control)] or 15% O2 [HC (hypoxic control)] at rest or were trained at 50% of peak work rate under 21% O2 [NT (normoxic training)] or 15% O2 [HAT (hypoxic-absolute training)], or 50% of HR (heart rate) reserve under 15% O2 [HRT (hypoxic-relative training)] for 30 min/day, 5 days/week for 4 weeks. The PDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, strenuous exercise markedly increased the PDMP count (14.8%) and TG rate (19.5%) in PDMP-rich plasma at 100 dynes/cm2 of shear stress (Pexercise. Conversely, HAT notably promoted the PDMP count (37.3%) and TG rate (38.9%) induced by HS (Pexercise. We conclude that both HRT and NT depress similarly HS-mediated TG during exercise, but HAT accelerates the prothrombotic response to vigorous exercise. These findings provide new insights into how exercise training under a hypoxic condition influences the risk of thrombosis associated with stenotic arteries.

  16. Transient hypoxic respiratory failure in a patient with severe hypophosphatemia.

    Science.gov (United States)

    Oud, Lavi

    2009-03-01

    Respiratory failure in severely hypophosphatemic patients has been attributed to respiratory muscle weakness, leading to ventilatory failure. While frequently documenting hypercarbic respiratory failure, previous reports of hypophosphatemia-related respiratory failure in patients otherwise free of pulmonary or airway disease often did not provide sufficient information on gas exchange and pulmonary function, precluding inference on alternative or additional sources of respiratory dysfunction in this population. We report a case of acute hypoxic respiratory failure in a 26 year-old bulimic woman with severe hypophosphatemia. The patient presented with acute onset of dyspnea, paresthesias, limb shaking, and severe hyperventilation. SpO2 was 74%, requiring administration of 100% O2, with normal chest radiograph. Serum phosphate was <0.3 mmol/liter (1.0 mg/dL). Further evaluation did not support pulmonary, vascular, neurogenic or external exposure-related causes of hypoxic respiratory failure, which rapidly resolved with parenteral correction of hypophosphatemia. To date, hypoxic respiratory failure has not been reported in association with hypophosphatemia. Increased awareness and further investigations can help elucidate the mechanisms of hypophosphatemia-associated hypoxemia.

  17. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    Science.gov (United States)

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P zolpidem (5 mg/kg) per se (P zolpidem against hypoxic stress.

  18. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages.

    Directory of Open Access Journals (Sweden)

    Fattah Sotoodehnejadnematalahi

    Full Text Available Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM, and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold by long term hypoxia (5 days than by 1 day of hypoxia (48 fold. We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K, LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.

  19. Hypoxic challenge test applied to healthy children

    DEFF Research Database (Denmark)

    Kobbernagel, Helene Elgaard; Nielsen, Kim Gjerum; Hanel, Birgitte

    2013-01-01

    BACKGROUND: Commercial aircraft are pressurised to ~2438 m (8000 ft) above sea level that equates breathing 15% oxygen at sea level. A preflight hypoxic challenge test (HCT) is therefore recommended for children with cystic fibrosis or other chronic lung diseases and inflight oxygen is advised if...

  20. SU-E-T-146: Effects of Uncertainties of Radiation Sensitivity of Biological Modelling for Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Oita, M [Department of Radiological Technology, Graduate School of Health Sciences, Okayama University (Japan); Department of Life System, Institute of Technology and Science, Graduate School, The Tokushima University (Japan); Uto, Y; Hori, H [Department of Life System, Institute of Technology and Science, Graduate School, The Tokushima University (Japan); Tominaga, M [Department of Radiological Technology, Institute of Health Biosciences, Graduate School, The Tokushima University (Japan); Sasaki, M [Department of Radiology, Tokushima University Hospital (Japan)

    2014-06-01

    Purpose: The aim of this study was to evaluate the distribution of uncertainty of cell survival by radiation, and assesses the usefulness of stochastic biological model applying for gaussian distribution. Methods: For single cell experiments, exponentially growing cells were harvested from the standard cell culture dishes by trypsinization, and suspended in test tubes containing 1 ml of MEM(2x10{sup 6} cells/ml). The hypoxic cultures were treated with 95% N{sub 2}−5% CO{sub 2} gas for 30 minutes. In vitro radiosensitization was also measured in EMT6/KU single cells to add radiosensitizer under hypoxic conditions. X-ray irradiation was carried out by using an Xray unit (Hitachi X-ray unit, model MBR-1505R3) with 0.5 mm Al/1.0 mm Cu filter, 150 kV, 4 Gy/min). In vitro assay, cells on the dish were irradiated with 1 Gy to 24 Gy, respectively. After irradiation, colony formation assays were performed. Variations of biological parameters were investigated at standard cell culture(n=16), hypoxic cell culture(n=45) and hypoxic cell culture(n=21) with radiosensitizers, respectively. The data were obtained by separate schedule to take account for the variation of radiation sensitivity of cell cycle. Results: At standard cell culture, hypoxic cell culture and hypoxic cell culture with radiosensitizers, median and standard deviation of alpha/beta ratio were 37.1±73.4 Gy, 9.8±23.7 Gy, 20.7±21.9 Gy, respectively. Average and standard deviation of D{sub 50} were 2.5±2.5 Gy, 6.1±2.2 Gy, 3.6±1.3 Gy, respectively. Conclusion: In this study, we have challenged to apply these uncertainties of parameters for the biological model. The variation of alpha values, beta values, D{sub 50} as well as cell culture might have highly affected by probability of cell death. Further research is in progress for precise prediction of the cell death as well as tumor control probability for treatment planning.

  1. SU-E-T-146: Effects of Uncertainties of Radiation Sensitivity of Biological Modelling for Treatment Planning

    International Nuclear Information System (INIS)

    Oita, M; Uto, Y; Hori, H; Tominaga, M; Sasaki, M

    2014-01-01

    Purpose: The aim of this study was to evaluate the distribution of uncertainty of cell survival by radiation, and assesses the usefulness of stochastic biological model applying for gaussian distribution. Methods: For single cell experiments, exponentially growing cells were harvested from the standard cell culture dishes by trypsinization, and suspended in test tubes containing 1 ml of MEM(2x10 6 cells/ml). The hypoxic cultures were treated with 95% N 2 −5% CO 2 gas for 30 minutes. In vitro radiosensitization was also measured in EMT6/KU single cells to add radiosensitizer under hypoxic conditions. X-ray irradiation was carried out by using an Xray unit (Hitachi X-ray unit, model MBR-1505R3) with 0.5 mm Al/1.0 mm Cu filter, 150 kV, 4 Gy/min). In vitro assay, cells on the dish were irradiated with 1 Gy to 24 Gy, respectively. After irradiation, colony formation assays were performed. Variations of biological parameters were investigated at standard cell culture(n=16), hypoxic cell culture(n=45) and hypoxic cell culture(n=21) with radiosensitizers, respectively. The data were obtained by separate schedule to take account for the variation of radiation sensitivity of cell cycle. Results: At standard cell culture, hypoxic cell culture and hypoxic cell culture with radiosensitizers, median and standard deviation of alpha/beta ratio were 37.1±73.4 Gy, 9.8±23.7 Gy, 20.7±21.9 Gy, respectively. Average and standard deviation of D 50 were 2.5±2.5 Gy, 6.1±2.2 Gy, 3.6±1.3 Gy, respectively. Conclusion: In this study, we have challenged to apply these uncertainties of parameters for the biological model. The variation of alpha values, beta values, D 50 as well as cell culture might have highly affected by probability of cell death. Further research is in progress for precise prediction of the cell death as well as tumor control probability for treatment planning

  2. Proinflammatory Cytokines, Enolase and S-100 as Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy Following Perinatal Asphyxia in Newborns.

    Science.gov (United States)

    Chaparro-Huerta, Verónica; Flores-Soto, Mario Eduardo; Merin Sigala, Mario Ernesto; Barrera de León, Juan Carlos; Lemus-Varela, María de Lourdes; Torres-Mendoza, Blanca Miriam de Guadalupe; Beas-Zárate, Carlos

    2017-02-01

    Estimation of the neurological prognosis of infants suffering from perinatal asphyxia and signs of hypoxic-ischemic encephalopathy is of great clinical importance; however, it remains difficult to satisfactorily assess these signs with current standard medical practices. Prognoses are typically based on data obtained from clinical examinations and neurological tests, such as electroencephalography (EEG) and neuroimaging, but their sensitivities and specificities are far from optimal, and they do not always reliably predict future neurological sequelae. In an attempt to improve prognostic estimates, neurological research envisaged various biochemical markers detectable in the umbilical cord blood of newborns (NB). Few studies examining these biochemical factors in the whole blood of newborns exist. Thus, the aim of this study was to determine the expression and concentrations of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and specific CNS enzymes (S-100 and enolase) in infants with perinatal asphyxia. These data were compared between the affected infants and controls and were related to the degree of HIE to determine their utilities as biochemical markers for early diagnosis and prognosis. The levels of the proinflammatory cytokines and enzymes were measured by enzyme-linked immunosorbent assay (ELISA) and Reverse Transcription polymerase chain reaction (RT-PCR). The expression and serum levels of the proinflammatory cytokines, enolase and S-100 were significantly increased in the children with asphyxia compared with the controls. The role of cytokines after hypoxic-ischemic insult has been determined in studies of transgenic mice that support the use of these molecules as candidate biomarkers. Similarly, S-100 and enolase are considered promising candidates because these markers have been correlated with tissue damage in different experimental models. Copyright © 2016. Published by Elsevier B.V.

  3. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells.

    Science.gov (United States)

    Li, Yangle; Zhao, Xiaokun; Tang, Huiting; Zhong, Zhaohui; Zhang, Lei; Xu, Ran; Li, Songchao; Wang, Yi

    2012-01-01

    It was the aim of this study to explore the effects of 3-(5'-hydroxymethyl-2'-furyl)-l-benzyl indazole (YC-1) on transcription activity, cell proliferation and apoptosis of hypoxic human bladder transitional carcinoma cells (BTCC), mediated by hypoxia-inducible factor 1α (HIF-1α). BTCC cell line T24 cells were incubated under normoxic or hypoxic conditions, adding different doses of YC-1. The protein expression of HIF-1α and HIF-1α-mediated genes was detected by Western blotting. RT-PCR was used to detect HIF-1α mRNA expression. Cell proliferation, apoptosis and migration activity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and transwell migration assay. The cells were pretreated by two ERK/p38 MAPK pathway-specific inhibitors, PD98059 or SB203580, and then incubated with YC-1 treatment under hypoxic condition. HIF-1α protein expression was detected by Western blotting. Hypoxic T24 cells expressed a higher level of HIF-1α, vascular endothelial growth factor, matrix metalloproteinases-2, B-cell lymphoma/leukemia-2 protein and HIF-1α mRNA compared with normoxic controls, in which the above-mentioned expression was downregulated by YC-1 in a dose-dependent manner. Cell proliferation and migration activity were inhibited while apoptosis was induced by YC-1 under hypoxic condition. Moreover, YC-1-downregulated HIF-1α expression was reversed by PD98059 and SB203580, respectively. YC-1 inhibits HIF-1α and HIF-1α-mediated gene expression, cell proliferation and migration activity and induces apoptosis in hypoxic BTCC. The ERK/p38 MAPK pathway may be involved in YC-1-mediated inhibition of HIF-1α. Copyright © 2011 S. Karger AG, Basel.

  4. Study on intraoperative radiotherapy applying hyperthermia together with radiation sensitizers for progressive local carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Takahashi, M; Ono, K; Hiraoka, M [Kyoto Univ. (Japan). Faculty of Medicine

    1980-08-01

    Intraoperative radiotherapy for gastric cancer, colonic cancer, pancreatic cancer, cancer of the biliary tract, prostatic carcinoma, cerebral tumor, tumor of soft tissues, and osteosarcoma and its clinical results were described. Basic and clinical studies on effects of both hyperthermia and radiation sensitizers to elevate radiation sensitivity were also described, because effects of intraoperative radiotherapy were raised by applying hyperthermia and hypoxic cell sensitizers.

  5. The prospective application of a hypoxic radiosensitizer, doranidazole to rat intracranial glioblastoma with blood brain barrier disruption

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Asanuma, Taketoshi; Kino, Junichi; Yamamori, Tohru; Meike, Shunsuke; Nagane, Masaki; Kubota, Nobuo; Kuwabara, Mikinori; Inanami, Osamu

    2013-01-01

    Glioblastoma is one of the intractable cancers and is highly resistant to ionizing radiation. This radioresistance is partly due to the presence of a hypoxic region which is widely found in advanced malignant gliomas. In the present study, we evaluated the effectiveness of the hypoxic cell sensitizer doranidazole (PR-350) using the C6 rat glioblastoma model, focusing on the status of blood brain barrier (BBB). Reproductive cell death in the rat C6 glioma cell line was determined by means of clonogenic assay. An intracranial C6 glioma model was established for the in vivo experiments. To investigate the status of the BBB in C6 glioma bearing brain, we performed the Evans blue extravasation test. Autoradiography with [ 14 C]-doranidazole was performed to examine the distribution of doranidazole in the glioma tumor. T2-weighted MRI was employed to examine the effects of X-irradiation and/or doranidazole on tumor growth. Doranidazole significantly enhanced radiation-induced reproductive cell death in vitro under hypoxia, but not under normoxia. The BBB in C6-bearing brain was completely disrupted and [ 14 C]-doranidazole specifically penetrated the tumor regions. Combined treatment with X-irradiation and doranidazole significantly inhibited the growth of C6 gliomas. Our results revealed that BBB disruption in glioma enables BBB-impermeable radiosensitizers to penetrate and distribute in the target region. This study is the first to propose that in malignant glioma the administration of hydrophilic hypoxic radiosensitizers could be a potent strategy for improving the clinical outcome of radiotherapy without side effects

  6. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Bache, Matthias; Taubert, Helge; Vordermark, Dirk; Zschornak, Martin P; Passin, Sarina; Keßler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish

    2011-01-01

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC 50 ) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable

  7. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Millet, Grégoire P

    2013-12-01

    With the evolving boundaries of sports science and greater understanding of the driving factors in the human performance physiology, one of the limiting factors has now become the technology. The growing scientific interest on the practical application of hypoxic training for intermittent activities such as team and racket sports legitimises the development of innovative technologies serving athletes in a sport-specific setting. Description of a new mobile inflatable simulated hypoxic equipment. The system comprises two inflatable units-that is, a tunnel and a rectangular design, each with a 215 m(3) volume and a hypoxic trailer generating over 3000 Lpm of hypoxic air with FiO₂ between 0.21 and 0.10 (a simulated altitude up to 5100 m). The inflatable units offer a 45 m running lane (width=1.8 m and height=2.5 m) as well as a 8 m × 10 m dome tent. FiO₂ is stable within a range of 0.1% in normal conditions inside the tunnel. The air supplied is very dry-typically 10-15% relative humidity. This mobile inflatable simulated hypoxic equipment is a promising technological advance within sport sciences. It offers an opportunity for team-sport players to train under hypoxic conditions, both for repeating sprints (tunnel configuration) or small-side games (rectangular configuration).

  8. Anti hypoxic and antioxidant activity of Hibiscus esculentus seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimzadeh, M. A.; Nabavi, S. F.; Nabavi, S. M.; Eslami, B.

    2010-07-01

    The anti hypoxic and antioxidant activities of Hibiscus esculentus seeds were investigated employing eight in vitro assay systems. Anti hypoxic activity was investigated in two models, haemic and circulatory. The effects were pronounced in both models of hypoxia. The anti hypoxic effects were dose-dependent. The results indicated that the extracts have a protective effect against hypoxia induced lethality in mice. The extracts showed antioxidant activity in some models. IC{sub 5}0 for DPPH radical-scavenging activity was 234 {+-} 8.9 {mu}g ml{sup 1}. The extracts showed weak nitric oxide-scavenging activity between 0.1 and 1.6 mg ml{sup -}1. The extracts showed weak Fe{sup 2}+ chelating ability. IC{sub 5}0 were 150 {+-} 13 {mu}g ml{sup -}1. The extracts also exhibited low antioxidant activity in the linoleic acid model but were capable of scavenging hydrogen peroxide in a concentration dependent manner. The total amount of phenolic compounds in each extract was determined as gallic acid equivalents and total flavonoid contents were calculated as quercetin equivalents from a calibration curve. Pharmacological effects may be attributed, at least in part, to the presence of phenols and flavonoids in the extracts. (Author) 40 refs.

  9. Hypoxic Response of Tumor Tissues in a Microfluidic Environment

    Science.gov (United States)

    Morshed, Adnan; Dutta, Prashanta

    2017-11-01

    Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.

  10. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  11. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies

    International Nuclear Information System (INIS)

    Anderson, R.F.; Patel, K.B.; Sehmi, D.S.

    1981-01-01

    Radiosensitization of hypoxic bacterial cells by five 2-nitroimidazoles, with similar reduction potentials to misonidazole but having lower lipophilicites, has been measured in Escherichia coli AB 1157 and Streptococcus lactis 712. Sensitization efficiency progressively decreased with decreasing lepophilicity in E. coli but not in S. lactis. This difference is discussed in terms of the differing membrane properties of the two bacteria; E. coli resembled a multicompartment model, as would also be expected with mammalian cells. Rapid-mix experiments are described which show that the radiosensitization observed after experiments are described which show that the radiosensitization observed after preirradiation contact times between ca. 3 and 30 msec is dependent on the lipophilicity of the sensitizer, higher lipophilicity resulting in a lower contact time being required for radiosensitization. This result and the observation that a highly lipophilic compound affects only half the full oxygen enhancement level after short contact times suggest that part of the sensitization process occurs in a lipophilic compartment of the cell

  12. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  13. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  14. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    International Nuclear Information System (INIS)

    Pilgaard, L.; Lund, P.; Duroux, M.; Lockstone, H.; Taylor, J.; Emmersen, J.; Fink, T.; Ragoussis, J.; Zachar, V.

    2009-01-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  15. Improvement of the local control of spinal chordomas treated by surgery and targeted irradiation (CyberKnife{sup R}) on hypoxic cells marked with {sup 18}F-FMiso; Amelioration du controle local des chordomes du rachis traites par chirurgie et une irradiation (CyberKnife{sup R}) ciblee sur les cellules hypoxiques marquees au {sup 18}F-FMiso

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, H.; Kerrou, K.; Bondiau, P.Y.; Angellier, G.; Thariat, J.; Benezery, K.; Heroult, J.; Leysalle, A.; Gerard, J.P. [Centre Antoine-Lacassagne, Nice (France); Talbot, J.N. [Service de medecine nucleaire, Hopital Tenon, AP-HP, Paris (France)

    2011-10-15

    The authors report and comment the treatment of two women suffering from a recurring cervical spine chordoma. Each patient had a first PET (positron emission tomography) with {sup 18}F-fluorodeoxyglucose to assess the hyper-metabolic component and PET with {sup 18}F-FMiso to quantify the hypoxic component within the lesion. This last PET allows a non-invasive quantification of the hypoxic component which is potentially radio-resistant in cervical spine chordomas. It also allows an intelligent dose increase to improve the local control rate. Short communication

  16. Hypoxic-ischemic encefalopathy: Clinical course and prognosis

    Directory of Open Access Journals (Sweden)

    Ćosić-Cerovac Nataša

    2003-01-01

    Full Text Available Background. Establishing the value of neurological examination, and additional diagnostic methods (ultrasonography and magnetic resonance imaging of the brain in the diagnosis and prognosis of hypoxic-ischemic encephalopathy and its treatment, tracking the clinical course, and making the prognosis of neurological development in newborn infants with hypoxic-ischemic encefalopathy. Methods. The group of 40 term newborn infants with suspected intrauterine asphyxia was examined. All the infants were prospectivelly followed untill the 3rd year of age at the Clinic for Neurology and Psychiatry for Children and Youth in order to estimate their neurological development and to diagnose the occurence of persistent neurological disorders. All the infants were analyzed by their gestational age and Apgar score in the 1st and the 5th minute of life. They were all examined neurologically and by ultrasonography in the first week of life and, repeatedly, at the age of 1, 3, 6, 9, 12, 18, as well as in the 24th month of life. They were treated by the standard methods for this disease. Finally, all the infants were examined neurologically and by magnetic resonance imaging of the brain in their 3rd year of age. On the basis of neurological finding infants were devided into 3 groups: infants with normal neurological finding, infants with mild neurological symptomatology, and infants with severe neurological disorders. Results. It was shown that neurological finding, ultrasonography and magnetic resonance imaging of the brain positively correlated with the later neurological development of the infants with hypoxic-ischemic encephalopathy. Conclusion. Only the combined use of these techniques had full diagnostic and prognostic significance emphasizing that the integrative approach was very important in the diagnosis of brain lesions in infants.

  17. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving children...

  18. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis.

    Science.gov (United States)

    Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L; Ahmed, Mushtaq; Bambouskova, Monika; Gopal, Radha; Gondi, Suhas; Muñoz-Torrico, Marcela; Salazar-Lezama, Miguel A; Cruz-Lagunas, Alfredo; Jiménez-Álvarez, Luis; Ramirez-Martinez, Gustavo; Espinosa-Soto, Ramón; Sultana, Tamanna; Lyons-Weiler, James; Reinhart, Todd A; Arcos, Jesus; de la Luz Garcia-Hernandez, Maria; Mastrangelo, Michael A; Al-Hammadi, Noor; Townsend, Reid; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B; Kaplan, Gilla; Horne, William; Kolls, Jay K; Artyomov, Maxim N; Rangel-Moreno, Javier; Zúñiga, Joaquín; Khader, Shabaana A

    2017-10-05

    Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.

  19. Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling

    Science.gov (United States)

    Silpanisong, Jinjutha; Pearce, William J.

    2015-01-01

    Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia’s remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation. PMID:24063376

  20. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    Science.gov (United States)

    Minchenko, D O; Riabovol, O O; Ratushna, O O; Minchenko, O H

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  1. Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity.

    Science.gov (United States)

    Gonzalez, Constancio; Vaquero, Luis M; López-López, José Ramón; Pérez-García, M Teresa

    2009-10-01

    The characterization of the molecular mechanisms involved in low-oxygen chemotransduction has been an active field of research since the first description of an oxygen-sensitive K(+) channel in rabbit carotid body (CB) chemoreceptor cells. As a result, a large number of components of the transduction cascade, from O(2) sensors to O(2)-sensitive ion channels, have been found. Although the endpoints of the process are analogous, the heterogeneity of the elements involved in the different chemoreceptor tissues precludes a unifying theory of hypoxic signaling, and it has been a source of controversy. However, when these molecular constituents of the hypoxic cascade are brought back to their physiological context, it becomes clear that the diversity of mechanisms is necessary to build up an integrated cellular response that demands the concerted action of several O(2) sensors and several effectors.

  2. Sensitivity of the Game Control of Ship in Collision Situations

    Directory of Open Access Journals (Sweden)

    Lisowski Józef

    2015-12-01

    Full Text Available The paper introduces the application of the theory of deterministic sensitivity control systems for sensitivity analysis taking place in game control systems of moving objects, such as ships. The sensitivity of parametric model of game ship control process and game control in collision situations - sensitivity to changes in its parameters have been presented. First-order and k-th order sensitivity functions of parametric model of the process and game control are described. The structure of the game ship control system in collision situations and the mathematical model of game control process in the form of state equations are given. Characteristics of sensitivity functions of the model and game ship control process on the base of computer simulation in Matlab/Simulink software have been presented. At the end are given proposals regarding the use of sensitivity analysis to practical synthesis of computer-aided system navigator in potential collision situations.

  3. 41 CFR 109-1.5109 - Control of sensitive items.

    Science.gov (United States)

    2010-07-01

    ... administrative control of sensitive items assigned for general use within an organizational unit as appropriate... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Control of sensitive...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5109 Control of sensitive items...

  4. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  5. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  6. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    Science.gov (United States)

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy. © 2015 The Authors. Journal of Pineal Research. Published by John Wiley & Sons Ltd.

  7. INTERMITTENT HYPOBARIC HYPOXIC STIMULATION IN TREATMENT OF CHILDREN WITH BRONCHIAL ASTHMA AT THE PERIOD OF REHABILITATION

    Directory of Open Access Journals (Sweden)

    G.D. Alemanova

    2009-01-01

    Full Text Available Bronchial asthma is one of the widespread chronic diseases of lungs. Immune mechanisms of disorder are one of the causes which lead to pathologic changes in lungs. The aim: to determine the clinical and immunologic effectiveness of pressure adaptation to the periodical hypobaric hypoxic stimulation of treatment of children with bronchial asthma of prepubertal and pubertal periods. In the present work there were observed the clinical and immunologic parameters of 129 children with the verified atopic bronchial asthma of different degree at the remission period before and after the course of pressure adaptation to the periodical hypobaric hypoxic stimulation in conditions of the medical hypobaric pressure chamber with many seats «Ural'1». Clinic effectiveness of hypobaric hypoxic stimulation revealed in continuation of remissions and diminishing of total numerical score of asthma degree. The positive dynamic indexes of cytokine profile was observed. It revealed in reduction of IL 1_, IL 4, IL 5, IL 18 levels and stimulated production of IFN - in blood serum. The course of hypobaric hypoxic stimulation has the positive impact on the named indexes of the patients with bronchial asthma and its intensity depends on the degree of disease and of the age of the child' patient. Thus the use of pressure adaptation to the periodical hypobaric hypoxic stimulation in treatment of children's with bronchial asthma led to the immunologic positive dynamics, especially of the children of prepubertal period. Determination of the immunologic indexes and the level of the cytokines can be used as the additional tests for the evaluation of the effectiveness of pressure adaptation to the periodical hypobaric hypoxic stimulation of children.Key words: bronchial asthma, periodical hypobaric hypoxic stimulation, cytokines, children.

