WorldWideScience

Sample records for controlling chemically induced

  1. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.

    Science.gov (United States)

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2010-11-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.

  2. Chemical-induced Vitiligo

    Science.gov (United States)

    Harris, John E.

    2016-01-01

    Synopsis Chemical-induced depigmentation of the skin has been recognized for over 75 years, first as an occupational hazard but then extending to those using household commercial products as common as hair dyes. Since their discovery, these chemicals have been used therapeutically in patients with severe vitiligo to depigment their remaining skin and improve their appearance. The importance of recognizing this phenomenon was highlighted during an outbreak of vitiligo in Japan during the summer of 2013, when over 16,000 users of a new skin lightening cosmetic cream developed skin depigmentation at the site of contact with the cream and many in remote areas as well. Depigmenting chemicals appear to be analogs of the amino acid tyrosine that disrupt melanogenesis and result in autoimmunity and melanocyte destruction. Because chemical-induced depigmentation is clinically and histologically indistinguishable from non-chemically induced vitiligo, and because these chemicals appear to induce melanocyte autoimmunity, this phenomenon should be known as “chemical-induced vitiligo”, rather than less accurate terms that have been previously used. PMID:28317525

  3. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  4. Femtosecond laser induced and controlled chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2011-07-01

    Full Text Available Results from experiments aimed at bimolecular chemical reaction control of CO and H2 at room temperature and pressure, without any catalyst, using shaped femtosecond laser pulses are presented. A stable reaction product (CO2) was measured after...

  5. Chemical control of flowering time

    DEFF Research Database (Denmark)

    Ionescu, Irina Alexandra; Møller, Birger Lindberg; Sánchez Pérez, Raquel

    2017-01-01

    Flowering at the right time is of great importance; it secures seed production and therefore species survival and crop yield. In addition to the genetic network controlling flowering time, there are a number of much less studied metabolites and exogenously applied chemicals that may influence...... on the genetic aspects of flowering time regulation in annuals, but less so in perennials. An alternative to plant breeding approaches is to engineer flowering time chemically via the external application of flower-inducing compounds. This review discusses a variety of exogenously applied compounds used in fruit...

  6. Control in the Chemical Industry

    Science.gov (United States)

    Jones, R. G.

    1974-01-01

    Discusses various control techniques used in chemical processes, including measuring devices, controller functions, control valves, and feedforward and feedback actions. Applications of control to a real chemical plant are exemplified. (CC)

  7. Global Controllability of Chemical Reactions

    OpenAIRE

    Drexler, Dániel András; Tóth, János

    2015-01-01

    Controllability of chemical reactions is an important problem in chemical engineering science. In control theory, analysis of the controllability of linear systems is well-founded, however the dynamics of chemical reactions is usually nonlinear. Global controllability properties of chemical reactions are analyzed here based on the Lie-algebra of the vector fields associated to elementary reactions. A chemical reaction is controllable almost everywhere if all the reaction rate coefficients can...

  8. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  9. Chemical control methods and tools

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  10. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  11. Induced Noise Control

    National Research Council Canada - National Science Library

    Maidanik, G

    2002-01-01

    The induced noise control parameter is defined in terms of the ratio of the stored energy in a master dynamic system, when it is coupled to an adjunct dynamic system, to that stored energy when the coupling is absent...

  12. Infrared laser-induced chemical reactions

    International Nuclear Information System (INIS)

    Katayama, Mikio

    1978-01-01

    The experimental means which clearly distinguishes between infrared ray-induced reactions and thermal reactions has been furnished for the first time when an intense monochromatic light source has been obtained by the development of infrared laser. Consequently, infrared laser-induced chemical reactions have started to develop as one field of chemical reaction researches. Researches of laser-induced chemical reactions have become new means for the researches of chemical reactions since they were highlighted as a new promising technique for isotope separation. Specifically, since the success has been reported in 235 U separation using laser in 1974, comparison of this method with conventional separation techniques from the economic point of view has been conducted, and it was estimated by some people that the laser isotope separation is cheaper. This report briefly describes on the excitation of oscillation and reaction rate, and introduces the chemical reactions induced by CW laser and TEA CO 2 laser. Dependence of reaction yield on laser power, measurement of the absorbed quantity of infrared ray and excitation mechanism are explained. Next, isomerizing reactions are reported, and finally, isotope separation is explained. It was found that infrared laser-induced chemical reactions have the selectivity for isotopes. Since it is evident that there are many examples different from thermal and photo-chemical reactions, future collection of the data is expected. (Wakatsuki, Y.)

  13. Stress-induced NQO1 controls stability of C/EBPα against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer.

    Science.gov (United States)

    Patrick, B A; Jaiswal, A K

    2012-10-04

    Previously, we have shown a role of cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) in the stabilization of p63 against 20S proteasomal degradation resulting in thinning of the epithelium and chemical-induced skin cancer (Oncogene (2011) 30, 1098-1107). Current studies have demonstrated that NQO1 control of CCAAT-enhancer binding protein (C/EBPα) against 20S proteasomal degradation also contributes to the upregulation of p63 expression and protection. Western and immunohistochemistry analysis revealed that disruption of the NQO1 gene in mice and mouse keratinocytes led to degradation of C/EBPα and loss of p63 gene expression. p63 promoter mutagenesis, transfection and chromatin immunoprecipitation assays identified a C/EBPα-binding site between nucleotide position -185 and -174 that bound to C/EBPα and upregulated p63 gene expression. Co-immunoprecipitation and immunoblot analysis demonstrated that 20S proteasomes directly interacted and degraded C/EBPα. NQO1 direct interaction with C/EBPα led to stabilization of C/EBPα against 20S proteasomal degradation. NQO1 protection of C/EBPα required binding of NADH with NQO1. Exposure of skin and keratinocytes to the chemical stress agent benzo(a)pyrene led to induction of NQO1 and stabilization of C/EBPα protein, resulting in an increase in p63 RNA and protein in wild-type but not in NQO1-/- mice. Collectively, the current data combined with previous data suggest that stress induction of NQO1 through both stabilization of C/EBPα and increase in p63 and direct stabilization of p63 controls keratinocyte differentiation, leading to protection against chemical-induced skin carcinogenesis. The studies are significant as 2-4% human individuals are homozygous and 23% are heterozygous for the NQO1P187S mutation and might be susceptible to stress-induced skin diseases.

  14. Insulin-producing Cells from Adult Human Bone Marrow Mesenchymal Stromal Cells Could Control Chemically Induced Diabetes in Dogs: A Preliminary Study.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Ismail, Amani M; Khater, Sherry M; Ashamallah, Sylvia A; Azzam, Maha M; Ghoneim, Mohamed A

    2018-01-01

    Ten mongrel dogs were used in this study. Diabetes was chemically induced in 7 dogs, and 3 dogs served as normal controls. For each diabetic dog, 5 million human bone marrow-derived mesenchymal stem cells/kg were differentiated to form insulin-producing cells using a trichostatin-based protocol. Cells were then loaded in 2 TheraCyte capsules which were transplanted under the rectus sheath. One dog died 4 d postoperatively from pneumonia. Six dogs were followed up with for 6 to 18 mo. Euglycemia was achieved in 4 dogs. Their glucose tolerance curves exhibited a normal pattern demonstrating that the encapsulated cells were glucose sensitive and insulin responsive. In the remaining 2 dogs, the fasting blood sugar levels were reduced but did not reach normal values. The sera of all transplanted dogs contained human insulin and C-peptide with a negligible amount of canine insulin. Removal of the transplanted capsules was followed by prompt return of diabetes. Intracytoplasmic insulin granules were seen by immunofluorescence in cells from the harvested capsules. Furthermore, all pancreatic endocrine genes were expressed. This study demonstrated that the TheraCyte capsule or a similar device can provide adequate immunoisolation, an important issue when stem cells are considered for the treatment of type 1 diabetes mellitus.

  15. Chemical-induced allergy and autoimmunity

    NARCIS (Netherlands)

    Wulferink, Marty Bernardus Franciscus

    2001-01-01

    This thesis aims towards a better understanding of the mechanisms that lead to chemical-induced adverse immune effects. We focussed thereby on the initial induction stage of the immune reaction that consists of three major steps: (i) formation of neoantigen, (ii) processing and presentation of the

  16. How to control chemical hazards

    CERN Multimedia

    2012-01-01

    Improving protection against chemical hazards is one of the 2012 CERN safety objectives identified by the Director General. Identifying and drawing up a complete inventory of chemicals, and assessing the associated risks are important steps in this direction.   The HSE Unit has drawn up safety rules, guidelines and forms to help you to meet this objective. We would like to draw your attention to: • safety guidelines C-0-0-1 and C-1-0-2 (now also available in French), which deal with the identification of hazardous chemicals and the assessment of chemical risk; • safety guideline C-1-0-1, which deals with the storage of hazardous chemicals. All safety documents can be consulted at: cern.ch/regles-securite The HSE Unit will be happy to answer any questions you may have. Write to us at: safety-general@cern.ch The HSE Unit

  17. Femtosecond laser control of chemical reactions

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-08-31

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  18. Chemical process control using Mat lab

    International Nuclear Information System (INIS)

    Kang, Sin Chun; Kim, Raeh Yeon; Kim, Yang Su; Oh, Min; Yeo, Yeong Gu; Jung, Yeon Su

    2001-07-01

    This book is about chemical process control, which includes the basis of process control with conception, function, composition of system and summary, change of laplace and linearization, modeling of chemical process, transfer function and block diagram, the first dynamic property of process, the second dynamic property of process, the dynamic property of combined process, control structure of feedback on component of control system, the dynamic property of feedback control loop, stability of closed loop control structure, expression of process, modification and composition of controller, analysis of vibration response and adjustment controller using vibration response.

  19. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  20. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  1. Geochemical induced degradation of environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Parlar, H

    1984-09-01

    Attempts to correlate the concentration of organic chemicals in the environment with their production figures have resulted in a large deficit; this includes environmental chemicals such as chlorinated hydrocarbons. It has been assumed that analytical errors accounted for this deficit. Another explanation, however, allows for reactions of compounds under biotic and abiotic conditions. Because of the biostability of many organic chemicals biological transformation mechanisms can bring about slight change only. By contrast, abiotic environmental factors such as the UV-irradiation or decomposition on natural surfaces contribute considerably to the transformation of this substance class. An investigation of such abiotic charges of organic chemicals must therefore pay particular attention to dynamic and catalytic effects primarily attributable to the respective molecular state and interactions with the environment. This paper deals with the photoinduced reactions of organic substances adsorbed on natural surfaces and their significance for the degradability of environmental chemicals.

  2. Intelligent Controller Design for a Chemical Process

    OpenAIRE

    Mr. Glan Devadhas G; Dr.Pushpakumar S.

    2010-01-01

    Chemical process control is a challenging problem due to the strong on*line non*linearity and extreme sensitivity to disturbances of the process. Ziegler – Nichols tuned PI and PID controllers are found to provide poor performances for higher*order and non–linear systems. This paper presents an application of one*step*ahead fuzzy as well as ANFIS (adaptive*network*based fuzzy inference system) tuning scheme for an Continuous Stirred Tank Reactor CSTR process. The controller is designed based ...

  3. WEED CONTROL EFFECTS ON SOIL CHEMICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2008-01-01

    Full Text Available The weed control procedures are known to affect the soil physical attributes and the nutrient amount taken up by weed roots. This work hypothesis is that weed control methods might also affect soil chemical attributes. Four experiments were carried out, three with maize (E-1, E-2 and E-3 and one with cotton (E-4, in randomized complete blocks design arranged in split-plots, with five replications. In E-1 experiment, the plots consisted of two weed control treatments: no-weed control and weed shovel-digging at 20 and 40 days after sowing; and the subplots consisted of six maize cultivars. In the three other experiments, the plots consisted of plant cultivars: four maize cultivars (E-2 and E-3 and four cotton cultivars (E-4. And, the subplots consisted of three weed control treatments: (1 no-weed control; (2 weed shovel-digging at 20 and 40 days after sowing; and (3 intercropping with cowpea (E-2 or Gliricidia sepium (Jacq. Walp. (E-3 and E-4. In all experiments, after harvest, eight soil samples were collected from each subplot (0-20 cm depth and composed in one sample. Soil chemical analysis results indicated that the weed control by shovel-digging or intercropping may increase or decrease some soil element concentrations and the alterations depend on the element and experiment considered. In E-2, the weed shovel-dug plots showed intermediate soil pH, lower S (sum of bases values and higher soil P concentrations than the other plots. In E-4, soil K and Na concentrations in plots without weed control did not differ from plots with intercropping, and in both, K and Na values were higher than in weed shovel-dug plots. Maize and cotton cultivars did not affect soil chemical characteristics.

  4. Programmable chemical controllers made from DNA

    Science.gov (United States)

    Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg

    2013-10-01

    Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

  5. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    Science.gov (United States)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  6. Mixed chemical-induced oxidative stress in occupational exposure ...

    African Journals Online (AJOL)

    Mixed chemical-induced oxidative stress in occupational exposure in Nigerians. JI Anetor, SA Yaqub, GO Anetor, AC Nsonwu, FAA Adeniyi, S Fukushima. Abstract. Exposure to single chemicals and associated disorders in occupational environments has received significant attention. Understanding these events holds ...

  7. Chemically induced and light-independent cryptochrome photoreceptor activation.

    Science.gov (United States)

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  8. Development and creation of a remote-controlled underwater laser induced breakdown spectrometer for analysis of the chemical composition of sea water and bottom sediments

    Science.gov (United States)

    Golik, Sergey S.; Mayor, Alexsander Yu.; Proschenko, Dmitriy Yu.; Ilyin, Alexey A.; Nagorniy, Ivan G.; Biryukova, Yuliya S.; Babiy, Michael Yu.; Golik, Natalia N.; Gevorgyan, Tigran A.; Lisitsa, Vladimir V.; Borovskiy, Anton V.; Kulchin, Yuri N.

    2017-10-01

    The developed underwater laser induced breakdown spectrometer consists of two units: 1- remotely operated vehicle (ROV) with the next main characteristics: work deep - up to 150 meters, maximum speed of immersion 1 m/s, maximum cruise velocity - 2 m/s and 2 - spectrometer unit (SU) consist of a DPSS Nd: YAG laser excitation source (double pulse with 50 mJ energy for each pulse at wavelength 1064 nm, pulse width 12 ns and pulse repetition rate 1-15 Hz, DF251, SOL Instruments), a spectrum recording system (Maya HR4000 or 2000 Pro spectrometer, Ocean Optics) and microcomputer. These two units are connected by Ethernet network and registered spectral data are automatically processed in a MATLAB platform.

  9. Chemical-induced disease relation extraction with various linguistic features.

    Science.gov (United States)

    Gu, Jinghang; Qian, Longhua; Zhou, Guodong

    2016-01-01

    Understanding the relations between chemicals and diseases is crucial in various biomedical tasks such as new drug discoveries and new therapy developments. While manually mining these relations from the biomedical literature is costly and time-consuming, such a procedure is often difficult to keep up-to-date. To address these issues, the BioCreative-V community proposed a challenging task of automatic extraction of chemical-induced disease (CID) relations in order to benefit biocuration. This article describes our work on the CID relation extraction task on the BioCreative-V tasks. We built a machine learning based system that utilized simple yet effective linguistic features to extract relations with maximum entropy models. In addition to leveraging various features, the hypernym relations between entity concepts derived from the Medical Subject Headings (MeSH)-controlled vocabulary were also employed during both training and testing stages to obtain more accurate classification models and better extraction performance, respectively. We demoted relation extraction between entities in documents to relation extraction between entity mentions. In our system, pairs of chemical and disease mentions at both intra- and inter-sentence levels were first constructed as relation instances for training and testing, then two classification models at both levels were trained from the training examples and applied to the testing examples. Finally, we merged the classification results from mention level to document level to acquire final relations between chemicals and diseases. Our system achieved promisingF-scores of 60.4% on the development dataset and 58.3% on the test dataset using gold-standard entity annotations, respectively. Database URL:https://github.com/JHnlp/BC5CIDTask. © The Author(s) 2016. Published by Oxford University Press.

  10. Chemical barriers for controlling groundwater contamination

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.

    1993-01-01

    Chemical barriers are being explored as a low-cost means of controlling groundwater contamination. The barrier can intercept a contaminant plume and prevent migration by transferring contaminants from the groundwater to immobile solids. A chemical barrier can be emplaced in a landfill liner or in an aquifer cutoff wall or can be injected into a contaminant plume. Chemical barriers can be classified as either precipitation barriers or sorption barriers depending upon the dominant mode of contaminant extraction. In a precipitation barrier, contaminants are bound in the structures of newly formed phases; whereas, in a sorption barrier, contaminants attach to the surfaces of preexisting solids by adsorption or some other surface mechanism. Sorption of contaminants is pH dependent. A precipitation barrier can control the pH of the system, but alkaline groundwater may dominate the pH in a sorption barrier. A comparison is made of the characteristics of precipitation and sorption barriers. Experimental data on the extraction of uranium and molybdenum from simulated groundwater are used to demonstrate these concepts. 10 refs., 9 figs., 1 tab

  11. A survey of chemicals inducing lipid peroxidation in biological systems.

    Science.gov (United States)

    Kappus, H

    1987-01-01

    A great number of drugs and chemicals are reviewed which have been shown to stimulate lipid peroxidation in any biological system. The underlying mechanisms, as far as known, are also dealt with. Lipid peroxidation induced by iron ions, organic hydroperoxides, halogenated hydrocarbons, redox cycling drugs, glutathione depleting chemicals, ethanol, heavy metals, ozone, nitrogen dioxide and a number of miscellaneous compounds, e.g. hydrazines, pesticides, antibiotics, are mentioned. It is shown that lipid peroxidation is stimulated by many of these compounds. However, quantitative estimates cannot be given yet and it is still impossible to judge the biological relevance of chemical-induced lipid peroxidation.