  8. Cysteine residues 244 and 458–459 within the catalytic subunit of Na,K-ATPase control the enzyme's hydrolytic and signaling function under hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Irina Yu. Petrushanko

    2017-10-01

    Full Text Available Our previous findings suggested that reversible thiol modifications of cysteine residues within the actuator (AD and nucleotide binding domain (NBD of the Na,K-ATPase may represent a powerful regulatory mechanism conveying redox- and oxygen-sensitivity of this multifunctional enzyme. S-glutathionylation of Cys244 in the AD and Cys 454-458-459 in the NBD inhibited the enzyme and protected cysteines’ thiol groups from irreversible oxidation under hypoxic conditions. In this study mutagenesis approach was used to assess the role these cysteines play in regulation of the Na,K-ATPase hydrolytic and signaling functions. Several constructs of mouse α1 subunit of the Na,K-ATPase were produced in which Cys244, Cys 454-458-459 or Cys 244-454-458-459 were replaced by alanine. These constructs were expressed in human HEK293 cells. Non-transfected cells and those expressing murine α1 subunit were exposed to hypoxia or treated with oxidized glutathione (GSSG. Both conditions induced inhibition of the wild type Na,K-ATPase. Enzymes containing mutated mouse α1 lacking Cys244 or all four cysteines (Cys 244-454-458-459 were insensitive to hypoxia. Inhibitory effect of GSSG was observed for wild type murine Na,K-ATPase, but was less pronounced in Cys454-458-459Ala mutant and completely absent in the Cys244Ala and Cys 244-454-458-459Ala mutants. In cells, expressing wild type enzyme, ouabain induced activation of Src and Erk kinases under normoxic conditions, whereas under hypoxic conditions this effect was inversed. Cys454-458-459Ala substitution abolished Src kinase activation in response to ouabain treatment, uncoupled Src from Erk signaling, and interfered with O2-sensitivity of Na,K-ATPase signaling function. Moreover, modeling predicted that S-glutathionylation of Cys 458 and 459 should prevent inhibitory binding of Src to NBD. Our data indicate for the first time that cysteine residues within the AD and NBD influence hydrolytic as well as receptor

  9. Cerebral circulation and prognosis of the patients with hypoxic encephalopathy

    International Nuclear Information System (INIS)

    Nogami, Kenichiro; Fujii, Masami; Kashiwagi, Shiro; Sadamitsu Daikai; Maekawa, Tsuyoshi

    2000-01-01

    Recent progress in cardiopulmonary resuscitation techniques improved the survival rate of patients with acute cardiopulmonary disturbances. However, severe cerebral complications remained frequently in patients who survived the acute stage. Early prediction of cerebral prognosis is important to optimize the management of these patients. We examined the relations between radiological findings (Xe-CT and MRI) and cerebral prognosis. Patients included in this study were selected from all patients with hypoxic encephalopathy admitted to our hospital. There were 11 men and 10 women. Causes of hypoxic encephalopathy were heart disease (11 cases), suffocation (4 cases), CO intoxication (2 cases), asthma (1 case), pneumothorax (1 case), anaphyraxy shock (1 case) and electric shock (1 case). Xe-CT and MRI were carried out 3 weeks after the onset. Cerebral blood flow (CBF) of the patients was measured at rest and 15 minutes after intravenous administration of acetazolamide (1 g). The prognosis was evaluated 3 months after the onset in accordance with Glasgow Outcome Scale (GOS). Low hemispheric CBF (30 ml/100 g/min), poor reactivity of acetazolamide challenge test (10 ml/100 g/min), presence of hyperintensity areas in the basal ganglia in T1 weighted images (T1WI) and T2 weighted images (T2WI) are the factors associated with poor outcome in hypoxic encephalopathy. (author)

  10. Remarks on Risk-Sensitive Control Problems

    International Nuclear Information System (INIS)

    Menaldi, Jose-Luis; Robin, Maurice

    2005-01-01

    The main purpose of this paper is to investigate the asymptotic behavior of the discounted risk-sensitive control problem for periodic diffusion processes when the discount factor α goes to zero. If u α (θ,x) denotes the optimal cost function, θ being the risk factor, then it is shown that lim { α to 0}α u α (θ,x)=ξ(θ) where ξ(θ) is the average on ]0,θ[ of the optimal cost of the (usual) infinite horizon risk-sensitive control problem

  11. Correlative study of proton magnetic resonance spectroscopy and histopathology in a neonatal piglet model of hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Wang Xiaoming; Guo Qiyong; Lin Nan; Ding Changwei; Wang Shuxuan; Chen Liying; Lv Qingjie; Jiang Weiguo

    2005-01-01

    Objective: To evaluate proton magnetic resonance spectroscopy ( 1 H-MRS) in the diagnosis of hypoxic ischemic brain damage (HIBD) in hyperacute period using an animal model. Methods: Twenty-five term piglets at the age of 3 to 7 days were subjected and divided into one control group (n=5) and two experimental groups. 1 H spectrum curve was measured continuously in all cases at 0-6, 20-24, 44-48, and 68-72 h after hypoxic ischemia in frontoparietal region, basal ganglia, and hippocampus. Lac/Cr was calculated. Histopathologic examination included hematoxylin and glial fibrillary acidic protein (GFAP) stain, teminal transferase mediated dUTP-biotin nick- end eosin (HE) stain, labeling (TUNEL) stain, and transmission electron microscope. Results: Lac/Cr in hippocampus region was 0.95 ± 0.88 in control group compared with 5.65 ± 1.93 in model group 1 and 8.93 ± 6.95 in model group 2. Model group 1 showed significantly glial cells swelling in hippocampus region on histopathologic examination. Model group 2 showed neurons and glial cells swelling significantly in hippocampus, and prominent apoptosis was seen in the peripheral neurons and glial cells. Further more Lac/Cr remained high within 72 h. Lac /Cr was 0.41 ± 0.03 in basal ganglia in control group compared with no significant elevation in model group 1 and 13.59 ± 10.23 in model group 2. Model group 1 did not show significant neuron and glial cell pathological changes in basal ganglia. Model group 2 showed obvious glial cell swelling, while neurons changed mildly. Lac/Cr was high within 48 h, and then declined. Lac/Cr in frontoparietal region also increased, but the value was lower than the former two regions. Conclusion: Neurons have an acute energy consumption after hypoxic ischemia, and Lac/Cr reflectes the extent of lesions correctly. (authors)

  12. Improved Sensitivity Relations in State Constrained Optimal Control

    International Nuclear Information System (INIS)

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-01-01

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  13. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells

    DEFF Research Database (Denmark)

    Johansson, Elinn; Grassi, Elisa S.; Pantazopoulou, Vasiliki

    2017-01-01

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell...... marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature...... correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic...

  14. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  15. Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Staab, Adrian; Fleischer, Markus; Wuerzburg Univ.; Loeffler, Juergen; Einsele, Herrmann; Said, Harun M.; Katzer, Astrid; Flentje, Michael; Plathow, Christian; Vordermark, Dirk; Halle-Wittenberg Univ.

    2011-01-01

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1α expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1α siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1α. HIF-1α protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O 2 (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1α-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O 2 as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1α-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1α-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1α-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1α-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  16. Content sensitivity based access control framework for Hadoop

    Directory of Open Access Journals (Sweden)

    T.K. Ashwin Kumar

    2017-11-01

    Full Text Available Big data technologies have seen tremendous growth in recent years. They are widely used in both industry and academia. In spite of such exponential growth, these technologies lack adequate measures to protect data from misuse/abuse. Corporations that collect data from multiple sources are at risk of liabilities due to the exposure of sensitive information. In the current implementation of Hadoop, only file-level access control is feasible. Providing users with the ability to access data based on the attributes in a dataset or the user’s role is complicated because of the sheer volume and multiple formats (structured, unstructured and semi-structured of data. In this paper, we propose an access control framework, which enforces access control policies dynamically based on the sensitivity of the data. This framework enforces access control policies by harnessing the data context, usage patterns and information sensitivity. Information sensitivity changes over time with the addition and removal of datasets, which can lead to modifications in access control decisions. The proposed framework accommodates these changes. The proposed framework is automated to a large extent as the data itself determines the sensitivity with minimal user intervention. Our experimental results show that the proposed framework is capable of enforcing access control policies on non-multimedia datasets with minimal overhead.

  17. Sirtuin 6 protects the heart from hypoxic damage

    International Nuclear Information System (INIS)

    Maksin-Matveev, Anna; Kanfi, Yariv; Hochhauser, Edith; Isak, Ahuva; Cohen, Haim Y.; Shainberg, Asher

    2015-01-01

    Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension. - Highlights: • Sirtuin 6 is a protein associated with prolonged life expectancy. • Over-expression of sirtuin 6 protects cardiocytes from hypoxia and oxidative stress. • Over-expression of sirtuin 6 activates the pAMPKα pathway and the Bcl2 expression. • Over-expression of sirtuin 6 decreases ROS formation and pAkt level during hypoxia. • These pathways protect cardiocytes from hypoxia and might explain lifespan extension

  18. Sirtuin 6 protects the heart from hypoxic damage

    Energy Technology Data Exchange (ETDEWEB)

    Maksin-Matveev, Anna; Kanfi, Yariv [The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel); Hochhauser, Edith [The Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva (Israel); Isak, Ahuva; Cohen, Haim Y. [The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel); Shainberg, Asher, E-mail: asher.shainberg@gmail.com [The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2015-01-01

    Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension. - Highlights: • Sirtuin 6 is a protein associated with prolonged life expectancy. • Over-expression of sirtuin 6 protects cardiocytes from hypoxia and oxidative stress. • Over-expression of sirtuin 6 activates the pAMPKα pathway and the Bcl2 expression. • Over-expression of sirtuin 6 decreases ROS formation and pAkt level during hypoxia. • These pathways protect cardiocytes from hypoxia and might explain lifespan extension.

  19. Influence of hypothermia combined with erythropoietin on serum neurological function indexes in newborns with severe hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Hua Tian

    2017-05-01

    Full Text Available Objective: To study the influence of hypothermia combined with erythropoietin (EPO on serum neurological function indexes in newborns with severe hypoxic ischemic encephalopathy (HIE. Methods: A total of 48 cases of newborns with severe hypoxic ischemic encephalopathy in our hospital were enrolled and divided into control group and observation group according to random number table, 24 cases in each group. On the basis of conventional treatment, patients in control group were treated with mild hypothermia, and those in observation group were treated with mild hypothermia combined with EPO. Serum nerve injury indexes, neurological function indexes and nerve apoptosis indexes were compared between two groups before and after treatment. Results: Before treatment, differences in the levels of nerve injury indexes, neurological function indexes and nerve apoptosis indexes were not statistically significant between two groups. After treatment, serum nerve injury indexes NSE and S-100B levels of observation group were lower than those of control group, neurolocial function indexes BDNF, NGF, IGF-1 and GH levels of observation group were higher than those of control group, and nerve apoptosis indexes sFas and sFasL levels of observation group were lower than those of control group. Conclusion: Mild hypothermia combined with EPO can reduce the neurological damage and inhibit neuronal apoptosis in children with severe HIE.

  20. Further characterization of 4-bromomisonidazole as a potential detector of hypoxic cells

    International Nuclear Information System (INIS)

    Rasey, J.S.; Krohn, K.A.; Grunbaum, Z.; Conroy, P.J.; Bauer, K.; Sutherland, R.M.

    1985-01-01

    [ 14 C]Bromomisonidazole was prepared by direct bromination of [ring-2] [ 14 C]misonidazole in dioxane. The uptake and binding of the two labeled sensitizers were compared in vitro in 1-mm EMT-6 spheroids which contain a necrotic core. Using liquid scintillation counting it was shown that spheroids incubated with 50 μM [ 14 C]bromomisonidazole concentrated drug above levels in the medium by 1 1/2 hr and achieved maximum concentration by 10 hr with no further increase at 23 hr. Spheroids incubated with 50 μM[ 14 C]misonidazole may concentrate the sensitizer more slowly but ultimately reached the same fivefold increase over levels in the medium by 23 hr as was observed for bromomisonidazole. Autoradiographs prepared from spheroids after incubation with [ 14 C]misonidazole or [ 14 C]bromomisonidazole showed silver grains preferentially located over viable hypoxic cells in the inner half of the spheroid rim adjacent to the necrotic center, with lower grain density over nonviable necrotic areas and many fewer grains over oxic cells at the periphery of the spheroid. The data support the potential of radiolabled bromomisonidazole for in vivo imaging pending additional studies of the metabolism of this agent

  1. Synthesis and radiolabelling of novel nitrogen mustards for the imaging of hypoxic tissue

    International Nuclear Information System (INIS)

    Falzon, C.; Ackermann, U.; Tochon-Danguy, H.J.; O'Keefe, G.J.; White, J.; Spratt, N.; Howells, D.; Scott, A.M.

    2005-01-01

    Hypoxic tissue is of great significance in stroke and oncology. Among the radiotracers currently used to detect hypoxia, derivatives based on the 2-nitro-imidazole ring such as FMISO or FAZA have received considerable attention in medical imaging. Unfortunately, due to slow clearance of these tracers from normoxic tissue a waiting period of two hours is required between tracer injection and the scanning of the patient. In addition the target to background ratio is low and the quality of the image is therefore poor. Nitrogen mustards are another class of compounds that have great affinity to hypoxic tissue. Derivatives of these compounds labelled with a positron emitting radionuclide, such as [ 18 F], may allow for the imaging of hypoxic regions in the ischemic penumbra. It therefore, may be a useful diagnostic tool in stroke. Radiolabeled N-(2-[ 18 F]-fluoroethyl)-N-(2-chloroethyl)-4-methylsulfinylaniline was successfully synthesised using a potassium fluoride kryptofix complex, giving the desired product in 40% radiochemical yield (10 min at 100 Degrees C). In vitro analysis to determine the stability of the radiotracer in plasma and saline indicated no defluorination. Biological evaluation studies of the radiotracer were undertaken using a rat stroke model (Middle cerebral Arterial Occlusion (MCAO)) to determine whether the ischemic penumbra can be imaged using PET. 150//Ci (5.5MBq) of the radiotracer was injected into the tail vein of the rat immediately after the MCAO. The rat was sacrificed 2 hours post injection and ex-vivo autoradiography was performed. Uptake of the radiotracer was observed in hypoxic regions of the brain (n=6). Dynamic PET images revealed that the ischemic penumbra can be imaged 15 minutes post injection of this tracer. With these promising results, we are now synthesizing other analogues to determine their relationship between selectivity for hypoxic tissue and brain uptake

  2. Biomarkers of Hypoxic Ischemic Encephalopathy in Newborns

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2012-11-01

    Full Text Available As neonatal intensive care has evolved, the focus has shifted from improving mortality alone to an effort to improve both mortality and morbidity. The most frequent source of neonatal brain injury occurs as a result of hypoxic-ischemic injury. Hypoxic-ischemic injury occurs in about 2 of 1,000 full-term infants and severe injured infants will have lifetime disabilities and neurodevelopmental delays. Most recently, remarkable efforts toward neuroprotection have been started with the advent of therapeutic hypothermia and a key step in the evolution of neonatal neuroprotection is the discovery of biomarkers that enable the clinician-scientist to screen infants for brain injury, monitor progression of disease, identify injured brain regions, and assess efficacy of neuroprotective clinical trials. Lastly, biomarkers offer great hope identifying when an injury occurred shedding light on the potential pathophysiology and the most effective therapy. In this article, we will review biomarkers of HIE including S100b, neuron specific enolase, umbilical cord IL-6, CK-BB, GFAP, myelin basic protein, UCHL-1, and pNF-H. We hope to contribute to the awareness, validation and clinical use of established as well as novel neonatal brain injury biomarkers.

  3. c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy.

    Science.gov (United States)

    Sanada, Fumihiro; Kim, Junghyun; Czarna, Anna; Chan, Noel Yan-Ki; Signore, Sergio; Ogórek, Barbara; Isobe, Kazuya; Wybieralska, Ewa; Borghetti, Giulia; Pesapane, Ada; Sorrentino, Andrea; Mangano, Emily; Cappetta, Donato; Mangiaracina, Chiara; Ricciardi, Mario; Cimini, Maria; Ifedigbo, Emeka; Perrella, Mark A; Goichberg, Polina; Choi, Augustine M; Kajstura, Jan; Hosoda, Toru; Rota, Marcello; Anversa, Piero; Leri, Annarosa

    2014-01-03

    Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.

  4. CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Leonardo Guilhermino; Portela, Luiz Antonio Pezzi [Hospital Alemao Oswaldo Cruz and Hospital do Coracao, Diagnostic Imaging Division, Sao Paulo (Brazil); Rovira, Alex [University Hospital Vall d' Hebron, MR Unit, Department of Radiology, Barcelona (Spain); Costa Leite, Claudia da [Clinics Hospital of the University of Sao Paulo, School of Medicine, Department of Radiology, Sao Paulo (Brazil); Lucato, Leandro Tavares [Hospital Alemao Oswaldo Cruz and Hospital do Coracao, Diagnostic Imaging Division, Sao Paulo (Brazil); Clinics Hospital of the University of Sao Paulo, School of Medicine, Department of Radiology, Sao Paulo (Brazil)

    2010-11-15

    Non-neonatal hypoxic-ischemic encephalopathy is a clinical condition often related to cardiopulmonary arrest that demands critical management and treatment decisions. Management depends mainly on the degree of neurological impairment and prognostic considerations. Computed tomography (CT) is often used to exclude associated or mimicking pathology. If any, only nonspecific signs such as cerebral edema, sulci effacement, and decreased gray matter (GM)/white matter (WM) differentiation are evident. Pseudosubarachnoid hemorrhage, a GM/WM attenuation ratio <1.18, and inverted GM attenuation are associated with a poor prognosis. Magnetic resonance (MR) imaging is more sensitive than CT in assessing brain damage in hypoxic-ischemic encephalopathy. Some MR findings have similarities to those seen pathologically, based on spatial distribution and time scale, such as lesions distributed in watershed regions and selective injury to GM structures. In the acute phase, lesions are better depicted using diffusion-weighted imaging (DWI) because of the presence of cytotoxic edema, which, on T2-weighted images, only become apparent later in the early subacute phase. In the late subacute phase, postanoxic leukoencephalopathy and contrast enhancement could be observed. In the chronic phase, atrophic changes predominate over tissue signal changes. MR can be useful for estimating prognosis when other tests are inconclusive. Some findings, such as the extent of lesions on DWI and presence of a lactate peak and depleted N-acetyl aspartate peak on MR spectroscopy, seem to have prognostic value. (orig.)

  5. CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations

    International Nuclear Information System (INIS)

    Gutierrez, Leonardo Guilhermino; Portela, Luiz Antonio Pezzi; Rovira, Alex; Costa Leite, Claudia da; Lucato, Leandro Tavares

    2010-01-01

    Non-neonatal hypoxic-ischemic encephalopathy is a clinical condition often related to cardiopulmonary arrest that demands critical management and treatment decisions. Management depends mainly on the degree of neurological impairment and prognostic considerations. Computed tomography (CT) is often used to exclude associated or mimicking pathology. If any, only nonspecific signs such as cerebral edema, sulci effacement, and decreased gray matter (GM)/white matter (WM) differentiation are evident. Pseudosubarachnoid hemorrhage, a GM/WM attenuation ratio <1.18, and inverted GM attenuation are associated with a poor prognosis. Magnetic resonance (MR) imaging is more sensitive than CT in assessing brain damage in hypoxic-ischemic encephalopathy. Some MR findings have similarities to those seen pathologically, based on spatial distribution and time scale, such as lesions distributed in watershed regions and selective injury to GM structures. In the acute phase, lesions are better depicted using diffusion-weighted imaging (DWI) because of the presence of cytotoxic edema, which, on T2-weighted images, only become apparent later in the early subacute phase. In the late subacute phase, postanoxic leukoencephalopathy and contrast enhancement could be observed. In the chronic phase, atrophic changes predominate over tissue signal changes. MR can be useful for estimating prognosis when other tests are inconclusive. Some findings, such as the extent of lesions on DWI and presence of a lactate peak and depleted N-acetyl aspartate peak on MR spectroscopy, seem to have prognostic value. (orig.)

  6. Investigation of the effect and mechanism of hyperbaric oxygenation therapy on neonatal hypoxic-ischemic encephalopathy with SPECT

    International Nuclear Information System (INIS)

    Jia Shaowei; Yi Zhi; Liao Jianxiang

    2001-01-01

    Objective: To evaluate the effect of HBO on neonatal hypoxic-ischemic encephalopathy with SPECT, and to explore the mechanisms. Methods: The research subjects were totally 34 newborn babies, including 3 normal neonates. The group treated with HBO included 20 babies with HIE, and the control group contained 11 HIE babies. All babies in both groups received SPECT exams before and after the treatments. Results: SPECT before treatment showed 46 foci of low perfusion and functional defect or insufficiencies in 31 HIE babies. SPECT after 1-2 period of treatments of HBO therapy in HIE babies showed disappeared or reduced low perfusion and functional defect or insufficiency in the brains. The HIE babies in the control group showed improvement with less degree than HBO treated babies. There were significant differences (P<0.01) between two groups. Conclusion: The effect of HBO on HIE babies were prominent. The treatment can improve the hypoxic status of brain cell through increase the regional cerebral blood flow perfusion and oxygen content of the brain tissue, then provoked the brain cells activities, and at last, enhance the repair of the injured brain cells

  7. Amplitude-integrated Electroencephalography in Full-term Newborns without Severe Hypoxic-ischemic Encephalopathy: Case Series

    OpenAIRE

    Osredkar, Damjan; Derganc, Metka; Paro-Panjan, Darja; Neubauer, David

    2006-01-01

    Aim: To assess the diagnostic value of amplitude-integrated electroencephalography (EEG) in comparison to standard EEG in newborns without severe hypoxic-ischemic encephalopathy who were at risk for seizures. Methods: The study included a consecutive series of 18 term newborns without severe hypoxic-ischemic encephalopathy, but with clinical signs suspicious of epileptic seizures, history of loss of social contact, disturbance of muscle tone, hyperirritability, and/or jitteriness. Amplitud...

  8. Lethal Effect of Thermal Neutrons on Hypoxic Elirlich Ascites Tumour Cells in vitro

    OpenAIRE

    MITSUHIKO, AKABOSHI; KENICHI, KAWAI; HIROTOSHI, MAKI; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University

    1985-01-01

    Ehrlich ascites tumour cells were irradiated in vitro with thermal neutrons under aerobic and hypoxic conditions, and the survival of their reproductive capacity was assayed in vivo. Only a slight hypoxic protection was observed for thermal neutron irradiation with an oxygen enhancement ratio (OER) of 1.2, as compared with OER of 3.3 for ^Co-γ-rays. Absorbed dose of thermal neutrons was calculated by assuming that the energies of recoiled nuclei were completely absorbed within a cell nucleus....

  9. Intramucosal–arterial PCO 2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia

    OpenAIRE

    Dubin, Arnaldo; Murias, Gastón; Estenssoro, Elisa; Canales, Héctor; Badie, Julio; Pozo, Mario; Sottile, Juan P; Barán, Marcelo; Pálizas, Fernando; Laporte, Mercedes

    2002-01-01

    Introduction An elevation in intramucosal–arterial PCO 2 gradient (ΔPCO 2) could be determined either by tissue hypoxia or by reduced blood flow. Our hypothesis was that in hypoxic hypoxia with preserved blood flow, ΔPCO 2 should not be altered. Methods In 17 anesthetized and mechanically ventilated sheep, oxygen delivery was reduced by decreasing flow (ischemic hypoxia, IH) or arterial oxygen saturation (hypoxic hypoxia, HH), or no intervention was made (sham). In the IH group (n = 6), blood...

  10. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs

    International Nuclear Information System (INIS)

    Borel, C.O.; Backofen, J.E.; Koehler, R.C.; Jones, M.D. Jr.; Traystman, R.J.

    1987-01-01

    The authors tested the hypothesis that hypoxic hypoxia interferes with cerebral blood flow (CBF) autoregulation when intracranial pressure (ICP) is elevated in pentobarbital-anesthetized lambs (3 to 9 days old). Cerebral perfusion pressure (CPP) was lowered stepwise from 73 to 23 mmHg in eight normoxic lambs and from 65 to 31 mmHg in eight other hypoxic lambs by ventricular infusion of artificial cerebrospinal fluid. In normoxic lambs, CBF measured by microspheres labeled with six different radioisotopes was not significantly changed over this range of CPP. In animals made hypoxic, base-line CBF was twice that of normoxic lambs. CBF was unchanged as CPP was reduced to 31 mmHg. Lower levels of CPP were not attained because a pressor response occurred with further elevations of ICP. No regional decrements in blood flow to cortical arterial watershed areas or to more caudal regions, such as cerebellum, brain stem, or thalamus, were detected with elevated ICP. Cerebral O 2 uptake was similar in both groups and did not decrease when CPP was reduced. These results demonstrate that normoxic lambs have a considerable capacity for effective autoregulation of CBF when ICP is elevated. Moreover, cerebral vasodilation in response to a level of hypoxia approximating that normally seen prenatally does not abolish CBF autoregulation when ICP is elevated during the first postnatal week

  11. Analysis of 127 peripartum hypoxic brain injuries from closed claims registered by the Danish Patient Insurance Association

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    : The authors retrospectively investigated peripartum hypoxic brain injuries registered by the Danish Patient Insurance Association. RESULTS: From 1992 to 2004, 127 approved claims concerning peripartum hypoxic brain injuries were registered and subsequently analysed. Thirty-eight newborns died, and a majority...

  12. Testosterone potentiates the hypoxic ventilatory response of adult male rats subjected to neonatal stress.

    Science.gov (United States)

    Fournier, Sébastien; Gulemetova, Roumiana; Joseph, Vincent; Kinkead, Richard

    2014-05-01

    Neonatal stress disrupts development of homeostatic systems. During adulthood, male rats subjected to neonatal maternal separation (NMS) are hypertensive and show a larger hypoxic ventilatory response (HVR), with greater respiratory instability during sleep. Neonatal stress also affects sex hormone secretion; hypoxia increases circulating testosterone of NMS (but not control) male rats. Given that these effects of NMS are not observed in females, we tested the hypothesis that testosterone elevation is necessary for the stress-related increase of the HVR in adult male rats. Pups subjected to NMS were placed in an incubator for 3 h per day from postnatal day 3 to 12. Control pups remained undisturbed. Rats were reared until adulthood, and the HVR was measured by plethysmography (fractional inspired O2 = 0.12, for 20 min). We used gonadectomy to evaluate the effects of reducing testosterone on the HVR. Gonadectomy had no effect on the HVR of control animals but reduced that of NMS animals below control levels. Immunohistochemistry was used to quantify androgen receptors in brainstem areas involved in the HVR. Androgen receptor expression was generally greater in NMS rats than in control rats; the most significant increase was noted in the caudal region of the nucleus tractus solitarii. We conclude that the abnormal regulation of testosterone is important in stress-related augmentation of the HVR. The greater number of androgen receptors within the brainstem may explain why NMS rats are more sensitive to testosterone withdrawal. Based on the similarities of the cardiorespiratory phenotype of NMS rats and patients suffering from sleep-disordered breathing, these results provide new insight into its pathophysiology, especially sex-based differences in its prevalence. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  13. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia.

    Science.gov (United States)

    Faiss, Raphaël; Girard, Olivier; Millet, Grégoire P

    2013-12-01

    Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.

  14. Therapeutic hypothermia for neonates with hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ming-Chou Chiang

    2017-12-01

    Full Text Available Therapeutic hypothermia (TH is a recommended regimen for newborn infants who are at or near term with evolving moderate-to-severe hypoxic ischemic encephalopathy (HIE. The Task Force of the Taiwan Child Neurology Society and the Taiwan Society of Neonatology held a joint meeting in 2015 to establish recommendations for using TH on newborn patients with HIE. Based on current evidence and experts' experiences, this review article summarizes the key points and recommendations regarding TH for newborns with HIE, including: (1 selection criteria for TH; (2 choices of method and equipment for TH; (3 TH prior to and during transport; (4 methods for temperature maintenance, monitoring, and rewarming; (5 systemic care of patients during TH, including the care of respiratory and cardiovascular systems, management of fluids, electrolytes, and nutrition, as well as sedation and drug metabolism; (6 monitoring and management of seizures; (7 neuroimaging, prognostic factors, and outcomes; and (8 adjuvant therapy for TH. Key Words: hypoxic ischemic encephalopathy, neonate, patient care, perinatal asphyxia, therapeutic hypothermia

  15. Term Neonate with Atypical Hypoxic-Ischemic Encephalopathy Presentation: A Case Report.

    Science.gov (United States)

    Townley, Nick; McNellis, Emily; Sampath, Venkatesh

    2017-07-01

    We describe a case of atypical hypoxic-ischemic encephalopathy (HIE) in a neonate following a normal pregnancy and delivery who was found to have an umbilical vein thrombosis. The infant arrived to our center with continuous bicycling movement of her lower extremities. She had a continuous electroencephalogram that showed burst suppression and magnetic resonance imaging of the brain showed diffusely abnormal cerebral cortical/subcortical diffusion restriction which may be secondary hypoxic-ischemic injury. Interestingly, a pathology report noted a focal umbilical vein thrombosis appearing to have compressed an umbilical artery with associated arterial dissection and hematoma. Our case illustrates how umbilical venous or arterial thrombosis may be associated with HIE and refractory seizures.

  16. NEUROGENETIC ASPECTS OF PERINATAL HYPOXIC-ISCHEMIC AFFECTIONS OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    George A. Karkashadze

    2016-01-01

    Full Text Available Neurogenetics is a thriving young science greatly contributing to the generally accepted concept of the brain development in health and disease. Thereby; scientists are not only able to highlight new key points in traditional ideas about the origin of diseases; but also to completely rethink their view on the problem of pathology development. In particular; new data on neurogenetics of perinatal affections of the central nervous system (CNS has appeared. Genetic factors in varying degrees affect perinatal hypoxic-ischemic CNS affections. Prematurity determination stays the most studied among them. Nevertheless; there is increasing evidence of significant epigenetic regulations of neuro-expression caused by hypoxia; malnutrition of a pregnant woman; stress; smoking; alcohol; drugs that either directly pathologically affect the developing brain; or form a brain phenotype sensitive to a perinatal CNS affection. New data obliges to change the approaches to prevention of perinatal CNS affections.

  17. Acute kidney injury with hypoxic respiratory failure

    OpenAIRE

    Neubert, Zachary; Hoffmann, Paul; Owshalimpur, David

    2014-01-01

    A 27-year-old Caucasian man was transferred from a remote clinic with acute kidney injury for the prior 7–10 days preceded by gastroenteritis. His kidney biopsy showed non-specific mesangiopathic glomerular changes, minimal tubulointerstitial disease without sclerosis, crescents, nor evidence of vasculitis. On his third hospital day, he developed acute hypoxic respiratory failure requiring intubation and mechanical ventilation. Pulmonary renal syndromes ranked highest on his differential diag...

  18. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Hyo-Jeong Lee

    2012-01-01

    Full Text Available Although cryptotanshinone (CT was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent.

  19. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  20. [Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels].

    Science.gov (United States)

    Zhang, Cheng-yan; Zhang, Ji-xin; Lü, Xiao-tao; Li, Bao-yu

    2009-10-01

    To investigate the effects of intermittent hypoxic exposure and normoxic convalescence on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) levels. Rat models of intermittent hypoxic exposure were established, combined with the clinical research on volunteers experiencing the intermittent plateau work. Blood samples for red blood cell (RBC) counts, hemoglobin (Hb) and hematocrit (HCT) were collected, serum HIF-1alpha and EPO levels were measured using enzyme linked immunosorbent assay. RBC counts, Hb concentration and HCT were significantly higher than the normoxic group (P hypoxic exposure can enhance serum hypoxia inducible factor-1 alpha and erythropointin levels and the generation of red blood cells, which leads to an increase in hemoglobin concentration and hematocrit. The results have changed with the hypoxic exposure period prolonged. Normoxic convalescence after intermittent hypoxic exposure can make the related indexes reduced, and contribute to the organism recovery.

  1. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions.

    Science.gov (United States)

    Gong, Ming; Liang, Tangzhao; Jin, Song; Dai, Xuejun; Zhou, Zhiyu; Gao, Manman; Huang, Sheng; Luo, Jiaquan; Zou, Lijin; Zou, Xuenong

    2017-01-01

    Chondrogenic differentiation of mesenchymal stem cells is regulated by many different pathways. Recent studies have established that hypoxia and epigenetic alterations potently affect expression of chondrogenesis marker genes. Sox9 is generally regarded as a master regulator of chondrogenesis and microRNA-124 (miRNA-124) regulates gene expression in murine bone marrow-derived mesenchymal stem cells. Therefore, in this study we investigated whether epigenetic regulation of miRNA-124 could affect the expression of Sox9 and thereby regulate chondrogenesis. A cell pellet culture model was used to induce chondrogenesis in C3H10T1/2 cells under hypoxic conditions (2% O 2 ) to determine the effects of hypoxia on miR-124 expression and DNA methylation. The expression of miR-124 was significantly downregulated under hypoxic conditions compared to normoxic conditions (21% O 2 ). The expression of chondrogenesis marker genes was significantly increased under hypoxic conditions. Bisulfite sequencing of the CpG islands in the promoter region of miR-124-3 showed that CpG methylation was significantly increased under hypoxic conditions. Treating the cells with the DNA demethylating agent 5'-AZA significantly increased miR-124 expression and decreased expression of markers of chondrogenesis. Overexpressing miR-124 under hypoxic conditions inhibited NFATc1 reporter activity. NFATc1 was shown to bind to the promoter region of Sox9. Taken together, our data provide evidence that miR-124 acts as an inhibitor of NFATc1. Under hypoxic conditions when miR-124 is downregulated by methylation of CpG islands in the promoter, NFATc1 can bind to the Sox9 promoter and induce the expression of Sox9 leading to chondrogenesis. These results support the role of epigenetic regulation in establishing and maintaining a chondrogenic phenotype.

  2. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    International Nuclear Information System (INIS)

    Rauth, A.M.; Mohindra, J.K.

    1981-01-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, high drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC

  3. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-01-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +- 0.2, compared with an oxygen enhancement ratio of 3.3 +- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD 50 was estimated to be 125 to 150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit

  4. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-01-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit

  5. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ding F

    2014-09-01

    Full Text Available Fengan Ding,1 Yiping Li,1 Jing Liu,1 Lei Liu,1 Wenmin Yu,1 Zhi Wang,1 Haifeng Ni,2 Bicheng Liu,2 Pingsheng Chen1,2 1School of Medicine, Southeast University, Nanjing, People’s Republic of China; 2Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Background: Gold nanoparticles (GNPs can potentially be used in biomedical fields ranging from therapeutics to diagnostics, and their use will result in increased human exposure. Many studies have demonstrated that GNPs can be deposited in the kidneys, particularly in renal tubular epithelial cells. Chronic hypoxic is inevitable in chronic kidney diseases, and it results in renal tubular epithelial cells that are susceptible to different types of injuries. However, the understanding of the interactions between GNPs and hypoxic renal tubular epithelial cells is still rudimentary. In the present study, we characterized the cytotoxic effects of GNPs in hypoxic renal tubular epithelial cells.Results: Both 5 nm and 13 nm GNPs were synthesized and characterized using various biophysical methods, including transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectrophotometry. We detected the cytotoxicity of 5 and 13 nm GNPs (0, 1, 25, and 50 nM to human renal proximal tubular cells (HK-2 by Cell Counting Kit-8 assay and lactate dehydrogenase release assay, but we just found the toxic effect in the 5 nm GNP-treated cells at 50 nM dose under hypoxic condition. Furthermore, the transmission electron microscopy images revealed that GNPs were either localized in vesicles or free in the lysosomes in 5 nm GNPs-treated HK-2 cells, and the cellular uptake of the GNPs in the hypoxic cells was significantly higher than that in normoxic cells. In normoxic HK-2 cells, 5 nm GNPs (50 nM treatment could cause autophagy and cell survival. However, in hypoxic conditions, the GNP exposure at the same condition led to the

  6. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    International Nuclear Information System (INIS)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-01-01

    Highlights: ► Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. ► PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. ► p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. ► Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl 2 . Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1α. A PI3K inhibitor (LY294002) attenuated CoCl 2 -induced nuclear accumulation and transcriptional activation of HIF-1α. In addition, HIF-1α-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl 2 -induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1α. However, p38 was not involved in HIF-1α activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel

  7. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  8. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  9. Hypoxic ischemic encephalopathy in children : CT findings related to prognosis

    International Nuclear Information System (INIS)

    Cho, Jae Min; Il, Yim Byung; Kim, Ok Hwa; Kang, Doo Kyoung; Suh, Jung Ho

    1997-01-01

    To evaluate prognosis-related CT findings in hypoxic ischemic encephalopathy. For the purpose of prognosis, 28 children with a clinical history and CT findings suggestive of hypoxic ischemic encephalopathy (HIE) were restrospectively reviewed. The diagnostic criteria for HIE, as seen on CT scanning, were as follows : 1, ventricular collapse;2, effacement of cortical sulci;3, prominent enhancement of cortical vessels;4, poor differentiation of gray and white matter;5, reversal sign;6, obliteration of perimesencephalic cistern;7, high density on tentorial edge, as seen on precontrast scans;and 8, low density in thalamus, brain stem and basal ganglia. On the basis of clinical outcome, we divided the patients into three groups, as follows:group I(good prognosis);group II(neurologic sequelae), and group III(vegetative state or expire), and among these, compared CT findings. There were thirteen patients in group I, six in group II, and nine in group III. Ventricular collapse, effacement of cortical sulci, and prominent enhancement of cortical vessels were noted in all groups, whereas poor differentiation of gray and white matter, reversal sign, obliteration of perimesencephalic cistern, high density on tentorial edge, on precontrast scan, and low density in brain stem and basal ganglia were observed only in groups II and III. CT findings showed distinct differences between groups in whom prognosis was good, and in whom it was poor. An awareness of poor prognostic CT findings may be clinically helpful in the evaluation of patients with hypoxic ischemic encephalopathy

  10. Risk-Sensitive Control with Near Monotone Cost

    International Nuclear Information System (INIS)

    Biswas, Anup; Borkar, V. S.; Suresh Kumar, K.

    2010-01-01

    The infinite horizon risk-sensitive control problem for non-degenerate controlled diffusions is analyzed under a 'near monotonicity' condition on the running cost that penalizes large excursions of the process.

  11. Periodicity during hypercapnic and hypoxic stimulus is crucial in distinct aspects of phrenic nerve plasticity.

    Science.gov (United States)

    Stipica, I; Pavlinac Dodig, I; Pecotic, R; Dogas, Z; Valic, Z; Valic, M

    2016-01-01

    This study was undertaken to determine pattern sensitivity of phrenic nerve plasticity in respect to different respiratory challenges. We compared long-term effects of intermittent and continuous hypercapnic and hypoxic stimuli, and combined intermittent hypercapnia and hypoxia on phrenic nerve plasticity. Adult, male, urethane-anesthetized, vagotomized, paralyzed, mechanically ventilated Sprague-Dawley rats were exposed to: acute intermittent hypercapnia (AIHc or AIHc(O2)), acute intermittent hypoxia (AIH), combined intermittent hypercapnia and hypoxia (AIHcH), continuous hypercapnia (CHc), or continuous hypoxia (CH). Peak phrenic nerve activity (pPNA) and burst frequency were analyzed during baseline (T0), hypercapnia or hypoxia exposures, at 15, 30, and 60 min (T60) after the end of the stimulus. Exposure to acute intermittent hypercapnia elicited decrease of phrenic nerve frequency from 44.25+/-4.06 at T0 to 35.29+/-5.21 at T60, (P=0.038, AIHc) and from 45.5+/-2.62 to 37.17+/-3.68 breaths/min (P=0.049, AIHc(O2)), i.e. frequency phrenic long term depression was induced. Exposure to AIH elicited increase of pPNA at T60 by 141.0+/-28.2 % compared to baseline (P=0.015), i.e. phrenic long-term facilitation was induced. Exposure to AIHcH, CHc, or CH protocols failed to induce long-term plasticity of the phrenic nerve. Thus, we conclude that intermittency of the hypercapnic or hypoxic stimuli is needed to evoke phrenic nerve plasticity.

  12. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  13. The fate of hypoxic (pimonidazole-labelled) cells in human cervix tumours undergoing chemo-radiotherapy

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Aquino-Parsons, Christina

    2006-01-01

    Background and purpose: A subset of patients in a clinical study where sequential biopsies were to be obtained during multifraction radiotherapy received pimonidazole prior to initiating treatment, allowing a unique opportunity of following hypoxic cells in situ during therapy. Material and methods: After institutional ethics review and with informed consent, women expecting to undergo radical treatment for cancer of the cervix received pimonidazole hydrochloride, with a biopsy approximately 24 h later. Therapy was then started, and weekly biopsies were obtained. In the laboratory, the biopsies were reduced to single cell suspensions for flow cytometry analysis of DNA content, pimonidazole, and proliferation markers. Results: Pre-treatment pimonidazole-positive cells were largely in G /G 1 . Pimonidazole-labelled cells, though expected to be radioresistant, were markedly decreased even early into treatment, and continued to disappear with a half-time of about 3 days. Concurrently, the cell cycle distribution of the previously hypoxic cells changed from predominantly quiescent to mostly proliferating. Conclusions: While a part of the rapid apparent loss of hypoxic cells was certainly due to loss of pimonidazole adducts through repair and dilution by cell division, the speed with which this occurred suggests that many labelled cells could rapidly re-enter the proliferative pool, a result consistent with many of those pimonidazole-labelled human cervix tumour cells being cyclically, rather than continuously, hypoxic

  14. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    Science.gov (United States)

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (pmemory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  15. Imaging and Targeting of Hypoxic Tumor Cells with Use of HIF-1-2

    International Nuclear Information System (INIS)

    Kizaka-Kondoh, Shinae; Harada, Hiroshi; Tanaka, Shotaro; Hiraoka, Masahiro

    2006-01-01

    This paper describes imaging (visualization) of transplanted tumor cells under hypoxia in vivo and molecular targeting to kill those cells by inducing their apoptosis. HIF (hypoxia inducible factor) concerned with angiogenesis is induced specifically in hypoxic tumor cells and its activity can be visualized by transfection of reporter vector construct of fluorescent protein GFP or luciferase. Authors established the transfected tumor cells with the plasmid p5HRE-luciferase and when transplanted in the nude mouse, those cells emitted light dependently to their hypoxic conditions, which could be visualized by in vivo imaging system (IVIS) with CCD camera. Authors prepared the oxygen-dependent degradation-procaspase 3-fusion protein (TOP3) to target the hypoxic tumor cells for enhancing their apoptotic signaling, whose apoptosis was actually observed by the IVIS. Reportedly, radiation transiently activates HIF-1 and combination treatment of radiation and TOP3 resulted in the enhanced death of tumor cells. Interestingly, the suppression of tumor growth lasted longer than expected, probably due to inhibition of angiogenesis. Authors called this anti-tumor strategy as the micro-environmental targeting. (T.I.)

  16. Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    OpenAIRE

    Liu, Jiang-Qin; Manouchehri, Namdar; Lee, Tze-Fun; Yao, Mingzhu; Bigam, David L.; Cheung, Po-Yin

    2012-01-01

    Background The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H2O2) generation in the resuscitation of hypoxic newborn animals with severe acidosis. Methods Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocap...

  17. EEG source localization in full-term newborns with hypoxic-ischemia

    NARCIS (Netherlands)

    Jennekens, W.; Dankers, F.; Blijham, P.; Cluitmans, P.; van Pul, C.; Andriessen, P.

    2013-01-01

    The aim of this study was to evaluate EEG source localization by standardized weighted low-resolution brain electromagnetic tomography (swLORETA) for monitoring of fullterm newborns with hypoxic-ischemic encephalopathy, using a standard anatomic head model. Three representative examples of neonatal

  18. Parameterized entropy analysis of EEG following hypoxic-ischemic brain injury

    International Nuclear Information System (INIS)

    Tong Shanbao; Bezerianos, Anastasios; Malhotra, Amit; Zhu Yisheng; Thakor, Nitish

    2003-01-01

    In the present study Tsallis and Renyi entropy methods were used to study the electric activity of brain following hypoxic-ischemic (HI) injury. We investigated the performances of these parameterized information measures in describing the electroencephalogram (EEG) signal of controlled experimental animal HI injury. The results show that (a): compared with Shannon and Renyi entropy, the parameterized Tsallis entropy acts like a spatial filter and the information rate can either tune to long range rhythms or to short abrupt changes, such as bursts or spikes during the beginning of recovery, by the entropic index q; (b): Renyi entropy is a compact and predictive indicator for monitoring the physiological changes during the recovery of brain injury. There is a reduction in the Renyi entropy after brain injury followed by a gradual recovery upon resuscitation

  19. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells.

    Science.gov (United States)

    Zou, Chang; Yu, Shan; Xu, Zhenyu; Wu, Dinglan; Ng, Chi-Fai; Yao, Xiaoqiang; Yew, David T; Vanacker, Jean-Marc; Chan, Franky L

    2014-05-01

    Adaptation of cancer cells to a hypoxic microenvironment is important for their facilitated malignant growth and advanced development. One major mechanism mediating the hypoxic response involves up-regulation of hypoxia-inducible factor 1 (HIF-1) expression, which controls reprogramming of energy metabolism and angiogenesis. Oestrogen-related receptor-α (ERRα) is a pivotal regulator of cellular energy metabolism and many biosynthetic pathways, and has also been proposed to be an important factor promoting the Warburg effect in advanced cancer. We and others have previously shown that ERRα expression is increased in prostate cancer and is also a prognostic marker. Here we show that ERRα is oncogenic in prostate cancer and also a key hypoxic growth regulator. ERRα-over-expressing prostate cancer cells were more resistant to hypoxia and showed enhanced HIF-1α protein expression and HIF-1 signalling. These effects could also be observed in ERRα-over-expressing cells grown under normoxia, suggesting that ERRα could function to pre-adapt cancer cells to meet hypoxia stress. Immunoprecipitation and FRET assays indicated that ERRα could physically interact with HIF-1α via its AF-2 domain. A ubiquitination assay showed that this ERRα-HIF-1α interaction could inhibit ubiquitination of HIF-1α and thus reduce its degradation. Such ERRα-HIF-1α interaction could be attenuated by XCT790, an ERRα-specific inverse agonist, resulting in reduced HIF-1α levels. In summary, we show that ERRα can promote the hypoxic growth adaptation of prostate cancer cells via a protective interaction with HIF-1α, suggesting ERRα as a potential therapeutic target for cancer treatment. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. [Changes in phospholipids of the brain grey and white matter during in vitro autolysis in rats subjected to acute hypobaric hypoxic hypoxia].

    Science.gov (United States)

    Gribanov, G A; Leshchenko, D V; Golovko, M Iu

    2004-01-01

    The development of autolysis in grey brain matter of albino rats was accompanied by desintegration of aminophospholipids with parallel increase of glycerophosphates (GLP) and phosphatidic acids (PA) on early stages of incubation and lysophospholipids (LPL) on later stages. Acute hypobaric hypoxic hypoxia decreased the level of phosphatidylethanolamines (PE) with simultaneous accumulation of PA. Previous hypoxia altered the character of autolytic reorganizations of phospholipids. Oscillatory reciprocal reorganizations in the system PE > PS (phosphatidylserine) were observed at early stage (1 h) and at late stages of autolysis (24 h). At the same time increased transformation of phosphatidylcholines (PC) into sphingomyelins (SM) with simultaneous accumulation GLP was registered. During autolysis of brain white matter of control rats opposite oscillatory reorganizations of PE, PC, SM, PA with reduction of PE and simultaneous increase of LPL and PA level after 1 hour of incubation were observed. Reciprocal reactions of biotransformation in system PS > PE were revealed at 4th hour. Previous hypobaric hypoxic hypoxia reduced the level of total phospholipids as well as PS at simultaneous increase of LPL. Acute hypobaric hypoxic hypoxia increased autolytic transformations in system PC > SM and induced hydrolysis of PE, PC into LPL at late stages of autolysis.

  1. North Pacific deglacial hypoxic events linked to abrupt ocean warming

    Science.gov (United States)

    Praetorius, Summer K; Mix, Alan C.; Davies, Maureen H.; Wolhowe, Matthew D; Addison, Jason A.; Prahl, Frederick G

    2015-01-01

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition1, 2, 3, 4. The mechanisms driving this hypoxia remain under debate1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4–5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals12, 13, and enhanced 15N/14N ratio of organic matter13, collectively suggest association with high export production. A decrease in 18O/16O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  2. A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension.

    Science.gov (United States)

    Pugliese, Steven C; Kumar, Sushil; Janssen, William J; Graham, Brian B; Frid, Maria G; Riddle, Suzette R; El Kasmi, Karim C; Stenmark, Kurt R

    2017-06-15

    Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Effect of the Discharge Water which Mixed Sewage Disposal Water with Seawater Desalting Treated Sewage for Bottom Sediment and Hypoxic Water Mass

    Science.gov (United States)

    Watanabe, Ryoichi; Yamasaki, Koreyoshi; Minagawa, Tomoko; Iyooka, Hiroki; Kitano, Yoshinori

    For every time in summer season, hypoxic water mass has formed at the inner part of Hakata Bay. Field observation study has carried out at the inner part of Hakata Bay since 2004 with the particular aim of tracking the movement of hypoxic water mass. Hypoxic water masses form the end of June to September on this area because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. Under such hypoxic conditions, the seawater desalination plant has begun to use in 2005. After seawater desalination plant operation starting, hypoxic water mass tends to improve. In this research, the authors show the following result. After seawater desalination plant has begun to operate, the hypoxia around the mixed discharge water outlet tends to be improved.

  4. Analysis of Hypoxic and Hypercapnic Ventilatory Response in Healthy Volunteers

    Science.gov (United States)

    Lin, Ling; Sharifi, Husham; Rico, Tom; Andlauer, Olivier; Aran, Adi; Bloomrosen, Efrat; Faraco, Juliette; Fang, Han; Mignot, Emmanuel

    2017-01-01

    Introduction A previous study has suggested that the Human Leukocyte Antigen (HLA) allele DQB1*06:02 affects hypoxic ventilatory response (HVR) but not hypercapnic ventilatory response (HCVR) in an Asian population. The current study evaluated the relationship in Caucasians and Asians. In addition we assessed whether gender or polymorphisms in genes participating in the control of breathing affect HVR and HCVR. Methods A re-breathing system was used to measure HVR and HCVR in 551 young adults (56.8% Caucasians, 30% Asians). HLA-DQB1*06:02 and tagged polymorphisms and coding variants in genes participating in breathing (PHOX2B, GPR4 and TASK2/KCNK5) were analyzed. The associations between HVR/HCVR and HLA-DQB1*06:02, genetic polymorphisms, and gender were evaluated using ANOVA or frequentist association testing with SNPTEST. Results HVR and gender are strongly correlated. HCVR and gender are not. Mean HVR in women was 0.276±0.168 (liter/minute/%SpO2) compared to 0.429±0.266 (liter/minute/%SpO2) in men, pHVR in men). Women had lower baseline minute ventilation (8.08±2.36 l/m vs. 10.00±3.43l/m, pHVR or HCVR. Genetic analysis revealed point wise, uncorrected significant associations between two TASK2/KCNK5 variants (rs2815118 and rs150380866) and HCVR. Conclusions This is the largest study to date reporting the relationship between gender and HVR/ HCVR and the first study assessing the association between genetic polymorphisms in humans and HVR/HCVR. The data suggest that gender has a large effect on hypoxic breathing response. PMID:28045995

  5. Analysis of Hypoxic and Hypercapnic Ventilatory Response in Healthy Volunteers.

    Science.gov (United States)

    Goldberg, Shmuel; Ollila, Hanna Maria; Lin, Ling; Sharifi, Husham; Rico, Tom; Andlauer, Olivier; Aran, Adi; Bloomrosen, Efrat; Faraco, Juliette; Fang, Han; Mignot, Emmanuel

    2017-01-01

    A previous study has suggested that the Human Leukocyte Antigen (HLA) allele DQB1*06:02 affects hypoxic ventilatory response (HVR) but not hypercapnic ventilatory response (HCVR) in an Asian population. The current study evaluated the relationship in Caucasians and Asians. In addition we assessed whether gender or polymorphisms in genes participating in the control of breathing affect HVR and HCVR. A re-breathing system was used to measure HVR and HCVR in 551 young adults (56.8% Caucasians, 30% Asians). HLA-DQB1*06:02 and tagged polymorphisms and coding variants in genes participating in breathing (PHOX2B, GPR4 and TASK2/KCNK5) were analyzed. The associations between HVR/HCVR and HLA-DQB1*06:02, genetic polymorphisms, and gender were evaluated using ANOVA or frequentist association testing with SNPTEST. HVR and gender are strongly correlated. HCVR and gender are not. Mean HVR in women was 0.276±0.168 (liter/minute/%SpO2) compared to 0.429±0.266 (liter/minute/%SpO2) in men, pHVR in men). Women had lower baseline minute ventilation (8.08±2.36 l/m vs. 10.00±3.43l/m, pHVR or HCVR. Genetic analysis revealed point wise, uncorrected significant associations between two TASK2/KCNK5 variants (rs2815118 and rs150380866) and HCVR. This is the largest study to date reporting the relationship between gender and HVR/ HCVR and the first study assessing the association between genetic polymorphisms in humans and HVR/HCVR. The data suggest that gender has a large effect on hypoxic breathing response.

  6. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    Science.gov (United States)

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Induction of long noncoding RNA MALAT1 in hypoxic mice

    Directory of Open Access Journals (Sweden)

    Lelli A

    2015-10-01

    Full Text Available Aurelia Lelli,1,2,* Karen A Nolan,1,2,* Sara Santambrogio,1,2 Ana Filipa Gonçalves,1,2 Miriam J Schönenberger,1,2 Anna Guinot,1,2 Ian J Frew,1,2 Hugo H Marti,3 David Hoogewijs,1,2,4 Roland H Wenger1,2 1Institute of Physiology and Zurich Center for Human Physiology (ZIHP, University of Zurich, Zurich, Switzerland; 2National Center of Competence in Research "Kidney.CH", Zurich, Switzerland; 3Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; 4Institute of Physiology, University of Duisburg-Essen, Essen, Germany *These authors contributed equally to this work Abstract: Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA. Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary

  8. Neuroprotection by hypoxic preconditioning involves upregulation of hypoxia-inducible factor-1 in a prenatal model of acute hypoxia.

    Science.gov (United States)

    Giusti, Sebastián; Fiszer de Plazas, Sara

    2012-02-01

    The molecular pathways underlying the neuroprotective effects of preconditioning are promising, potentially drugable targets to promote cell survival. However, these pathways are complex and are not yet fully understood. In this study we have established a paradigm of hypoxic preconditioning based on a chick embryo model of normobaric acute hypoxia previously developed by our group. With this model, we analyzed the role of hypoxia-inducible factor-1α (HIF-1α) stabilization during preconditioning in HIF-1 signaling after the hypoxic injury and in the development of a neuroprotective effect against the insult. To this end, we used a pharmacological approach, based on the in vivo administration of positive (Fe(2+), ascorbate) and negative (CoCl(2)) modulators of the activity of HIF-prolyl hydroxylases (PHDs), the main regulators of HIF-1. We have found that preconditioning has a reinforcing effect on HIF-1 accumulation during the subsequent hypoxic injury. In addition, we have also demonstrated that HIF-1 induction during hypoxic preconditioning is necessary to obtain an enhancement in HIF-1 accumulation and to develop a tolerance against a subsequent hypoxic injury. We provide in vivo evidence that administration of Fe(2+) and ascorbate modulates HIF accumulation, suggesting that PHDs might be targets for neuroprotection in the CNS. Copyright © 2011 Wiley Periodicals, Inc.

  9. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    Science.gov (United States)

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by

  10. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Science.gov (United States)

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  11. Changes in resting-state brain function of pilots after hypoxic exposure based on methods for fALFF and ReHo analysis

    Directory of Open Access Journals (Sweden)

    Jie LIU

    2015-07-01

    Full Text Available Objective The objective of this study was to evaluate the basic changes in brain activity of pilots after hypoxic exposure with the use of resting-state functional magnetic resonance imaging (rs-fMRI and regional homogeneity (ReHo method. Methods Thirty healthy male pilots were successively subjected to normal and hypoxic exposure (with an oxygen concentration of 14.5%. Both the fALFF and ReHo methods were adopted to analyze the resting-state functional MRI data before and after hypoxic exposure of the subjects, the areas of the brain with fALFF and ReHo changes after hypoxic exposure were observed. Results  After hypoxic exposure, the pulse was 64.0±10.6 beats/min, and the oxygen saturation was 92.4%±3.9% in these 30 pilots, and it was lower than those before exposure (71.4±10.9 beats/min, 96.3%±1.3%, P<0.05. Compared with the condition before hypoxic exposure, the fALFF value was decreased in superior temporal gyri on both sides and the right superior frontal gyrus, and increase in the left precuneus, while the value of ReHo was decreased in the right superior frontal gyrus (P<0.05. No brain area with an increase in ReHo value was found. Conclusions Hypoxic exposure could significantly affect the brain functions of pilots, which may contribute to change in their cognitive ability. DOI: 10.11855/j.issn.0577-7402.2015.06.18

  12. Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Hansen, Marie N.

    2011-01-01

    extracellular and intracellular compartments, revealing nitrosative stress with extensive nitros(yl)ation of thiols, amines and heme groups. The degree of nitrosative stress correlated with nitrite load. Nitrate levels increased in all compartments, reflecting that a significant fraction of the nitrite taken up...... was converted to non-toxic nitrate. The generation of methemoglobin and nitrosylhemoglobin (assessed by spectral deconvolution) was more pronounced during normoxic nitrite exposure than during hypoxic nitrite exposure, in agreement with the higher nitrite load in normoxic fish. However, at any given nitrite......Nitrite is a physiological important nitric oxide donor at low concentrations but becomes toxic at high concentrations, as develops in freshwater fish exposed to environmental nitrite. We hypothesized that nitrite uptake across the gills differs between normoxic and hypoxic fish and that nitrite...