  12. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  13. Chemical optimization algorithm for fuzzy controller design

    CERN Document Server

    Astudillo, Leslie; Castillo, Oscar

    2014-01-01

    In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application

  14. Computer Controlled Chemical Micro-Reactor

    International Nuclear Information System (INIS)

    Mechtilde, Schaefer; Eduard, Stach; Adreas, Foitzik

    2006-01-01

    Chemical reactions or chemical equilibria can be influenced and controlled by several parameters. The ratio of two liquid ingredients, the so called reactants or educts, plays an important role in determining the end product and its yield. The reactants must be weighed and accordingly mixed with the conventional batch mode. If the reaction is done in a microreactor or in several parallel working micro-reactors, units for allotting the educts in appropriate quantities are required. In this report we present a novel micro-reactor that allows the constant monitoring of the chemical reaction via Raman spectroscopy. Such monitoring enables an appropriate feedback on the steering parameters for the PC controlled micro-pumps for the appropriate educt flow rate of both liquids to get optimised ratios of ingredients at an optimised total flow rate. The micro-reactors are the core pieces of the design and are easily removable and can therefore be changed at any time to adapt the requirements of the chemical reaction. One type of reactor consists of a stainless steel base containing small scale milled channels covered with anodically bonded Pyrex glass. Another type of reactor has a base of anisotropically etched silicon, and is also covered with anodically bonded Pyrex glass. The glass window allows visual observation of the initial phase interface of the two educts in the reaction channels by optical microscopy and does not affect, in contrast to infrared spectroscopy, the Raman spectroscopic signal for detection of the reaction kinetics. On the basis of a test reaction, we present non-invasive and spatially highly resolved in-situ reaction analysis using Raman spectroscopy measured along the reaction channel at different locations

  15. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  16. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation.

    Science.gov (United States)

    Eckhardt, D; Li-Blatter, X; Schönfeld, H-J; Heerklotz, H; Seelig, J

    2018-05-25

    Apolipoprotein A-1 (Apo A-1) plays an important role in lipid transfer and obesity. Chemical unfolding of α-helical Apo A-1 is induced with guanidineHCl and monitored with differential scanning calorimetry (DSC) and CD spectroscopy. The unfolding enthalpy and the midpoint temperature of unfolding decrease linearly with increasing guanidineHCl concentration, caused by the weak binding of denaturant. At room temperature, binding of 50-60 molecules guanidineHCl leads to a complete Apo A-1 unfolding. The entropy of unfolding decreases to a lesser extent than the unfolding enthalpy. Apo A-1 chemical unfolding is a dynamic multi-state equilibrium that is analysed with the Zimm-Bragg theory modified for chemical unfolding. The chemical Zimm-Bragg theory predicts the denaturant binding constant K D and the protein cooperativity σ. Chemical unfolding of Apo A-1 is two orders of magnitude less cooperative than thermal unfolding. The free energy of thermal unfolding is ~0.2 kcal/mol per amino acid residue and ~1.0 kcal/mol for chemical unfolding at room temperature. The Zimm-Bragg theory calculates conformational probabilities and the chemical Zimm-Bragg theory predicts stretches of α-helical segments in dynamic equilibrium, unfolding and refolding independently and fast. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. SALE, Quality Control of Analytical Chemical Measurements

    International Nuclear Information System (INIS)

    Bush, W.J.; Gentillon, C.D.

    1985-01-01

    1 - Description of problem or function: The Safeguards Analytical Laboratory Evaluation (SALE) program is a statistical analysis program written to analyze the data received from laboratories participating in the SALE quality control and evaluation program. The system is aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically evaluated and participants are informed of the accuracy and precision of their results. 2 - Method of solution: Various statistical techniques produce the SALE output. Assuming an unbalanced nested design, an analysis of variance is performed, resulting in a test of significance for time and analyst effects. A trend test is performed. Both within- laboratory and between-laboratory standard deviations are calculated. 3 - Restrictions on the complexity of the problem: Up to 1500 pieces of data for each nuclear material sampled by a maximum of 75 laboratories may be analyzed

  18. Chemicals for crop protection and pest control

    National Research Council Canada - National Science Library

    Green, Maurice B; Hartley, Gilbert Spencer; West, Trustham Frederick

    1977-01-01

    .... For the most part, the conventional classification into insecticides, herbicides and fungicides has been followed and some more specialized chemicals are also classified according to their biological...

  19. Chemical weed control in Spinach (Spiniacia oleracea

    Directory of Open Access Journals (Sweden)

    A. Modhej

    2016-03-01

    Full Text Available Introduction Spinach (Spinacia oleracea is an annual plant of family Chenopodiaceae. It is cultivated in temperate and cold regions in Khouzestan in autumn and winter. Weeds are the main problems that limit the production of vegetables. Competition ability of spinach against weeds is very low and weeds cause the loss of quality and quantity in this plant. Weeds reduce germination and establishment and growth of spinach. Weed management in spinach should be done at the beginning of the season. Hand weeding is the best way to control weeds spinach, although due to the high cost it is not cost effective, but is steel common in large areas. Weed control spinach, using chemical methods, the number of weeds are kept below the threshold of economic damage. Materials and Methods The experiment was conducted in a randomized complete block design with 15 treatments and three replications. Treatments included pre-plant application of EPTC at 5 and 6 lit ha-1, pre-plant application of Trifluralin at 2 lit ha-1, pre-plant and pre-emergence application of Pendimethalin at 3 lit ha-1, pre-emergence and post-emergence application of Meteribouzin at 300 g ha-1, pre-emergence and post-emergence application of Meteribouzin at 400 g ha-1, pre-emergence and post-emergence application of Imazethapyr at 0.7 lit ha-1, pre-emergence and post-emergence application of Imazethapyr at 1 lit ha-1, weedy and weed free checks. Each plot the size of 2.5 × 2 meters and 10 row cultivation with distances between rows of 15 cm and the distance between the plants 25 cm and the sowing depth was 3 cm. The herbicide treatments were applied to the back sprayer with Flat fan nozzle with volume of consumption of 240 lit ha-1 solution. The final harvest was about 50 days after emergence. Sampling of weeds 10 days before harvest was performed with using quadrate 0.5 ×0.5. Results Discussion Important broad-leaf and narrow leaf weeds observed in the field, included field bindweed

  20. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displac......The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain...... of the system free energy and its dependence on the surface amount. It is solved in the cantilever case thanks to an asymptotic analysis, and an approached closed-form solution is obtained for the interfacial stress field. Finally, some conclusions regarding the transducer efficiency of cantilevers are drawn...

  1. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    Directory of Open Access Journals (Sweden)

    Olga Bloch

    2015-01-01

    Full Text Available T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO by high-energy (HE diet and by streptozotocin (STZ in Sprague Dawly (SD rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis.

  2. Chemical inducible promotor used to obtain transgenic plants with a silent marker

    Science.gov (United States)

    Chua, Nam-Hai; Aoyama, Takashi

    2000-01-01

    A chemically inducible promoter is described which may be used to transform plants with genes which are easily regulatable by adding plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one which is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  3. Chemical inducible promoter used to obtain transgenic plants with a silent marker

    Science.gov (United States)

    Aoyama, Takashi; Zuo, Jianru; Chua, Nam-Hai

    2004-08-31

    A chemically inducible promoter is described that may be used to transform plants, including tobacco and lettuce, with genes which are easily regulatable by adding the plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one that is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  4. On the Chemical Mixing Induced by Internal Gravity Waves

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-10-10

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.

  5. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs.

  6. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    International Nuclear Information System (INIS)

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs

  7. Chemical determination of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  8. Chemical memory reactions induced bursting dynamics in gene expression.

    Science.gov (United States)

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  9. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of Chemically-Induced Bacterial Ghosts (BGs Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs

    Directory of Open Access Journals (Sweden)

    Hyun Jung Park

    2016-11-01

    Full Text Available Acellular bacterial ghosts (BGs are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH, acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS, anti-inflammatory cytokine (IL-10, and dual activities (IL-6 in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning

  11. The Control of Chemical and Biological Weapons.

    Science.gov (United States)

    Alexander, Archibald S.; And Others

    This book is composed of four papers prepared to illuminate the problem areas which might arise if the policies of the 1925 Geneva Protocol and other measures to limit chemical and biological weapons are ratified by the United States Senate. The papers included are: Legal Aspects of the Geneva Protocol of 1925; The Use of Herbicides in War: A…

  12. Nanoscale control of reversible chemical reaction between fullerene C60 molecules using scanning tunneling microscope.

    Science.gov (United States)

    Nakaya, Masato; Kuwahara, Yuji; Aono, Masakazu; Nakayama, Tomonobu

    2011-04-01

    The nanoscale control of reversible chemical reactions, the polymerization and depolymerization between C60 molecules, has been investigated. Using a scanning tunneling microscope (STM), the polymerization and depolymerization can be controlled at designated positions in ultrathin films of C60 molecules. One of the two chemical reactions can be selectively induced by controlling the sample bias voltage (V(s)); the application of negative and positive values of V(s) results in polymerization and depolymerization, respectively. The selectivity between the two chemical reactions becomes extremely high when the thickness of the C60 film increases to more than three molecular layers. We conclude that STM-induced negative and positive electrostatic ionization are responsible for the control of the polymerization and depolymerization, respectively.

  13. Chemical controls on subsurface radionuclide transport

    International Nuclear Information System (INIS)

    King, K.J.; Killey, R.W.D.

    1990-01-01

    Chemical and biochemical processes can affect the movement of contaminants in groundwater. Materials can be almost completely removed from circulation by processes such as precipitation and coprecipitation. Organic compounds or contaminants that are hazardous may be degraded or formed during groundwater transport. Studies at the Chalk River Laboratories of AECL have focused on radionuclide transport, although other contaminants have been and are being investigated. This paper summarizes findings from research that extends back more than 30 years. Much of the work on reactive contaminant transport has centered on 90 Sr; other contaminants have also been considered, however, and features of their behaviour are also reviewed. (25 refs., 5 figs., 4 tabs.)

  14. Chemical products induce resistance to Xanthomonas perforans in tomato

    Directory of Open Access Journals (Sweden)

    Adriana Terumi Itako

    2015-09-01

    Full Text Available The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM (0.025 g.L−1, fluazinam (0.25 g.L−1, pyraclostrobin (0.08 g.L−1, pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1, copper oxychloride (1.50 g.L−1, mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1, and oxytetracycline (0.40 g.L−1 on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  15. Chemical products induce resistance to Xanthomonas perforans in tomato.

    Science.gov (United States)

    Itako, Adriana Terumi; Tolentino Júnior, João Batista; Silva Júnior, Tadeu Antônio Fernandes da; Soman, José Marcelo; Maringoni, Antonio Carlos

    2015-01-01

    The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM) (0.025 g.L(-1)), fluazinam (0.25 g.L(-1)), pyraclostrobin (0.08 g.L(-1)), pyraclostrobin + methiran (0.02 g.L(-1) + 2.2 g.L(-1)), copper oxychloride (1.50 g.L(-1)), mancozeb + copper oxychloride (0.88 g.L(-1) + 0.60 g.L(-1)), and oxytetracycline (0.40 g.L(-1))) on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease) was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  16. Quality Control Guidelines for SAM Chemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  17. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  18. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  19. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  20. Physical chemical quality control of the molybdenum technetium generator

    International Nuclear Information System (INIS)

    Olive, E.; Cruz, J.; Isaac, M.; Gamboa, R.; D'Alessandro, K.; Desdin, L.F.

    1995-01-01

    Comparative operational procedure imported molybdenum technetium generators have been made. Procedures for determination of chemical, radiochemical and radionuclidic purities that may be applied in Hospital's laboratories and in the quality control of generators production are developed

  1. Optimization of microwave-induced chemical etching for rapid development of neutron-induced recoil tracks in CR-39 detectors

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Bandyopadhyay, T.

    2014-01-01

    A systematic investigation is carried out to optimize the recently established microwave-induced chemical etching (MICE) parameters for rapid development of neutron-induced recoil tracks in CR-39 detectors. Several combinations of all available microwave powers with different etching durations were analysed to determine the most suitable etching condition. The etching duration was found to reduce with increasing microwave power and the tracks were observed at about 18, 15, 12, and 6 min for 300, 450, 600 and 900 W of microwave powers respectively compared to a few hours in chemical etching (CE) method. However, for complete development of tracks the etching duration of 30, 40, 50 and 60 min were found to be suitable for the microwave powers of 900, 600, 450 and 300 W, respectively. Temperature profiles of the etchant for all the available microwave powers at different etching durations were generated to regulate the etching process in a controlled manner. The bulk etch rates at different microwave powers were determined by 2 methods, viz., gravimetric and removed thickness methods. A logarithmic expression was used to fit the variation of bulk etch rate with microwave power. Neutron detection efficiencies were obtained for all the cases and the results on track parameters obtained with MICE technique were compared with those obtained from another detector processed with chemical etching. - Highlights: • Microwave-induced chemical etching method is optimized for rapid development of recoil tracks due to neutrons in CR-39 detector. • Several combinations of microwave powers and etching durations are investigated to standardize the suitable etching condition. • Bulk-etch rates are determined for all microwave powers by two different methods, viz. gravimetric and removed thickness method. • The method is found to be simple, effective and much faster compared to conventional chemical etching

  2. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  3. Controlling the accuracy of chemical analysis

    International Nuclear Information System (INIS)

    Suschny, O.; Danesi, P.R.

    1991-01-01

    The involvement of the IAEA in quantitative analysis began in the early 1960's with radiochemical work connected with the environment. It than expanded to cover analysis (mostly by nuclear techniques) of samples for projects associated with human health, agriculture, hydrology and international safeguards. This article highlights the IAEA activities in the field of quality control in quantitative analysis

  4. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  5. Chemical factors that control lignin polymerization.

    Science.gov (United States)

    Sangha, Amandeep K; Davison, Brian H; Standaert, Robert F; Davis, Mark F; Smith, Jeremy C; Parks, Jerry M

    2014-01-09

    Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic, and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) subunits. It is known that increasing the relative abundance of H subunits results in lower molecular weight lignin polymers and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di-, and trilignols, calculated using density functional theory, which points to a requirement of strong p-electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages (β-β or β-5) react poorly and tend to "cap" the polymer. In general, β-5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.

  6. Ecologically sustainable chemical recommendations for agricultural pest control?

    Science.gov (United States)

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  7. Chemically induced magnetism in atomically precise gold clusters.

    Science.gov (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical mechanisms in mercury emission control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.; Laumb, J.D.; Benson, S.A.; Dunham, G.E.; Sharma, R.K.; Mibeck, B.A.; Miller, S.J.; Holmes, M.J.; Pavlish, J.H. [University of North Dakota, Energy and Environmental Research Center, Grand Forks, ND (United States)

    2003-05-01

    The emission of elemental mercury in the flue gas from coal-burning power plants is a major environmental concern. Control technologies utilizing activated carbon show promise and are currently under intense review. Oxidation and capture of elemental mercury on activated carbon was extensively investigated in a variety of flue gas atmospheres. Extensive parametric testing with individual and a variety of combinations and concentrations of reactive flue gas components and spectroscopic examination of the sulfur and chlorine forms present before and after breakthrough have led to an improved model to explain the kinetic and capacity results. The improved model delineates the independent Lewis acid oxidation site as well as a zig-zag carbene site on the carbon edge that performs as a Lewis base in reacting with both the oxidized mercury formed at the oxidation site and with the acidic flue gas components in competing reactions to form organochlorine, sulfinate, and sulfate ester moieties on the carbon edge.

  9. Chemical changes in titanate surfaces induced by Ar+ ion bombardment

    International Nuclear Information System (INIS)

    Gonzalez-Elipe, A.R.; Fernandez, A.; Espinos, J.P.; Munuera, G.; Sanz, J.M.

    1992-01-01

    The reduction effects and compositional changes induced by 3.5 keV Ar + bombardment of several titanates (i.e. SrTiO 3 , Al 2 TiO 5 and NiTiO 3 ) have been quantitatively investigated by XPS. In all the samples studied here the original Ti 4+ species were reduced to lower oxidation states (i.e. Ti 3+ and Ti 2+ ), although to a lesser extent than in pure TiO 2 . On the contrary, whereas Sr 2+ and Al 3+ seem to remain unaffected by Ar + bombardment, in agreement with the behaviour of the respective oxides (i.e. SrO and Al 2 O 3 ), Ni 2+ appears more easily reducible to Ni o in NiTiO 3 than in NiO. In addition, other specific differences were observed between the titanates, which reveal the existence of interesting chemical effects related to the presence of the different counter-ions in the titanates. In the case of Al 2 TiO 5 , its Ar + -induced decomposition to form TiO 2 + Al 2 O 3 could be followed by XPS. (Author)

  10. Chemical reactions induced and probed by positive muons

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1990-01-01

    The application of μ + science, collectively called μSR, but encompassing a variety of methods including muon spin rotation, muon spin relaxation, muon spin repolarization, muon spin resonance and level-crossing resonance, to chemistry is introduced emphasizing the special aspects of processes which are 'induced and probed' by the μ + itself. After giving a general introduction to the nature and methods of muon science and a short history of muon chemistry, selected topics are given. One concerns the usefulness of muonium as hydrogen-like probes of chemical reactions taking polymerization of vinyl monomers and reaction with thiosulphate as examples. Probing solitons in polyacetylene induced and probed by μ + is also an important example which shows the unique nature of muonium. Another important topic is 'lost polarization'. Although this term is particular to muonium. Another important topic is 'lost polarization'. Although this term is particular to muon chemistry, the chemistry underlining the phenomenon of lost polarization has an importance to both radiation and hot atom chemistries. (orig.)