  13. Interval hypoxic training in complex treatment of fractures of trochanteric area of the femur

    Directory of Open Access Journals (Sweden)

    Василь Михайлович Шимон

    2015-05-01

    Full Text Available The method of interval hypoxic training (IHT is used to increase physical endurance of athletes and for treatment of certain systemic diseases, due to the ability of IHT affect metabolism, homeostasis and the immune system. The aims of the article are improving the results of treatment and rehabilitation of patients with fractures of the trochanteric area of the femur by the method of interval hypoxic training and study its influence on bone metabolism.Materials and methods. 17 patients who were hospitalized in the clinic of general surgery UzhNU with fractures of the trochanteric area of the femur are examined in the period from 2012 to 2015.The first group consisted of 6 patients who from day-patient treatment is conducted IHT by gas mixture of 12 % oxygen. The second group consisted of 4 patients with thyrotoxicosis who are also receiving IHT by gas mixture of 12% oxygen.The control group consisted of 7 patients with fractures of the trochanteric area of the femur who refused from IHT.Results and its discussion. The best physical activity is observed in the first group. Starting physical activity is the lowest in the second group, but its development is faster. Slowly increase the duration of physical activity compared with the first two groups is observed in the control group.In the control study after 1 month it is noted that calcium level increased in all three groups. Increase in the second group is biggest. The level of phosphorus decreased in the first and the control group and increased in the second group.The levels of osteocalcin and alkaline phosphatase increased. Rates were higher and increase was substantial in the first two groups in comparison with the control group.Conclusions.• Intensive growth of length of one-time physical activity most notably in patients with thyrotoxicosis is observed in patients who are receiving IHT.• Improvement of the activity of bone metabolism is observed in patients after IHT

  14. Does aetiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy influence the outcome of treatment?

    Science.gov (United States)

    Mcintyre, Sarah; Badawi, Nadia; Blair, Eve; Nelson, Karin B

    2015-04-01

    Neonatal encephalopathy, a clinical syndrome affecting term-born and late preterm newborn infants, increases the risk of perinatal death and long-term neurological morbidity, especially cerebral palsy. With the advent of therapeutic hypothermia, a treatment designed for hypoxic or ischaemic injury, associated mortality and morbidity rates have decreased. Unfortunately, only about one in eight neonates (95% confidence interval) who meet eligibility criteria for therapeutic cooling apparently benefit from the treatment. Studies of infants in representative populations indicate that neonatal encephalopathy is a potential result of a variety of antecedents and that asphyxial complications at birth account for only a small percentage of neonatal encephalopathy. In contrast, clinical case series suggest that a large proportion of neonatal encephalopathy is hypoxic or ischaemic, and trials of therapeutic hypothermia are specifically designed to include only infants exposed to hypoxia or ischaemia. This review addresses the differences, definitional and methodological, between infants studied and investigations undertaken, in population studies compared with cooling trials. It raises the question if there may be subgroups of infants with a clinical diagnosis of hypoxic-ischaemic encephalopathy (HIE) in whom the pathobiology of neonatal neurological depression is not fundamentally hypoxic or ischaemic and, therefore, for whom cooling may not be beneficial. In addition, it suggests approaches to future trials of cooling plus adjuvant therapy that may contribute to further improvement of care for these vulnerable neonates. © The Authors. Journal compilation © 2015 Mac Keith Press.

  15. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  16. Lecithin-Bound Iodine Prevents Disruption of Tight Junctions of Retinal Pigment Epithelial Cells under Hypoxic Stress

    Directory of Open Access Journals (Sweden)

    Masahiko Sugimoto

    2016-01-01

    Full Text Available Aim. We investigated whether lecithin-bound iodine (LBI can protect the integrity of tight junctions of retinal pigment epithelial cells from hypoxia. Method. Cultured human retinal pigment epithelial (ARPE-19 cells were pretreated with LBI. To mimic hypoxic conditions, cells were incubated with CoCl2. We compared the integrity of the tight junctions (TJs of control to cells with either LBI alone, CoCl2 alone, or LBI + CoCl2. The levels of cytokines in the conditioned media were also determined. Results. Significant decrease in the zonula occludens-1 (ZO-1 intensity in the CoCl2 group compared to the control (5787.7 ± 4126.4 in CoCl2 group versus 29244.6 ± 2981.2 in control; average ± standard deviation. But the decrease was not significant in the LBI + CoCl2 (27189.0 ± 11231.1. The levels of monocyte chemoattractant protein-1 (MCP-1 and Chemokine (C-C Motif Ligand 11 (CCL-11 were significantly higher in the CoCl2 than in the control (340.8 ± 43.3 versus 279.7 ± 68.3 pg/mL for MCP-1, and 15.2 ± 12.9 versus 12.5 ± 6.1 pg/mL for CCL-11. With LBI pretreatment, the levels of both cytokines were decreased to 182.6 ± 23.8 (MCP-1 and 5.46 ± 1.9 pg/mL for CCL-11. Blockade of MCP-1 or CCL-11 also shows similar result representing TJ protection from hypoxic stress. Conclusions. LBI results in a protective action from hypoxia.

  17. Neuroprotective effects of Ellagic acid on Neonatal Hypoxic Brain ...

    African Journals Online (AJOL)

    Purpose: To investigate if ellagic acid exerts neuroprotective effects in hypoxic ischemic (HI) brain injury by inhibiting apoptosis and inflammatory responses. Methods: Separate groups of rat pups from post-natal day 4 (D4) were administered with ellagic acid (10, 20 or 40 mg/kg body weight) orally till post- natal day 10 ...

  18. Evolving Understanding of Hypoxic-Ischemic Encephalopathy in the Term Infant

    NARCIS (Netherlands)

    de Vries, Linda S.; Cowan, Frances M.

    2009-01-01

    Our aim was to document changes in the evaluation and prognosis of term-born infants with neonatal encephalopathy of hypoxic-ischemic origin, with particular reference to our own experiences and influences, and to summarize the debate on causation and the relative importance of antenatal and

  19. Protective effects of novel single compound, Hirsutine on hypoxic neonatal rat cardiomyocytes.

    Science.gov (United States)

    Wu, Li Xin; Gu, Xian Feng; Zhu, Yi Chun; Zhu, Yi Zhun

    2011-01-10

    Uncaria rhynchophylla is a traditional Chinese herb that has been applied in China for treatment of ailments of the cardiovascular system, but little is known about its active constituents and effect in cardiomyocytes. In present study, we investigated the cardioprotective effect of 0.1μΜ, 1μΜ and 10μΜ Hirsutine isolated from the methanolic extracts of Uncaria rhynchophylla by high performance liquid chromatography (HPLC) on neonatal rat cardiomyocytes treated with hypoxia to determine the mechanism underlying the protective effect with regard to cardiac anti-oxidant enzymes and apoptosis genes. Hirsutine significantly increased the viability of cardiomyocytes injured by hypoxia. Gene expression levels of proapoptotic genes (Bax, Fas and caspase-3) were significantly downregulated compared with the hypoxic control group (P<0.05), whereas the expression level of Bcl-2 was upregulated following Hirsutine treatment (P<0.05). Correspondingly, Hirsutine treatment increased Bcl-2 protein level and decreased Bax protein level. Assay investigating cardiac anti-oxidant enzymes provided further evidence for the protective effect of Hirsutine, as indicated by the induction of the anti-oxidant enzymes superoxide dismutase. The results of present study suggest that the mechanism of action of Hirsutine in hypoxic neonatal rat cardiomyocytes may be related to its anti-oxidant and anti-apoptotic properties. This may open an avenue for developing novel candidate compounds with cardioprotectiveeffect from unique Chinese plant. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries.

    Science.gov (United States)

    Chen, Zhengju; Zhang, Xu; Ying, Lei; Dou, Dou; Li, Yanhui; Bai, Yun; Liu, Juan; Liu, Limei; Feng, Han; Yu, Xiaoxing; Leung, Susan Wai-Sum; Vanhoutte, Paul M; Gao, Yuansheng

    2014-08-01

    cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (Po2: 25-30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr(853), which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK. Copyright © 2014 the American Physiological Society.

  1. Enhanced phosphorylation of cyclic AMP response element binding protein in Brain of mice following repetitive hypoxic exposure

    International Nuclear Information System (INIS)

    Gao Yanan; Gao Ge; Long Caixia; Han Song; Zu Pengyu; Fang Li; Li Junfa

    2006-01-01

    Cerebral ischemic/hypoxic preconditioning (I/HPC) is a phenomenon of endogenous protection that renders Brain tolerant to sustained ischemia/hypoxia. This profound protection induced by I/HPC makes it an attractive target for developing potential clinical therapeutic approaches. However, the molecular mechanism of I/HPC is unclear. Cyclic AMP (cAMP) response element binding protein (CREB), a selective nuclear transcriptional factor, plays a key role in the neuronal functions. Phosphorylation of CREB on Ser-133 may facilitate its transcriptional activity in response to various stresses. In the current study, we observed the changes in CREB phosphorylation (Ser-133) and protein expression in Brain of auto-hypoxia-induced HPC mice by using Western blot analysis. We found that the levels of phosphorylated CREB (Ser-133), but not protein expression of CREB, increased significantly (p < 0.05) in the hippocampus and the frontal cortex of mice after repetitive hypoxic exposure (H2-H4, n = 6 for each group), when compared to that of the normoxic (H0, n = 6) or hypoxic exposure once group (H1, n = 6). In addition, a significant enhancement (p < 0.05) of CREB phosphorylation (Ser-133) could also be found in the nuclear extracts from the whole hippocampus of hypoxic preconditioned mice (H2-H4, n = 6 for each group). These results suggest that the phosphorylation of CREB might be involved in the development of cerebral hypoxic preconditioning

  2. Neuroprotective strategies for patients with acute myocardial infarction combined with hypoxic ischemic encephalopathy in the ICU

    Directory of Open Access Journals (Sweden)

    Weiwei Hu

    2017-11-01

    Full Text Available Background: We investigated neuroprotective treatment strategies for patients with acute myocardial infarction (AMI complicated with hypoxic ischemic encephalopathy (HIE in the ICU. Methods: The 83 cases diagnosed with secondary AMI were, for the first time, divided into an observation group (n = 43 and control group (n = 40. All of the patients underwent emergency or elective PCI. Patients in the control group were treated with mannitol to reduce intracranial pressure and cinepazide maleate to improve microcirculation in the brain as well as given a comprehensive treatment with oxygen inhalation, fluid infusion, acid-base imbalance correction and electrolyte disturbance. Patients in the observation group underwent conventional treatment combined with neuroprotective therapeutic strategies. The effects of the different treatment strategies were compared. Results: Consciousness recovery time, reflex recovery time, muscle tension recovery time and duration of ICU stay were significantly shorter in the observation group compared with the control group (P < 0.05. After treatment, the jugular vein oxygen saturation (SjvO2 and blood lactate (JB-LA levels of both groups were lower than before treatment and the cerebral oxygen utilization rate (O2UC increased, with a significantly higher increase in the observation group (P < 0.05. After treatment, the activities of daily living (ADL score was higher for both groups and the neural function defect (NIHS score was lower. Conclusion: The neuroprotective strategies of hypothermia and ganglioside administration assisted with hyperbaric oxygen was effective for treating AMI patients with HIE and may be worth clinical promotion. Keywords: ICU, Acute myocardial infarction, Hypoxic ischemic encephalopathy, Neural protection

  3. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Lee, Y. M.; Heo, T. R.; Lee, K. B.; Jang, K. H.; Kim, H. N.; Lee, S. H.; Jeong, M. H.

    2008-04-01

    Proton beam has been applied to treat various tumor patients in clinical studies. However, it is still undefined whether proton radiation can inhibit the blood vessel formation and induce the cell death in vascular endothelial cells in growing organs. The aim of this study are first, to develop an optimal animal model for the observation of blood vessel development with low dose of proton beam and second, to investigate the effect of low dose proton beam on the inhibition of blood vessel formation induced by hypoxic conditions. In this study, flk1-GFP transgenic zebrafish embryos were used to directly visualize and determine the inhibition of blood vessels by low dose (1, 2, 5 Gy) of proton beam with spread out Bragg peak (SOBP). And we observed cell death by acridine orange staining at 96 hours post fertilization (hpf) stage of embryos after proton irradiation. We also compared the effects of proton beam with those of gamma-ray. An antioxidant, N-acetyl cystein (NAC) was used to investigate whether reactive oxygen species (ROS) were involved in the cell deaths induced by proton irradiation. Irradiated flk-1-GFP transgenic embryos with proton beam irradiation (35 MeV, spread out Bragg peak, SOBP) demonstrated a marked inhibition of embryonic growth and an altered fluorescent blood vessel development in the trunk region. When the cells with DNA damage in the irradiated zebrafish were stained with acridine orange, green fluorescent cell death spots were increased in trunk regions compared to non-irradiated control embryos. Proton beam also significantly increased the cell death rate in human umbilical vein endothelial cells (HUVEC), but pretreatment of N-acetyl cystein (NAC), an antioxidant, recovered the proton-induced cell death rate (p<0.01). Moreover, pretreatment of NAC abrogated the effect of proton beam on the inhibition of trunk vessel development and malformation of trunk truncation. From this study, we found that proton radiation therapy can inhibit the

  4. HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila melanogaster

    Science.gov (United States)

    Li, Yan; Padmanabha, Divya; Gentile, Luciana B.; Dumur, Catherine I.; Beckstead, Robert B.; Baker, Keith D.

    2013-01-01

    Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1a in the adaptive response, however, has not been determined. Here, we investigate how HIF influences hypoxic adaptation throughout Drosophila melanogaster development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in sima mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIFa and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIFa in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs. PMID:23382692

  5. Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-α status.

    Science.gov (United States)

    Harrison, Hannah; Rogerson, Lynsey; Gregson, Hannah J; Brennan, Keith R; Clarke, Robert B; Landberg, Göran

    2013-02-15

    Tumor hypoxia is often linked to decreased survival in patients with breast cancer and current therapeutic strategies aim to target the hypoxic response. One way in which this is done is by blocking hypoxia-induced angiogenesis. Antiangiogenic therapies show some therapeutic potential with increased disease-free survival, but these initial promising results are short lived and followed by tumor progression. We hypothesized that this may be due to altered cancer stem cell (CSC) activity resulting from increased tumor hypoxia. We studied the effects of hypoxia on CSC activity, using in vitro mammosphere and holoclone assays as well as in vivo limiting dilution experiments, in 13 patient-derived samples and four cell lines. There was a HIF-1α-dependent CSC increase in ER-α-positive cancers following hypoxic exposure, which was blocked by inhibition of estrogen and Notch signaling. A contrasting decrease in CSC was seen in ER-α-negative cancers. We next developed a xenograft model of cell lines and patient-derived samples to assess the hypoxic CSC response. Varying sizes of xenografts were collected and analyzed for HIF1-α expression and CSC. The same ER-α-dependent contrasting hypoxic-CSC response was seen validating the initial observation. These data suggest that ER-α-positive and negative breast cancer subtypes respond differently to hypoxia and, as a consequence, antiangiogenic therapies will not be suitable for both subgroups.

  6. Antenatal substance misuse and smoking and newborn hypoxic challenge response.

    Science.gov (United States)

    Ali, Kamal; Rossor, Thomas; Bhat, Ravindra; Wolff, Kim; Hannam, Simon; Rafferty, Gerrard F; Peacock, Janet L; Greenough, Anne

    2016-03-01

    Infants of smoking (S) and substance misusing (SM) mothers have an increased risk of sudden infant death syndrome. The aim of this study was to test the hypothesis that infants of SM or S mothers compared with infants of non-SM, non-smoking mothers (controls) would have a poorer ventilatory response to hypoxia, which was particularly marked in the SM infants. Physiological study. Tertiary perinatal centre. 21 SM; 21 S and 19 control infants. Infants were assessed before maternity/neonatal unit discharge. Maternal and infant urine samples were tested for cotinine, cannabinoids, opiates, amphetamines, methadone, cocaine and benzodiazepines. During quiet sleep, the infants were switched from breathing room air to 15% oxygen and changes in minute volume were assessed. The SM infants had a greater mean increase (p=0.028, p=0.034, respectively) and a greater magnitude of decline (pventilatory response to a hypoxic challenge. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Tracking hypoxic signaling within encapsulated cell aggregates.

    Science.gov (United States)

    Skiles, Matthew L; Sahai, Suchit; Blanchette, James O

    2011-12-16

    , is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 10(10) pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion. Western blot analysis of encapsulated cells in 20% and 1% oxygen also

  8. Evolution of the Therapeutic Effects of Induced Local Hypothermia in Neonates with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    B. Basiri

    2011-04-01

    Full Text Available Introduction & Objective: Hypoxic-ischemic encephalopathy is one of the most important causes of permanent damage to brain tissue that redound to mortality and/or late sequelae such as cerebral palsy or delayed neural development. 15-20 percent of Hypoxic-ischemic encephalopathy (HIE cases die during neonatal period and 25-30 percent of those who survive suffer from neural development problems such as cerebral palsy and mental retardation. Hypothermia or lowering temperature of brain or total body is a new and promising treatment. The present study was done to assess therapeutic effects of induced local hypothermia in hypoxic-ischemic encephalopathy (HIE among neonates admitted to Fatemieh and Beset hospitals of Hamadan city.Materials & Method: The present study was performed as a randomized clinical trial upon 36 neonates who had inclusion criteria to be imported into the study. In the first 6 hours after birth, the neonates were randomly classified into two 18 person groups. In the control group the neonates were managed with routine treatments consisted of preservative measures and anti-convulsive treatments, if necessary. In the case group the neonates received induced local hypothermia for 6 hours in addition to routine therapeutic managements. The data were analyzed using SPSS Version 13.Results: 72.7% of the neonates of the case and control groups were male. There was no significant difference between the case and control groups in sex, birth weight, gestational age and perinatal obstetric complications. The mean duration of admission was 7.72±4.23 days in the case group and 10.06±5.99 days in the control group with no significant difference between the two groups (P=0.199. The mean time of starting oral feeding was 3.44±3.11 days and 4.53±2.74 days in the control and case groups respectively and this difference was not statistically significant either (P=0.737.The mean time of regaining consciousness was 3.72±3.19 days in the case

  9. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  10. Attention indicator dynamics of qualified climbers influenced by hypoxic training during the overcoming various altitude levels of Mount Elbrus

    Directory of Open Access Journals (Sweden)

    Andriy Kiyko

    2017-08-01

    Full Text Available Purpose: to determine the effect of hypoxic training on the attention indicators at different altitudes when crossing the Mount Elbrus. Material & Methods: the study of various attention indicators with the participation of control (n=16 and experimental (n=12 groups with the use of interval hypoxic training (IHT in the 15–15 mode with breathing through the system into a confined space in the experimental group and using the methods of mathematical statistics are carried out. Result: studies have made it possible to determine that the use of the regime of discontinuous hypoxia 15–15 in the training process of the pre-competitive period contribute to an increase in attention rates that affect adaptation to the load under hypoxia conditions. Conclusion: results of the conducted studies indicate that the use of IHT in the 15–15 mode in the period before the ascent to Mount Elbrus allows to significantly increase the attention rates of qualified climbers at different altitude levels.

  11. Effect of CDP-choline on the biosynthesis of phospholipids in brain regions during hypoxic treatment

    International Nuclear Information System (INIS)

    Alberghina, M.; Viola, M.; Serra, I.; Mistretta, A.; Giuffrida, A.M.

    1981-01-01

    Acute administration of CDP-choline (i.p. 100 mg/Kg b.w.), 10 min before the intraventricular injection of labeled precursors, [2-3H] glycerol and [1-14C]-palmitate, was able to correct the impairment caused by hypoxic treatment of lipid metabolism in some brain regions, ie, cerebral hemispheres, cerebellum, and brainstem. After CDP-choline treatment, an increase of the specific radioactivity of total lipids and of phospholipids was observed in mitochondria purified from the three above-mentioned brain regions of the hypoxic animals, while no effect on the other subcellular fractions was found. CDP-Choline had a stimulating effect particularly on the incorporation of both precursors into mitochondrial PC, PE, and polyglycerophosphatides isolated form the three brain regions examined. The results obtained show that the action of CDP-choline in restoring lipid metabolism was more pronounced in brain mitochondria, which, among subcellular fractions, were the most affected by the hypoxic treatment

  12. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  13. Nitrous oxide emissions from the Gulf of Mexico Hypoxic Zone

    Science.gov (United States)

    The production of nitrous oxide (N2O), a potent greenhouse gas, in hypoxic coastal zones remains poorly characterized due to a lack of data, though large nitrogen inputs and deoxygenation typical of these systems create the potential for large N2O emissions. We report the first N...

  14. Effect of Neonatal Seizures on Cognitive Outcome of Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-10-01

    Full Text Available The independent effect of clinical neonatal seizures and their treatment on longterm neurodevelopmental outcome in 77 term newborns at risk for hypoxic-ischemic encephalopathy (HIE was determined in a study at University of California San Francisco.

  15. The experimental investigation of fibrinolytic system under the influence of flocalin in conditions of acute hypoxic kidney injury

    Directory of Open Access Journals (Sweden)

    A. I. Gozhenko

    2017-08-01

    Full Text Available In the experiments on rats subjected to acute hypoxic histochemical nephropathy, caused by sodium nitrite and 2,4-dinitrophenol, fibrinolytic activities of blood plasma, urine, renal cortex, medulla, and papilla after treatment with flocalin – the activator of KATP channels, were studied­. It was shown that in the conditions of acute kidney hypoxic injury flocalin administration resulted in the increase and essential restoration of fibrinolysis in blood plasma diminished under hypoxia, which was due to the growth of non-enzymatic fibrinolysis, whereas in urine and renal medulla the appreciable increase of enzymatic fibrinolytic activity took place. Moreover, the treatment of hypoxic nephropathy animals by flocalin resulted in the marked restoration of kidney ion regulatory and protein excretory functions that proves the positive influence of KATP channels activation on the one of the biochemical mechanisms of acute kidney injury as well as the protective effect of flocalin in relation to tubular cells of nephron. The obtained results testify to the beneficial effects of KATP channels activation in the conditions of acute hypoxic kidneys injury.

  16. Effects of temperature and hypoxic stress on the oxygen ...

    African Journals Online (AJOL)

    The specific oxygen consumption rate (VO2lMb) of Labeo capensis, the freshwater mudsucker, was determined for small and large fish at winter (8°C) and summer (23°C) temperatures. VO2lMb was also determined during hypoxic conditions of the experimental water. It was found that VO2lMb does not differ substantially ...

  17. Blood carbon dioxide levels and adverse outcome in neonatal hypoxic-ischemic encephalopathy.

    LENUS (Irish Health Repository)

    Nadeem, Montasser

    2012-01-31

    We investigated pCO(2) patterns and the relationship between pCO(2) levels and neurodevelopmental outcome in term infants with hypoxic-ischemic encephalopathy. Blood gases during the first 72 hours of life were collected from 52 infants with hypoxic-ischemic encephalopathy. Moderate hypocapnia (pCO(2) <3.3 kPa), severe hypocapnia (pCO(2) <2.6 kPa), and hypercapnia (pCO(2) >6.6 kPa) were correlated to neurodevelopmental outcome at 24 months. Normocapnia was documented in 416\\/551 (75.5%) of samples and was present during the entire 72 hours in only 6 out of 52 infants. Mean (standard deviation) pCO(2) values did not differ between infants with normal and abnormal outcomes: 5.43 (2.4) and 5.41 (2.03), respectively. There was no significant association between moderate hypocapnia, severe hypocapnia, or hypercapnia and adverse outcome (odds ratio [OR] = 1.84, 95% confidence interval [CI] = 0.49 to 6.89; OR = 3.16, CI = 0.14 to 28.45; and OR = 1.07, CI = 0.24 to 5.45, respectively). In conclusion, only one in nine newborns had normocapnia throughout the first 72 hours. Severe hypocapnia was rare and occurred only in ventilated babies. Hypercapnia and hypocapnia in infants with hypoxic-ischemic encephalopathy during the first 72 hours of life were not associated with adverse outcome.

  18. A Molecular and Whole Body Insight of the Mechanisms Surrounding Glucose Disposal and Insulin Resistance with Hypoxic Treatment in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    R. W. A. Mackenzie

    2016-01-01

    Full Text Available Although the mechanisms are largely unidentified, the chronic or intermittent hypoxic patterns occurring with respiratory diseases, such as chronic pulmonary disease or obstructive sleep apnea (OSA and obesity, are commonly associated with glucose intolerance. Indeed, hypoxia has been widely implicated in the development of insulin resistance either via the direct action on insulin receptor substrate (IRS and protein kinase B (PKB/Akt or indirectly through adipose tissue expansion and systemic inflammation. Yet hypoxia is also known to encourage glucose transport using insulin-dependent mechanisms, largely reliant on the metabolic master switch, 5′ AMP-activated protein kinase (AMPK. In addition, hypoxic exposure has been shown to improve glucose control in type 2 diabetics. The literature surrounding hypoxia-induced changes to glycemic control appears to be confusing and conflicting. How is it that the same stress can seemingly cause insulin resistance while increasing glucose uptake? There is little doubt that acute hypoxia increases glucose metabolism in skeletal muscle and does so using the same pathway as muscle contraction. The purpose of this review paper is to provide an insight into the mechanisms underpinning the observed effects and to open up discussions around the conflicting data surrounding hypoxia and glucose control.

  19. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions.

    Science.gov (United States)

    Deb, Sanjoy K; Gough, Lewis A; Sparks, S Andy; McNaughton, Lars R

    2018-03-01

    Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H + ) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO 3 ) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO 2 % = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO 3 - ]) following NaHCO 3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm -1 of NaHCO 3 or a matched placebo of 0.21 g kg bm -1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3-178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3-9.9 kJ; g = 0.8) were enhanced with NaHCO 3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l -1 ; 95% CI 2.2-5.9; g = 1.8), while blood [HCO 3 - ] and pH remained elevated in the NaHCO 3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO 3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.

  20. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    DEFF Research Database (Denmark)

    Taylor, Bryan J; Kjaergaard, Jesper; Snyder, Eric M

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ∼ 15 min) or 17-h normobaric hypoxia ( [FIO2 = 12.5%). Cardiac output (Q) and pulmonary...... capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q......Ppa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment....

  1. Why sensitive bacteria are resistant to hospital infection control

    Science.gov (United States)

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio ( IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community

  2. Why sensitive bacteria are resistant to hospital infection control.

    Science.gov (United States)

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while community acquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally. This follows from differences in their adaptation to hospital- and community-based transmission. Observed lack of

  3. Risk-sensitive control of stochastic hybrid systems on infinite time horizon

    Directory of Open Access Journals (Sweden)

    Runolfsson Thordur

    1999-01-01

    Full Text Available A risk-sensitive optimal control problem is considered for a hybrid system that consists of continuous time diffusion process that depends on a discrete valued mode variable that is modeled as a Markov chain. Optimality conditions are presented and conditions for the existence of optimal controls are derived. It is shown that the optimal risk-sensitive control problem is equivalent to the upper value of an associated stochastic differential game, and insight into the contributions of the noise input and mode variable to the risk sensitivity of the cost functional is given. Furthermore, it is shown that due to the mode variable risk sensitivity, the equivalence relationship that has been observed between risk-sensitive and H ∞ control in the nonhybrid case does not hold for stochastic hybrid systems.

  4. Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3

    International Nuclear Information System (INIS)

    Mujcic, Hilda; Rzymski, Tomasz; Rouschop, Kasper M.A.; Koritzinsky, Marianne; Milani, Manuela; Harris, Adrian L.; Wouters, Bradly G.