  11. Chemical weed control in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Sarwar, M.; Hassan, S.W.; Abid, A.A.

    2008-01-01

    Effect of two different pre-emergence herbicides i.e. Terbutryn (lgron-500FW) A, 1.01.25 kg a.t. ha/sup -1/ and Flurochloridone (Racer-25 CS) a 0.31, 0.37, 0.44, 0.50 and 0.56 Kg a.i. ha/sup -1/ on weeds and yield of barley wad studied under field conditions hb/sup -1/. All the herbicides significantly reduce the dry weight of weed Maximum reduction (70%) was observed in terbutryn a 1.0 Kg a.i. ha/sup -1/ Growth and yield parameters like number of spike lets per spike. Number of grams per spike. 1000-grain weight. Biological yield. Grain yield straw yield and harvest index showed significant response to various herbicides doses under study. Application of Flurochloridone (Racer-25 (CS) a 0.44 kg a.i. ha/sup -1/ and Terbutryn (lgran-500 FW) a 1.0 kg a.i). The data further revealed that in general all herbicide application treatments exhibited superior performance in respect of growth and yield over control. (author)

  12. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  13. Chemical and physical quality control of the HIPPURAN-131I

    International Nuclear Information System (INIS)

    Morin Zorilla, J.; Olive, E.; Isaac, M.; Cruz, J.

    1989-01-01

    Some physico-chemical methods for analytical control of Hippuran- 131 I are compared. The most convenient to applicate in hospitals and in more specialized quality control laboratories are recommended. The quality of Hippuran- 131 I produced by ISOTOP (USSR) is also evaluated. The product met the requirement of the International Pharmacopeia

  14. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.

    Science.gov (United States)

    Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J

    2017-08-25

    The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The statutory approach: the control of chemical products

    International Nuclear Information System (INIS)

    Briens, F.

    1997-01-01

    The evaluation and management of risks linked with chemical products and in particular with petroleum products is now performed using all the available tools developed by the OECD or the European Union in order to harmonize the procedures between member states. This paper describes the statutory liabilities linked to the trade of chemical products of industrial use in the case of new and of existing chemical substances (classification, labelling, risk evaluation and reduction, physico-chemical properties, toxicological and eco-toxicological studies, neutralization, limitation of trade and use, import/export, protection of the ozone layer, etc..). It refers to the legal framework (orders, by-laws, decrees, guidelines..) defined by the OECD and the European Community and recalls the organization and administration of the competent authorities for the control of chemical products. (J.S.)

  16. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.

    Science.gov (United States)

    Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2017-08-22

    A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.

  17. Assessment of immunotoxicity induced by chemicals in human precision-cut lung slices (PCLS).

    Science.gov (United States)

    Lauenstein, L; Switalla, S; Prenzler, F; Seehase, S; Pfennig, O; Förster, C; Fieguth, H; Braun, A; Sewald, K

    2014-06-01

    Occupational asthma can be induced by a number of chemicals at the workplace. Risk assessment of potential sensitizers is mostly performed in animal experiments. With increasing public demand for alternative methods, human precision-cut lung slices (PCLS) have been developed as an ex vivo model. Human PCLS were exposed to increasing concentrations of 20 industrial chemicals including 4 respiratory allergens, 11 contact allergens, and 5 non-sensitizing irritants. Local respiratory irritation was characterized and expressed as 75% (EC25) and 50% (EC50) cell viability with respect to controls. Dose-response curves of all chemicals except for phenol were generated. Local respiratory inflammation was quantified by measuring the production of cytokines and chemokines. TNF-α and IL-1α were increased significantly in human PCLS after exposure to the respiratory sensitizers trimellitic anhydride (TMA) and ammonium hexachloroplatinate (HClPt) at subtoxic concentrations, while contact sensitizers and non-sensitizing irritants failed to induce the release of these cytokines to the same extent. Interestingly, significant increases in T(H)1/T(H)2 cytokines could be detected only after exposure to HClPt at a subtoxic concentration. In conclusion, allergen-induced cytokines were observed but not considered as biomarkers for the differentiation between respiratory and contact sensitizers. Our preliminary results show an ex vivo model which might be used for prediction of chemical-induced toxicity, but is due to its complex three-dimensional structure not applicable for a simple screening of functional and behavior changes of certain cell populations such as dendritic cells and T-cells in response to allergens. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  19. Determining treatment frequency for controlling weeds on traffic islands using chemical and non-chemical weed control

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Larsen, S.U.; Andreasen, Christian

    2013-01-01

    Many public authorities rely on the use of non-chemical weed control methods, due to stringent restrictions on herbicide use in urban areas. However, these methods usually require more repeated treatments than chemical weed management, resulting in increased costs of weed management. In order...... of treatments per year were required: glyphosate 2.5, hot water 3, flames 5, hot air/flames 5.5 and steam 5.5 treatments. The results demonstrate that the weed control should be adjusted to the prescribed quality for the traffic islands by regularly assessing the need for weed control. They also show...... to investigate the efficacy of four non-chemical weed control methods and glyphosate treatment, experiments were carried out on traffic islands in the growing seasons 2005 and 2006. Three trial sites were each divided into six treatment areas, which were either treated with glyphosate, flame, steam, hot air...

  20. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  1. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    International Nuclear Information System (INIS)

    Kostaki, Vasiliki T.; Florou, Ageliki B.; Prodromidis, Mamas I.

    2011-01-01

    Highlights: → Electrochemical treatment endows analytical characteristics to SPEs. → A sensitive chemical sensor for uranium is described. → Performance is due to a synergy between electrochemical treatment and ink's solvents. → The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 μA for 6 min in 0.1 M H 2 SO 4 ) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H 3 BO 3 , pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10 -9 to 10 -7 M U(VI) was constructed. The 3σ limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10 -9 M U(VI) and >12% (n = 5, 5 x 10 -8 M U(VI)), respectively. The effect of potential interferences was also examined.

  2. Control of chemical dynamics by lasers: theoretical considerations.

    Science.gov (United States)

    Kondorskiy, Alexey; Nanbu, Shinkoh; Teranishi, Yoshiaki; Nakamura, Hiroki

    2010-06-03

    Theoretical ideas are proposed for laser control of chemical dynamics. There are the following three elementary processes in chemical dynamics: (i) motion of the wave packet on a single adiabatic potential energy surface, (ii) excitation/de-excitation or pump/dump of wave packet, and (iii) nonadiabatic transitions at conical intersections of potential energy surfaces. A variety of chemical dynamics can be controlled, if we can control these three elementary processes as we desire. For (i) we have formulated the semiclassical guided optimal control theory, which can be applied to multidimensional real systems. The quadratic or periodic frequency chirping method can achieve process (ii) with high efficiency close to 100%. Concerning process (iii) mentioned above, the directed momentum method, in which a predetermined momentum vector is given to the initial wave packet, makes it possible to enhance the desired transitions at conical intersections. In addition to these three processes, the intriguing phenomenon of complete reflection in the nonadiabatic-tunneling-type of potential curve crossing can also be used to control a certain class of chemical dynamics. The basic ideas and theoretical formulations are provided for the above-mentioned processes. To demonstrate the effectiveness of these controlling methods, numerical examples are shown by taking the following processes: (a) vibrational photoisomerization of HCN, (b) selective and complete excitation of the fine structure levels of K and Cs atoms, (c) photoconversion of cyclohexadiene to hexatriene, and (d) photodissociation of OHCl to O + HCl.

  3. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are usually used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, seismic anisotropy observed in tomographic models provides important constraints on the geometry of mantle deformation associated with thermal convection and plate tectonics. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. In this paper, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1-D and 2-D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, that is, varying as 1/k, with k the wavenumber of these heterogeneities. The 1-D toy models correspond to simple layered media. In the 2-D case, our models depict marble-cake patterns in which an anomaly in shear wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, that is, apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1-D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1-D and 2-D media. In addition, we predict that 10 per cent of chemical heterogeneities in 2-D marble-cake models can

  4. Dynamics and Control of Chemical Reactors-Selectively Surveyed

    DEFF Research Database (Denmark)

    Jørgensen, S. B.; Jensen, N.

    1989-01-01

    The chemical reactor or bioreactor is physically at a central position in a process, and often with a decisive role on the overall technical and economical performance. Even though application of feedback control on reactors is gaining momentum and on-line optimization has been implemented....... For bioreactors the theory and practice of reactor design, dynamics and control have to be adapted to the peculiarities of the biological catalysts. Enzymes, the protein catalysts, are the simplest ones, which have many common features with chemical catalysts. The living cells are much more complex, these growing...... in industry, many reactor control problems are still left unsolved or only partly solved using open loop strategies where disturbance rejection and model inaccuracies have to be handled through manual reactor control and feedback control of raw material preprocessing and product purification operations...

  5. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  6. [Prospects in getting accordance between chemical analytic control means and medical technical requirements to safety system concerning chemical weapons destruction].

    Science.gov (United States)

    Rembovskiĭ, V R; Mogilenkova, L A; Savel'eva, E I

    2005-01-01

    The major unit monitoring chemical weapons destruction objects is a system of chemical analyticcontrol over the technologic process procedures and possibility of environment and workplace pollution withtoxicchemicals and their destruction products. At the same time, physical and chemical control means meet sanitary and hygienic requirements incompletely. To provide efficient control, internationally recognized approaches should be adapted to features of Russian system monitoring pollution of chemical weapons destruction objects with toxic chemicals.

  7. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  8. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

    Directory of Open Access Journals (Sweden)

    Gyo In

    2017-07-01

    Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng.

  9. Concepts in causality: chemically induced human urinary bladder cancer

    International Nuclear Information System (INIS)

    Lower, G.M. Jr.

    1982-01-01

    A significant portion of the incidence of human urinary bladder cancer can be attributed to occupational and cultural (tobacco smoking) situations associated with exposures to various arylamines, many of which represent established human carcinogens. A brief historical overview of research in bladder cancer causality indicates that the identification of causal agents and causal mechanism has been approached and rests upon information gathered at the organismal (geographical/historical), cellular, and molecular levels of biologic organization. This viewpoint speaks of a natural evolution within the biomedical sciences; a natural evolution from descriptive approaches to mechanistic approaches; and a natural evolution from more or less independent discipline-oriented approaches to hierarchically organized multidisciplinary approaches. Available information relevant to bladder cancer causality can be readily integrated into general conceptual frameworks to yield a hierarchial view of the natural history of urinary bladder cancer, a view consistent with contemporary natural systems and information theory and perhaps relevant also to other chemically induced epithelial cancers. Such frameworks are useful in appreciating the spatial and temporal boundaries and interrelationships in causality and the conceptual interrelationships within the biomedical sciences. Recent approaches in molecular epidemiology and the assessment of relative individual susceptibility to bladder cancer indicate that such frameworks are useful in forming hypotheses

  10. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1985-01-01

    Previous studies of radiation induced chemical reactions of CO-H 2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H 2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H 2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH 3 ) and radical scavenger (O 2 ) on the products yields were also carried out on the CO-H 2 -CH 4 mixture. (author)

  11. Does runoff or temperature control chemical weathering rates?

    International Nuclear Information System (INIS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurdur Reynir; Oelkers, Eric H.

    2011-01-01

    Highlights: → The rate chemical weathering is affected by both temperature and runoff. Separating out these two factors is challenging because runoff tends to increase with increasing temperature. → In this study, natural river water samples collected on basaltic catchments over a five year period are used together with experimentally derived dissolution rate model for basaltic glass to pull apart the effects of runoff and temperature. → This study shows that the rate of chemical denudation is controlled by both temperature and runoff, but is dominated by runoff. - Abstract: The rate of chemical denudation is controlled by both temperature and runoff. The relative role of these two factors in the rivers of NE Iceland is determined through the rigorous analysis of their water chemistry over a 5-a period. River catchments are taken to be analogous to laboratory flow reactors; like the fluid in flow reactors, the loss of each dissolved element in river water is the sum of that of the original rainwater plus that added from kinetically controlled dissolution and precipitation reactions. Consideration of the laboratory determined dissolution rate behaviour of basalts and measured water chemistry indicates that the maximum effect of changing temperature on chemical denudation in the NE Icelandic rivers was 5-25% of the total change, whereas that of runoff was 75-95%. The bulk of the increased denudation rates with runoff appear to stem from an increase in reactive surface area for chemical weathering of catchment solids.

  12. Effect of Lepidium meyenii (maca) on testicular function of mice with chemically and physically induced subfertility.

    Science.gov (United States)

    Valdivia Cuya, M; Yarasca De La Vega, K; Lévano Sánchez, G; Vásquez Cavero, J; Temoche García, H; Torres Torres, L; Cruz Ornetta, V

    2016-10-01

    The aim of this study was to evaluate the effect of Lepidium meyenii (maca) in chemically and physically subfertile mice. After 35 days, the following groups of mice were evaluated: control, sham, chemical subfertility, chemical subfertility-maca-supplemented, physical subfertility, physical subfertility-maca-supplemented and maca-supplemented only. Motility (32.36% ± 5.34%) and sperm count (44.4 ± 5.37 × 10(6) /ml) in the chemically and physically subfertile mice (11.81% ± 4.06%, 17.34 ± 13.07 × 10(6) /ml) decreased compared to the control (75.53% ± 2.97% and 57.4 ± 19.6 10(6) /ml) and sham (53.5% ± 7.86% and 58.4 ± 14.10 10(6) /ml). Maca was able to reverse the deleterious effect of motility (76.36 ± 1.97) as well as sperm count (53.5 ± 9.18 × 10(6) /ml) on chemical subfertility. In contrast, maca did not reverse the effects of induced physical subfertility nor motility (18.78% ± 14.41%) or sperm count (20.17 ± 11.20 × 10(6) /ml). The percentage of sperm DNA fragmentation in the physically subfertile mice increased (11.1% ± 19.29%) compared to the control (0.84% ± 0.85%). However, in the physically subfertile group, maca decreased sperm DNA fragmentation (2.29% ± 2.30%) closer to the sham (1.04% ± 0.62%) and the control (0.84% ± 0.85%). The group supplemented only with maca showed 0.54% ± 0.50% of spermatozoa with DNA fragmentation. Yet, the differences observed were statistically not significant. In conclusion, it appears that maca activates the cytochrome P450 system after chemically induced subfertility. However, it does not reverse the low mitochondrial membrane potential in spermatozoa compromised in the physical subfertility group. © 2016 Blackwell Verlag GmbH.

  13. The Potential Of Cultural And Chemical Control Practices For ...

    African Journals Online (AJOL)

    The Potential Of Cultural And Chemical Control Practices For Enhancing ... and a significant (P < 0.05) increase in yield components of hands per bunch and finger ... Une étude de l\\'effet de la population de plantes, l\\'application des engrais, ...

  14. Methylene Diphosphonate Chemical and Biological control of MDP complex

    International Nuclear Information System (INIS)

    Aungurarat, Angkanan; Ngamprayad, Tippanan

    2000-01-01

    Technetium-9 9m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 9m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result

  15. MIMO Self-Tuning Control of Chemical Process Operation

    DEFF Research Database (Denmark)

    Hallager, L.; Jørgensen, S. B.; Goldschmidt, L.

    1984-01-01

    The problem of selecting a feasible model structure for a MIMO self-tuning controller (MIMOSC) is addressed. The dependency of the necessary structure complexity in relation to the specific process operating point is investigated. Experimental results from a fixed-bed chemical reactor are used...

  16. Chemical control of blossom blight disease of sarpagandha caused ...

    African Journals Online (AJOL)

    ONOS

    2010-09-20

    Sep 20, 2010 ... Chemical control of blossom blight disease of sarpagandha caused by Colletotrichum capsici. R. S. Shukla, Abdul-Khaliq and M. Alam*. Department of Plant Pathology, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial. Research, P. O. CIMAP, Lucknow–226 015, India.

  17. Effective chemical control of fruit flies (Diptera: Tephritidae) pests in ...

    African Journals Online (AJOL)

    Effective chemical control of fruit flies (Diptera: Tephritidae) pests in mango orchards in northern Côte-d'Ivoire. OR N'depo, N Hala, A N'da Adopo, F Coulibaly, PK Kouassi, JF Vayssieres, M de Meyer ...

  18. Chemical Weed Control Increases Survival and Growth in Hardwood Plantings

    Science.gov (United States)

    Gayne G. Erdmann

    1967-01-01

    In a plantation of four hardwood species on a silt loam soil planted to 1-0 stock, 4 pounds of active atrazine or simazine controlled weeds effectively without injuring the trees. Chemical weed control was better on plowed and disked ground than on unprepared ground. Yellow-poplar and white ash grew faster on prepared ground. Black walnut and red oak did not respond...

  19. Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka [Laser Physics Application Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2014-07-07

    We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.

  20. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    Full Text Available Abstract Background Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. Results First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme α-chymotrypsin (α-CT under controlled humidity conditions. Results showed that α-CT aggregates and inactivates as a function of increased relative humidity (RH. Furthermore, α-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that α-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution. To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa. The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. Conclusion Water sorption leads to

  1. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  2. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Study on the identification method of chemical warfare agents with spectroscopy of neutron induced γ rays

    International Nuclear Information System (INIS)

    Liu Boxue; Li Yun; Li Xiangbao

    1996-01-01

    The paper briefly describes some non-destructive verification technologies of chemical warfare agents in-site, and some application of neutron induced gamma ray analysis, such as multi-elements analysis of coal, hidden explosive detection and identification of chemical agents. It also describes some problems in developing the portable isotopic neutron spectroscopy for non-destructive evaluation of chemical warfare agents

  4. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  5. Evaluation of Chemical Changes in Some Soybean Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd-Elkalik, K.; Mekkawy, S.H.; El-Demerdash, H.M.