    2009-01-01

    Background and purpose: Tumour hypoxia contributes to failure of cancer treatment through its ability to protect against therapy and adversely influence tumour biology. In particular, several studies suggest that hypoxia promotes metastasis. Hypoxia-induced cellular changes are mediated by oxygen-sensitive signaling pathways that activate downstream transcription factors. We have investigated the induction and transcriptional regulation of a novel metastasis-associated gene, LAMP3 during hypoxia. Materials and methods: Microarray, quantitative PCR, Western blot analysis and immunohistochemistry were used to investigate hypoxic regulation of LAMP3. The mechanism for LAMP3 induction was investigated using transient RNAi and stable shRNA targeting components of the hypoxic response. Endoplasmic reticulum stress inducing agents, including proteasome inhibitors were assessed for their ability to regulate LAMP3. Results: LAMP3 is strongly induced by hypoxia at both the mRNA and protein levels in a large panel of human tumour cell lines. Induction of LAMP3 occurs as a consequence of the activation of the PERK/eIF2α/ATF4 arm of the unfolded protein response (UPR) and is independent of HIF-1α. LAMP3 is expressed heterogeneously within the microenvironment of tumours, overexpressed in breast cancer, and increases in tumours treated with avastin. Conclusions: These data identify LAMP3 as a novel hypoxia-inducible gene regulated by the UPR. LAMP3 is a new candidate biomarker of UPR activation by hypoxia in tumours and is a potential mediator of hypoxia-induced metastasis.

  5. The hypoxic cytotoxin SR 4233 increases the effectiveness of radioimmunotherapy in mice with human non-Hodgkin's lymphoma xenografts.

    Science.gov (United States)

    Wilder, R B; McGann, J K; Sutherland, W R; Waller, E K; Minchinton, A I; Goris, M L; Knox, S J

    1994-01-01

    To determine if either the hypoxic cell radiosensitizer etanidazole (SR 2508) or the hypoxic cytotoxin SR 4233 could improve the effectiveness of radioimmunotherapy. LC4 (an IgG1 monoclonal antibody directed toward malignant T cells) and MB-1 (an irrelevant isotype-matched control antibody) were injected intraperitoneally into severe combined immunodeficient phenotype mice with human cutaneous T cell lymphoma xenografts in order to determine the distribution of the antibodies in the tumors and normal tissues as a function of time. Computerized-pO2-histography was used to measure the median oxygen tension in the tumors. Tumor-bearing mice were treated with: (a) LC4; (b) 90Y-LC4; (c) 90Y-MB-1; (d) whole body irradiation delivered via an external 137Cs source; (e) etanidazole and 90Y-LC4; (f) SR 4233 and 90Y-LC4; (g) etanidazole; and (h) SR 4233. An additional group of mice received no treatment and served as controls. A tumor growth delay assay was used to assess the effectiveness of the different treatment regimens. LC4 accumulated in the tumors to a significantly greater extent than MB-1 (p LC4 by itself was able to produce a minor decrease in tumor size (control vs. LC4; p = 0.001). 90Y-LC4 produced greater tumor growth delay than LC4 alone (LC4 vs. 90Y-LC4; p = 0.01); however, the Yttrium-90 caused neutropenia and weight loss. The 90Y-labeled tumor-specific and non-specific antibodies both exerted greater tumor growth delay than externally delivered whole body irradiation (p LC4 (90Y-LC4 vs etanidazole and 90Y-LC4, p = 0.13). SR 4233, on the other hand, did enhance the tumor growth delay produced by 90Y-LC4 (90Y-LC4 vs. SR 4233 and 90Y-LC4, p = 0.046). The neutropenia and weight loss caused by 90Y-LC4 were exacerbated slightly (< 10%) by the administration of SR 4233. A first generation hypoxic cytotoxin, SR 4233, was able to enhance the tumor growth delay produced by radioimmunotherapy in severe combined immunodeficient phenotype mice with human cutaneous T cell

  6. Effects of Acutely Intermittent Hypoxic Exposure on Running Economy and Physical Performance in Basketball Players.

    Science.gov (United States)

    Kilding, Andrew E; Dobson, Bryan P; Ikeda, Erika

    2016-07-01

    Kilding, AE, Dobson, BP, and Ikeda, E. Effects of acutely intermittent hypoxic exposure on running economy and physical performance in basketball players. J Strength Cond Res 30(7): 2033-2042, 2016-The aim of this study was to determine the effect of short duration intermittent hypoxic exposure (IHE) on physical performance in basketball players. Using a single-blind placebo-controlled group design, 14 trained basketball players were subjected to 15 days of passive short duration IHE (n = 7), or normoxic control (CON, n = 7), using a biofeedback nitrogen dilution device. A range of physiological, performance, and hematological variables were measured at baseline, and 10 days after IHE. After intervention, the IHE group, relative to the CON group, exhibited improvements in the Yo-Yo intermittent recovery level 1 (+4.8 ± 1.6%; effect size [ES]: 1.0 ± 0.4) and repeated high-intensity exercise test performance (-3.5 ± 1.6%; ES: -0.4 ± 0.2). Changes in hematological parameters were minimal, although soluble transferrin receptor increased after IHE (+9.2 ± 10.1%; ES: 0.3 ± 0.3). Running economy at 11 km·h (-9.0 ± 9.7%; ES: -0.7 ± 0.7) and 13 km·h was improved (-8.2 ± 6.9%; ES: -0.7 ± 0.5), but changes to V[Combining Dot Above]O2peak, HRpeak, and lactate were unclear. In summary, acutely IHE resulted in worthwhile changes in physical performance tests among competitive basketball players. However, physiological measures explaining the performance enhancement were in most part unclear.

  7. Long-term results of treatment of patients with metronidazole and protracted radiotherapy: a base for comparative randomized studies with hypoxic radiosensitizers

    International Nuclear Information System (INIS)

    Karim, A.B.M.F.; Njo, K.H.

    1982-01-01

    From 1974 to 1978, a pilot study was undertaken in the Academic Hospital of the Free University of Amsterdam to evaluate the use of hypoxic radiosensitizer metronidazole given with conventional protracted radiotherapy. All patients had advanced malignancies, 70 head and neck cancers being available for long-term evaluation. Only four showed evidence of (reversible) neuropathy, including one patient with two attacks of reversible psychosis. With a minimum follow-up period of 30 months, the local control rates of some of these tumors appear to be encouraging and higher (54%) than usually obtained, without evidence of any long-term enhanced late effect of radiation or carcinogenesis. Clinical benefit has been persistently reported from metronidazole from a number of centers. Reports on other hypoxic radiosensitizers are not always clearly encouraging to date. In view of these facts, three-armed studies appear desirable and are being pursued

  8. Cyclometalated Ruthenium(II) Anthraquinone Complexes Exhibit Strong Anticancer Activity in Hypoxic Tumor Cells.

    Science.gov (United States)

    Zeng, Leli; Chen, Yu; Huang, Huaiyi; Wang, Jinquan; Zhao, Donglei; Ji, Liangnian; Chao, Hui

    2015-10-19

    Hypoxia is the critical feature of the tumor microenvironment that is known to lead to resistance to many chemotherapeutic drugs. Six novel ruthenium(II) anthraquinone complexes were designed and synthesized; they exhibit similar or superior cytotoxicity compared to cisplatin in hypoxic HeLa, A549, and multidrug-resistant (A549R) tumor cell lines. Their anticancer activities are related to their lipophilicity and cellular uptake; therefore, these physicochemical properties of the complexes can be changed by modifying the ligands to obtain better anticancer candidates. Complex 1, the most potent member of the series, is highly active against hypoxic HeLa cancer cells (IC50 =0.53 μM). This complex likely has 46-fold better activity than cisplatin (IC50 =24.62 μM) in HeLa cells. This complex tends to accumulate in the mitochondria and the nucleus of hypoxic HeLa cells. Further mechanistic studies show that complex 1 induced cell apoptosis during hypoxia through multiple pathways, including those of DNA damage, mitochondrial dysfunction, and the inhibition of DNA replication and HIF-1α expression, making it an outstanding candidate for further in vivo studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  10. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound

    DEFF Research Database (Denmark)

    Parsons, Rachel J.; Nelson, Craig E.; Carlson, Craig A.

    2015-01-01

    Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole...

  11. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI)

    Science.gov (United States)

    2012-01-01

    Background Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. Methods/Design Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial

  12. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI

    Directory of Open Access Journals (Sweden)

    Filippi Luca

    2012-09-01

    Full Text Available Abstract Background Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. Methods/Design Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g with precocious metabolic, clinical and electroencephalographic (EEG signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns

  13. Dose escalation of the hypoxic cell sensitizer etanidazole combined with ifosfamide, carboplatin, etoposide, and autologous hematopoietic stem cell support.

    Science.gov (United States)

    Elias, A D; Wheeler, C; Ayash, L J; Schwartz, G; Ibrahim, J; Mills, L; McCauley, M; Coleman, N; Warren, D; Schnipper, L; Antman, K H; Teicher, B A; Frei, E

    1998-06-01

    Multiple mechanisms of drug resistance contribute to treatment failure. Although high-dose therapy attempts to overwhelm these defenses pharmacologically, this approach is only successful in a fraction of treated patients. Many drug resistance mechanisms are shared between malignant and normal cells, but the expression of various drug resistance mechanisms associated with hypoxia is largely confined to tumor tissue. Thus, reversal of this mechanism is likely to provide a therapeutic advantage to the host. This study was designed to define the dose-limiting toxicities and maximum tolerated dose of etanidazole when it is given concurrently with high-dose ifosfamide, carboplatin, and etoposide (ICE), with hematopoietic stem cell support. The maximum tolerated doses of high-dose ICE were administered concurrently with dose escalations of etanidazole, a hypoxic cell sensitizer. All agents were given by 96-h continuous i.v. infusion beginning on day -7. Mesna uroprotection was provided. Autologous marrow and cytokine mobilized peripheral blood progenitor cells were reinfused on day 0. Granulocyte colony-stimulating factor was administered following reinfusion until the granulocytes recovered to > 1000/microliter. Fifty-five adults with advanced malignancies were enrolled in cohorts of five to nine patients. Four dose levels of etanidazole between 3 and 5.5 g/m2/day (12, 16, 20, and 22 g/m2 total doses) and two doses of carboplatin (1600 and 1800 mg/m2 total doses) were evaluated. Seven patients died of organ toxicity (13%); two each from veno-occlusive disease of liver and sepsis; and one each from sudden death, renal failure, and refractory thrombocytopenic hemorrhage. Five deaths occurred at the top dose level. One additional patient suffered a witnessed cardiorespiratory arrest from ventricular fibrillation and was resuscitated. Dose-dependent and largely reversible peripheral neuropathy was observed consisting of two syndromes: severe cramping myalgic/neuralgic pain

  14. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    International Nuclear Information System (INIS)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-01

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  15. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ronghai [Department of Urology, Linzi District People' s Hospital, Zibo, 255400 (China); Zhang, Ping, E-mail: zpskx001@163.com [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Li, Jinhang [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Guan, Hongzai [Laboratory Department, School of Medicine, Qingdao University, Qingdao, 266071 (China); Shi, Guangjun, E-mail: qdmhshigj@yahoo.com [Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 (China)

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  16. Scintigraphic imaging of focal hypoxic tissue: development and clinical applications of 123I-IAZA

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2002-09-01

    Full Text Available Affected tissues in a number of diseases, including cancer, stroke, cardiac infarction and diabetes, develop focal tissue hypoxia during their progression. The presence of hypoxic tissue may make the disease refractory to therapy, as in the case of solid tumor therapy using low LET ionizing radiation. In other pathologies, the detection of viable but hypoxic tissues may serve as a prodromal indicator of developing disease (e.g. diabetes,or as a prognostic indicator for management of the disease (e.g. stroke. Over the past two decades, a number of hypoxia radioimaging agents have been developed and tested clinically. Of these, 18F-Fmiso and 123I-IAZA are the most widely used radiotracers for PET and SPECT/planar imaging, respectively. IAZA and Fmiso are a 2-nitroimidazoles that chemically bind to subcellular components of viable hypoxic tissues. They sensitize hypoxic tumour to the killing effects of ionizing radiation via mechanisms that mimic the radiosensitizing effects of oxygen, and are therefore called oxygen mimetics. The oxygen mimetic effect is attributable in large part to the covalent binding of reductively-activated nitroimidazole intermediates to critical cellular macromolecules. Nitroimidazoles labelled with gamma-emitting radionuclides (e.g. 18F-Fmiso and 123I-IAZA have been used as scintigraphic markers of tumour hypoxia, based on the need to identify radioresistant hypoxic tumour cells as part of the radiotherapy planning process. Broader interest in non-invasive, imaging-based identification of focal hypoxia in a number of diseases has extended hypoxia studies to include peripheral vascular disease associated with diabetes, rheumatoid arthritis, stroke, myocardial ischaemia, brain trauma and oxidative stress. In this review, the current status of hypoxia-selective studies with 123I-IAZA , an experimental diagnostic radiopharmaceutical, is reviewed with respect to its pre-clinical development and clinical applications.Os tecidos

  17. The Proteasome Inhibitor MG-132 Protects Hypoxic SiHa Cervical Carcinoma Cells after Cyclic Hypoxia/Reoxygenation from Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Frank Pajonk

    2006-12-01

    Full Text Available INTRODUCTION: Transient hypoxia and subsequent reoxygenation are common phenomena in solid tumors that greatly influence the outcome of radiation therapy. This study was designed to determine how varying cycles of hypoxia/reoxygenation affect the response of cervical carcinoma cells irradiated under oxic and hypoxic conditions and whether this could be modulated by proteasome inhibition. MATERIALS AND METHODS: Plateau-phase SiHa cervical carcinoma cells in culture were exposed to varying numbers of 30-minute cycles of hypoxia/reoxygenation directly before irradiation under oxic or hypoxic conditions. 26S Proteasome activity was blocked by addition of MG-132. Clonogenic survival was measured by a colonyforming assay. RESULTS: Under oxic conditions, repeated cycles of hypoxia/reoxygenation decreased the clonogenic survival of SiHa cells. This effect was even more pronounced after the inhibition of 26S proteasome complex. In contrast, under hypoxic conditions, SiHa cells were radioresistant, as expected, but this was increased by proteasome inhibition. CONCLUSIONS: Proteasome inhibition radiosensitizes oxygenated tumor cells but may also protect tumor cells from ionizing radiation under certain hypoxic conditions.

  18. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1?-GRP78-Akt Axis

    OpenAIRE

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-01-01

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. ...

  19. Danshensu prevents hypoxic pulmonary hypertension in rats by inhibiting the proliferation of pulmonary artery smooth muscle cells via TGF-β-smad3-associated pathway.

    Science.gov (United States)

    Zhang, Ning; Dong, Mingqing; Luo, Ying; Zhao, Feng; Li, Yongjun

    2018-02-05

    Hypoxic pulmonary hypertension is characterized by the remodeling of pulmonary artery. Previously we showed that tanshinone IIA, one lipid-soluble component from the Chinese herb Danshen, ameliorated hypoxic pulmonary hypertension by inhibiting pulmonary artery remodeling. Here we explored the effects of danshensu, one water-soluble component of Danshen, on hypoxic pulmonary hypertension and its mechanism. Rats were exposed to hypobaric hypoxia for 4 weeks to develop hypoxic pulmonary hypertension along with administration of danshensu. Hemodynamics and pulmonary arterial remodeling index were measured. The effects of danshensu on the proliferation of primary pulmonary artery smooth muscle cells and transforming growth factor-β-smad3 pathway were assessed in vitro. Danshensu significantly decreased the right ventricle systolic pressure, the right ventricle hypertrophy and pulmonary vascular remodeling index in hypoxic pulmonary hypertension rats. Danshensu also reduced the increased expression of transforming growth factor-β and phosphorylation of smad3 in pulmonary arteries in hypoxic pulmonary hypertension rats. In vitro, danshensu inhibited the hypoxia- or transforming growth factor-β-induced proliferation of primary pulmonary artery smooth muscle cells. Moreover, danshensu decreased the hypoxia-induced expression and secretion of transforming growth factor in primary pulmonary adventitial fibroblasts and NR8383 cell line, inhibited the hypoxia or transforming growth factor-β-induced phosphorylation of smad3 in rat primary pulmonary artery smooth muscle cells. These results demonstrate that danshensu ameliorates hypoxic pulmonary hypertension in rats by inhibiting the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, and the inhibition effects is associated with transforming growth factor-β-smad3 pathway. Therefore danshensu may be a potential treatment for hypoxic pulmonary hypertension. Copyright © 2017 Elsevier B.V. All rights

  20. Temporal Transcriptome of Mouse ATDC5 Chondroprogenitors Differentiating under Hypoxic Conditions

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    The formation of cartilage takes place in vivo in an environment of reduced oxygen tension. To study the effect of hypoxia on the process of chondrogenesis, ATDC5 mouse chondroprogenitor cells were induced to differentiate by the addition of insulin and cultured under ambient and hypoxic conditions...

  1. Design and Evaluation of Autonomous Hybrid Frequency-Voltage Sensitive Load Controller

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Sossan, Fabrizio

    2013-01-01

    The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced l...... load diversity. Numerical simulations of the hybrid controller in a representative distribution system show the peak system load was reduced by 12% compared to a purely frequency sensitive load controller.......The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced...

  2. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of 2-amino-5-nitrothiazole as a hypoxic cell radiosensitizer

    International Nuclear Information System (INIS)

    Rockwell, S.; Mroczkowski, Z.; Rupp, W.D.

    1982-01-01

    The nitroheterocyclic compound 2-amino-5-nitrothiazole (ANT) was evaluated as a hypoxic radiosensitizer. Experiments with bacteria showed that this agent was similar to misonidozole in radiosensitizing activity, but was less cytotoxic and less mutagenic than misonidazole. Experiments with EMT6 tumor cells in culture showed ANT to be an effective hypoxic radiosensitizer, although slightly less active than misonidazole, and to be less cytotoxic than misonidazole. ANT was more toxic to mice than misonidazole and produced a spectrum of symptoms, including hyperactivity and agitation, different from those of misonidazole. The toxicities of ANT and misonidazole were additive. The maximum levels of ANT achieveable in the tumors after ip injection of nontoxic doses of drug were low ( -4 M) and the radiosensitization obtainable with the drug in vivo was inferior to that obtainable with misonidazole. These findings suggest that nitrothiazoles might be an interesting class of nitroheterocyclic radiosensitizers, but that molecules with increased solubility and improved pharmacokinetics would be necessary for efficacy in vivo

  4. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    Directory of Open Access Journals (Sweden)

    Thiago J Nakayama

    Full Text Available Soybean (Glycine max is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic or total (anoxic oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790, unknown protein related to N-terminal protein myristoylation (Glyma06g03430, protein suppressor of phyA-105 (Glyma06g37080, and fibrillin (Glyma10g32620. RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980 indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements, and CRT/DREs (C-repeat/dehydration-responsive elements frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression

  5. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    Science.gov (United States)

    Nakayama, Thiago J; Rodrigues, Fabiana A; Neumaier, Norman; Marcolino-Gomes, Juliana; Molinari, Hugo B C; Santiago, Thaís R; Formighieri, Eduardo F; Basso, Marcos F; Farias, José R B; Emygdio, Beatriz M; de Oliveira, Ana C B; Campos, Ângela D; Borém, Aluízio; Harmon, Frank G; Mertz-Henning, Liliane M; Nepomuceno, Alexandre L

    2017-01-01

    Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA

  6. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  7. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  8. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    International Nuclear Information System (INIS)

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-01-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G 0 /G 1 phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G 0 /G 1 phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: ► miR-210 downregulation radiosensitized hypoxic hepatoma. ► AIFM3 was identified as a direct target gene of miR-210. ► miR-210 might be a therapeutic target to hypoxic hepatoma.

  9. Multiobjective Control for Multivariable Systems with Mixed-sensitivity Specifications

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1997-01-01

    A series of multi objective H-infinity design problems are considered in this paper. The problems are formulated as a number of coupled H-infinity design problems. These H-infinity problems can be formulated as sensitivity problems, complementary sensitivity problems, or control sensitivity...... problems for every output (or input) in the system. It turns out that these multi objective H-infinity design problems, based on a number of different types of sensitivity problems, can be exactly decoupled into k H-infinity sensitivity problems for stable systems, where k is the number of outputs (for...

  10. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Brian H Walsh

    Full Text Available Hypoxic ischaemic encephalopathy (HIE in newborns can cause significant long-term neurological disability. The insult is a complex injury characterised by energy failure and disruption of cellular homeostasis, leading to mitochondrial damage. The importance of individual metabolic pathways, and their interaction in the disease process is not fully understood. The aim of this study was to describe and quantify the metabolomic profile of umbilical cord blood samples in a carefully defined population of full-term infants with HIE.The injury severity was defined using both the modified Sarnat score and continuous multichannel electroencephalogram. Using these classification systems, our population was divided into those with confirmed HIE (n = 31, asphyxiated infants without encephalopathy (n = 40 and matched controls (n = 71. All had umbilical cord blood drawn and biobanked at -80 °C within 3 hours of delivery. A combined direct injection and LC-MS/MS assay (AbsolutIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria was used for the metabolomic analyses of the samples. Targeted metabolomic analysis showed a significant alteration between study groups in 29 metabolites from 3 distinct classes (Amino Acids, Acylcarnitines, and Glycerophospholipids. 9 of these metabolites were only significantly altered between neonates with Hypoxic ischaemic encephalopathy and matched controls, while 14 were significantly altered in both study groups. Multivariate Discriminant Analysis models developed showed clear multifactorial metabolite associations with both asphyxia and HIE. A logistic regression model using 5 metabolites clearly delineates severity of asphyxia and classifies HIE infants with AUC = 0.92. These data describe wide-spread disruption to not only energy pathways, but also nitrogen and lipid metabolism in both asphyxia and HIE.This study shows that a multi-platform targeted approach to metabolomic analyses using accurately phenotyped and

  11. Hypoxic brain injury and cortical blindness in a victim of a ...

    African Journals Online (AJOL)

    the number of cases described) also recorded predominantly cytotoxic effects of envenomation and relatively little neurological effects from this venom.[2] This makes the findings in our patient somewhat unique in that it represents the first case reported where cortical blindness (representative of a hypoxic injury to the brain).

  12. EEG and MR Spectroscopy in Hypoxic-Ischemic Encephalopathy in Term Newborns

    OpenAIRE

    J Gordon Millichap

    2010-01-01

    Researchers from the University of Bologna, Italy, studied the relation of amplitude integrated EEG findings in the first 24 hrs of life to brain metabolic changes, detected by proton MR spectroscopy (H-MRS) at 7-10 days of life, in 32 term newborns with hypoxic-ischemic encephalopathy (HIE).

  13. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain.

    Science.gov (United States)

    Ara, Jahan; De Montpellier, Sybille

    2013-09-01

    Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates.

    Science.gov (United States)

    Lange, Sigrun; Rocha-Ferreira, Eridan; Thei, Laura; Mawjee, Priyanka; Bennett, Kate; Thompson, Paul R; Subramanian, Venkataraman; Nicholas, Anthony P; Peebles, Donald; Hristova, Mariya; Raivich, Gennadij

    2014-08-01

    Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca(+2) -regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFα, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage. © 2014 The Authors. Journal of Neurochemistry

  15. Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty.

    Directory of Open Access Journals (Sweden)

    Arne J Nagengast

    2010-07-01

    Full Text Available Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller or as an added value (risk-seeking controller to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.

  16. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    Science.gov (United States)

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  18. Chronic intermittent hyperoxia alters the development of the hypoxic ventilatory response in neonatal rats.

    Science.gov (United States)

    Logan, Sarah; Tobin, Kristina E; Fallon, Sarah C; Deng, Kevin S; McDonough, Amy B; Bavis, Ryan W

    2016-01-01

    Chronic exposure to sustained hyperoxia alters the development of the respiratory control system, but the respiratory effects of chronic intermittent hyperoxia have rarely been investigated. We exposed newborn rats to short, repeated bouts of 30% O2 or 60% O2 (5 bouts h(-1)) for 4-15 days and then assessed their hypoxic ventilatory response (HVR; 10 min at 12% O2) by plethysmography. The HVR tended to be enhanced by intermittent hyperoxia at P4 (early phase of the HVR), but it was significantly reduced at P14-15 (primarily late phase of the HVR) compared to age-matched controls; the HVR recovered when individuals were returned to room air and re-studied as adults. To investigate the role of carotid body function in this plasticity, single-unit carotid chemoafferent activity was recorded in vitro. Intermittent hyperoxia tended to decrease spontaneous action potential frequency under normoxic conditions but, contrary to expectations, hypoxic responses were only reduced at P4 (not at P14) and only in rats exposed to higher O2 levels (i.e., intermittent 60% O2). Rats exposed to intermittent hyperoxia had smaller carotid bodies, and this morphological change may contribute to the blunted HVR. In contrast to rats exposed to intermittent hyperoxia beginning at birth, two weeks of intermittent 60% O2 had no effect on the HVR or carotid body size of rats exposed beginning at P28; therefore, intermittent hyperoxia-induced respiratory plasticity appears to be unique to development. Although both intermittent and sustained hyperoxia alter carotid body development and the HVR of rats, the specific effects and time course of this plasticity differs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae

    Directory of Open Access Journals (Sweden)

    Wylezich Claudia

    2012-11-01

    Full Text Available Abstract Background Protist communities inhabiting oxygen depleted waters have so far been characterized through both microscopical observations and sequence based techniques. However, the lack of cultures for abundant taxa severely hampers our knowledge on the morphology, ecology and energy metabolism of hypoxic protists. Cultivation of such protists has been unsuccessful in most cases, and has never yet succeeded for choanoflagellates, even though these small bacterivorous flagellates are known to be ecologically relevant components of aquatic protist communities. Results Quantitative data for choanoflagellates and the vertical distribution of Codosiga spp. at Gotland and Landsort Deep (Baltic Sea indicate its preference for oxygen-depleted zones. Strains isolated and cultivated from these habitats revealed ultrastructural peculiarities such as mitochondria showing tubular cristae never seen before for choanoflagellates, and the first observation of intracellular prokaryotes in choanoflagellates. Analysis of their partial 28S rRNA gene sequence complements the description of two new species, Codosiga minima n. sp. and C. balthica n. sp. These are closely related with but well separated from C. gracilis (C. balthica and C. minima p-distance to C. gracilis 4.8% and 11.6%, respectively. In phylogenetic analyses the 18S rRNA gene sequences branch off together with environmental sequences from hypoxic habitats resulting in a wide cluster of hypoxic Codosiga relatives so far only known from environmental sequencing approaches. Conclusions Here, we establish the morphological and ultrastructural identity of an environmental choanoflagellate lineage. Data from microscopical observations, supplemented by findings from previous culture-independent methods, indicate that C. balthica is likely an ecologically relevant player of Baltic Sea hypoxic waters. The possession of derived mitochondria could be an adaptation to life in hypoxic environments

  20. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    Science.gov (United States)

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  1. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  2. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Sun, Ting [Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou (China); Cao, Jianping; Liu, Fenju [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Tian, Ye [Department of Radiotherapy and Oncology, The Second Affiliated Hospital, Soochow University, Suzhou (China); Zhu, Wei [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China)

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  3. Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions.

    Science.gov (United States)

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-08-01

    Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  4. Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: a meta-analysis.

    Science.gov (United States)

    Lee, Y C; Phan, T G; Jolley, D J; Castley, H C; Ingram, D A; Reutens, D C

    2010-02-16

    Accurate prediction of neurologic outcome after hypoxic coma is important. Previous systematic reviews have not used summary statistics to summarize and formally compare the accuracy of different prognostic tests. We therefore used summary receiver operating characteristic curve (SROC) and cluster regression methods to compare motor and pupillary responses with sensory evoked potential (SEP) and EEG in predicting outcome after hypoxic coma. We searched PubMed, MEDLINE, and Embase (1966-2007) for reports in English, German, and French and identified 25 suitable studies. An SROC was constructed for each marker (SEP, EEG, M1 and M SEP was larger than those for M1, M SEP (AUC 0.891) and that for M1 (AUC 0.786) was small (0.105, 95% confidence interval 0.023-0.187), only reaching significance on day 1 after coma onset. The use of M SEP) is marginally better than M1 at predicting outcome after hypoxic coma. However, the superiority of SEP diminishes after day 1 and when M SEP is a better marker than clinical signs.