    2010-01-01

    The Egyptian soybean cultivar Giza-22 was used to induce genetic variability by using gamma rays at dose levels of 100, 150 and 200 Gy. Sixteen mutants (including parental cultivar) were evaluated in M3 generation for their agronomic traits and chemical analysis was done in seeds of M3 generation. Four mutants A21 (150 Gy), A22, A23 and A24 (200 Gy) showed superiority in their agronomic traits compared with parental cultivar. The results of chemical analysis of seeds of M3 generation showed that, oil and energy contents were unaffected by irradiation treatments while protein contents were significantly increased at doses 150 and 200 Gy. Phenolic and tannin contents in seeds of M3 generation showed no significant changes in their percentages due to irradiation treatments. Gamma irradiation significantly increased in linoleic acid content in most of the mutants compared with the control (Giza-22), whereas, there were decreases in linolenic acid content. Investigation of amino acid composition of mutants of M3 generation revealed significant increases in the essential amino acids in most mutants induced by gamma irradiation at 150 and 200 Gy. It could be suggested that the use of gamma irradiation can induce an improvement of the oil and protein composition in soybean

  6. Pollution control in oil, gas and chemical plants

    CERN Document Server

    Bahadori, Alireza

    2014-01-01

    This unique book covers the fundamental requirements for air, soil, noise and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. Coverage includes design and operational considerations relevant to critical systems such as monitoring of water pollution control, equipment, and engineering techniques as well as engineering/technological methods related to soil, noise and air pollution control. This book also: ·         Covers a diverse list of pollution control strategies important to practitioners, ranging from waste water gathering systems and oil/suspended solids removal to chemical flocculation units, biological treatment, and sludge handling and treatment ·         Provides numerous step-by-step tutorials that orient both entry level and veteran engineers to the essentials of pollution control methods in petroleum and chemical industries ·         Includes a comprehensive glossary providing readers with...

  7. Incorporation of chemical kinetic models into process control

    International Nuclear Information System (INIS)

    Herget, C.J.; Frazer, J.W.

    1981-01-01

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  8. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  9. Towards benchmarking of multivariable controllers in chemical/biochemical industries: Plantwide control for ethylene glycol production

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Bialas, Dawid Jan; Jørgensen, John Bagterp

    2011-01-01

    In this paper we discuss a simple yet realistic benchmark plant for evaluation and comparison of advanced multivariable control for chemical and biochemical processes. The benchmark plant is based on recycle-separator-recycle systems for ethylene glycol production and implemented in Matlab...... for education purposes (operator training, student education, etc) as well as scientific research into chemical process control where it enables rapid evaluation and comparison of advanced multivariable controllers as demonstrated in this study....

  10. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  11. Chemical and ecological control methods for Epitrix spp.

    Directory of Open Access Journals (Sweden)

    A. G. S. Cuthbertson

    2015-01-01

    Full Text Available Very little information exists in regards to the control options available for potato flea beetles, Epitrix spp. This short review covers both chemical and ecological options currently available for control of Epitrix spp. Synthetic pyrethroids are the weapon of choice for the beetles. However, the impetus in integrated pest management is to do timely (early-season applications with something harsh which will give long-term protection at a time when there are not a lot of beneficials in the field. Finding the balance for control of Epitrix spp. is proving difficult.

  12. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  13. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  14. Communication: Control of chemical reactions using electric field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  15. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  16. Method and apparatus for controlling gas evolution from chemical reactions

    Science.gov (United States)

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  17. physical, chemical, technological and biological properties of some mutant oil seeds induced by gamma radiation

    International Nuclear Information System (INIS)

    Ali, H.G.M.

    2003-01-01

    The present study has been undertaken to evaluated sesame, sunflower and safflower seeds induced by gamma rays, as plant breeding unit, plant research department, radioisotope application division, nuclear research center, atomic energy authority Inshas. the obtained results indicate the following : chemical composition of mutant seeds: the radiation mutation caused a significant increase in both oil and ash content total carbohydrates showed a significant decreased in sesame seeds. radiation mutation induced significant increase in oil and protein content of sunflower and safflower seeds. while the total carbohydrate showed a significant decrease. physiochemical properties of oils extracted mutant seeds: the radiation mutation had no real effect on the refractive index and A.V of oils extracted from control and mutant sesame, sunflower and safflower seeds. while it caused a slight increase in red color and P.V. of sesame oil, the thiobarbituric acid (TBA) value of mutant sesame oil was not alter upon radiation mutation, but it induced a slight decrease in TBA of mutant sunflower and safflower oils. the unsaponifiable matter percentage of oils extracted from mutant sesame, sunflower and safflower seeds were slightly increased by radiation mutation .radiation mutation of seeds had no real effect on the total SFA and USFA of sesame oil. however, radiation mutation induced a remarkable changes in fatty acid profiles of sunflower and safflower oil as total SFA decreased, while USFA increased. Uric acid was only detected in oil extracted from mutant sunflower seeds

  18. Fluctuation induced critical behavior at nonzero temperature and chemical potential

    International Nuclear Information System (INIS)

    Splittorff, K.; Lenaghan, J.T.; Wirstam, J.

    2003-01-01

    We discuss phase transitions in relativistic systems as a function of both the chemical potential and temperature. The presence of a chemical potential explicitly breaks Lorentz invariance and may additionally break other internal symmetries. This introduces new subtleties in the determination of the critical properties. We discuss separately three characteristic effects of a nonzero chemical potential. First, we consider only the explicit breaking of Lorentz invariance using a scalar field theory with a global U(1) symmetry. Second, we study the explicit breaking of an internal symmetry in addition to Lorentz invariance using two-color QCD at nonzero baryonic chemical potential. Finally, we consider the spontaneous breaking of a symmetry using three-color QCD at nonzero baryonic and isospin chemical potential. For each case, we derive the appropriate three-dimensional effective theory at criticality and study the effect of the chemical potential on the fixed point structure of the β functions. We find that the order of the phase transition is not affected by the explicit breaking of Lorentz invariance but is sensitive to the breaking of additional symmetries by the chemical potential

  19. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......, that the same principles that apply to a binary non-reactive compound system are valid also for a binary-element or a multi-element system. Therefore, it is advantageous to employ the element based method for multicomponent reaction-separation systems. It is shown that the same design-control principles...

  20. Subfemtosecond directional control of chemical processes in molecules

    Science.gov (United States)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  1. Effects of ion-neutral chemical reactions on dynamics of lightning-induced electric field

    International Nuclear Information System (INIS)

    Hiraki, Yasutaka

    2009-01-01

    Secondary lightning phenomena in the upper atmosphere called sprites attract interest from the viewpoint of atomic-molecular and plasma physics. Lightning-induced electric field accelerates the ionospheric electrons up to tens of electron-volts, inducing electrical breakdown as well as strong optical emissions, through electron impact ionization of molecules. A large-scale structure of sprites is constructed by collective dynamics of filamentary streamer discharges in a rarified gas, which in turn is controlled by the distribution of the background electric field. In this paper, we firstly reanalyze the relationship between quasi-static field formation and local ion chemistry with first-order perturbation techniques. Secondly, we investigate with a full ion chemical model the effects of electron attachment to oxygen molecules on its density in moderate cases of undervoltage lightning electric fields rather than the cases of intense ionization in streamers. We estimate the minimum values that are provided by the chemical balance with electron detachment from negative ions. We also investigate the recovery timescale of the electron density and find that the scale (≥1 s) is occasionally much larger than the interval of each lightning stroke (∼10 ms). We suggest that the subsequent sprite event as well as the field formation could be well affected by the ghost of the primary event. We discuss further the negative ion chemistry triggered by electron attachment in the nighttime mesosphere.

  2. AMAZON RAINFOREST COSMETICS: CHEMICAL APPROACH FOR QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Mariko Funasaki

    2016-02-01

    Full Text Available The market for natural cosmetics featuring ingredients derived from Amazon natural resources is growing worldwide. However, there is neither enough scientific basis nor quality control of these ingredients. This paper is an account of the chemical constituents and their biological activities of fourteen Amazonian species used in cosmetic industry, including açaí (Euterpe oleracea, andiroba (Carapa guianensis, bacuri (Platonia insignis, Brazil nut (Bertholletia excelsa, buriti (Mauritia vinifera or M. flexuosa, cumaru (Dipteryx odorata, cupuaçu (Theobroma grandiflorum, guarana (Paullinia cupana, mulateiro (Calycophyllum spruceanum, murumuru (Astrocaryum murumuru, patawa (Oenocarpus bataua or Jessenia bataua, pracaxi (Pentaclethra macroloba, rosewood (Aniba rosaeodora, and ucuuba (Virola sebifera. Based on the reviewed articles, we selected chemical markers for the quality control purpose and evaluated analytical methods. Even though chromatographic and spectroscopic methods are major analytical techniques in the studies of these species, molecular approaches will also be important as used in food and medicine traceability. Only a little phytochemical study is available about most of the Amazonian species and some species such as açaí and andiroba have many reports on chemical constituents, but studies on biological activities of isolated compounds and sampling with geographical variation are limited.

  3. COLLABORATIVE TRIAL AND QUALITY CONTROL IN CHEMICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Narsito Narsito

    2010-06-01

    Full Text Available Abstract                                                             This paper deals with some practical problems related to the quality of analytical chemical data usually met in practice. Special attention is given to the topic of quality control in analytical chemistry, since analytical data is one of the primary information from which some important scientifically based decision are to be made. The present paper starts with brief description on some fundamental aspects associated with quality of analytical data, such as sources of variation of analytical data, criteria for quality of analytical method, quality assurance in chemical analysis. The assessment of quality parameter for analytical method like the use of standard materials as well as standard methods is given. Concerning with the quality control of analytical data, the use of several techniques, such as control samples and control charts, in monitoring analytical data in quality control program are described qualitatively.  In the final part of this paper, some important remarks for the preparation of collaborative trials, including the evaluation of accuracy and reproducibility of analytical method are also given Keywords: collaborative trials, quality control, analytical data Abstract                                                             This paper deals with some practical problems related to the quality of analytical chemical data usually met in practice. Special attention is given to the topic of quality control in analytical chemistry, since analytical data is one of the primary information from which some important scientifically based decision are to be made. The present paper starts with brief description on some fundamental aspects associated with quality of analytical data, such as sources of variation of analytical data, criteria for quality of

  4. An electrochemical study of natural and chemically controlled eumelanin

    Directory of Open Access Journals (Sweden)

    Ri Xu

    2017-12-01

    Full Text Available Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI and 5,6-dihydroxyindole-2-carboxylic acid (DHICA building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Na+, K+, NH4+, and Cu2+ ions.

  5. An electrochemical study of natural and chemically controlled eumelanin

    Science.gov (United States)

    Xu, Ri; Prontera, Carmela Tania; Di Mauro, Eduardo; Pezzella, Alessandro; Soavi, Francesca; Santato, Clara

    2017-12-01

    Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Na+, K+, NH4+, and Cu2+ ions.

  6. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs; TOPICAL

    International Nuclear Information System (INIS)

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-01-01

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs

  7. Study on chemical reactivity control of liquid sodium. Research program

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki; Sugiyama, Ken-ichiro; Kitagawa, Hiroshi; Oka, Nobuki; Yoshioka, Naoki

    2007-01-01

    Liquid sodium has the excellent properties as coolant of the fast breeder reactor (FBR). On the other hand, it reacts high with water and oxygen. So an innovative technology to suppress the reactivity is desired. The purpose of this study is to control the chemical reactivity of liquid sodium by dispersing the nanometer-size metallic particles (we call them Nano-particles) into liquid sodium. We focus on the atomic interaction between Nano-particles and sodium atoms. And we try to apply it to suppress the chemical reactivity of liquid sodium. Liquid sodium dispersing Nano-particles is named 'Nano-fluid'. Research programs of this study are the Nano-particles production, the evaluation of reactivity suppression of liquid sodium and the feasibility study to FBR plant. In this paper, the research programs and status are described. The important factors for particle production were understood. In order to evaluate the chemical reactivity of Nano-fluid the research programs were planned. The feasibility of the application of Nano-fluid to the coolant of FBR plant was evaluated preliminarily from the viewpoint of design and operation. (author)

  8. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective.

    NARCIS (Netherlands)

    Muller, Andre; Jacobsen, Helene; Healy, Edel; McMickan, Sinead; Istace, Fréderique; Blaude, Marie-Noëlle; Howden, Peter; Fleig, Helmut; Schulte, Agnes

    2006-01-01

    Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure.'

  9. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2014-03-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  10. Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation.

    Directory of Open Access Journals (Sweden)

    Xiao-Shan Yue

    Full Text Available Chemically fixed mouse embryonic fibroblasts (MEFs, instead of live feeder cells, were applied to the maintenance of mouse induced pluripotent stem (miPS cells. Formaldehyde and glutaraldehyde were used for chemical fixation. The chemically fixed MEF feeders maintained the pluripotency of miPS cells, as well as their undifferentiated state. Furthermore, the chemically fixed MEF feeders were reused several times without affecting their functions. These results indicate that chemical fixation can be applied to modify biological feeders chemically, without losing their original functions. Chemically fixed MEF feeders will be applicable to other stem cell cultures as a reusable extracellular matrix candidate that can be preserved on a long-term basis.

  11. Combined Noncyclic Scheduling and Advanced Control for Continuous Chemical Processes

    Directory of Open Access Journals (Sweden)

    Damon Petersen

    2017-12-01

    Full Text Available A novel formulation for combined scheduling and control of multi-product, continuous chemical processes is introduced in which nonlinear model predictive control (NMPC and noncyclic continuous-time scheduling are efficiently combined. A decomposition into nonlinear programming (NLP dynamic optimization problems and mixed-integer linear programming (MILP problems, without iterative alternation, allows for computationally light solution. An iterative method is introduced to determine the number of production slots for a noncyclic schedule during a prediction horizon. A filter method is introduced to reduce the number of MILP problems required. The formulation’s closed-loop performance with both process disturbances and updated market conditions is demonstrated through multiple scenarios on a benchmark continuously stirred tank reactor (CSTR application with fluctuations in market demand and price for multiple products. Economic performance surpasses cyclic scheduling in all scenarios presented. Computational performance is sufficiently light to enable online operation in a dual-loop feedback structure.

  12. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  13. A non-chemical system for online weed control.

    Science.gov (United States)

    Rueda-Ayala, Victor; Peteinatos, Gerassimos; Gerhards, Roland; Andújar, Dionisio

    2015-03-30

    Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%-91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide.

  14. Cadmium-induced disruption of environmental exploration and chemical communication in matrinxa, Brycon amazonicus

    International Nuclear Information System (INIS)

    Honda, R.T.; Fernandes-de-Castilho, M.; Val, A.L.

    2008-01-01

    The effects of cadmium exposure on both environment exploration and behavioral responses induced by alarm substance in matrinxa (Brycon amazonicus), a fish species endemic to the Amazon basin, were investigated. Fish exposed to 9.04 ± 0.07 μg/L waterborne cadmium for 96 h followed by 24 h depuration period in clean water, were video-recorded for 15 min, followed by immediate introduction of conspecific skin extract to the tank and a new 30 min period of fish video-recording. Cd-exposed matrinxa showed a significantly lowered locomotor activity (t-test t 12 = 2.7; p = 0.025) and spatial distribution (t-test t 12 = 2.4; p = 0.03) relative to the unexposed control fish prior to the alarm substance introduction, and did not present any significant reaction when the skin extract was introduced. The control fish, in opposite, showed a higher level of activity and spatial distribution prior the skin extract contact and significantly decreased their response after the chemical stimulus (locomotion-repeated-measure ANOVA F 1,11 = 5.6; p = 0.04; spatial distribution F 1,11 = 19.4; p = 0.001). In conclusion, exposure to a low level of cadmium affects both the environment exploration performance and the conspecific chemical communication in matrinxa. If the reduced environmental exploration performance of Cd-exposed fish is an adjustment to the compromised chemical communication or an independent effect of cadmium is the next step to be investigated

  15. Cadmium-induced disruption of environmental exploration and chemical communication in matrinxa, Brycon amazonicus

    Energy Technology Data Exchange (ETDEWEB)

    Honda, R.T. [Centro Universitario Nilton Lins - CUNL, Laboratory of Toxicology, Av. Prof. Nilton Lins 3259, Parque das Laranjeiras, Zip 69058-040 Manaus, AM (Brazil)], E-mail: rhonda@niltonlins.br; Fernandes-de-Castilho, M. [Universidade Federal do Parana - UFPR, Research Center on Animal Welfare (RECAW), Laboratory of Studies on Animal Stress, Department of Physiology, Sector of Biological Science, Jardim das Americas, Zip 81531-970 Curitiba, PR (Brazil); Val, A.L. [Instituto Nacional de Pesquisas da Amazonia - INPA, Laboratory of Ecophysiology and Molecular Evolution, Av. Andre Araujo 2936, Aleixo, Zip 69083-000 Manaus, AM (Brazil)

    2008-09-17

    The effects of cadmium exposure on both environment exploration and behavioral responses induced by alarm substance in matrinxa (Brycon amazonicus), a fish species endemic to the Amazon basin, were investigated. Fish exposed to 9.04 {+-} 0.07 {mu}g/L waterborne cadmium for 96 h followed by 24 h depuration period in clean water, were video-recorded for 15 min, followed by immediate introduction of conspecific skin extract to the tank and a new 30 min period of fish video-recording. Cd-exposed matrinxa showed a significantly lowered locomotor activity (t-test t{sub 12} = 2.7; p = 0.025) and spatial distribution (t-test t{sub 12} = 2.4; p = 0.03) relative to the unexposed control fish prior to the alarm substance introduction, and did not present any significant reaction when the skin extract was introduced. The control fish, in opposite, showed a higher level of activity and spatial distribution prior the skin extract contact and significantly decreased their response after the chemical stimulus (locomotion-repeated-measure ANOVA F{sub 1,11} = 5.6; p = 0.04; spatial distribution F{sub 1,11} = 19.4; p = 0.001). In conclusion, exposure to a low level of cadmium affects both the environment exploration performance and the conspecific chemical communication in matrinxa. If the reduced environmental exploration performance of Cd-exposed fish is an adjustment to the compromised chemical communication or an independent effect of cadmium is the next step to be investigated.

  16. Evaluation of Yield and Chemical Characteristics of some Peanut Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-daem, G.A.; Anwar, M.M.

    2013-01-01

    This study was conducted to evaluate some promising mutants in peanut for yielding ability over three generation (M5, M6 and M7) and to evaluate yield attributes as will as chemical characteristics of these mutants in M7 generation induced by 100 Gy gamma radiation. The obtained results showed that the increase of yield / plot over three generation as a percentage of control was 5% for mutant 7, 10.2 % for mutant 10; 22% for mutant 9 and 22.9% for mutant 8. This increase in yield may be due to increase of one or more of yield attributes for most mutant lines. The significant increase for. No .of pods and seeds/ plant, weight of pods and seeds/ plant and 100- seed weight in M7 as compared to the control. For saturated fatty acid composition, results revealed that total saturated fatty acids ranged from 17.79% for mutant 8 to 21.75 for mutant 2 compared to 24.21% for control. Reduction of total saturated fatty acid was noticed for different mutants compared to that of the original variety. However, for total unsaturated fatty acids, results indicated that total unsaturated fatty acid composition ranged from 77.95% for mutant 9 to 82.09% for mutant 8 compared to 75.49% for control. Higher total unsaturated fatty acids for all mutant lines were obtained than that of the control, however, total saturated (TS)/ total unsaturated (TU) ratio was decreased for all mutants compared to control. The physical and chemical contents of Peanut oils showed that the refractive indices were ranged from 1.4620 to 1.4718 specific gravity were in range of 0.9146 to 0.9177. Acid value was range from 0.54 to 0.89% lodine value was ranged from 94.56 to 101.85. Saponification value was ranged from 185.2 to 190.7 and unsaponifiable matter was ranged from 0.98 to 1.33. The peroxide values ranged from 1.15 to 2.33 meq/kg oil. Also, fortified yoghurt made with replaced mutant peanut oil by 50% as milk fat substitute. Data showed that chemical composition and organolyptic properties had the

  17. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  18. Effect of genes controlling radiation sensitivity on chemical mutagenesis in yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1975-01-01

    Ultraviolet radiation, x radiation, nitrogen mustard, methyl methanesulfonate, and dimethyl sulfate were found to revert all the tester strains with the same efficiency or without any dependence on simple types of base-pair changes, and it was concluded that these mutagens were nonspecific in the types of base-pair changes produced. The cycl-131 tester was used in studies designed to determine the genetic control of mutation induction using a variety of mutagens. The rad 6 and rad g genes greatly reduce the frequency of chemically induced reversion of cycl-131

  19. Characterization of the Environmentally Induced Chemical Transformations of Uranium Tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    A key challenge with nuclear safeguards environmental sampling is identification of the materials post release due to subsequent chemical reactions with ambient water and oxygen. Uranium Tetrafluoride (UF4) is of interest as an intermediate in both the upstream and downstream portions of uranium feedstock and metal production processes used in nuclear fuel production; however minimal published research exists relating to UF4 hydrolysis. FY16 efforts were dedicated to in-situ Raman spectroscopy and X-ray diffraction characterization of UF4 during exposure to various relative humidity conditions. This effort mapped several hydrolysis reaction pathways and identified both intermediate, and terminal progeny species.

  20. Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization

    Science.gov (United States)

    Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

    1998-11-01

    We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  1. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation

    International Nuclear Information System (INIS)

    Asur, Rajalakshmi; Balasubramaniam, Mamtha; Marples, Brian; Thomas, Robert A.; Tucker, James D.

    2010-01-01

    Many studies have examined bystander effects induced by ionizing radiation, however few have evaluated the ability of chemicals to induce similar effects. We previously reported the ability of two chemicals, mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cell lines. The focus of the current study was to determine the involvement of the MAPK proteins in bystander effects induced by physical and chemical DNA damaging agents and to evaluate the effects of MAPK inhibition on bystander-induced caspase 3/7 activation. The phosphorylation levels of the MAPK proteins ERK1/2, JNK, and p38, were measured from 1 to 24 h following direct or bystander exposure to MMC, PHL or radiation. We observed transient phosphorylation, at early time points, of all 3 proteins in bystander cells. We also evaluated the effect of MAPK inhibition on bystander-induced caspase 3/7 activity to determine the role of MAPK proteins in bystander-induced apoptosis. We observed bystander-induced activation of caspase 3/7 in bystander cells. Inhibition of MAPK proteins resulted in a decrease in caspase 3/7 activity at the early time points, and the caspase activity increased (in the case of ERK inhibition) or returned to basal levels (in the case of JNK or p38 inhibition) between 12 and 24 h. PHL is considered to be a radiomimetic agent, however in the present study PHL behaved more like a chemical and not like radiation in terms of MAPK phosphorylation. These results point to the involvement of MAPK proteins in the bystander effect induced by radiation and chemicals and provide additional evidence that this response is not limited to radiation but is a generalized stress response in cells.

  2. Chemical consequences of laser-induced breakdown in molecular gases

    Czech Academy of Sciences Publication Activity Database

    Babánková, Dagmar; Civiš, Svatopluk; Juha, Libor

    2006-01-01

    Roč. 30, č. 2-3 (2006), s. 75-88 ISSN 0079-6727 R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk LC528; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : laser spark * laser-induced dielectric breakdown * laser-plasma chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.500, year: 2006

  3. Chemical and radiation induced late dominant lethal effects in mice

    International Nuclear Information System (INIS)

    Favor, J.; Crenshaw, J.W. Jr.; Soares, E.R.

    1978-01-01

    Although theoretically expected, experimental data to date have not shown dominant lethal expression to occur throughout the developmental period. Specifically, late post-implantation effects have not been demonstrated. The authors routinely use an experimental technique in which parental females mated to mutagenically treated males are allowed to give birth and wean their litter, and their uterine horns are then inspected for uterine scars indicative of live and dead embryos. In a number of experiments in which males were mutagenically treated with either chemicals or X-irradiation, a discrepancy was observed between the number of live embryos as determined by the scar technique and the number of live observed at birth, suggesting the possibility of embryonic losses at a late stage in development. Initial analyses showed that mutagenic treatment increased the percentage of these late losses. These differences were statistically significant in 2 of 3 analyses. Factors affecting statistical significance and an understanding of dominant lethal mutations are discussed. (Auth.)

  4. Modification of tolerance of oats to crown rust induced by chemical mutagens

    International Nuclear Information System (INIS)

    Simons, M.D.; Browning, J.A.; Frey, K.J.

    1983-01-01

    Seeds of crown rust (Puccinia coronata) susceptible cultivated oats (Avena sativa) were treated with the mutagenic chemical ethyl methanesulphonate (EMS), and pure lines derived from these treated seeds were tested in later generations for the relative amount of reduction in yield and seed weight caused by crown rust infection. In the absence of crown rust, the yield of most of the treated lines was greatly reduced. The overall means of the treated lines for both yield and seed weight response to infection were significantly lower than the control, but 10 lines significantly exceeded the control for yield response and 15 exceeded it for seed weight response. Recurrent EMS treatment of once-treated lines rated as tolerant resulted in groups of lines that were more tolerant, on the average, than groups of lines from recurrently treated lines rated as susceptible. A few of the recurrently treated individual lines derived from tolerant parents had a higher degree of tolerance than their parental lines. EMS treatment of diploid (A. strigosa) and tetraploid (A. abyssinica) oats resulted in groups of lines showing significant genetic variance for response to crown rust, indicating that treatment had induced real genetic change. A few diploid lines were a little more tolerant than their control, but none of the tetraploid lines showed any consistent improvement. (author)

  5. Chemical control of electrical contact to sp2 carbon atoms

    Science.gov (United States)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.

  6. Can Chemical Mouthwash Agents Achieve Plaque/Gingivitis Control?

    Science.gov (United States)

    Van der Weijden, Fridus A; Van der Sluijs, Eveline; Ciancio, Sebastian G; Slot, Dagmar E

    2015-10-01

    Also note that structured abstracts are not allowed per journal style: What is the effect of a mouthwash containing various active chemical ingredients on plaque control and managing gingivitis in adults based on evidence gathered from existing systematic reviews? The summarized evidence suggests that mouthwashes containing chlorhexidine(CHX) and essential oils (EO) had a large effect supported by a strong body of evidence. Also there was strong evidence for a moderate effect of cetylpyridinium chloride(CPC). Evidence suggests that a CHX mouthwash is the first choice, the most reliable alternative is EO. No difference between CHX and EO with respect to gingivitis was observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of chemical, botanical and cultural managements of termites control.

    Science.gov (United States)

    Dufera, Jiregna Tasisa; Fufa, Tena Gobena

    2014-01-15

    The study was conducted at Bojdi Dirmaji District, Wollega Zone (Western Ethiopia) using Randomized Complete Block Design with three replications. Eight different treatments of chemical, botanical and cultural control methods independently and in combinations were evaluated to identify the most effective method which is environmentally sustainable and economically feasible in controlling the termite problems. The data were collected over 12 weeks and analysis of variance showed significant difference among the treatments for all parameters. Maesa lanceolata 100 g alone showed lower percent damage between 2-8 weeks (33.3%), later on after 9-12 weeks it become non significant and the destructed mound was recovered. Mound treated with Diazinon 60% EC at the rate of 25 and 20 mL alone and Diazinon 60% EC combination with queen removal at rate of 15 and 10 mL showed significant control overall the treatment. From the results of the study the lower rate of Diazinon 60% EC (10 mL per mound) and queen removal could be better option to manage the termite problem and could be more sustainable and integrated manner in the study area.

  8. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    International Nuclear Information System (INIS)

    Camats, Nuria; Garcia, Francisca; Parrilla, Juan Jose; Calaf, Joaquim; Martin, Miguel; Caldes, Montserrat Garcia

    2008-01-01

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells

  9. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  10. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    Science.gov (United States)

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  11. Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes

    Science.gov (United States)

    Tangeysh, Behzad

    The central objective of this work is developing convenient general procedures for controlling the formation and stabilization of nanoscale transition metal particles. Contemporary interest in developing alternative synthetic approaches for producing nanoparticles arises in large part from expanding applications of the nanomaterials in areas such as catalysis, electronics and medicine. This research focuses on advancing the existing nanoparticle synthetic routes by using a new class of polymer colloid materials as a chemical approach, and the laser irradiation of metal salt solution as a photo-chemical method to attain size and shape selectivity. Controlled synthesis of small metal nanoparticles with sizes ranging from 1 to 5nm is still a continuing challenge in nanomaterial synthesis. This research utilizes a new class of polymer colloid materials as nano-reactors and protective agents for controlling the formation of small transition metal nanoparticles. The polymer colloid particles were formed from cross-linking of dinegatively charged metal precursors with partially protonated poly dimethylaminoethylmethacrylate (PDMAEMA). Incorporation of [PtCl6]2- species into the colloidal particles prior to the chemical reduction was effectively employed as a new strategy for synthesis of unusually small platinum nanoparticles with narrow size distributions (1.12 +/-0.25nm). To explore the generality of this approach, in a series of proof-of-concept studies, this method was successfully employed for the synthesis of small palladium (1.4 +/-0.2nm) and copper nanoparticles (1.5 +/-0.6nm). The polymer colloid materials developed in this research are pH responsive, and are designed to self-assemble and/or disassemble by varying the levels of protonation of the polymer chains. This unique feature was used to tune the size of palladium nanoparticles in a small range from 1nm to 5nm. The procedure presented in this work is a new convenient room temperature route for synthesis of

  12. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  14. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    Science.gov (United States)

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  15. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  16. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  17. Radiation chemically induced telomerization of ethylene with selected telogens

    International Nuclear Information System (INIS)

    Wachtendunk, H.J. von.

    1975-01-01

    The suitability of different compounds for the use as telogenes in the telomerization of ethylene has been studied. In all cases the reactions are initiated by the γ-radiation of a 60 Co-source. Temperature programed gas chromatography has proved to be an adequate method of analysis. In the teleomerization process with ethylene also methane tri carboxylic acid tri-ethylene ester (MTE), ortho-formic acid tri-ethylene ester (o-ASE), formic acid, bromium cyane, chlorine cyane and dicyane have been used. The telomerization of MTE and ethylene has been performed successfully with a high yield. The dependence of the reaction on temperature, pressure, radiation dose has been studied as well as the influence of a solvent (acetonitrile). In the attempt to telomerize ortho-formic acid tri-ethylene ester only high molecular weight solid product could be isolated. No interpretable results could be obtained for the telomerization of formic acid with ethylene. In the case of the radiation induced telomerization of chlorine cyane or di-cyane with ethylene in the gas phase, no reaction products could be found. No telomerization between di-cyane and ethylene has been observed even when palladium (II)-cyanide is used as a catalyst of after cocatalys is with triphenyl-phosphile in acetonitrile. (orig./HK) [de

  18. Radiation-induced oxidative chemical changes in dehydrated egg products

    International Nuclear Information System (INIS)

    Katusin-Rasem, B.; Mihaljevic, B.; Razem, D.

    1992-01-01

    Radiation-induced buildup of lipid hydroperoxides (LOOH) and destruction of carotenoids were followed in whole egg powder and egg yolk powder as functions of dose, dose rate, and the presence of oxygen. In the absence of air the formation of LOOH was limited by the available oxygen, while destruction of carotenoids progressed linearly with dose; neither process depended on the dose rate. In the presence of air, the accumulation of LOOH and the destruction of carotenoids were strongly coupled and inversely proportional to the dose rate. The induction dose of 2.5 kGy was observed in air in both whole egg powder and egg yolk powder, independent of the dose rate. The practical consequence is that radiation decontamination can be carried out in the presence of air at the highest available dose rate by a dose not exceeding 2.5 kGy to avoid extensive degradation. This dose is adequate for a 10(3) reduction factor of Salmonella and well within the threshold dose of 3 kGy for organoleptic changes

  19. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  20. 31 CFR 598.309 - Narcotic drug; controlled substance; listed chemical.

    Science.gov (United States)

    2010-07-01

    ...; listed chemical. 598.309 Section 598.309 Money and Finance: Treasury Regulations Relating to Money and... SANCTIONS REGULATIONS General Definitions § 598.309 Narcotic drug; controlled substance; listed chemical. The terms narcotic drug, controlled substance, and listed chemical have the meanings given those terms...

  1. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    Science.gov (United States)

    Zuo, Jianru [New York, NY; Chua, Nam-Hai [Scarsdale, NY

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  2. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  3. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  4. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  5. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

    Science.gov (United States)

    Li, Xiang; Liu, Defang; Ma, Yantao; Du, Xiaomin; Jing, Junzhan; Wang, Lipeng; Xie, Bingqing; Sun, Da; Sun, Shaoqiang; Jin, Xueqin; Zhang, Xu; Zhao, Ting; Guan, Jingyang; Yi, Zexuan; Lai, Weifeng; Zheng, Ping; Huang, Zhuo; Chang, Yanzhong; Chai, Zhen; Xu, Jun; Deng, Hongkui

    2017-08-03

    Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Disparate roles of zinc in chemical hypoxia-induced neuronal death

    Directory of Open Access Journals (Sweden)

    Sujeong eKim

    2015-01-01

    Full Text Available Accumulating evidence has provided a causative role of zinc (Zn2+ in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2, deferoxamine (3 mM DFX, and sodium azide (2 mM NaN3, we evaluated whether Zn2+ is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn2+ release/accumulation in viable neurons. The immediate addition of the Zn2+ chelator, CaEDTA or N,N,N’N’-tetrakis-(2-pyridylmethyl ethylenediamine (TPEN, prevented the intracellular Zn2+ load and CoCl2-induced neuronal death, but neither 3-hour-later Zn2+ chelation nor a non-Zn2+ chelator ZnEDTA (1 mM demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn2+ rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn2+ release/accumulation is common during chemical hypoxia, Zn2+ might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.

  7. Disparate roles of zinc in chemical hypoxia-induced neuronal death.

    Science.gov (United States)

    Kim, Sujeong; Seo, Jung-Woo; Oh, Shin Bi; Kim, So Hee; Kim, Inki; Suh, Nayoung; Lee, Joo-Yong

    2015-01-01

    Accumulating evidence has provided a causative role of zinc (Zn(2+)) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn(2+) is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn(2+) release/accumulation in viable neurons. The immediate addition of the Zn(2+) chelator, CaEDTA or N,N,N'N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), prevented the intracellular Zn(2+) load and CoCl2-induced neuronal death, but neither 3 hour later Zn(2+) chelation nor a non-Zn(2+) chelator ZnEDTA (1 mM) demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn(2+) rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn(2+) release/accumulation is common during chemical hypoxia, Zn(2+) might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.

  8. Physical controls on directed virus assembly at nanoscale chemical templates

    International Nuclear Information System (INIS)

    Cheung, C L; Chung, S; Chatterji, A; Lin, T; Johnson, J E; Hok, S; Perkins, J; De Yoreo, J

    2006-01-01

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t 1/2 law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction

  9. Synthesis, chemical and biological quality control of radioiodinated peptides

    International Nuclear Information System (INIS)

    Rafii, H.; Khalaj, A.; Beiki, D.; Motameidi, F.; Maloobi, M.; Karimian-dehghan, M.; Keshavarrzi, F.