  5. Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance

    Directory of Open Access Journals (Sweden)

    Kapuganti Jagadis Gupta

    2016-03-01

    Full Text Available Hypoxic and anoxic conditions result in the energy crisis that leads to cell damage. Since mitochondria are the primary organelles for energy production, the support of these organelles in a functional state is an important task during oxygen deprivation. Plant mitochondria adapted the strategy to survive under hypoxia by keeping electron transport operative even without oxygen via the use of nitrite as a terminal electrons acceptor. The process of nitrite reduction to nitric oxide (NO in the mitochondrial electron transport chain recycles NADH and leads to a limited rate of ATP production. The produced ATP alongside with the ATP generated by fermentation supports the processes of transcription and translation required for hypoxic survival and recovery of plants. Non-symbiotic hemoglobins (called phytoglobins in plants scavenge NO and thus contribute to regeneration of NAD+ and nitrate required for the operation of anaerobic energy metabolism. This overall operation represents an important strategy of biochemical adaptation that results in the improvement of energy status and thereby in protection of plants in the conditions of hypoxic stress.

  6. Analysis of Hypoxic and Hypercapnic Ventilatory Response in Healthy Volunteers.

    Directory of Open Access Journals (Sweden)

    Shmuel Goldberg

    Full Text Available A previous study has suggested that the Human Leukocyte Antigen (HLA allele DQB1*06:02 affects hypoxic ventilatory response (HVR but not hypercapnic ventilatory response (HCVR in an Asian population. The current study evaluated the relationship in Caucasians and Asians. In addition we assessed whether gender or polymorphisms in genes participating in the control of breathing affect HVR and HCVR.A re-breathing system was used to measure HVR and HCVR in 551 young adults (56.8% Caucasians, 30% Asians. HLA-DQB1*06:02 and tagged polymorphisms and coding variants in genes participating in breathing (PHOX2B, GPR4 and TASK2/KCNK5 were analyzed. The associations between HVR/HCVR and HLA-DQB1*06:02, genetic polymorphisms, and gender were evaluated using ANOVA or frequentist association testing with SNPTEST.HVR and gender are strongly correlated. HCVR and gender are not. Mean HVR in women was 0.276±0.168 (liter/minute/%SpO2 compared to 0.429±0.266 (liter/minute/%SpO2 in men, p<0.001 (55.4% higher HVR in men. Women had lower baseline minute ventilation (8.08±2.36 l/m vs. 10.00±3.43l/m, p<0.001, higher SpO2 (98.0±1.3% vs. 96.6±1.7%, p<0.001, and lower EtCO2 (4.65±0.68% vs. 4.82±1.02%, p = 0.025. One hundred and two (18.5% of the participants had HLA-DQB1*06:02. No association was seen between HLA-DQB1*06:02 and HVR or HCVR. Genetic analysis revealed point wise, uncorrected significant associations between two TASK2/KCNK5 variants (rs2815118 and rs150380866 and HCVR.This is the largest study to date reporting the relationship between gender and HVR/ HCVR and the first study assessing the association between genetic polymorphisms in humans and HVR/HCVR. The data suggest that gender has a large effect on hypoxic breathing response.

  7. Free radicals in hypoxic rat diaphragm contractility: no role for xanthine oxidase.

    NARCIS (Netherlands)

    Heunks, L.M.A.; Machiels, H.A.; Abreu, R.A. de; Zhu, X.; Heijden, E. van der; Dekhuijzen, P.N.R.

    2001-01-01

    Recent evidence indicates that hypoxia enhances the generation of oxidants. Little is known about the role of free radicals in contractility of the rat diaphragm during hypoxia. We hypothesized that antioxidants improve contractility of the hypoxic rat diaphragm and that xanthine oxidase (XO) is an

  8. Phosphorus cycling and burial in sediments of a seasonally hypoxic marine basin

    NARCIS (Netherlands)

    Sulu-Gambari, F; Hagens, M.; Behrends, T; Seitaj, D.; Meysman, F.J.R.; Middelburg, J.; Slomp, C.P.

    2018-01-01

    Recycling of phosphorus (P) from sediments contributes to the development of bottom-water hypoxia in many coastal systems. Here, we present results of a year-long assessment of P dynamics in sediments of a seasonally hypoxic coastal marine basin (Lake Grevelingen, the Netherlands) in 2012.

  9. Effects of hypoxic preconditioning on the changes of expression of neuroglobin mRNA and labeled positive cells following cerebral ischemia in gerbils

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Yanqun Chang; Zhenfang Liu; Qingxi Fu; Xiao Zhang

    2006-01-01

    BACKGROUND: Neuroglobin (NGB), as newly discovered the third member of the globin family binding oxygen, mainly exists in brain of human beings and vertebrates, and it is closely correlated with the oxygen supply in brain.OBJECTIVE : To observe the changes of the expression of neuroglobin and number of positive cells labeled immunohistochemically following cerebral ischemia in gerbils after hypoxic preconditioning. DESIGN: A complete randomized grouping design and controlled experiment. SETTING: Department of Neurology, Department of Anesthesia, Shandong Provincial Hospital, Shandong University.MATERIALS: Sixty-six adult male Mongolian gerbils of clean degree, about 50-65 g, at an average of 57.5 g were provided by the Experimental Animal Center of Capital Medical University [certificate number of animal quality:SCXK(Beijing)2000-0012]. TRNzil (Tianwei Shidai Company, Beijing), polymerase chain reaction (PCR) primers (synthetized by Invitrogen Company, Shanghai); reverse transcription-PCR (RT-PCR) one-step kit (Toyobo Company); PCR instrument (GeneAmp PCR System 240); mice brain NGB monoclonal antibody (Academy of Military Medical Sciences); DAB (Zhongshan Company, Beijing). METHEDS: The study was completed from December 2004 to June 2005 in Shandong Provincial Hospital. ① The 66 gerbils were randomly divided into sham-operated group (n =6), cerebral ischemia group (n =30) and hypoxic preconditioning group (n =30). The gerbils in the hypoxic preconditioning group were put in the environment which contained O2 (0.08 in volume fraction) and N2 (0.92 in volume fraction) at temperature of 25 ℃ for 2 hours. After 5 hours, the gerbils in the hypoxic preconditioning group and cerebral ischemia group were anesthetized, then bilateral common carotid arteries were ligated. In the sham-operated group, bilateral common carotid arteries were only isolated without ligation and hypoxic preconditioning. ②2 At 1, 5, 10, 30 and 60 minutes after cerebral ischemia, the

  10. Reward and punishment sensitivity and alcohol use: the moderating role of executive control.

    Science.gov (United States)

    Jonker, Nienke C; Ostafin, Brian D; Glashouwer, Klaske A; van Hemel-Ruiter, Madelon E; de Jong, Peter J

    2014-05-01

    Reward sensitivity and to a lesser extent punishment sensitivity have been found to explain individual differences in alcohol use. Furthermore, many studies showed that addictive behaviors are characterized by impaired self-regulatory processes, and that individual differences related to alcohol use are moderated by executive control. This is the first study that explores the potential moderating role of executive control in the relation between reward and punishment sensitivity and alcohol use. Participants were 76 university students, selected on earlier given information about their alcohol use. Half of the participants indicated to drink little alcohol and half indicated to drink substantial amounts of alcohol. As expected, correlational analyses showed a positive relationship between reward sensitivity and alcohol use and a negative relation between punishment sensitivity and alcohol use. Regression analysis confirmed that reward sensitivity was a significant independent predictor of alcohol use. Executive control moderated the relation between punishment sensitivity and alcohol use, but not the relation between reward sensitivity and alcohol use. Only in individuals with weak executive control punishment sensitivity and alcohol use were negatively related. The results suggest that for individuals with weak executive control, punishment sensitivity might be a protective factor working against substantial alcohol use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dataset for the proteomic inventory and quantitative analysis of the breast cancer hypoxic secretome associated with osteotropism

    DEFF Research Database (Denmark)

    Cox, T.R.; Schoof, Erwin; Gartland, A.

    2015-01-01

    secretomes are known to be active mediators of both local and distant host cells and play an important role in the progression and dissemination of cancer. Here we have quantitatively profiled both the composition of breast cancer secretomes associated with osteotropism, and their modulation under normoxic...... and hypoxic conditions. We detect and quantify 162 secretome proteins across all conditions which show differential hypoxic induction and association with osteotropism. Mass Spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000397...

  12. Impaired Ventilatory and Thermoregulatory Responses to Hypoxic Stress in Newborn Phox2b Heterozygous Knock-Out Mice

    OpenAIRE

    Ramanantsoa, Nelina; Matrot, Boris; Vardon, Guy; Lajard, Anne-Marie; Voituron, Nicolas; Dauger, Stéphane; Denjean, André; Hilaire, Gérard; Gallego, Jorge

    2011-01-01

    The Phox2b genesis necessary for the development of the autonomic nervous system, and especially, of respiratory neuronal circuits. In the present study, we examined the role of Phox2b in ventilatory and thermoregulatory responses to hypoxic stress, which are closely related in the postnatal period. Hypoxic stress was generated by strong thermal stimulus, combined or not with reduced inspired O2. To this end, we exposed 6-day-old Phox2b +/? pups and their wild-type littermates (Phox2b +/+) to...

  13. Bed Rest and Hypoxic Exposure Affect Sleep Architecture and Breathing Stability

    Directory of Open Access Journals (Sweden)

    Shawnda A. Morrison

    2017-06-01

    Full Text Available Objective: Despite over 50 years of research on the physiological effects of sustained bed rest, data characterizing its effects on sleep macrostructure and breathing stability in humans are scarce. This study was conducted to determine the effects of continuous exposure to hypoxia and sustained best rest, both individually and combined, on nocturnal sleep and breathing stability.Methods: Eleven participants completed three randomized, counter-balanced, 21-days trials of: (1 normoxic bed rest (NBR, PIO2 = 133.1 ± 0.3, (2 hypoxic ambulatory confinement (HAMB, PIO2 = 90.0 ± 0.4 and (3 hypoxic bed rest (HBR, PIO2 = 90.0 ± 0.4; ~4,000 m equivalent altitude. Full objective polysomnography was performed at baseline, on Night 1 and Night 21 in each condition.Results: In NBR Night 1, more time was spent in light sleep (10 ± 2% compared to baseline (8 ± 2%; p = 0.028; Slow-wave sleep (SWS was reduced from baseline in the hypoxic-only trial by 18% (HAMB Night 21, p = 0.028 and further reduced by 33% (HBR Night 1, p = 0.010, and 36% (HBR Night 21, p = 0.008 when combined with bed rest. The apnea-hypopnea index doubled from Night 1 to Night 21 in HBR (32–62 events·h−1 and HAMB (31–59 events·h−1; p = 0.002. Those who experienced greatest breathing instability from Night 1 to Night 21 (NBR were correlated to unchanged or higher (+1% night SpO2 concentrations (R2 = 0.471, p = 0.020.Conclusion: Bed rest negatively affects sleep macrostructure, increases the apnea-hypopnea index, and worsens breathing stability, each independently exacerbated by continuous exposure to hypoxia.

  14. Bed Rest and Hypoxic Exposure Affect Sleep Architecture and Breathing Stability

    Science.gov (United States)

    Morrison, Shawnda A.; Mirnik, Dani; Korsic, Spela; Eiken, Ola; Mekjavic, Igor B.; Dolenc-Groselj, Leja

    2017-01-01

    Objective: Despite over 50 years of research on the physiological effects of sustained bed rest, data characterizing its effects on sleep macrostructure and breathing stability in humans are scarce. This study was conducted to determine the effects of continuous exposure to hypoxia and sustained best rest, both individually and combined, on nocturnal sleep and breathing stability. Methods: Eleven participants completed three randomized, counter-balanced, 21-days trials of: (1) normoxic bed rest (NBR, PIO2 = 133.1 ± 0.3), (2) hypoxic ambulatory confinement (HAMB, PIO2 = 90.0 ± 0.4) and (3) hypoxic bed rest (HBR, PIO2 = 90.0 ± 0.4; ~4,000 m equivalent altitude). Full objective polysomnography was performed at baseline, on Night 1 and Night 21 in each condition. Results: In NBR Night 1, more time was spent in light sleep (10 ± 2%) compared to baseline (8 ± 2%; p = 0.028); Slow-wave sleep (SWS) was reduced from baseline in the hypoxic-only trial by 18% (HAMB Night 21, p = 0.028) and further reduced by 33% (HBR Night 1, p = 0.010), and 36% (HBR Night 21, p = 0.008) when combined with bed rest. The apnea-hypopnea index doubled from Night 1 to Night 21 in HBR (32–62 events·h−1) and HAMB (31–59 events·h−1; p = 0.002). Those who experienced greatest breathing instability from Night 1 to Night 21 (NBR) were correlated to unchanged or higher (+1%) night SpO2 concentrations (R2 = 0.471, p = 0.020). Conclusion: Bed rest negatively affects sleep macrostructure, increases the apnea-hypopnea index, and worsens breathing stability, each independently exacerbated by continuous exposure to hypoxia. PMID:28676764

  15. In vivo evidence suggesting reciprocal renal hypoxia-inducible factor-1 upregulation and signal transducer and activator of transcription 3 activation in response to hypoxic and non-hypoxic stimuli.

    Science.gov (United States)

    Nechemia-Arbely, Yael; Khamaisi, Mogher; Rosenberger, Christian; Koesters, Robert; Shina, Ahuva; Geva, Carmit; Shriki, Anat; Klaus, Stephen; Rosen, Seymour; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H; Heyman, Samuel N

    2013-04-01

    In vitro studies suggest that combined activation of hypoxia-inducible factor (HIF) and signal transducer and activator of transcription 3 (STAT3) promotes the hypoxia response. However, their interrelationship in vivo remains poorly defined. The present study investigated the possible relationship between HIF-1 upregulation and STAT3 activation in the rodent kidney in vivo. Activation of HIF-1 and STAT3 was analysed by immunohistochemical staining and western blot analysis in: (i) models of hypoxia-associated kidney injury induced by radiocontrast media or rhabdomyolysis; (ii) following activation of STAT3 by the interleukin (IL)-6-soluble IL-6 receptor complex; or (iii) following HIF-1α stabilization using hypoxic and non-hypoxic stimuli (mimosine, FG-4497, CO, CoCl(2)) and in targeted von Hippel-Lindau-knockout mice. Western blot analysis and immunostaining revealed marked induction of both transcription factors under all conditions tested, suggesting that in vivo STAT3 can trigger HIF and vice versa. Colocalization of HIF-1α and phosphorylated STAT3 was detected in some, but not all, renal cell types, suggesting that in some cells a paracrine mechanism may be responsible for the reciprocal activation of the two transcription factors. Nevertheless, in several cell types spatial concordance was observed under the majority of conditions tested, suggesting that HIF-1 and STAT3 may act as cotranscription factors. These in vivo studies suggest that, in response to renal hypoxic-stress, upregulation of HIF-1 and activation of STAT3 may be both reciprocal and cell type dependent. © 2013 The Authors Clinical and Experimental Pharmacology and Physiology © 2013 Wiley Publishing Asia Pty Ltd.

  16. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Ren Hongying; Cao Ying; Zhao, Qinjun; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Cai Huiguo; Han Zhongchao; Yang Renchi; Chen Guoqiang; Zhao, R.C.

    2006-01-01

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O 2 , bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G 2 /S/M phase cells increased evidently under 8% O 2 condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O 2 condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl 2 ) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation

  17. A behavioural study of neuroglobin-overexpressing mice under normoxic and hypoxic conditions

    NARCIS (Netherlands)

    Van Leuven, Wendy; Van Dam, Debby; Moens, Luc; De Deyn, Peter Paul; Dewilde, Sylvia

    Neuroglobin (Ngb), a neuron-specific heme-binding protein that binds O-2, CO and NO reversibly, and promotes in vivo and in vitro cell survival after hypoxic and ischaemic insult Although the mechanisms of this neuroprotection remain unknown, Ngb might play an important role in counteracting the

  18. Use of perampanel in one case of super-refractory hypoxic myoclonic status: Case report

    Directory of Open Access Journals (Sweden)

    Estevo Santamarina

    2015-01-01

    Conclusion: This case shows the potential utility of PER as a therapeutic option in super-refractory hypoxic status and even its potential use before other aggressive alternatives considering their greater morbidity.

  19. Potentiation of the radioprotective effect of hypoxic in mice with experimental hyperthyreosis

    International Nuclear Information System (INIS)

    Shikulova, Ya.; Vatsek, A.

    1982-01-01

    In mice fed for nine days a diet with the addition of dried thyroid gland, the protective effect of hypoxic hypoxia (12% O 2 ) on hemopoiesis was investigated. The protective effect of hypoxia on endogenous CFUs of the spleen and bone marrow cell populations grew with feeding intervals. In the course of thyroid gland feeding the number of hemopoietic stem cells (CFUs) of the femur increases. In the animals, hypermetabolism is induced which is manifested by an elevation of the total consumption of oxygen and by a decrease of oxygen tension in the tissues during the stay in an environment with 12% O 2 which is more pronounced than in the control group. The intensification of tissue hypoxia in hypermetabolic state suggests one of the possibilities of potentiating the protective effectiveness of drugs that reduce oxygen tension in the tissues [ru

  20. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning.

    Science.gov (United States)

    Taie, Satoshi; Ono, Junichiro; Iwanaga, Yasuyuki; Tomita, Shuhei; Asaga, Takehiko; Chujo, Kosuke; Ueki, Masaaki

    2009-08-01

    Sublethal hypoxia induces tolerance to subsequent hypoxic insults in a process known as hypoxic preconditioning (HP). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key transcription protein involved in the mechanism of HP. In this study, we investigated the effects of HP on tissue oxygenation and expression of HIF-1 alpha gene targets in the brain using neural cell-specific HIF-1 alpha-deficient mice. The animals were exposed to 8% oxygen for 3 hours. Twenty-four hours later, the oxygen partial pressure (pO(2)) of brain tissue and gene expression were measured during hypoxia. HP improved the pO(2) of brain tissue during subsequent hypoxia with upregulated inducible nitric oxide synthase in wild-type mice, whereas HP had no detectable effect in the mutant mice. Our results indicate that the protective effects of HP may be partially mediated by improving tissue oxygenation via HIF-1 alpha and inducible nitric oxide synthase.

  1. Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy.

    LENUS (Irish Health Repository)

    Nadeem, Montasser

    2012-01-31

    BACKGROUND: To examine the blood glucose profile and the relationship between blood glucose levels and neurodevelopmental outcome in term infants with hypoxic-ischaemic encephalopathy. METHODS: Blood glucose values within 72 hours of birth were collected from 52 term infants with hypoxic-ischaemic encephalopathy. Hypoglycaemia [< 46.8 mg\\/dL (2.6 mmol\\/L)] and hyperglycaemia [> 150 mg\\/dL (8.3 mmol\\/L)] were correlated to neurodevelopmental outcome at 24 months of age. RESULTS: Four fifths of the 468 blood samples were in the normoglycaemic range (392\\/468:83.8%). Of the remaining 76 samples, 51.3% were in the hypoglycaemic range and (48.7%) were hyperglycaemic. A quarter of the hypoglycaemic samples (28.2%:11\\/39) and a third of the hyperglycaemic samples (32.4%:12\\/37) were recorded within the first 30 minutes of life. Mean (SD) blood glucose values did not differ between infants with normal and abnormal outcomes [4.89(2.28) mmol\\/L and 5.02(2.35) mmol\\/L, p value = 0.15] respectively. In term infants with hypoxic-ischaemic encephalopathy, early hypoglycaemia (between 0-6 hours of life) was associated with adverse outcome at 24 months of age [OR = 5.8, CI = 1.04-32)]. On multivariate analysis to adjust for grade of HIE this association was not statistically significant. Late hypoglycaemia (6-72 hours of life) was not associated with abnormal outcome [OR = 0.22, CI (0.04-1.14)]. The occurrence of hyperglycaemia was not associated with adverse outcome. CONCLUSION: During the first 72 hours of life, blood glucose profile in infants with hypoxic-ischaemic encephalopathy varies widely despite a management protocol. Early hypoglycaemia (0-6 hours of life) was associated with severe HIE, and thereby; adverse outcome.

  2. Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy

    LENUS (Irish Health Repository)

    Nadeem, Montasser

    2011-02-04

    Abstract Background To examine the blood glucose profile and the relationship between blood glucose levels and neurodevelopmental outcome in term infants with hypoxic-ischaemic encephalopathy. Methods Blood glucose values within 72 hours of birth were collected from 52 term infants with hypoxic-ischaemic encephalopathy. Hypoglycaemia [< 46.8 mg\\/dL (2.6 mmol\\/L)] and hyperglycaemia [> 150 mg\\/dL (8.3 mmol\\/L)] were correlated to neurodevelopmental outcome at 24 months of age. Results Four fifths of the 468 blood samples were in the normoglycaemic range (392\\/468:83.8%). Of the remaining 76 samples, 51.3% were in the hypoglycaemic range and (48.7%) were hyperglycaemic. A quarter of the hypoglycaemic samples (28.2%:11\\/39) and a third of the hyperglycaemic samples (32.4%:12\\/37) were recorded within the first 30 minutes of life. Mean (SD) blood glucose values did not differ between infants with normal and abnormal outcomes [4.89(2.28) mmol\\/L and 5.02(2.35) mmol\\/L, p value = 0.15] respectively. In term infants with hypoxic-ischaemic encephalopathy, early hypoglycaemia (between 0-6 hours of life) was associated with adverse outcome at 24 months of age [OR = 5.8, CI = 1.04-32)]. On multivariate analysis to adjust for grade of HIE this association was not statistically significant. Late hypoglycaemia (6-72 hours of life) was not associated with abnormal outcome [OR = 0.22, CI (0.04-1.14)]. The occurrence of hyperglycaemia was not associated with adverse outcome. Conclusion During the first 72 hours of life, blood glucose profile in infants with hypoxic-ischaemic encephalopathy varies widely despite a management protocol. Early hypoglycaemia (0-6 hours of life) was associated with severe HIE, and thereby; adverse outcome.

  3. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Yihua Liu

    2017-11-01

    Full Text Available Background: The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs. This study sought to address (i the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI in rats. Methods: rat BMSCs were harvested and cultured in normoxic (21% O2, n=27 or hypoxic conditions (5% O2, n=27 until Passage 4 (P4. Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6 or hypoxia (n=6 were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG positron emission tomography (PET imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Results: Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Conclusion: Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting

  4. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction.

    Science.gov (United States)

    Liu, Yihua; Yang, Xiaoxi; Maureira, Pablo; Falanga, Aude; Marie, Vanessa; Gauchotte, Guillaume; Poussier, Sylvain; Groubatch, Frederique; Marie, Pierre-Yves; Tran, Nguyen

    2017-01-01

    The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs). This study sought to address (i) the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii) the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI) in rats. rat BMSCs were harvested and cultured in normoxic (21% O2, n=27) or hypoxic conditions (5% O2, n=27) until Passage 4 (P4). Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6) or hypoxia (n=6) were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting angiogenesis. © 2017 The Author(s). Published by S. Karger AG

  5. The clinical significance of determining the plasma superoxide dismutase and neuropeptide Y in newborn hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Xu Xuezhong; Cui Zhenxing

    2002-01-01

    Objective: To investigate the contents of plasma superoxide dismutase (SOD) and neuropeptide Y (NPY) in newborn hypoxic-ischemic encephalopathy (HIE) babies in various clinic stages and their clinical significance. Methods: The plasma levels of SOD and NPY of 63 HIE babies and controls were determined by radioimmunoassay (RIA) and the values were studied for different clinical stages (severe 22, moderate 7 and mild 24). Results: The contents of plasma SOD and NPY of HIE babies of various stages were different and there existed remarkable contrast between those in patients and controls (p<0.05 or p<0.01). Conclusion: The contents of plasma SOD and NPY in HIE neonates were correlated to the clinic stage and severeness of the disease process

  6. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  7. Evaluation of 80 Term Neonates with Hypoxic Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Selahattin Katar

    2007-01-01

    Full Text Available This study aimed to review the etiology, clinical - laboratory features and mortality rate of term 80 neonates with perinatal asphyxia admitted to our neonatal unit between January 2005-April 2006. The sex distribution was 24 (%30 female and 56 (% 70 male. The mean gestational age was 38.6±1.3 weeks and weight 3156±561 gram. Of the patients % 46.25 were delivered with a cesarean section and % 53.75 with spontaneous vaginal delivery. The etiologic factors for hypoxic ischemic encephalopathy were % 31.25 force delivery, meconium aspiration, and % 66.25 preeclampsia, eclampsia and diabetic mother’s infant. The distribution of patients according to HIE statging system (Sarnat&Sarnat were as follows: 33 patients (% 41.25 in stage 1, 20 (% 25 in stage 2 and 27 (% 33.75 in stage 3. Seizures were observed in % 33.75 of patients. The mean duration of hospital stay was 10.6±7.7 days for the surviving patients and 4.2±3.4 days for patients who died. Except from central nervous system, liver and kidney were the most involved organs.Perinatal asphyxia remains to be leading cause of neonatal mortality. Hypoxic ischemic encephalopathy is a common newborn problem and cause important mortality and morbidity where low-social –cultural –education conditions with in regions.

  8. Computed tomography diagnosis of neonatal hypoxic ischemic encephalopathy combined with intracranial hemorrhage and clinical nursing treatment.

    Science.gov (United States)

    Zhang, Y; Zhang, J L; Li, Y

    2016-01-01

    Hypoxic ischemic encephalopathy (HIE), one of the common causes of newborn invalidism, is likely to induce nervous system-associated sequelae and even intracranial hemorrhage in severe cases. The incidence rate of HIE has been rising in recent years. In order to study the clinical nursing effect for HIE combined with intracranial hemorrhage, 76 newborns diagnosed with HIE combined with intracranial hemorrhage by spiral computed tomography (CT) from the of Binzhou People’s Hospital, Shandong, China were selected. They were divided into a control group and an intervention group. The control group received routine nursing, while the intervention group received comprehensive nursing intervention. The experimental results suggested that the mental developmental index (MDI) value and the psychomotor developmental index (PDI) value of patients in the intervention group were much higher than those of the control group and the difference was significant (phemorrhage recover more effectively, therefore is worth applying.

  9. A novel gene therapy-based approach that selectively targets hypoxic regions within solid tumors

    International Nuclear Information System (INIS)

    Dougherty, S.T.; Dougherty, G.J.; Davis, P.D.

    2003-01-01

    There is compelling evidence that malignant cells present within the hypoxic regions that are commonly found within solid tumors contribute significantly to local recurrence following radiation therapy. We describe now a novel strategy designed to target such cells that exploits the differential production within hypoxic regions of the pro-angiogenic cytokine vascular endothelial cell growth factor (VEGF). Specifically, we have generated cDNA constructs that encode two distinct chimeric cell surface proteins that incorporate, respectively, the extracellular domains of the VEGF receptors Flk-1 or Flt-1, fused in frame to the membrane spanning and cytoplasmic domains of the pro-apoptotic protein Fas. Both chimeric proteins (Flk/Fas and Flt/Fas) appear stable and can be readily detected on the surface of transfected cells by Western blot and/or FACS analysis. Importantly, tumor cells expressing the chimeric proteins were rapidly killed in a dose-dependent fashion upon the addition of exogenous recombinant VEGF. Adenoviral vectors encoding Flk/Fas have been generated and shown to induce tumor cells to undergo apoptosis upon transfer to hypoxic conditions in vitro. This activity is dependent upon the endogenous production of VEGF. Studies are currently underway to test the ability of adenoviral Flk/Fas (Ad.Flk/Fas) to reduce tumor recurrence in vivo when used as an adjuvant therapy in conjunction with clinically relevant doses of ionizing radiation

  10. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel?

    Directory of Open Access Journals (Sweden)

    Hendaus MA

    2016-09-01

    Full Text Available Mohamed A Hendaus,1,2 Fatima A Jomha,3 Ahmed H Alhammadi1,2 1Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation, 2Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar; 3School of Pharmacy, Lebanese International University, Khiara, Lebanon Abstract: Perinatal hypoxic-ischemic encephalopathy (HIE affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE. Keywords: melatonin, hypoxia, use, encephalopathy

  11. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    Science.gov (United States)

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  12. Impact of hypoxic versus normoxic training on physical fitness and vasculature in diabetes.

    NARCIS (Netherlands)

    Schreuder, T.H.A.; Nyakayiru, J.; Houben, J.; Thijssen, D.H.J.; Hopman, M.T.E.

    2014-01-01

    BACKGROUND: Exercise training improves physical fitness, insulin resistance, and endothelial function in type 2 diabetes. Hypoxia may further optimize these beneficial effects. The aim of this study was to compare the effects of hypoxic versus normoxic exercise training on physical fitness,

  13. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    2017-01-01

    Full Text Available Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed RNA sequencing (RNA-seq analysis. Time-course statistical analysis revealed hundreds of genes that changed expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated genes. Reverse transcription-quantitative PCR (RT-qPCR analysis confirmed that the lysine methyltransferase EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described environmental stress response (ESR consisting of genes that respond to diverse types of stress. While hypoxia appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene expression to prepare the cell to function with little or no oxygen.

  14. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.

    Science.gov (United States)

    Bendjilali, Nasrine; MacLeon, Samuel; Kalra, Gurmannat; Willis, Stephen D; Hossian, A K M Nawshad; Avery, Erica; Wojtowicz, Olivia; Hickman, Mark J

    2017-01-05

    Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed RNA sequencing (RNA-seq) analysis. Time-course statistical analysis revealed hundreds of genes that changed expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated genes. Reverse transcription-quantitative PCR (RT-qPCR) analysis confirmed that the lysine methyltransferase EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described environmental stress response (ESR) consisting of genes that respond to diverse types of stress. While hypoxia appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene expression to prepare the cell to function with little or no oxygen. Copyright © 2017 Bendjilali et al.

  15. Diving bradycardia: a mechanism of defence against hypoxic damage.

    Science.gov (United States)

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism.

  16. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    LENUS (Irish Health Repository)

    Sands, Michelle

    2011-01-25

    Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or potentiate the

  17. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  18. Relationships Between Denitrifier Abundance, Denitrifier Diversity and Denitrification in Gulf of Mexico Hypoxic Zone Sediments.

    Science.gov (United States)

    Proctor, L. M.; Childs, C.; MacAuley, S.

    2002-12-01

    The largest zone of anthropogenic bottom water hypoxia in the Western Hemisphere occurs seasonally in the northern Gulf of Mexico. This hypoxic zone reaches its greatest extent in the summer months and is a consequence of seasonal stratification of the water column combined with the decomposition of organic matter derived from accelerated rates of primary production. The enhanced primary production is driven by inorganic nitrogen input from the Mississippi River and these conditions would seem ideal for supporting high levels of denitrification. Yet sediment denitrification exhibited a wide range, even at the height of the seasonal hypoxia. Therefore, we compared benthic denitrifier abundances and denitrifier diversity at several stations over two seasons exhibiting extremes in denitrification to evaluate the relationship between abundances, diversity and denitrification levels. Sediment denitrification ranged from 20 to 100 umol m-2 h-1, with rates in July, 2000 approximately half that observed in July, 2001. The highest rates were generally observed at stations with bottom water DO concentrations between 1 and 3 mg l-1. Relative denitrifier abundances, using nirS and nirK as proxies for denitrifiers, suggested a direct relationship between abundances and denitrification while denitrifier diversity, measured by T-RFLPs of nirS and nirK, suggested an inverse relationship between diversity and denitrification. These results suggest that several factors are important in understanding what controls denitrification in Gulf of Mexico hypoxic zone sediments.

  19. A novel class of antitumor prodrug, 1-(2'-oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Zhou, Ling; Hatta, Hiroshi; Mori, Mayuko; Nishimoto, Sei-ichi

    2000-01-01

    We have been developing prodrugs of anticancer agents such as 5-fluorouracil (5-FU) that are activated by irradiation under hypoxic conditions via one-electron reduction. Among them, OFU001 [1-(2'-oxopropyl)-5-fluorouracil] is a prototype radiation-activated prodrug. In this study, we investigated the radiation chemical reactivity and the biological effects of OFU001. This prodrug is presumed to release 5-FU through incorporation of hydrated electrons into the antibonding σ * orbital of the C(1')-N(1) bond. Hydrated electrons are active species derived from radiolysis of water, but are readily deactivated by O 2 into superoxide anion radicals (O 2 - ·) under conditions of aerobic irradiation. Therefore, 5-FU release occurs highly specifically upon irradiation under hypoxic conditions. OFU001 dissolved in phosphate buffer released 5-FU with a G-value (mol number of molecules that are decomposed or produced by 1 J of absorbed radiation energy) of 1.9 x 10 -7 mol/J following hypoxic irradiation, while the G-value for 5-FU release was 1.0 x 10 -8 mol/J following aerobic irradiation. However, the G-values for decomposition of OFU001 were almost the same, i.e., 3.4 x 10 -7 mol/J following hypoxic irradiation and 2.5 x 10 -7 mol/J following aerobic irradiation. When hypoxically irradiated (7.5-30 Gy) OFU001 was added to murine SCCVII cells for 1-24 h, a significant cell-killing effect was observed. The degree of this cytotoxicity was consistent with that of authentic 5-FU at the corresponding concentrations. On the other hand, cytotoxicity was minimal when the cells were treated with aerobically irradiated or unirradiated OFU001. This compound had no radiosensitizing effect against SCCVII cells under either aerobic or hypoxic conditions when the drug was removed immediately after irradiation. Since hypoxia is generally most marked in tumors and irradiation is applied at the tumor site, this concept of prodrug design appears to be potentially useful for selective tumor

  20. The effect of normobaric hypoxic confinement on metabolism, gut hormones and body composition

    Directory of Open Access Journals (Sweden)

    Igor B. Mekjavic

    2016-06-01

    Full Text Available To assess the effect of normobaric hypoxia on metabolism, gut hormones and body composition, eleven normal weight, aerobically trained ( O2peak: 60.6±9.5 ml·kg-1·min-1 men (73.0±7.7 kg; 23.7±4.0 yrs, BMI 22.2±2.4 kg·m-2 were confined to a normobaric (altitude⋍940m normoxic (NORMOXIA; PIO2⋍133.2 mmHg or normobaric hypoxic (HYPOXIA; PIO was reduced from 105.6 to 97.7 mmHg over 10 days environment for 10 days in a randomized cross-over design. The wash-out period between confinements was 3 weeks. During each 10-day period, subjects avoided strenuous physical activity and were under continuous nutritional control. Before, and at the end of each exposure, subjects completed a meal tolerance test, during which blood glucose, insulin, GLP-1, ghrelin, peptide-YY, adrenaline, noradrenaline, leptin, and gastro-intestinal blood flow and appetite sensations were measured. There was no significant change in body weight in either of the confinements (NORMOXIA: -0.7±0.2 kg; HYPOXIA: -0.9±0.2 kg, but a significant increase in fat mass in NORMOXIA (0.23±0.45 kg, but not in HYPOXIA (0.08±0.08 kg. HYPOXIA confinement increased fasting noradrenaline and decreased energy intake, the latter most likely associated with increased fasting leptin. The majority of all other measured variables/responses were similar in NORMOXIA and HYPOXIA. To conclude, normobaric hypoxic confinement without exercise training results in negative energy balance due to primarily reduced energy intake.

  1. Sex-specific effects of daily gavage with a mixed progesterone and glucocorticoid receptor antagonist on hypoxic ventilatory response in newborn rats.

    Science.gov (United States)

    Fournier, Stéphanie; Doan, Van Diep; Joseph, Vincent

    2012-01-01

    We tested the hypothesis that daily gavage with mifepristone, a mixed progesterone/glucocorticoid receptor antagonist would alter hypoxic ventilatory response (HVR) in newborn male and female rats. Rats were treated with mifepristone (40µg/g/day), or vehicle between postnatal days 3-12, and used at 10-12 days of age to record baseline ventilatory and metabolic values using whole body plethysmography. HVR was tested by exposing the animals to 14% and 12% O(2) for 20 minutes each. HVR was enhanced by mifepristone treatment, mainly due to an effect on tidal volume that remained higher in mifepristone treated rats during both levels of hypoxic exposure. This effect was sex-specific being apparent only in male rats. In Vehicle treated rats, HVR was higher in females than in males, which was also due to a higher tidal volume in hypoxia (at 14 and 12% O(2)). We conclude that the activity of the progesterone and/or glucocorticoid receptors modulates respiratory control in rat pups, and that these effects are different in males and females.

  2. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng's type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  3. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem

    2015-02-24

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng\\'s type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  4. HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation

    International Nuclear Information System (INIS)

    Kim, Hak-June; Nagano, Yoshito; Choi, Su Jin; Park, Song Yi; Kim, Hongtae; Yao, Tso-Pang; Lee, Joo-Yong

    2015-01-01

    Mitochondria undergo fusion and fission in response to various metabolic stresses. Growing evidences have suggested that the morphological change of mitochondria by fusion and fission plays a critical role in protecting mitochondria from metabolic stresses. Here, we showed that hypoxia treatment could induce interaction between HDAC6 and MFN2, thus protecting mitochondrial connectivity. Mechanistically, we demonstrated that a mitochondrial ubiquitin ligase MARCH5/MITOL was responsible for hypoxia-induced MFN2 degradation in HDAC6 deficient cells. Notably, genetic abolition of HDAC6 in amyotrophic lateral sclerosis model mice showed MFN2 degradation with MARCH5 induction. Our results indicate that HDAC6 is a critical regulator of MFN2 degradation by MARCH5, thus protecting mitochondrial connectivity from hypoxic stress. - Highlights: • Hypoxic stress induces the interaction between HDAC6 and MFN2. • Hypoxic stress activates MARCH5 in HDAC6 deficient cells to degrade MFN2. • HDAC6 is required to maintain mitochondrial connectivity under hypoxia. • MARCH5 is increased and promotes the degradation of MFN2 in HDAC6 KO ALS mice

  5. HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak-June [Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Nagano, Yoshito [Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8551 (Japan); Choi, Su Jin; Park, Song Yi [Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Kim, Hongtae [Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon, 440-746 (Korea, Republic of); Yao, Tso-Pang, E-mail: tsopang.yao@duke.edu [Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710 (United States); Lee, Joo-Yong, E-mail: leejooyong@cnu.ac.kr [Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of)

    2015-09-04

    Mitochondria undergo fusion and fission in response to various metabolic stresses. Growing evidences have suggested that the morphological change of mitochondria by fusion and fission plays a critical role in protecting mitochondria from metabolic stresses. Here, we showed that hypoxia treatment could induce interaction between HDAC6 and MFN2, thus protecting mitochondrial connectivity. Mechanistically, we demonstrated that a mitochondrial ubiquitin ligase MARCH5/MITOL was responsible for hypoxia-induced MFN2 degradation in HDAC6 deficient cells. Notably, genetic abolition of HDAC6 in amyotrophic lateral sclerosis model mice showed MFN2 degradation with MARCH5 induction. Our results indicate that HDAC6 is a critical regulator of MFN2 degradation by MARCH5, thus protecting mitochondrial connectivity from hypoxic stress. - Highlights: • Hypoxic stress induces the interaction between HDAC6 and MFN2. • Hypoxic stress activates MARCH5 in HDAC6 deficient cells to degrade MFN2. • HDAC6 is required to maintain mitochondrial connectivity under hypoxia. • MARCH5 is increased and promotes the degradation of MFN2 in HDAC6 KO ALS mice.

  6. Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude

    DEFF Research Database (Denmark)

    Jensen, J B; Sperling, B; Severinghaus, J W

    1996-01-01

    , at the lower PCO2 due to the logarithmic relationship of PCO2 to CSF pH. This change was not significant after correction to log PCO2. We conclude that the cerebral vascular response to acute isocapnic hypoxia may increase during acclimatization at high altitude. The mechanism is unknown but is presumably......The fractional increase in cerebral blood flow (CBF) velocity (VCBF) from the control value with 5-min steps of isocapnic hypoxia and hyperoxic hypercapnia was measured by transcranial Doppler in six sea-level native men before and during a 5-day sojourn at 3,810 m altitude to determine whether...... cerebral vasoreactivity to low arterial O2 saturation (SaO2) gradually increased [as does the hypoxic ventilatory response (HVR)] or diminished (adapted, in concert with known slow fall of CBF) at altitude. A control resting PCO2 value was chosen each day during preliminary hyperoxia to set ventilation...

  7. [Therapeutic effect of early applying hydrotherapy with Chinese drugs on children hypoxic ischemic encephalopathy].

    Science.gov (United States)

    Ma, Yun-Zhi; Zhai, Hong-Yin; Su, Chun-Ya

    2009-02-01

    To observe the therapeutic effect of hydrotherapy with Chinese drugs (HT-C) in early intervention on children hypoxic ischemic encephalopathy (HIE). HIE children were assigned to the treatment group and the control group, 50 in each, at random depending on the willingness of patients' parents. Both groups received the conventional functional training, according to the "0 -3-year-old early intervention outline", but for the treatment group, HT-C was applied additionally. Indexes for quality of sleep, gross motor function, severity of spasm and intellectual development were observed and compared before and after treatment to assess the therapeutic effects. Therapeutic effect in the treatment group was better than that in the control group in all the indexes observed, showing statistical significance (all P <0.05). Early intervention of HT-C could improve clinical symptom, promote the functional recovery and intellectual development in children HIE, and also could reduce or prevent the sequelae occurrence of the nervous system in them.

  8. Does “Live High-Train Low (and High)” Hypoxic Training Alter Running Mechanics In Elite Team-sport Players?

    Science.gov (United States)

    Girard, Olivier; Millet, Grégoire P.; Morin, Jean-Benoit; Brocherie, Franck

    2017-01-01

    This study aimed to investigate if “Live High-Train Low (and High)” hypoxic training alters constant-velocity running mechanics. While residing under normobaric hypoxia (≥14 h·d-1; FiO2 14.5-14.2%) for 14 days, twenty field hockey players performed, in addition to their usual training in normoxia, six sessions (4 × 5 × 5-s maximal sprints; 25 s passive recovery; 5 min rest) under either normobaric hypoxia (FiO2 ~14.5%, n = 9) or normoxia (FiO2 20.9%, n = 11). Before and immediately after the intervention, their running pattern was assessed at 10 and 15 km·h-1 as well as during six 30-s runs at ~20 km·h-1 with 30-s passive recovery on an instrumented motorised treadmill. No clear changes in running kinematics and spring-mass parameters occurred globally either at 10, 15 or ~20 km·h-1, with also no significant time × condition interaction for any parameters (p > 0.14). Independently of the condition, heart rate (all p < 0.05) and ratings of perceived exertion decreased post-intervention (only at 15 km·h-1, p < 0.05). Despite indirect signs for improved psycho-physiological responses, no forthright change in stride mechanical pattern occurred after “Live High-Train Low (and High)” hypoxic training. Key points There are indirect signs for improved psycho-physiological responses in responses to “Live High-Train Low (and High)” hypoxic training. This hypoxic training regimen, however, does not modify the running mechanics of elite team-sport players at low and high velocities. Coaches can be confident that this intervention, known for inducing significant metabolic benefits, is appropriate for athletes since their running kinetics and kinematics are not negatively affected by chronic hypoxic exposure. PMID:28912649

  9. High contrast sensitivity for visually guided flight control in bumblebees.

    Science.gov (United States)

    Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie

    2017-12-01

    Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.

  10. Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1α.

    Science.gov (United States)

    Ge, Xiaolin; Zhen, Fuxi; Yang, Baixia; Yang, Xi; Cai, Jing; Zhang, Chi; Zhang, Sheng; Cao, Yuandong; Ma, Jianxin; Cheng, Hongyan; Sun, Xinchen

    2014-06-01

    To determine if the pretreatment of hypoxic human oesophageal carcinoma cell lines (EC109, TE1 and KYSE170) with ginsenoside Rg3 (Rg3) increases their radiosensitivity to X-rays. The growth inhibitory effect of different Rg3 concentrations was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Radiation sensitivity was measured using a clone formation assay and flow cytometry was used to measure the effects of Rg3 on radiation-induced apoptosis. Western blot analysis was used to measure the effects of Rg3 on the levels of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Rg3 inhibited EC109, TE1 and KYSE170 cell growth in a dose- and time-dependent manner. Pretreatment with 10 µmol/ml Rg3 increased EC109, TE1 and KYSE170 radiosensitivity. Rg3 plus radiation significantly increased the apoptosis rate compared with radiation alone. Rg3 also decreased VEGF and HIF-1α protein levels in EC109 cells in a dose-dependent manner. The combination of Rg3 and radiation increased the fragmentation of double-stranded DNA. Rg3 enhanced the radiosensitivity of human oesophageal carcinoma cell lines cultured under hypoxic conditions possibly by downregulating VEGF and HIF-1α protein levels. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines

    Directory of Open Access Journals (Sweden)

    Esteban Ferrer

    2017-10-01

    Full Text Available We explore the stability of wakes arising from 2D flow actuators based on linear momentum actuator disc theory. We use stability and sensitivity analysis (using adjoints to show that the wake stability is controlled by the Reynolds number and the thrust force (or flow resistance applied through the turbine. First, we report that decreasing the thrust force has a comparable stabilising effect to a decrease in Reynolds numbers (based on the turbine diameter. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the turbines and one far downstream. Third, we show that adding a localised control force, in the regions identified by the sensitivity analysis, stabilises the wake. Particularly, locating the control forcing close to the turbines results in an enhanced stabilisation such that the wake remains steady for significantly higher Reynolds numbers or turbine thrusts. The analysis of the controlled flow fields confirms that modifying the velocity gradient close to the turbine is more efficient to stabilise the wake than controlling the wake far downstream. The analysis is performed for the first flow bifurcation (at low Reynolds numbers which serves as a foundation of the stabilization technique but the control strategy is tested at higher Reynolds numbers in the final section of the paper, showing enhanced stability for a turbulent flow case.

  12. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hongying, Ren; Huiguo, Cai; Zhongchao, Han; Renchi, Yang; Zhao, Qinjun [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); Ying, Cao; Jing, Li [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Cixiang, Zhou [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Lianming, Liao; Mingyue, Jia [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Qian, Zhao [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Guoqiang, Chen [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Zhao, R C [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)]. E-mail: chunhuaz@public.tpt.tj.cn

    2006-08-18

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O{sub 2}, bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G{sub 2}/S/M phase cells increased evidently under 8% O{sub 2} condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O{sub 2} condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl{sub 2}) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.

  13. Multimodal predictor of neurodevelopmental outcome in newborns with hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Temko, Andriy; Doyle, Orla; Murray, Deirdre; Lightbody, Gordon; Boylan, Geraldine; Marnane, William

    2015-08-01

    Automated multimodal prediction of outcome in newborns with hypoxic-ischaemic encephalopathy is investigated in this work. Routine clinical measures and 1h EEG and ECG recordings 24h after birth were obtained from 38 newborns with different grades of HIE. Each newborn was reassessed at 24 months to establish their neurodevelopmental outcome. A set of multimodal features is extracted from the clinical, heart rate and EEG measures and is fed into a support vector machine classifier. The performance is reported with the statistically most unbiased leave-one-patient-out performance assessment routine. A subset of informative features, whose rankings are consistent across all patients, is identified. The best performance is obtained using a subset of 9 EEG, 2h and 1 clinical feature, leading to an area under the ROC curve of 87% and accuracy of 84% which compares favourably to the EEG-based clinical outcome prediction, previously reported on the same data. The work presents a promising step towards the use of multimodal data in building an objective decision support tool for clinical prediction of neurodevelopmental outcome in newborns with hypoxic-ischaemic encephalopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Types of hypoxic and posthypoxic delta activity in animals and man.

    Science.gov (United States)

    Gurvitch, A M; Ginsburg, D A

    1977-03-01

    1. Two types of hypoxic delta activity were observed in ECoG records of dogs subjected to exsanguination, sudden cardiac arrest resulting from ventricular fibrillation or mechanical asphyxiation, as well as during post-hypoxic recovery. They were polymorphous delta activity (PDA) and "standard slow complexes" (SSCs). 2. These two types of delta activity were found to differ from each other as to the shape of the potentials; their amplitude in monopolar and bipolar leads; the cortical areas in which the activity exhibited the highest amplitude; the degree of manifestation in the cortex and subcortical structures; their relation to activating influences; their dependence on the stage and character of hypoxia. 3. Analysis of EEG records of patients during and after hypoxia made it possible to distinguish both PDA and a type of delta activity similar to the SSCs observed in experimental animals. 4. It is suggested that the appearance of SSCs is determined by the activity of a pacemaker situated in the diencephalon and responding to pO2 changes, and that the mechanism of SSC generation is closer to that of monorhythmic, bilataerally synchronous delta waves observed in primary irritative or epileptogenic processes in the diencephalon.

  15. Effects of 5 Thio-D-Glucose on cellular adenosine triphosphate levels and deoxyribonucleic acid rejoining in hypoxic and aerobic Chinese hamster cells

    International Nuclear Information System (INIS)

    Nagle, W.A.; Moss, A.J. Jr.; Roberts, H.G. Jr.; Baker, M.L.

    1980-01-01

    Intracellular adenosine triphosphate (ATP) levels were measured in both hypoxic and aerobic cultures of V79 Chinese hamster cells treated with 5-thio-D-glucose (5-SH-D-Glc). This glucose analog, a known inhibitor of D-glucose transport and metabolism, reduced ATP in cell cultures allowed to become hypoxic by cell metabolism, but not in aerobic cultures treated similarly. Cells depleted of ATP were unable to rejoin x-ray induced deoxyribonucleic acid (DNA) strand breaks as measured by the alkaline sucrose gradient sedimentation technique. The inference for radiation therapy is that inhibition of glucose metabolism selectively depletes energy reserves in hypoxic cells, rendering these cells more radiosensitive and leading to a more effective tumor treatment

  16. Food consumption in ground beetles is limited under hypoxic conditions in response to ad libitum feeding, but not restricted feeding.

    Science.gov (United States)

    Gudowska, Agnieszka; Bauchinger, Ulf

    2018-02-09

    Habitats on land with low oxygen availability provide unique niches inhabited by numerous species. The occupation of such hypoxic niches by animals is hypothesized to come at a cost linked to the limitations of aerobic metabolism and thus energy budget but may also provide benefits through physical protection from predators and parasitoids or reduced competition for food. We investigated the effects of hypoxic conditions on standard metabolic rate (SMR) and specific dynamic action (SDA) in male Carabus nemoralis. SMR and SDA were determined under three manipulated oxygen availabilities: 7, 14 and 21% O 2 and two feeding regimes: limited or ad libitum food consumption. In both hypoxic conditions, C. nemoralis was able to maintain SMR at levels similar to those in normoxia. When the meal size was limited, SDA duration did not differ among the oxygen availability conditions, but SDA was smaller under hypoxic conditions than at normoxic levels. The relative cost of digestion was significantly higher in normoxia than in hypoxia, but it did not affect net energy intake. In contrast, when offered a large meal to simulate ad libitum food conditions, beetles reduced their food consumption and net energy gain by 30% under hypoxia. Oxygen availability may influence the consumed prey size: the hypoxic condition did not limit net energy gain when the beetles fed on a small meal but did when they fed on a large meal. The results indicate that meal size is an important variable in determining differences in physiological costs and whole animal energy budgets at different concentrations of environmental oxygen levels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells.

    Science.gov (United States)

    Cho, Sung-Yun; Cho, Sunmi; Park, Eunkyung; Kim, Bonglee; Sohn, Eun Jung; Oh, Bumsuk; Lee, Eun-Ok; Lee, Hyo-Jeong; Kim, Sung-Hoon

    2014-06-01

    Among many signals to regulate hypoxia inducible factor 1α (HIF-1α), sphingosine kinase 1 (SPHK1) is also involved in various biological activities such as cell growth, survival, invasion, angiogenesis, and carcinogenesis. Thus, in the present study, molecular mechanisms of coumestrol were investigated on the SPHK1 and HIF-1α signaling pathway in hypoxic PC-3 prostate cancer cells. Coumestrol significantly suppressed SPHK1 activity and accumulation of HIF-1α in a time- and concentration-dependent manner in hypoxic PC-3 cells. In addition, coumestrol inhibited the phosphorylation status of AKT and glycogen synthase kinase-3β (GSK 3β) signaling involved in cancer metabolism. Furthermore, SPHK1 siRNA transfection, sphigosine kinase inhibitor (SKI), reactive oxygen species (ROS) enhanced the inhibitory effect of coumestrol on the accumulation of HIF-1α and the expression of pAKT and pGSK 3β in hypoxic PC-3 cells by combination index. Overall, our findings suggest that coumestrol suppresses the accumulation of HIF-1α via suppression of SPHK1 pathway in hypoxic PC-3 cells. Copyright © 2014. Published by Elsevier Ltd.

  18. POSTURAL CONTROL IN HEALTHY YOUNG ADULTS WITH AND WITHOUT CHRONIC MOTION SENSITIVITY

    Directory of Open Access Journals (Sweden)

    Alyahya D

    2016-02-01

    Full Text Available Background: Postural control requires complex processing of peripheral sensory inputs from the visual, somatosensory and vestibular systems. Motion sensitivity and decreased postural control are influenced by visual-vestibular conflicts.The purpose of this study was to measure the difference between the postural control of healthy adults with and without history of sub-clinical chronic motion sensitivity using a computerized dynamic posturography in a virtual reality environment. Sub-clinical chronic motion sensitivity was operationally defined as a history of avoiding activities causing dizziness, nausea, imbalance, and/or blurred vision without having a related medical diagnosis. Methods: Twenty healthy adults between 22 and 33 years of age participated in the study. Eleven subjects had sub-clinical chronic motion sensitivity and 9 subjects did not. Postural control was measured in both groups using the Bertec Balance Advantage-Dynamic Computerized Dynamic Posturography with Immersion Virtual Reality (CDP-IVR. The CDP-IVR reports an over-all equilibrium score based on subjects’ center of gravity displacement and postural sway while immersed in a virtual reality environment. Subjects were tested on stable (condition 1 and unstable (condition2 platform conditions. Results: There was no significant difference between the two groups in terms of mean age, height, weight, body mass index in kg/m2, postural control scores for conditions 2, and average (p>0.05. However, significant differences were observed in mean postural control for condition 1 between groups (p=0.03. Conclusions: Results of this study suggest that healthy young adults without chronic sub-clinical motion sensitivity have better postural control than those with chronic sub-clinical motion sensitivity. Further investigation is warranted to explore wider age ranges with larger samples sizes as well as intervention strategies to improve postural control.

  19. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

    Science.gov (United States)

    Gozal, Evelyne; Metz, Cynthia J; Dematteis, Maurice; Sachleben, Leroy R; Schurr, Avital; Rane, Madhavi J

    2017-09-05

    Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O 2 ). Hypoxia, at 24h 0.1% O 2 , induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    Science.gov (United States)

    2012-01-01

    Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis increased HPV during

  1. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  2. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Ketabchi Farzaneh

    2012-01-01

    Full Text Available Abstract Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV optimizes gas exchange during local acute (0-30 min, as well as sustained (> 30 min hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate, and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA, a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS, decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc. This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis

  3. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction.