    2002-01-01

    Iodinated compounds with I-131, 125 and 123 have been widely used for biochemical function studies. In conjunction with SPECT, [I-123] labelled proteins have various diagnostic and therapeutic applications in nuclear medicine. Preparation of some radioiodinated peptides with tyrosine and/or lysine groups on their main chain molecules can be carried out with both direct and indirect methods, but lack of these groups in molecule cause the molecule dose not lend itself for direct radioiodination. In this study, human IgG and Formyl-Methyl-Leucyl-Phenylalanine, FMLF, have been chosen as a model compounds for direct and indirect radioiodination respectively. Here, we will describe the labelling procedure of [I-125] IgG using chloramine-T as a suitable oxidant agent and [I-125 and I-131] FMLF by indirect method using ATE/SIB as a prosthetic group in multi-step reactions. The obtained results for chemical quality control of intermediate radioiodinated SIB by HPLC and two labelled IgG and FMLF will be also discussed. Biological results, biodistribution studies and SPECT scans on mice per-injected labelled FMLF show a low uptake of thyroid but a high at urine and bladder, perhaps because of low molecular weight of FMLF. In this case, it seems to be better to separate the reaction mixture of labelled FMLF by BPLC than Sephadex-G50 gel filtration. (Author)

  10. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    Science.gov (United States)

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  11. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    Science.gov (United States)

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  12. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    1999-01-01

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  13. A proposal for study of ion-beam induced chemical reactions using JAERI tandem accelerator

    International Nuclear Information System (INIS)

    1985-11-01

    Problems in ion-beam induced chemical reactions using JAERI Tandem Accelerator were discussed. Research philosophy, some proposed experiments which are based on measurements during ion-beam bombardment, and main features of the experimental apparatus are briefly described in this report. (author)

  14. Dendritic cells' death induced by contact sensitizers is controlled by Nrf2 and depends on glutathione levels

    Energy Technology Data Exchange (ETDEWEB)

    El Ali, Zeina [UMR996 - Inflammation, Chemokines and Immunopathology-, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry (France); Deloménie, Claudine [IFR141 IPSIT, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry (France); Botton, Jérémie [INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Team (France); Pallardy, Marc [UMR996 - Inflammation, Chemokines and Immunopathology-, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry (France); Kerdine-Römer, Saadia, E-mail: saadia.kerdine-romer@u-psud.fr [UMR996 - Inflammation, Chemokines and Immunopathology-, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry (France)

    2017-05-01

    Dendritic cells (DC) are known to play a major role during contact allergy induced by contact sensitizers (CS). Our previous studies showed that Nrf2 was induced in DC and controlled allergic skin inflammation in mice in response to chemicals. In this work, we raised the question of the role of Nrf2 in response to a stress provoked by chemical sensitizers in DC. We used two well-described chemical sensitizers, dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA), known to have different chemical reactivity and mechanism of action. First, we performed a RT-qPCR array showing that CinA was a higher inducer of immune and detoxification genes compared to DNCB. Interestingly, in the absence of Nrf2, gene expression was dramatically affected in response to DNCB but was slightly affected in response to CinA. These observations prompted us to study DC's cell death in response to both chemicals. DNCB and CinA increased apoptotic cells and decreased living cells in the absence of Nrf2. The characterization of DC apoptosis induced by both CS involved the mitochondrial-dependent caspase pathway and was regulated via Nrf2 in response to both chemicals. Oxidative stress induced by DNCB, and leading to cell death, was regulated by Nrf2. Unlike CinA, DNCB treatment provoked a significant reduction of intracellular GSH levels and up-regulated bcl-2 gene expression, under the control of Nrf2. This work underlies that chemical reactivity may control Nrf2-dependent gene expression leading to different cytoprotective mechanisms in DC. - Highlights: • Nrf2 controls cell death induced by contact sensitizers in dendritic cells. • DNCB reduced GSH levels and up-regulated bcl-2 gene expression unlike CinA. • Chemical reactivity controls Nrf2-dependent genes having protective effect in DC.

  15. The significance of feedback control for chemical sensors

    NARCIS (Netherlands)

    Bergveld, Piet

    1992-01-01

    The conventional way of applying chemical sensors is in an open-loop configuration. A parameter of the chemical domain, such as a gas or ion concentration, is converted into a parameter of the mechanical or electrical domain, often with non-linear transfer characteristics. The paramagnetic oxygen

  16. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    Science.gov (United States)

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  17. Femtosecond laser control of chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-09-01

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  18. Chemically induced transition phenomena in polyurethanes as seen from generalized mode Grueneisen parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Bactavatchalou, R; Sanctuary, R; Baller, J; Zielinski, B; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, Avenue de la Faiencerie, L-1115 (Luxembourg); Possart, W; Alnot, P [Laboratoire Europeen de Recherche, Universitaire Saarland-Lorraine (Luxembourg)], E-mail: ulrich.mueller@uni.lu

    2008-05-21

    Many phenomenological properties of reactive polymers like polyurethanes increase or decrease continuously in the course of the curing process before saturating at the end of the chemical reaction. This holds true for instance for the mass density, the refractive index, the chemical turnover and the hypersonic properties. The reason for this monotone behaviour is that the chemical reaction behaves like a continuous succession of irreversible phase transitions. These transitions are superposed by the sol-gel transition and possibly by the chemically induced glass transition, with the drawback that the latter two highlighted transitions are often hidden by the underlying curing process. In this work we propose generalized mode Grueneisen parameters as an alternative probe for elucidating the polymerization process itself and the closely related transition phenomena. As a model system we use polyurethane composed of a diisocyanate and varying ratios of difunctional and trifunctional alcohols.

  19. Studies on chemical and physical mutagens' induced polygenic variability in mungbean (Vigna radiata (L.) Wilczek)

    International Nuclear Information System (INIS)

    Sangwan, H.P.S.; Singh, M.P.

    1990-01-01

    Full text: Pulses used to be and still are cultivated on marginal lands under poor management conditions which result in low production. Genotypes which could respond to better management have been eliminated by past selection. It is, therefore, difficult and challenging to breed high yielding varieties in pulse crops with the limited genetic variability available. Induced mutations could supplement this variability. Extensive studies on genotype-mutagen interaction were undertaken with six varieties of mungbean having contrasting seed characteristics, morphological traits and genetic backgrounds. Each variety was treated with 300 Gy and 600 Gy of gamma rays, 0.1 and 0.5% of EMS, and 0.1 and 0.05 of SA. Dry seeds, water soaked and phosphate buffer soaked seeds served as controls. The following observations were made: differential response of varieties to mutagen treatments - irrespective of the variety or the characters; gamma-rays proved to be more effective than chemical mutagens; mutagenic treatments resulted in development of early maturing mutants that can fit well in multiple cropping systems particularly in raising a mung crop after the wheat harvest. The fact that some mutants were detected in M 4 with significant increase in yield and marginal improvement in protein content generation suggests the possibility of improving both characters provided a large population is screened. (author)

  20. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.

  1. Chemical Weed Control in Saffron (Crocus sativus Fields

    Directory of Open Access Journals (Sweden)

    majid abbaspoor

    2018-01-01

    Full Text Available Introduction Saffron is derived from the stigmas of the saffron (Crocus sativus L. It is the world’s most expensive spice and has been widely used in many countries. It is also increasingly used for medicinal purposes. Weed control in this perennial, small and low growing crop, needs a lot of labor work. Chemical approach is one of the most effective methods for weed control in saffron. Currently, some herbicide options are available for applications in saffron. For example, satisfactory broadleaved weed control would be achieved by post-emergence application of metribuzin and ioxynil after harvesting saffron flowers. Application of glyphosate and/or 2, 4-D / 2, 4-DB are used to clean up the beds prior to the new season’s flowering and growth of saffron in New Zealand. The selective weed control of weeds in saffron has not been widely reported elsewhere but some in Iran. The choice of herbicide(s depends on the kind of weeds present. In some literatures metribuzin showed promising results for weed control in saffron fields. It is selectively used for control of annual grasses and numerous broad-leaved weeds. The objective of this study was the evaluation of the efficacy of 15 herbicides with different mode of actions, selected on the basis of dominant weed flora and previous studies, on weeds grown in saffron fields. Materials and Methods A field study was conducted to evaluate the efficacy of herbicides for weed control in saffron (Crocus sativus in Agricultural and Natural Resources Research and Education Center of Khorasan Razavi Province, Mashhad, in 2014-2015 growing season. The experiment was conducted in a completely randomized block design with three replications. Treatments were consisted of metsulfuron-methyl + sulfosulfuron (Total® at dose of 40 g ha-1, sulfosulfuron (Apirus® at dose of 26.6 g ha-1, oxadiazon (Ronestar® at dose of 2 l ha-1, oxyflurofen (Goal® at dose of 2 l ha-1, mesosulfuron + idosulfuron + diflufenican

  2. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    on each topic. The chapter reviews the some of the scientific and technical challenges in metabolic engineering and the new possibilities emerging from recent technological developments. It concludes by discussing the outlook for bioengineered chemical defences as part of crop protection strategies, also...... with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews...

  3. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  5. Strain-induced structural changes and chemical reactions. 1: Thermomechanical and kinetic models

    International Nuclear Information System (INIS)

    Levitas, V.I.; Nesterenko, V.F.; Meyers, M.A.

    1998-01-01

    Strain-induced chemical reactions were observed recently (Nesterenko et al) in experiments in the shear band in both Ti-Si and Nb-Si mixtures. Reactions can start in the solid state or after melting of at least one component. One of the aims is to find theoretically whether there are possible macroscopic mechanisms of mechanical intensification of the above and other chemical reactions due to plastic shear in the solid state. Continuum thermodynamical theory of structural changes with an athermal kinetics, which includes martensitic phase transformations, plastic strain-induced chemical reactions and polymorphic transformations, is developed at finite strains. The theory includes kinematics, criterion of structural change and extremum principle for determination of all unknown variable parameters for the case with neglected elastic strains. Thermodynamically consistent kinetic theory of thermally activated structural changes is suggested. The concept of the effective temperature is introduced which takes into account that temperature can vary significantly (on 1,000 K) during the chemical reactions under consideration. The theory will be applied in Part 2 of the paper for the description of chemical reactions in the shear band

  6. Nuclear reactivity control using laser induced polarization

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1990-01-01

    This patent describes a control element for reactivity control of a fission source provides an atomic density of 3 He in a control volume which is effective to control criticality as the 3 He is spin-polarized. Spin-polarization of the 3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the 3 He for spin-polarizing the 3 He. An alkali-metal vapor may be included with the 3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with 3 He to spin-polarize the 3 He atoms

  7. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  8. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  9. Physico-chemical quality control 131I-sodium 2-iodohippurate

    International Nuclear Information System (INIS)

    Morin, J.; Olive, E.; Issac, M.; Cruz, J.

    1992-01-01

    Some physico-chemical methods for analytical control 131 I-sodium 2-iodohippurate are compared. The most convenient to applicate in hospital and in more especialized quality control laboratories are recommended

  10. CHEMICAL CONTROL OF BEAN WEEVIL, ACANTHOSCELIDES OBTECTUS SAY IN STORAGE CONDITION

    Directory of Open Access Journals (Sweden)

    M PORCA

    2003-12-01

    Full Text Available The paper presents the positive results obtained by some pesticides applied against the bean weevil - Acanthoscelides obtectus Say, after a synthetic rewiew of the potential chemical methods which may be used in the chemical control of the insectes harmful to the stored bean seeds. The chemical control is realised treatments wits syntetic pyrethroid (permetrin, deltametrin and organophosphoric insecticides (malation, pirimifos metil, fenitrotion and chlrorpirifos-metil.

  11. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A.

    1999-01-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  12. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    Vergara, L.I.; Passeggi, M.C.G.; Ferron, J.

    2007-01-01

    We study the TiO 2 (Ti 4+ ) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO 2 sample is characterized by the appearance of a lower Ti oxidation state, Ti 2 O 3 (Ti 3+ ), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  13. Chemically triggered ejection of membrane tubules controlled by intermonolayer friction.

    Science.gov (United States)

    Fournier, J-B; Khalifat, N; Puff, N; Angelova, M I

    2009-01-09

    We report a chemically driven membrane shape instability that triggers the ejection of a tubule growing exponentially toward a chemical source. The instability is initiated by a dilation of the exposed monolayer, which is coupled to the membrane spontaneous curvature and slowed down by intermonolayer friction. Our experiments are performed by local delivery of a basic pH solution to a giant vesicle. Quantitative fits of the data give an intermonolayer friction coefficient b approximately 2x10;{9} J s/m;{4}. The exponential growth of the tubule may be explained by a Marangoni stress yielding a pulling force proportional to its length.

  14. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Science.gov (United States)

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  15. Compatible biological and chemical control systems for Rhizoctonia solani in potato

    NARCIS (Netherlands)

    Boogert, van den P.H.J.F.; Luttikholt, A.J.G.

    2004-01-01

    A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals,

  16. Comparative experimental study of cancer induced by ionizing radiations or by chemical carcinogens

    International Nuclear Information System (INIS)

    Lafuma, J.

    1983-01-01

    Animal experiments have contributed to specify a number of parameters used in setting human safety limits for ionizing radiation. In the same way, comparisons have been made between cancers induced in man and in animals in well-defined conditions. In order to use the same experimental data for chemical carcinogens, the mechanisms of carcinogenesis should be the same, i.e. additivity of responses instead of synergy of effects, which requires the development of a new experimental method [fr

  17. Decay Accelerating Factor (CD55) Protects Neuronal Cells from Chemical Hypoxia-Induced Injury

    Science.gov (United States)

    2010-04-09

    Pavlakovic G, Isom GE: Dopaminergic neurotoxicity of cyanide: neurochemical, histological and behavioral characterization. Toxicol Appl Pharmacol...provided the original work is properly cited. ResearchDecay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury...deposition of C3a/C5a and membrane attack complex (MAC or C5b-9) production. The present study investigates the ability of DAF to protect primary cultured

  18. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Ho [Korea Univ., Seoul (Korea, Republic of); Chudnovsky, Alexander [The University of Illinois, Chicago (United States)

    2008-07-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented.

  19. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    International Nuclear Information System (INIS)

    Choi, Byoung Ho; Chudnovsky, Alexander

    2008-01-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented

  20. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Iizuka, Daisuke; Daino, Kazuhiro; Takabatake, Takashi; Okamoto, Mieko; Kakinuma, Shizuko; Shimada, Yoshiya

    2009-01-01

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  1. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  2. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  3. Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.

    Science.gov (United States)

    Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2015-10-15

    Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  5. A crowdsourcing workflow for extracting chemical-induced disease relations from free text

    Science.gov (United States)

    Li, Tong Shu; Bravo, Àlex; Furlong, Laura I.; Good, Benjamin M.; Su, Andrew I.

    2016-01-01

    Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available at https://github.com/SuLab/crowd_cid_relex Database URL: https://github.com/SuLab/crowd_cid_relex PMID:27087308

  6. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength; TOPICAL

    International Nuclear Information System (INIS)

    GE Fryxell; KL Alford; KL Simmons; RD Voise; WD Samuels

    1999-01-01

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer

  7. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  8. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective

    DEFF Research Database (Denmark)

    Muller, A.; Jacobsen, Helene; Healy, E.

    2006-01-01

    Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure......! Whilst the general classification criteria for this endpoint are outlined in Annex VI of this Directive, they do not provide specific information to assess haemolytic anaemia. This review produced by the EU Working Group on Haemolytic Anaemia provides a toxicological assessment of haemolytic anaemia...... and proposes criteria that can be used in the assessment for classification of substances which induce such effects. An overview of the primary and secondary effects of haemolytic anaemia which can occur in rodent repeated dose toxicity studies is given. A detailed analysis of the toxicological significance...

  9. Three-dimensional laser-induced fluorescence measurements of turbulent chemical plumes

    Science.gov (United States)

    True, Aaron; Crimaldi, John

    2017-11-01

    In order to find prey, mates, and suitable habitat, many organisms must navigate through complex chemical plume structures in turbulent flow environments. In this context, we investigate the spatial and temporal structure of chemical plumes released isokinetically into fractal-grid-generated turbulence in an open channel flow. We first utilized particle image velocimetry (PIV) to characterize flow conditions (mean free stream velocities, turbulence intensities, turbulent kinetic energy dissipation rates, Taylor Reynolds numbers). We then implemented a newly developed high-resolution, high-speed, volumetric scanning laser-induced fluorescence (LIF) system for near time-resolved measurements of three-dimensional chemical plume structures. We investigated cases with and without a cylinder wake, and compare statistical (mean, variance, intermittency, probability density functions) and spectral (power spectrum of concentration fluctuations) characteristics of the chemical plume structure. Stretching and folding of complex three-dimensional filament structures during chaotic turbulent mixing is greatly enhanced in the cylinder wake case. In future experiments, we will implement simultaneous PIV and LIF, enabling computation of the covariance of the velocity and chemical concentration fluctuations and thus estimation of turbulent eddy diffusivities. NSF PHY 1555862.

  10. Chemical factors controlling actinide sorption in the environment

    International Nuclear Information System (INIS)

    Beall, G.W.; Allard, B.

    1979-01-01

    The solid geologic media and the aqueous phase are of equal importance for the retention of actinides in the environment. The composition of the water is largely determined by the mineralogical composition of the rock that it is in equilibrium with. The chemical form of the actinides and their sorption, are highly dependent on the composition of the water with respect to pH, redox potential, and concentration of anions like carbonate, phosphate, fluoride, and organic acids

  11. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  12. The chemical monitoring and control during temporary turbine trip or reactor scram of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Heng

    2012-01-01

    During normal operation, a malfunction of equipment or improper operation sometimes results in a turbine trip or reactor scram or even cold shutdown. Because present chemical control strategy and programs aimed at the situation of normal operation and planed refueling outage, no integrate emergency program of radiochemical and chemical control had been developed to focus on this urgent and unexpected situation. After many years of practice and experience feedback, chemists have created an emergency collaborative program of radiochemical and chemical control which aims at these unexpected situations such as unplanned unit down power, turbine trip, or reactor scram. The program defines different radiochemical and chemical control measures and steps during different status to monitor primary loop dose rate variation, fuel assembly integrity and water chemical excursion to prevent components from corrosion. (author)

  13. A plant-based chemical genomics screen for the identification of flowering inducers

    NARCIS (Netherlands)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    BACKGROUND: Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to

  14. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  15. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  16. Controlled-release oxycodone-induced seizures.