    Science.gov (United States)

    Ketabchi, Farzaneh; Ghofrani, Hossein A; Schermuly, Ralph T; Seeger, Werner; Grimminger, Friedrich; Egemnazarov, Bakytbek; Shid-Moosavi, S Mostafa; Dehghani, Gholam A; Weissmann, Norbert; Sommer, Natascha

    2012-01-31

    Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The

  4. Working Memory Capacity and Surgical Performance While Exposed to Mild Hypoxic Hypoxemia.

    Science.gov (United States)

    Parker, Paul J; Manley, Andrew J; Shand, Ross; O'Hara, John P; Mellor, Adrian

    2017-10-01

    Medical Emergency Response Team (MERT) helicopters fly at altitudes of 3000 m in Afghanistan (9843 ft). Civilian hospitals and disaster-relief surgical teams may have to operate at such altitudes or even higher. Mild hypoxia has been seen to affect the performance of novel tasks at flight levels as low as 5000 ft. Aeromedical teams frequently work in unpressurized environments; it is important to understand the implications of this mild hypoxia and investigate whether supplementary oxygen systems are required for some or all of the team members. Ten UK orthopedic surgeons were recruited and in a double blind randomized experimental protocol, were acutely exposed for 45 min to normobaric hypoxia [fraction of inspired oxygen (FIo2) ∼14.1%, equivalent to 3000 m (10,000 ft)] or normobaric normoxia (sea-level). Basic physiological parameters were recorded. Subjects completed validated tests of verbal working memory capacity (VWMC) and also applied an orthopedic external fixator (Hoffmann® 3, Stryker, UK) to a plastic tibia under test conditions. Significant hypoxia was induced with the reduction of FIo2 to ∼14.1% (Spo2 87% vs. 98%). No effect of hypoxia on VWMC was observed. The pin-divergence score (a measure of frame asymmetry) was significantly greater in hypoxic conditions (4.6 mm) compared to sea level (3.0 mm); there was no significant difference in the penetrance depth (16.9 vs. 17.2 mm). One hypoxic frame would have failed early. We believe that surgery at an altitude of 3000 m, when unacclimated individuals are acutely exposed to atmospheric hypoxia for 45 min, can likely take place without supplemental oxygen use but further work is required.Parker PJ, Manley AJ, Shand R, O'Hara JP, Mellor A. Working memory capacity and surgical performance while exposed to mild hypoxic hypoxemia. Aerosp Med Hum Perform. 2017; 88(10):918-923.

  5. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit

    OpenAIRE

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo; Telang, Frank; Baler, Ruben

    2010-01-01

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is larg...

  6. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo

    OpenAIRE

    Itani, Nozomi; Skeffington, Katie L.; Beck, Christian; Niu, Youguo; Giussani, Dino A.

    2015-01-01

    Abstract There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment comm...

  7. The response of hypoxic cells in SCCVII murine tumors to treatment with cisplatin and x rays

    International Nuclear Information System (INIS)

    Yan, R.D.; Durand, R.E.

    1991-01-01

    Possible mechanisms of enhancement of radiation effects by cisplatin, including radiosensitization of hypoxic cells, drug-induced tumor reoxygenation, and inhibition of repair of sublethal radiation damage, were examined in the murine SCCVII model. Combination radiation/drug treatments were most effective when drug exposure preceded irradiation of animals breathing a reduced oxygen atmosphere, indicating that the primary interaction between the modalities was a cisplatin-induced increase in the oxygenation status of the acutely hypoxic cells in those tumors. Delivering cisplatin prior to or immediately after the first of two 5 Gy fractions was more effective than combinations with a single x-ray exposure, suggesting that proper sequences of the combined modalities may augment natural reoxygenation processes

  8. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    International Nuclear Information System (INIS)

    Wong, J.T.; Hill, R.P.

    1986-01-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed

  9. Medial Occipital Lobe Hyperperfusion Identified by Arterial Spin-Labeling: A Poor Prognostic Sign in Patients with Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    de Havenon, A; Sultan-Qurraie, A; Tirschwell, D; Cohen, W; Majersik, J; Andre, J B

    2015-12-01

    Hypoxic-ischemic encephalopathy carries an uncertain prognosis. We sought to retrospectively assess the prognostic value of arterial spin-labeling MR imaging in 22 adult patients diagnosed with hypoxic-ischemic encephalopathy. Quantitative CBF maps were generated from the M0 map, and arterial spin-labeling data on a per-voxel basis were regionally interrogated via visual inspection and ROI placement. Hyperperfusion was defined as regional increases in CBF of >20% (relative to global CBF) and/or >100 mL/100 g/min. Eleven of 22 patients had prominent bilateral medial occipital lobe hyperperfusion, all of whom died before hospital discharge. One patient who had nondistinct arterial spin-labeling hyperperfusion and restricted diffusion survived. Medial occipital lobe hyperperfusion is a distinctive pattern that merits prospective investigation in a cohort of patients with moderate hypoxic-ischemic encephalopathy to determine its predictive ability in patients with a higher likelihood of survival. © 2015 by American Journal of Neuroradiology.

  10. Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

    Science.gov (United States)

    2013-08-26

    injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up...Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions Catherine L. Ward, Benjamin T. Corona...investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle

  11. Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus.

    Science.gov (United States)

    Blewett, Tamzin A; Simon, Robyn A; Turko, Andy J; Wright, Patricia A

    2017-08-01

    Elevated levels of metals have been reported in mangrove ecosystems worldwide. Mangrove fishes also routinely experience severe environmental stressors, such as hypoxia. In the amphibious fish Kryptolebias marmoratus (mangrove rivulus), a key behavioural response to avoid aquatic stress is to leave water (emersion). We hypothesized that copper (Cu) exposure would increase the sensitivity of this behavioural hypoxia avoidance response due to histopathological effects of Cu on gill structure and function. K. marmoratus were exposed to either control (no added Cu) or Cu (300μg/L) for 96h. Following this period, fish were exposed to an acute hypoxic challenge (decline in dissolved oxygen to ∼0% over 15min), and the emersion response was recorded. Gills were examined for histological changes. Fish exposed to Cu emersed at a higher dissolved oxygen level (7.5±0.6%), relative to the control treatment group (5.8±0.4%). Histological analysis showed that the gill surface area increased and the interlamellar cell mass (ILCM) was reduced following Cu exposure, contrary to our prediction. Overall, these data indicate that Cu induces hypoxia-like changes to gill morphology and increases the sensitivity of the hypoxia emersion response. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The hypoxic tumour cell in radiation therapy

    International Nuclear Information System (INIS)

    Trott, K.R.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg/Muenchen

    1976-01-01

    In most tumours there is a disproportion between the tumour cells and vascular connective tissue. A lack of oxygen depending on extent and duration, leads to changes of the metabolism and of the proliferative properties of the cells, to an increase of radiation resistance and to a reduction of the ability to recover from radiation injuries. Finally with longer duration, hypoxy leads to cell killing. As a result of irradiation, a reoxygenation of a part of the previous hypoxic tumour cell occurs more or less quickly. The time and topographic changes of these factors are involved in a complex manner in the radiotherapy of malignant tumours and essentially share the responsibility regarding the curative success of radiotherapy. (orig./LH) [de

  13. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    International Nuclear Information System (INIS)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-01-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  14. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Ewan [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); Andronikou, Savvas [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); University of Bristol, CRICBristol, Bristol (United Kingdom); Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade [University of Bristol, CRICBristol, Bristol (United Kingdom)

    2016-09-15

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  15. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    Science.gov (United States)

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P controls and was associated with significantly reduced plasma levels of mouse GH ( P controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  16. Preacclimatization in hypoxic chambers for high altitude sojourns.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  17. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: Potential in vivo markers of hypoxic tissue

    International Nuclear Information System (INIS)

    Jerabek, P.A.; Kilbourn, M.R.; Dischino, D.D.; Welch, M.J.; Patrick, T.B.; Southern Illinois University, Edwardsville

    1986-01-01

    Three 18 F labeled fluoronitroimidazoles have been prepared as potential in vivo markers of hypoxic cells in tumors, and ischemic areas of the heart and brain. 1-(2-Nitroimidazolyl)-3-[ 18 F]fluoro-2-hydroxy-propanol ([ 18 F]fluoro-normethoxymisonidazole 4, 1-(2-[ 18 F]fluoroethyl)-2-nitroimidazole 7, and 1-(2-[ 18 F]-fluoroethyl)-2-methyl-5-nitromidazole ([ 18 F]fluoro-norhydroxymetronidazole) 10 were prepared in average radiochemical yields of 18 F labeled fluoronitroimidazoles. At 1 and 3 h after administration, the tissue distribution of each of the 18 F labeled nitroimidazoles was quite uniform and consistent with that of nitroimidazoles previously studied. These results suggest the need for a suitable animal model to evaluate their potential as in vivo markers of hypoxic tissue in the brain. (author)

  18. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes

    International Nuclear Information System (INIS)

    Shibata, Toru; Akiyama, Nobutake; Noda, Makoto; Sasai, Keisuke; Hiraoka, Masahiro

    1998-01-01

    Purpose: Selective gene expression in response to tumor hypoxia may provide new avenues, not only for radiotherapy and chemotherapy, but also for gene therapy. In this study, we have assessed the extent of hypoxia responsiveness of various DNA constructs by the luciferase assay to help design vectors suitable for cancer therapy. Materials and Methods: Reporter plasmids were constructed with fragments of the human vascular endothelial growth factor (VEGF) and the erythropoietin (Epo) genes encompassing the putative hypoxia-responsive elements (HRE) and the pGL3 promoter vector. Test plasmids and the control pRL-CMV plasmid were cotransfected into tumor cells by the calcium phosphate method. After 6 h hypoxic treatment, the reporter assay was performed. Results: The construct pGL3/VEGF containing the 385 bp fragment of the 5' flanking region in human VEGF gene showed significant increases in luciferase activity in response to hypoxia. The hypoxic/aerobic ratios were about 3-4, and 8-12 for murine and human tumor cells, respectively. Despite the very high degree of conservation among the HREs of mammalian VEGF genes, murine cells showed lower responsiveness than human cells. We next tested the construct pGL3/Epo containing the 150 bp fragment of the 3' flanking region in the Epo gene. Luciferase activity of pGL3/Epo was increased with hypoxia only in human cell lines. The insertion of 5 copies of the 35-bp fragments derived from the VEGF HREs and 32 bp of the E1b minimal promoter resulted in maximal enhancement of hypoxia responsiveness. Conclusions: The constructs with VEGF or Epo fragments containing HRE may be useful for inducing specific gene expression in hypoxic cells. Especially, the application of multiple copies of the HREs and an E1b minimal promoter appears to have the advantage of great improvement in hypoxia responsiveness

  19. MRI patterns of hypoxic-ischemic brain injury in preterm and full term infants – classical and less common MR findings

    International Nuclear Information System (INIS)

    Cabaj, Astra; Bekiesińska-Figatowska, Monika; Mądzik, Jaroslaw

    2012-01-01

    Hypoxic-ischemic brain injury occurring in antenatal, perinatal or early postnatal period constitutes an important diagnostic problem in both term and prematurely born neonates. Over the past several years magnetic resonance imaging (MRI) has become relatively easily accessible in Poland. On the basis of the central nervous system MRI, the experienced radiologist are able to determine the location of the hypoxic-ischemic lesions, their extent and evolution. Therefore he can help clinicians to answer the question whether the brain damage of the newborn is responsible for its clinical condition and he can contribute to determining the prognosis of the infant’s future development. The aim of this study is to present the current knowledge of different types of hypoxic-ischemic brain lesions based on our personal experience and MR images from the archives of the Department of Diagnostic Imaging at the Institute of Mother and Child

  20. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    Directory of Open Access Journals (Sweden)

    McLoughlin Paul

    2011-01-01

    Full Text Available Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2 or hypoxia (10% O2 for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA, VEGFB, placenta growth factor (PlGF, VEGF receptor 1 (VEGFR1 and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or

  1. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    International Nuclear Information System (INIS)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-01-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes

  2. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  3. Elevation of circulating miR-210-3p in high-altitude hypoxic environment

    Directory of Open Access Journals (Sweden)

    Yan eYan

    2016-03-01

    Full Text Available Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p.Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han and 82 Han Chinese residing at 8.9 m (Nanjing Han. Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01±0.11, P<0.001 and in the Tibetan group (1.17±0.09, P<0.001 than in the Nanjing Han group (0.51±0.04. The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54±42.95 fmol/L, P=0.004 and in the Tibetan group (557.78±39.84 fmol/L, P<0.001 compared to the Nanjing Han group (358.39±16.16 fmol/L. However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P=0.280, P=0.620, respectively. Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r=0.192, P=0.005. Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.

  4. Expression of MUC17 is regulated by HIF1α-mediated hypoxic responses and requires a methylation-free hypoxia responsible element in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sho Kitamoto

    Full Text Available MUC17 is a type 1 membrane-bound glycoprotein that is mainly expressed in the digestive tract. Recent studies have demonstrated that the aberrant overexpression of MUC17 is correlated with the malignant potential of pancreatic ductal adenocarcinomas (PDACs; however, the exact regulatory mechanism of MUC17 expression has yet to be identified. Here, we provide the first report of the MUC17 regulatory mechanism under hypoxia, an essential feature of the tumor microenvironment and a driving force of cancer progression. Our data revealed that MUC17 was significantly induced by hypoxic stimulation through a hypoxia-inducible factor 1α (HIF1α-dependent pathway in some pancreatic cancer cells (e.g., AsPC1, whereas other pancreatic cancer cells (e.g., BxPC3 exhibited little response to hypoxia. Interestingly, these low-responsive cells have highly methylated CpG motifs within the hypoxia responsive element (HRE, 5'-RCGTG-3', a binding site for HIF1α. Thus, we investigated the demethylation effects of CpG at HRE on the hypoxic induction of MUC17. Treatment of low-responsive cells with 5-aza-2'-deoxycytidine followed by additional hypoxic incubation resulted in the restoration of hypoxic MUC17 induction. Furthermore, DNA methylation of HRE in pancreatic tissues from patients with PDACs showed higher hypomethylation status as compared to those from non-cancerous tissues, and hypomethylation was also correlated with MUC17 mRNA expression. Taken together, these findings suggested that the HIF1α-mediated hypoxic signal pathway contributes to MUC17 expression, and DNA methylation of HRE could be a determinant of the hypoxic inducibility of MUC17 in pancreatic cancer cells.

  5. Behavioral Control and Reward Sensitivity in Adolescents' Risk Taking Behavior: A Longitudinal TRAILS Study.

    Science.gov (United States)

    Peeters, Margot; Oldehinkel, Tineke; Vollebergh, Wilma

    2017-01-01

    Neurodevelopmental theories of risk behavior hypothesize that low behavioral control in combination with high reward sensitivity explains adolescents' risk behavior. However, empirical studies examining this hypothesis while including actual risk taking behavior in adolescence are lacking. In this study we tested whether the imbalance between behavioral control and reward sensitivity underlies risk taking behavior in adolescence, using a nationally representative longitudinal sample of 715 adolescents, of which 66% revealed an increased risk for mental health problems. To assess behavioral control at age 11 we used both self-report (effortful control) as well as behavioral measures of cognitive control (i.e., working memory and response inhibition). Reward sensitivity was assessed with the Bangor Gambling Task. The main finding of this study was that effortful control at age 11 was the best predictor of risk taking behavior (alcohol and cannabis use) at age 16, particularly among adolescents who were more reward sensitive. Risk taking behavior in adolescents might be explained by relatively weak behavioral control functioning combined with high sensitivity for reward.

  6. Uptake and excretion of organochlorine pesticides by Nereis virens under normoxic and hypoxic conditions

    International Nuclear Information System (INIS)

    Haya, K.; Burridge, L.E.

    1988-01-01

    The marine polychaete worm, Nereis virens, is resistant to organochlorine pesticides. When exposed to each of five pesticides (endosulfan, chlordane, endrin, dieldrin, and DDT) in concentrations ranging from 0.03 mg/L (DDT) to 22.0 mg/L (chlordane), only endosulfan and chlordane killed Nereis. In comparison, the same compounds were much more toxic to another marine invertebrate, Crangon septemspinosa. The authors wondered if the resistance of N. virens to organochlorines was related to their response to hypoxia. N. virens is a sediment dweller often found in intertidal regions and consequently may experience periods of severe oxygen deprivation; varying degrees of hypoxia can initiate a switch to anaerobic energy metabolism. When N. virens encounter hypoxic conditions, they can also exhibit a compensatory ventilation response. In the present study, the authors measured the bioaccumulation of endosulfan, dieldrin, and DDT by N. virens under normoxic and hypoxic conditions

  7. Effect of hyperthermia and misonidazole on the radiosensitivity of a transplant murine tumor: influence of factors modifying the fraction of hypoxic cells

    International Nuclear Information System (INIS)

    Wondergem, J.; Haveman, J.; van der Schueren, E.; van den Hoeven, H.; Breur, K.

    1982-01-01

    Hypoxia has been demonstrated to play an important role in the effect of hyperthermia on tumors. The influence of different factors modifying the oxygenation status of a transplantable murine mammary adenocarcinoma has been studied. The effect of hyperthermia alone on the tumor is not significantly influenced by the change in oxygenation status during the growth of the tumor. Also, the large increase of the acutely hypoxic cell fraction, as a result of anesthesia, does not change the effect of hyperthermia alone. In the combined irradiation-heat treatment there is a clear influence of the chronically hypoxic cell fraction on the response to hyperthermia: an increase in tumor size, resulting in a larger hypoxic cell fraction, leads to an increase in thermal enhancement ratio. However, the increased acutely hypoxic cell fraction, resulting from anesthesia, did not lead to an increase in thermal enhancement ratio; in fact the enhancement ratio apparently decreased. In spite of the fact that hyperthermia was applied immediately after irradiation no potentiation of radiation effects was found. The thermal enhancement of the radiation response was never larger than the enhancement as a result of misonidazole

  8. Reduced miR-659-3p levels correlate with progranulin increase in hypoxic conditions: implications for frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Paola ePiscopo

    2016-05-01

    Full Text Available Progranulin (PGRN is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial Frontotemporal Lobar Degeneration (FTLD. PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848, the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3’UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.

  9. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    Science.gov (United States)

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil

  10. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T

    International Nuclear Information System (INIS)

    Ramaekers, Chantal H.M.A.; Beucken, Twan van den; Meng, Alice; Kassam, Shaqil; Thoms, John; Bristow, Robert G.; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of the microenvironment of solid tumors which has been shown to promote malignancy and poor patient outcome through multiple mechanisms. The association of hypoxia with more aggressive disease may be due in part to recently identified links between hypoxia and genetic instability. For example, hypoxia has been demonstrated to impede DNA repair by down-regulating the homologous recombination protein RAD51. Here we investigated hypoxic regulation of UBE2T, a ubiquitin ligase required in the Fanconi anemia (FA) DNA repair pathway. Materials and methods: We analysed UBE2T expression by microarray, quantitative PCR and western blot analysis in a panel of cancer cell lines as a function of oxygen concentration. The importance of this regulation was assessed by measuring cell survival in response to DNA damaging agents under normoxia or hypoxia. Finally, HIF dependency was determined using knockdown cell lines and RCC4 cells which constitutively express HIF1α. Results: Hypoxia results in rapid and potent reductions in mRNA levels of UBE2T in a panel of cancer cell lines. Reduced UBE2T mRNA expression is HIF independent and was not due to changes in mRNA or protein stability, but rather reflected reduced promoter activity. Exposure of tumor cells to hypoxia greatly increased their sensitivity to treatment with the interstrand crosslinking (ICL) agent mitomycin C. Conclusions: Exposure to hypoxic conditions down-regulates UBE2T expression which correlates with an increased sensitivity to crosslinking agents consistent with a defective Fanconi anemia pathway. This pathway can potentially be exploited to target hypoxic cells in tumors.

  11. Application of the control variate technique to estimation of total sensitivity indices

    International Nuclear Information System (INIS)

    Kucherenko, S.; Delpuech, B.; Iooss, B.; Tarantola, S.

    2015-01-01

    Global sensitivity analysis is widely used in many areas of science, biology, sociology and policy planning. The variance-based methods also known as Sobol' sensitivity indices has become the method of choice among practitioners due to its efficiency and ease of interpretation. For complex practical problems, estimation of Sobol' sensitivity indices generally requires a large number of function evaluations to achieve reasonable convergence. To improve the efficiency of the Monte Carlo estimates for the Sobol' total sensitivity indices we apply the control variate reduction technique and develop a new formula for evaluation of total sensitivity indices. Presented results using well known test functions show the efficiency of the developed technique. - Highlights: • We analyse the efficiency of the Monte Carlo estimates of Sobol' sensitivity indices. • The control variate technique is applied for estimation of total sensitivity indices. • We develop a new formula for evaluation of Sobol' total sensitivity indices. • We present test results demonstrating the high efficiency of the developed formula

  12. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner.

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R; Durden, Donald L

    2014-08-15

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α-HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. MDM2 Regulates Hypoxic Hypoxia-inducible Factor 1α Stability in an E3 Ligase, Proteasome, and PTEN-Phosphatidylinositol 3-Kinase-AKT-dependent Manner*

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R.; Durden, Donald L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α–HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. PMID:24982421

  14. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  15. Planned home birth and the association with neonatal hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Wasden, Shane W; Chasen, Stephen T; Perlman, Jeffrey M; Illuzzi, Jessica L; Chervenak, Frank A; Grunebaum, Amos; Lipkind, Heather S

    2017-12-20

    To evaluate the association between planned home birth and neonatal hypoxic ischemic encephalopathy (HIE). This is a case-control study in which a database of neonates who underwent head cooling for HIE at our institution from 2007 to 2011 was linked to New York City (NYC) vital records. Four normal controls per case were then randomly selected from the birth certificate data after matching for year of birth, geographic location, and gestational age. Demographic and obstetric information was obtained from the vital records for both the cases and controls. Location of birth was analyzed as hospital or out of hospital birth. Details from the out of hospital deliveries were reviewed to determine if the delivery was a planned home birth. Maternal and pregnancy characteristics were examined as covariates and potential confounders. Logistic regression was used to determine the odds of HIE by intended location of delivery. Sixty-nine neonates who underwent head cooling for HIE had available vital record data on their births. The 69 cases were matched to 276 normal controls. After adjusting for pregnancy characteristics and mode of delivery, neonates with HIE had a 44.0-fold [95% confidence interval (CI) 1.7-256.4] odds of having delivered out of hospital, whether unplanned or planned. Infants with HIE had a 21.0-fold (95% CI 1.7-256.4) increase in adjusted odds of having had a planned home birth compared to infants without HIE. Out of hospital birth, whether planned home birth or unplanned out of hospital birth, is associated with an increase in the odds of neonatal HIE.

  16. Research Progress of Mechanism and Treatment of Neonatal Hypoxic-ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Yu-fei NI

    2017-09-01

    Full Text Available Neonatal hypoxic-ischemic encephalopathy (HIE is a hypoxic-ischemic brain injury caused by hypoxia after perinatal asphyxia in neonates, and one of the major causes of neonatal death, lifelong neurological disability and cognitive dysfunction. Although the mechanisms of HIE are complex and still unclear, it generally holds that HIE has a relationship with acute inflammatory reaction and is regulated by multiple cytokines and neuromodulators. Presently, therapeutic hypothermia, in the light of the lower mortality and improvement of prognosis, becomes a standard of care in many medical institutes, but there are still neonates dead or disabled after treatment. Therefore, it is necessary to use hypothermia in combination with other new adjuvant therapies (such as anti-inflammatory cytokine to improve the prognosis of neonatal HIE. Besides, glutamate receptor antagonist, calcium channel blockers, erythropoietin, and nerve growth factors also have certain therapeutic effects on neonatal HIE. Therefore, this review mainly focused on the mechanisms and treatments of HIE. Based on this, we hold that the future studies should concentrate on how to attenuate early brain injury and to improve the growth and differentiation of neuronal cells and non-neuronal cells, which is of great signifcance to prolong the therapeutic window of neuroprotection, promote long-term neural restoration and improve the prognosis.

  17. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency

    Directory of Open Access Journals (Sweden)

    Yufen Xie

    2014-11-01

    Full Text Available Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC, elevated O2 and mitochondrial function are necessary to placental lineages at the maternal–placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. In an implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor 4 (FGF4 enabled the highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2 initiated the most TSC differentiation after 24 h despite exposure to FGF4. However, hypoxic stress supported differentiation poorly after 4–7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential and maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos, and high pyruvate kinase M2 (glycolysis despite FGF4 removal. Inhibiting OxPhos inhibited optimum differentiation at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2 > 0.5–2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation.

  18. Cell inactivation studies on yeast cells under euoxic and hypoxic condition using electron beam from microtron accelerator

    International Nuclear Information System (INIS)

    Praveen Joseph; Santhosh Acharya; Ganesh Sanjeev; Narayana, Y.; Bhat, N.N.

    2011-01-01

    In the case of sparsely ionizing radiation such as electron, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, the differences in the cell survival efficiency and dose rate effect in diploid yeast strains Saccharomyces cerevisiae X2180 and Saccharomyces cerevisiae D7 under euoxic and hypoxic condition have been quantified. Irradiation was carried out using 8 MeV pulsed electron beam from Microtron accelerator. The dose per pulse and pulse width of the beam used was 0.6 Gy and 2.3 μs, respectively, which correspond to an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . For survival studies doses were delivered at a rate of 50 pulses per second (an average dose rate of 1,800 Gy s -1 ). Fricke and alanine dosimeters were used to measure the dose delivered to the sample. A significant difference in the dose response has been observed under euoxic and hypoxic condition. Dose rate effect has been studied by changing the pulse repetition rate of the Microtron and the dose rate used was from 180 to 1800 Gy min -1 . A significant dose rate effect was observed under euoxic condition for Saccharomyces cerevisiae X2180 but the same was absent under hypoxic condition. The dose rate effect was absent for Saccharomyces cerevisiae D7 under both irradiation condition. The survival curves are found to be sigmoidal in shape under both condition but with a wider shoulder under hypoxic condition. The D 0 value and the Oxygen Enhancement Ratio (OER) at that point have been derived. (author)

  19. Response surface modeling of alfentanil-sevoflurane interaction on cardiorespiratory control and bispectral index.

    Science.gov (United States)

    Dahan, A; Nieuwenhuijs, D; Olofsen, E; Sarton, E; Romberg, R; Teppema, L

    2001-06-01

    Respiratory depression is a serious side effect of anesthetics and opioids. The authors examined the influence of the combined administration of sevoflurane and alfentanil on ventilatory control, heart rate (HR), and Bispectral Index (BIS) in healthy volunteers. Step decreases in end-tidal partial pressure of oxygen from normoxia into hypoxia (approximately 50 mmHg) at constant end-tidal partial pressure of carbon dioxide (approximately 48 mmHg) were performed in nine male volunteers at various concentrations of alfentanil and sevoflurane, ranging from 0 to 50 ng/ml for alfentanil and from 0 to 0.4 end-tidal concentration (ET%) for sevoflurane, and with various combinations of alfentanil and sevoflurane. The alfentanil-sevoflurane interactions on normoxic resting (hypercapnic) ventilation (Vi), HR, hypoxic Vi, and HR responses and BIS were assessed by construction of response surfaces that related alfentanil and sevoflurane to effect using a population analysis. Concentration-effect relations were linear for alfentanil and sevoflurane. Synergistic interactions were observed for resting Vi and resting HR. Depression of Vi by 25% occurred at 38 +/- 11 ng/ml alfentanil (population mean +/- SE) and at 0.7 +/- 0.4 ET% sevoflurane. One possibility for 25% reduction when alfentanil and sevoflurane are combined is 13.4 ng/ml alfentanil plus 0.12 ET% sevoflurane. Additive interactions were observed for hypoxic Vi and HR responses and BIS. Depression of the hypoxic Vi response by 25% occurred at 16 +/- 1 ng/ml alfentanil and 0.14 +/- 0.05 ET% sevoflurane. The effect of sevoflurane on the BIS (25% reduction of BIS occurred at 0.45 +/- 0.08 ET%) was independent of the alfentanil concentration. Response surface modeling was used successfully to analyze the effect of interactions between two drugs on respiration. The combination of alfentanil and sevoflurane causes more depression of Vi and HR than does the summed effect of each drug administered separately. The effects of

  20. Max-Plus Stochastic Control and Risk-Sensitivity

    International Nuclear Information System (INIS)

    Fleming, Wendell H.; Kaise, Hidehiro; Sheu, Shuenn-Jyi

    2010-01-01

    In the Maslov idempotent probability calculus, expectations of random variables are defined so as to be linear with respect to max-plus addition and scalar multiplication. This paper considers control problems in which the objective is to minimize the max-plus expectation of some max-plus additive running cost. Such problems arise naturally as limits of some types of risk sensitive stochastic control problems. The value function is a viscosity solution to a quasivariational inequality (QVI) of dynamic programming. Equivalence of this QVI to a nonlinear parabolic PDE with discontinuous Hamiltonian is used to prove a comparison theorem for viscosity sub- and super-solutions. An example from mathematical finance is given, and an application in nonlinear H-infinity control is sketched.