    Science.gov (United States)

    Klein, Moti; Rudich, Zvia; Gurevich, Boris; Lifshitz, Matityahu; Brill, Silviu; Lottan, Michael; Weksler, Natan

    2005-11-01

    The use of the opioid oxycodone hydrochloride in the management of chronic pain is gaining popularity principally because of its tolerability. However, opioid-related seizure in patients with epilepsy or other conditions that may decrease seizure threshold has been described in the literature; in particular, oxycodone has been associated with seizure in a patient with acute renal failure. The aim of this article was to report a patient with a history of seizures but normal renal and hepatic function who developed seizure on 2 occasions after oxycodone ingestion. A 54-year-old male patient presented with a history of tonic-clonic seizures that developed immediately after intracranial surgery. Long-term treatment with carbamazepine 400 mg QD was started, and the patient was free of convulsions for approximately 7 years. The patient presented to us with severe headache that was nonresponsive to an NSAID and the opiate agonist tramadol. Treatment with controlled-release (CR) oxycodone and tramadol drops (50 mg QID if necessary) was started, and tonic-clonic seizures developed 3 days later. Based on laboratory analysis, the patient had normal renal and hepatic function. On discontinuation of oxycodone treatment, the seizures resolved. However, due to effective pain relief with oxycodone, the patient decided to continue treatment, and seizures recurred. Carbamazepine was then administered 4 hours before oxycodone dosing, which allowed continuation of treatment without seizure. A patient with a history of seizures controlled with long-term carbamazepine therapy developed seizures when he started treatment with oxycodone CR at recommended doses. Oxycodone CR should be used with extreme caution in patients with epilepsy or other conditions that may decrease seizure threshold.

  17. Anticonvulsant activity of B2, an adenosine analog, on chemical convulsant-induced seizures.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Epilepsy is a chronic neurological disorder characterized by recurrent seizures. However, approximately one-third of epilepsy patients still suffer from uncontrolled seizures. Effective treatments for epilepsy are yet to be developed. N (6-(3-methoxyl-4-hydroxybenzyl adenine riboside (B2 is a N(6-substitued adenosine analog. Here we describe an investigation of the effects and mechanisms of B2 on chemical convulsant-induced seizures. Seizures were induced in mice by administration of 4-aminopyridine (4-AP, pentylenetetrazol (PTZ, picrotoxin, kainite acid (KA, or strychnine. B2 has a dose-related anticonvulsant effect in these chemical-induced seizure models. The protective effects of B2 include increased latency of seizure onset, decreased seizure occurrence, shorter seizure duration and reduced mortality rate. Radioligand binding and cAMP accumulation assays indicated that B2 might be a functional ligand for both adenosine A1 and A2A receptors. Furthermore, DPCPX, a selective A1 receptor antagonist, but not SCH58261, a selective A2A receptor antagonist, blocked the anticonvulsant effect of B2 on PTZ-induced seizure. c-Fos is a cellular marker for neuronal activity. Immunohistochemical and western blot analyses indicated that B2 significantly reversed PTZ-induced c-Fos expression in the hippocampus. Together, these results indicate that B2 has significant anticonvulsant effects. The anticonvulsant effects of B2 may be attributed to adenosine A1 receptor activation and reduced neuronal excitability in the hippocampus. These observations also support that the use of adenosine receptor agonist may be a promising approach for the treatment of epilepsy.

  18. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Thomas P., E-mail: thomas.forbes@nist.gov; Sisco, Edward

    2015-09-10

    The trace detection, bulk quantification, and chemical imaging of inorganic explosives and components was demonstrated utilizing in-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS). The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified that the optimal in-source CID existed at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated LDI-MS with in-source CID as a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels. - Highlights: • In-source CID enhanced detection of elemental inorganics up to 1000-fold. • In-source CID optimization of polyatomic oxidizers enhanced detection up to 100-fold. • Optimal CID identified at transition from breaking ionic salt to molecular anion bonds. • Trace detection of inorganic explosives at nanogram levels was demonstrated. • Oxidizer particles were chemically imaged directly from latent fingerprints.

  19. Lunasin-aspirin combination against NIH/3T3 cells transformation induced by chemical carcinogens.

    Science.gov (United States)

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; de Lumen, Ben O

    2011-06-01

    Carcinogenesis is a multistage process involving a number of molecular pathways sensitive to intervention. Chemoprevention is defined as the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. To achieve greater inhibitory effects on cancer cells, combination of two or more chemopreventive agents is commonly considered as a better preventive and/or therapeutic strategy. Lunasin is a promising cancer preventive peptide identified in soybean and other seeds. Its efficacy has been demonstrated by both in vitro and in vivo models. This peptide has been found to inhibit human breast cancer MDA-MB-231 cells proliferation, suppressing cell cycle progress and inducing cell apoptosis. Moreover, lunasin potentiates the effects on these cells of different synthetic and natural compounds, such as aspirin and anacardic acid. This study explored the role of lunasin, alone and in combination with aspirin and anacardic acid on cell proliferation and foci formation of transformed NIH/3T3 cells induced by chemical carcinogens 7,12-dimethylbenz[a]anthracene or 3-methylcholanthrene. The results revealed that lunasin, acting as a single agent, inhibits cell proliferation and foci formation. When combined with aspirin, these effects were significantly increased, indicating that this combination might be a promising strategy to prevent/treat cancer induced by chemical carcinogens.

  20. Ubiquitin-dependent system controls radiation induced apoptosis

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  1. Development of Chemical Process Design and Control for Sustainability

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  2. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  3. Chemical Exacerbation of Light-induced Retinal Degeneration in F344/N Rats in National Toxicology Program Rodent Bioassays

    OpenAIRE

    Yamashita, Haruhiro; Hoenerhoff, Mark J.; Peddada, Shyamal D.; Sills, Robert C.; Pandiri, Arun R.

    2016-01-01

    Retinal degeneration due to chronic ambient light exposure is a common spontaneous age-related finding in albino rats, but it can also be related to exposures associated with environmental chemicals and drugs. Typically, light induced retinal degeneration has a central/hemispherical localization where as chemical induced retinal degeneration has a diffuse localization. This study was conducted to identify National Toxicology Program (NTP) rodent bioassays with treatment-related retinal degene...

  4. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  5. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (-)-isolongifolene.

    Science.gov (United States)

    Sakata, Kazuki; Oda, Yoshimitsu; Miyazawa, Mitsuo

    2010-02-24

    In this study, biotransformation of (-)-isolongifolene (1) by Glomerella cingulata and suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B(1) (AFB(1)) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, 1 was carried out the microbial transformation by G. cingulata. The result found that 1 was converted into (-)-isolongifolen-9-one (2), (-)-(2S)-13-hydroxy-isolongifolen-9-one (3), and (-)-(4R)-4-hydroxy-isolongifolen-9-one (4) by G. cingulata, and their conversion rates were 60, 25, and 15%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB(1) in the umu test. Comound 2 showed gene expression by chemical mutagens furylfuramide and AFB(1) was suppressed 54 and 50% at <0.5 mM, respectively. Compound 2 is the most effective compound in this experiment.

  6. 78 FR 39337 - Importer of Controlled Substances, Notice of Application, Boehringer Ingelheim Chemicals

    Science.gov (United States)

    2013-07-01

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances, Notice of Application, Boehringer Ingelheim Chemicals Pursuant to Title 21 Code of Federal Regulations 1301.34(a), this is notice that on May 31, 2013, Boehringer Ingelheim Chemicals, 2820 N. Normandy Drive, Petersburg...

  7. 77 FR 43863 - Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals Inc.

    Science.gov (United States)

    2012-07-26

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on June 8, 2012, Boehringer Ingelheim Chemicals...

  8. 77 FR 43861 - Importer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals

    Science.gov (United States)

    2012-07-26

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals Pursuant to Title 21 Code of Federal Regulations 1301.34(a), this is notice that on June 8, 2012, Boehringer Ingelheim Chemicals, Inc., 2820 N. Normandy Drive...

  9. 78 FR 39340 - Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2013-07-01

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals, Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on May 31, 2013, Boehringer Ingelheim Chemicals...

  10. A crowdsourcing workflow for extracting chemical-induced disease relations from free text.

    Science.gov (United States)

    Li, Tong Shu; Bravo, Àlex; Furlong, Laura I; Good, Benjamin M; Su, Andrew I

    2016-01-01

    Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available athttps://github.com/SuLab/crowd_cid_relexDatabase URL:https://github.com/SuLab/crowd_cid_relex. © The Author(s) 2016. Published by Oxford University Press.

  11. Development of Chemical Process Design and Control for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyun Li

    2016-07-01

    Full Text Available This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions.

  12. Development of Chemical Process Design and Control for ...

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  13. Helium leak and chemical impurities control technology in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  14. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  15. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms.

    Science.gov (United States)

    Lund, Marianne N; Ray, Colin A

    2017-06-14

    Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.

  16. Efficacy and mechanisms of non-antibacterial, chemical plaque control by dentifrices - An in vitro study

    NARCIS (Netherlands)

    Busscher, Henk J.; White, Don J.; Atema-Smit, Jelly; van der Mei, Henny C.

    Objectives: The provision of antiplaque benefits to dentifrices assists patients in improving hygiene and reducing susceptibility to gingivitis and caries. Chemical plaque control involves different mechanisms and is mostly associated with antibacterial effects, but also includes effects on pellicle

  17. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  18. Geological control of earthquake induced landslide in El Salvador

    Science.gov (United States)

    Tsige Aga, Meaza

    2010-05-01

    Geological control of earthquake induced landslides in El Salvador. M., Tsige(1), I., Garcia-Flórez(1), R., Mateos(2) (1)Universidad Complutense de Madrid, Facultad de Geología, Madrid, Spain, (meaza@geo.ucm.es) (2)IGME, Mallorca El Salvador is located at one of the most seismically active areas en Central America, and suffered severe damage and loss of life in historical and recent earthquakes, as a consequence of earthquake induced landslides. The most common landslides were shallow disrupted soil-slides on steep slopes and were particularly dense in the central part of the country. Most of them are cited in the recent mechanically weak volcanic pyroclastic deposits known as "Tierra Blanca" and "Tierra Color Café" which are prone to seismic wave amplification and are supposed to have contributed to the triggering of some of the hundreds of landslides related to the 2001 (Mw = 7.6 and Mw = 6.7), seismic events. The earthquakes also triggered numerous deep large scale landslides responsible for the enormous devastation of villages and towns and are the source for the current high seismic hazard as well. Many of these landslides are located at distances more than 50 and 100 km from the focal distance, although some of them occurred at near field. Until now there has been little effort to explain the causes and concentration of the deep large-scale landslides especially their distribution, failure mechanism and post-rapture behavior of the landslide mass (long run-out). It has been done a field investigation of landslides, geological materiales and interpretation of aerial photographs taken before and after the two 2001 (Mw= 7.6 and Mw= 6.7) El Salvador earthquakes. The result of the study showed that most of the large-scale landslides occured as coherent block slides with the sliding surface parallel to a pre-existing fractures and fault planes (La Leona, Barriolera, El Desague, Jiboa landslides). Besides that the pre-existing fractures are weak zones controlling

  19. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  20. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Shearstone

    Full Text Available Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF is a promising approach for ameliorating sickle cell disease (SCD and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2, elicits a dose and time dependent induction of γ-globin mRNA (HBG and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB. Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.

  1. Chemical modifications of polymer films induced by high energy heavy ions

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-01-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40 Ar, 25 MeV/u 84 Kr, 15.1 MeV/u 136 Xe and 11.4 MeV/u 238 U to fluences ranging from 9x10 9 to 5.5x10 12 ions/cm 2 . The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer

  2. The conundrum of chemical boll weevil control in subtropical regions

    Science.gov (United States)

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a tropical Mesoamerican insect that invaded the United States in 1893, spreading across the Cotton Belt as the key pest of cotton and causing billions of dollars in yield losses and insecticide-based control efforts;...

  3. Comparison between chemical and biological control of Fusarium ...

    African Journals Online (AJOL)

    ... College of Education, Jeddah, Saudi Arabia. The results revealed that treatment with the fungicide carbomar or T. harzianum as well as with B. subtilis, in presence of F. solani increased the % of healthy seedlings as well as their length , fresh and dry weight than in presence of F. solani alone but still less than the control.

  4. Soft Sensors: Chemoinformatic Model for Efficient Control and Operation in Chemical Plants.

    Science.gov (United States)

    Funatsu, Kimito

    2016-12-01

    Soft sensor is statistical model as an essential tool for controlling pharmaceutical, chemical and industrial plants. I introduce soft sensor, the roles, the applications, the problems and the research examples such as adaptive soft sensor, database monitoring and efficient process control. The use of soft sensor enables chemical industrial plants to be operated more effectively and stably. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  6. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-01-01

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  7. Chemical modelling as a management tool for water pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Limpitlaw, D. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Mining Engineering

    1996-12-31

    In a colliery currently being re-mined by opencast methods, the coal seam was originally extracted using bord and pillar mining. Depressions in the seam floor have facilitated the formation of large underground water bodies. This water has become acidic and contaminated by heavy metals. Mine water is treated by a liming plant and then released into evaporation pans. Seepage from the pans enters a natural wetlands. The de-watering of old workings ahead of mining periodically subjects the liming plant to large quantities of low quality water, and a nett export of salts such as sulphate occurs. As the mine is situated in a sensitive river catchment, this pollution is unacceptable. A chemical speciation program developed by the US Environmental Protection Agency was used to analyse effluent from the liming plant and wetland. Liming plant effluent water was found to vary greatly due to the conditions prevalent in the different water bodies. The liming plant and wetland were periodically subjected to pollution loads beyond the wetland`s assimilative capacity, resulting failure of the system. Despite this, the software provided evidence of the wetland`s pollution-ameliorating potential. 8 refs., 12 figs.

  8. Weed clearance in Hudiara Nallah by chemical weed control

    International Nuclear Information System (INIS)

    Dhillon, G.S.

    1981-01-01

    Hudiara Nallah is a flood stream in West Punjab. It has a length of about 45km and breadth of nearly 25 metres. About 20 subsidiary drains join with the Nallah. These drains have a length of about 270km. The Nallah has a discharge capacity of 1248 cusecs. Most of the subsidiary drains start from ponds which are generally infected with Eichhornia plants. These plants enter into the subsidiary drains and finally into Hudiara Nallah. The plants float freely on the surface of water and multiply at a high rate. One plant of the weed propagates to 24 plants in a period of one month. The plants thus cover the whole drain in a few months. The weed also originates from seeds. Their heavy growth forms a mat-like surface. The weeds also choke bridges and sometimes cause damage to their structures. These obstruct the flow of water and decrease the carrying capacity of the drain. Their infestation thus causes floods and the very purpose of the drains gets lost. Thus the Nallah is heavily infested with Eichhornia crassipes (water hyacinth weed). Due to its fast propagation and heavy infestation it was not possible to clear the weed manually. The problem was, therefore, referred to the Chemistry Division of the Irrigation and Power Research Institute, Amritsar, by the Drainage Circle of the Irrigation Department in June 1978 when weed propagation was in full swing. A chemical treatment method of eradication was attempted

  9. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  10. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  11. B-lymphocytes as key players in chemical-induced asthma.

    Directory of Open Access Journals (Sweden)

    Vanessa De Vooght

    Full Text Available T-lymphocytes and B-lymphocytes are key players in allergic asthma, with B-lymphocytes producing antigen-specific immunoglobulins E (IgE. We used a mouse model of chemical-induced asthma and transferred B-lymphocytes from sensitized animals into naïve wild type mice, B-lymphocyte knock-out (B-KO mice or severe combined immunodeficiency (SCID mice. On days 1 and 8, BALB/c mice were dermally sensitized with 0.3% toluene diisocyanate (TDI (20 µl/ear. On day 15, mice were euthanized and the auricular lymph nodes isolated. B-lymphocytes (CD19(+ were separated from the whole cell suspension and 175,000 cells were injected in the tail vein of naïve wild type, B-KO or SCID mice. Three days later, the mice received a single oropharyngeal challenge with 0.01% TDI (20 µl or vehicle (acetone/olive oil (AOO (controls. Airway reactivity to methacholine and total and differential cell counts in the bronchoalveolar lavage (BAL fluid were measured 24 hours after challenge. B-lymphocytes of AOO or TDI-sensitized mice were characterized for the expression of surface markers and production of cytokines. We found that transfer of B-cells obtained from mice dermally sensitized to toluene diisocyanate (TDI into naïve wild type mice, B-KO mice or SCID mice led, within three days, to an acute asthma-like phenotype after an airway challenge with TDI. This response was specific and independent of IgE. These B-lymphocytes showed antigen presenting capacities (CD80/CD86 and CD40 and consisted of B effector (Be2- (IL-4 and Be1-lymphocytes (IFN-γ. The transferred B-lymphocytes were visualized near large airways, 24 hours after TDI challenge. Thus, B-lymphocytes can provoke an asthmatic response without the action of T-lymphocytes and without major involvement of IgE.

  12. The Possible Therapeutic Role of Polyphenyl Constituents in Turmeric and Tamoxifen on Hepatocellular Carcinoma Chemically Induced in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.

    2017-01-01

    Tamoxifen is a drug wildly used for the adjuvant therapy in the treatment of women with estrogen receptor-positive breast tumors and has a low incidence of serious side-effects. Feeding turmeric ( Curcuma longa L .) to rats has no apparent side effects; reduced the types of inflammation that can cause liver cell damage, blockage and scarring. Turmeric delay the damage caused by progressive inflammatory liver disease. This study was carried out to study the possible therapeutic effect of polyphenyl constituents in turmeric and tamoxifen on hepatocarcinogenesis in rats chemically induced by diethylnitrosamine (DEN). Thirty five male rats were injected with DEN in a single dose i.p. (200mg/kg), 7 rats were sacrificed after ~6 months for histopathological examination for HCC nodules in different lobes and lobules, many nodules were observed by naked eye with a diameter of about ~2-3mm. The remaining 28 hepatoma (HCC) bearing rats chemically induced were randomized divided into 4 groups (each of 7rats): hepatoma bearing rats receiving the control diet; hepatoma bearing rats (supplemented with 4g/kg (wt/wt) turmeric (~200 μg curcumin /rat/day/4weeks; hepatoma bearing rats treated with 50mg/kg (wt/wt) tamoxifen dissolved in 0.1 ml dimethylsulfoxide and diluted with normal saline and drinking water; hepatoma bearing rats treated with 50mg/kg (wt/wt) tamoxifen in 0.1 ml dimethylsulfoxide and diluted with normal saline and drinking water and supplemented with 4g/ kg (wt/wt) turmeric(~200 μg curcumin /rat/day/4weeks; besides, 7 male rats serves as control group. By the end of the experiment at 4 weeks, rats in each group were sacrificed for examination.

  13. Selection of chemical markers for the quality control of medicinal plants of the genus Cecropia.

    Science.gov (United States)

    Rivera-Mondragón, Andrés; Ortíz, Orlando O; Bijttebier, Sebastiaan; Vlietinck, Arnold; Apers, Sandra; Pieters, Luc; Caballero-George, Catherina

    2017-12-01

    Several Cecropia (Cecropiaceae) species are traditionally used in Latin America for the treatment of a variety of diseases including diabetes, arterial hypertension, asthma, bronchitis, anxiety, and inflammation. At present, a number of commercial products based on these plants have been introduced into the market with very little information on methods for guaranteeing their quality and safety. This work proposes potential chemical markers for the quality control of the raw materials of Cecropia obtusifolia Bertol., Cecropia peltata L., Cecropia glaziovii Snethl., Cecropia pachystachya Trécul, and Cecropia hololeuca Miq. The Herbal Chemical Marker Ranking System (Herb MaRS) developed by the National Institute of Complementary Medicine (NICM) at the University of Western Sydney was used for selecting chemical markers for the quality control of selected medicinal species of Cecropia. This review covers the period from 1982 to 2016. Chlorogenic acid, flavonoidal glycosides (orientin, isoorientin, vitexin, isovitexin, and rutin), catechin, epicatechin, procyanidins (B2, B5, and C1), steroids (β-sitosterol), and triterpenoids (α-amyrin, pomolic, tormentic and ursolic acids) were selected as chemical markers for the quality control of the leaves. It is necessary to establish comprehensive standards for guaranteeing quality, safety and efficacy of herbal drugs. The selection of adequate chemical markers for quality control purposes requires a good knowledge about the chemical composition of medicinal plants and their associated biological properties. To the best of our knowledge this review article is the first to address the identification and quantitative determination of the chemical markers for the genus Cecropia.

  14. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    Science.gov (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  15. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins.

    Science.gov (United States)

    Anumalla, Bramhini; Prabhu, N Prakash

    2018-01-25

    When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two

  16. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  17. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    Full Text Available Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell–Garnetts (MG and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism. Keywords: Induced magnetic field, Nanoliquids, Heat source/sink, Series expansion method, Chemical reaction, Thermal radiation

  18. Early haemorrhage control and management of trauma-induced coagulopathy

    DEFF Research Database (Denmark)

    Stensballe, Jakob; Henriksen, Hanne H; Johansson, Pär I

    2017-01-01

    of trauma resuscitation using a ratio-driven strategy aiming at 1:1:1 of red blood cells, plasma and platelets while applying goal-directed therapy early and repeatedly to control trauma-induced coagulopathy. SUMMARY: Trauma resuscitation should focus on early goal-directed therapy with use of viscoelastic...... haemostatic assays while initially applying a ratio 1:1:1 driven transfusion therapy (with red blood cells, plasma and platelets) in order to sustain normal haemostasis and control further bleeding....

  19. Control of radiation-induced diarrhea with cholestyramine

    International Nuclear Information System (INIS)

    Heusinkveld, R.S.; Manning, M.R.; Aristizabal, S.A.

    1978-01-01

    Cholestyramine is a non-absorbable ion-exchange resin which specifically binds bile salts. We have treated seven patients with acute or chronic radiation-induced diarrhea that was refractory to the usual methods of control with cholestyramine. In each case, the diarrhea was controlled with cholestyramine. This observation supports previous experimental work with animals which indicated that bile salts contribute to the genesis of radiation-induced diarrhea. Cholestyramine is well-tolerated, but should not be administered with certain oral medications. The results of this small series are preliminary, but point the way toward a more extensive clinical trial to define the usefulness of cholestyramine in the treatment of refractory acute or chronic radiation-induced diarrhea

  20. Chemical inventory control program for mixed and hazardous waste facilities at SRS

    International Nuclear Information System (INIS)

    Ades, M.J.; Vincent, A.M. III.

    1997-01-01

    Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins

  1. Materials control and accountability at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Denning, G.E.; Britschgi, J.J.; Spraktes, F.W.

    1985-01-01

    The ICPP high enriched uranium recovery process has historically been operated as a single Material Balance Area (MBA), with input and output measurement capabilities. Safeguards initiated changes in the last five years have resulted in significant materials control and accountability improvements. Those changes include semi-automation of process accountability measurement, data collection and recording; definition of Sub-MBAs; standard plant cleanouts; and, bimonthly inventory estimates. Process monitoring capabilities are also being installed to provide independent operational procedural compliance verification, process anomaly detection, and enhanced materials traceability. Development of a sensitivity analysis approach to defining process measurement requirements is in progress

  2. Chemically-induced solid-state dewetting of thin Au films

    International Nuclear Information System (INIS)

    Gazit, Nimrod; Klinger, Leonid; Rabkin, Eugen

    2017-01-01

    We employed the solid state dewetting technique to produce nanoparticles of silver-gold alloy on a sapphire substrate. We deposited a thin gold layer on the substrate with alloy nanoparticles, and studied its thermal stability at low homological temperatures. We demonstrated that a large number of densely spaced holes form at the initial stages of dewetting of the gold layer with nanoparticles. A similar homogeneous gold film deposited on a bare sapphire substrate remained stable under identical annealing conditions, exhibiting the onset of dewetting at higher temperatures, and with a lower number of holes. We attributed the decreased thermal stability of the gold film deposited on the substrate with the silver-gold nanoparticles to accelerated grooving at the grain boundaries and triple junctions in the film. The grooving process is accelerated by the diffusion fluxes of Au atoms driven from the film towards the nanoparticles by the gradient of chemical potential. We developed a quantitative model of this chemically-induced dewetting process, and discussed its applicability for the design of better catalytic systems. Our work demonstrates that the chemical driving forces have to be reckoned with in the analysis of thermal stability of multicomponent thin films.

  3. Evaluation of Maltose-Induced Chemical Degradation at the Interface of Bilayer Tablets.

    Science.gov (United States)

    Matsuzaki, Naoya; Yamamoto, Yousuke; Murayama, Daisuke; Katakawa, Yoshifumi; Mimura, Hisashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    Fixed dose combination tablets consisting of mirabegron (MB) and solifenacin succinate (SS) were developed and formulated into bilayer tablets in the current study. The results of a chemical stability study showed that the original formulation for the tablets led to a significant increase of unknown degradants in the SS layer. Two compatibility studies were conducted to simulate the interface between the MB and SS layers, and the results revealed that the degradants only formed in the presence of both active pharmaceutical ingredients (APIs), and that the presence of maltose in the SS layer was critical to inducing degradation. High resolution mass spectroscopy coupled with high performance liquid chromatography was used to determine the chemical structures of the degradants, which were identified to MB derivatives bearing one or two sugar units. These findings therefore suggested that the degradation of the API could be attributed to the addition of sugar units from maltose to MB under the acidic conditions caused by SS. With this in mind, we developed a new formulation by replacing maltose with hydroxypropyl cellulose as a polymer-type binder. The results showed that this formulation suppressed the formation of the degradants. The results of this study have shown that chemical degradation can occur at the interface of bilayer tablets and that an alternative strategy is available to formulate more stable MB/SS bilayer tablets.

  4. Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits.

    Science.gov (United States)

    Trojak-Goluch, Anna; Skomra, Urszula

    2013-12-01

    Chemically induced polyploids were obtained by the colchicine treatment of shoot tips of Humulus lupulus L. 'Sybilla'. Flow cytometry revealed that most of the treatments resulted in the production of tetraploids. The highest number of tetraploids was obtained when explants were immersed in 0.05% colchicine for 48 h. A field experiment was conducted to compare diploid and tetraploid plants and assess the effect of genome polyploidization on the morphological and chemical characteristics. Tetraploids showed significant differences in relation to diploids. They had thinner and shorter shoots. The influence of chromosome doubling was also reflected in the length, width and area of leaves. The length of female flowers in the tetraploids was significantly shorter than that observed in diploids. Tetraploids produced a diverse number of lupuline glands that were almost twice as large as those observed in diploids. The most distinct effect of genome polyploidization was a significant increase in the weight of cones and spindles. Contents of major chemical constituents of hop cones was little affected by ploidy level. Total essential oils were significantly lower than those in diploids. However there was a significant increase in the proportion of humulene, caryophyllene and farnesene, oils desired by the brewing industry.

  5. Blockage-induced condensation controlled by a local reaction

    Science.gov (United States)

    Cirillo, Emilio N. M.; Colangeli, Matteo; Muntean, Adrian

    2016-10-01

    We consider the setup of stationary zero range models and discuss the onset of condensation induced by a local blockage on the lattice. We show that the introduction of a local feedback on the hopping rates allows us to control the particle fraction in the condensed phase. This phenomenon results in a current versus blockage parameter curve characterized by two nonanalyticity points.

  6. Quantum control of light using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Andre, A; Eisaman, M D; Walsworth, R L; Zibrov, A S; Lukin, M D

    2005-01-01

    We present an overview of recent theoretical and experimental work on the control of the propagation and quantum properties of light using electromagnetically induced transparency in atomic ensembles. Specifically, we discuss techniques for the generation and storage of few-photon quantum-mechanical states of light as well as novel approaches to manipulate weak pulses of light via enhanced nonlinear optical processes

  7. Algorithmization of problems on the personnel information support in the automatic chemical control systems at NPP

    International Nuclear Information System (INIS)

    Vilkov, N.Ya.; Kryukov, Yu.V.; Cheshun, A.V.

    2001-01-01

    When elaborating software for the standard algorithms of the information support of the efficient control (keeping) of water chemistry operation (WCO) at the NPP power units one introduces an approach when the systems of chemical control are realized as the systems of quality control of in-loop physical and chemical processes gathering force in the course of time. Elaboration of algorithms to proceed data of the operational chemical control seeks for elaboration of the statistic procedures to detect anomalies of the processes at the early stages of their development more efficient in contrast to the standard procedures of control. The introduced procedure is used in the demonstration model of the system for diagnostics of some typical reasons of violation of the first circuit WCO of WWER-1000 power units [ru

  8. Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films

    Science.gov (United States)

    Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; Ramana, C. V.

    2017-09-01

    An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg ∼ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.

  9. Polysaccharides from astragali radix restore chemical-induced blood vessel loss in zebrafish

    Science.gov (United States)

    2012-01-01

    Background Astragali Radix has been used widely for the treatment of cardiovascular and cerebrovascular diseases, and to enhance endurance and stamina in traditional Chinese medicine (TCM) for over 2000 years. The polysaccharide constituents of Astragali Radix (ARP) are considered as one of the major constituents contributing to the multiple pharmacological effects of this medicinal plant. The purpose of the study is to evaluate the vascular regenerative activities of ARPs in a chemically-induced blood vessel loss model in zebrafish. Methods Blood vessel loss was induced in both Tg(fli-1a:EGFP)y1 and Tg(fli-1a:nEGFP)y7 embryos by administration of 300 nM VEGFR tyrosine kinase inhibitor II (VRI) for 3 h at 24 hpf (hour post-fertilization). Then, the blood vessel damaged zebrafish were treated with ARPs for 21 h and 45 h after VRI withdrawal. Morphological changes in intersegmental vessels (ISVs) of zebrafish larvae were observed under the fluorescence microscope and measured quantitatively. The rescue effect of ARPs in the zebrafish models was validated by measuring the relative mRNA expressions of Kdrl, Kdr and Flt-1 using real-time PCR. Results Two polysaccharide fractions, P4 (50000 D 0.1 μm), isolated from Astragali Radix by ultrafiltration, produced a significant and dose-dependent recovery in VRI-induced blood vessel loss in zebrafish. Furthermore, the down-regulation of Flk-1 and Flt-1 mRNA expression induced by VRI was reversed by treatment with P4. Conclusion The present study demonstrates that P4 isolated from Astragali Radix reduces VRI-induced blood vessel loss in zebrafish. These findings support the hypothesis that polysaccharides are one of the active constituents in Astragali Radix, contributing to its beneficial effect on treatment of diseases associated with a deficiency in angiogenesis. PMID:22357377

  10. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-01-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na 2 SeO 3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  11. PROCESS CONTROL IN THE EDUCATION OF ORGANIC CHEMICAL TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    lstván Csontos

    2001-06-01

    Full Text Available Las prácticas de laboratorio demuestran la importancia de los modernos procesos de control en las tecnologías de química orgánica. Se necesitaba desarrollar un sistema que une las ventajas de los calorímetros de reacción con las de modelo de los reactores controladas de la industria. El diseño de hardware y de software se permite trasladar el programa desarrollado en el laboratorio para el nivel industrial. El algoritmo general para las reacciones de diazotación y clormetilación es aplicado para el sintésis del cloruro de benzo-diazonio y cloruro de dietoxi-benzil en las prácticas de laboratorio.

  12. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  13. Exposure to Gulf War Illness chemicals induces functional muscarinic receptor maladaptations in muscle nociceptors.

    Science.gov (United States)

    Cooper, B Y; Johnson, R D; Nutter, T J

    2016-05-01

    Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effects of chemical-induced DNA damage on male germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Holme, J.A.; Bjoerge, C.; Trbojevic, M.; Olsen, A.K.; Brunborg, G.; Soederlund, E.J. [National Inst. of Public Health, Oslo (Norway). Dept. of Environmental Medicine; Bjoeras, M.; Seeberg, E. [National Hospital, Oslo (Norway). Dept. of Microbiology; Scholz, T.; Dybing, E.; Wiger, R. [National Hospital, Oslo (Norway). Inst. for Surgical Research and Surgical Dept. B

    1998-12-31

    Several recent studies indicate declines in sperm production, as well as increases in the incidence of genitourinary abnormalities such as testicular cancer, cryptorchidism and hypospadias. It is not known if these effects are due to exposure to chemical pollutants or if other ethiological factors are involved. Animal studies indicate that chemicals will induce such effects by various genetic, epigenetic or non-genetic mechanisms. Recently, much attention has been focused on embryonic/fetal exposure to oestrogen-mimicking chemicals (Toppari et al., 1996). However, the possibility that chemicals may cause reproductive toxicity by other mechanisms such as interactions with DNA, should not be ignored. DNA damage in germ cells may lead to the production of mutated spermatozoa, which in turn may result in spontaneous abortions, malformations and/or genetic defects in the offspring. Regarding the consequences of DNA alterations for carcinogenesis it is possible that genetic damage may occur germ cells, but the consequences are not expressed until certain genetic events occur in postnatal life. Transmission of genetic risk is best demonstrated by cancer-prone disorders such as hereditary retinoblastoma and the Li-Fraumeni syndrome. A number of experiments indicate that germ cells and proliferating cells may be particularly sensitive to DNA damaging agents compared to other cells. Furthermore, several lines of evidence have indicated that one of the best documented male reproductive toxicants, 1,2-dibrome-3-chloropropane (DBCP), causes testicular toxicity through DNA damage. It is possible that testicular cells at certain maturational stages are more subject to DNA damage, have less efficient DNA repair, or have different thresholds for initiating apoptosis following DNA damage than other cell types. (orig.)

  15. Intercellular distribution of mutations induced in oopcytes of Drosophila melanogaster by chemical and physical mutagens

    International Nuclear Information System (INIS)

    Traut, H.

    1979-01-01

    When females of Drosophila melanogaster are treated with chemical or physical mutagens, not only in one but also in both of the two homologous X chromosomes of a given oocyte, a recessive sex-linked lethal mutation may be induced. A method is described that discriminates between such single and double mutations. A theory is developed to show how a comparison betweeen the expected and the observer frequency of double mutations yields an indication of the intercellular distribution (random or nonrandom) of recessive lethal mutations induced by mutagenic agents in oocytes and, consequently, of the distribution (homogenous or nonhomogeneous) of those agents. Three agents were tested: FUdR (12.5, 50.0 and 81.0 μg/ml), mitomycin C (130.0 μg/ml) and x rays (2000 R, 150 kV). After FUdR feeding, no increase in the mutation frequency usually observed in D. melanogaster without mutagenic treatment was obtained (u = 0.13%, namely three single mutations among 2332 chromosomes tested). After mitomycin C feeding 104 single and three double mutations were obtained. All of the 50 mutations observed after x irradiation were single mutations. The results obtained in the mitomycin C and radiation experiments favor the assumption of a random intercellular distribution of recessive lethal mutations induced by these two agents in oocytes of D. melanogaster. Reasons are discussed why for other types of mutagenic agents nonrandom distributions may be observed with our technique

  16. High protein mutants of winter fodder barley induced by radiation and chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Yankulov, M.; Genchev, K.; Nikolov, Kh.

    1982-01-01

    Several induced mutants of winter fodder barley with higher rpotein content are described. These mutants were produced by treating seeds of cvs. Vogelsaenger Gold, Ager and 468 with gamma-rays, sodium azide and ethyl methanesulfonate (alone and in combinations) and with ethylene and formamide. The gamma-ray induced mutants of winter fodder barley have 1-4% higher protein content. The mutant line 109 has, besides high protein content (17,37%), 5.96 lysine per 100 g protein, but its endosperm is wrinkeled. Mutants produced by chemical mutagens have 6-7% higher protein content than the initial cultivars. All induced mutants have 85-95 cm high stems, i.e. they are by 10-20 cm shorter than the initial cultivars. Some of these mutants are now resistant to the diseases Helminthosporium gramineum and Ustilago nuda. The recommended mutants could be successfully used in breeding programs for producing of higher protein content and quality in winter fodder barley.

  17. High protein mutants of winter fodder barley induced by radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Yankulov, M.; Genchev, K.; Nikolov, Kh.

    1982-01-01

    Several induced mutants of winter fodder barley with higher rpotein content are described. These mutants were produced by treating seeds of cvs. Vogelsaenger Gold, Ager and 468 with gamma-rays, sodium azide and ethyl methanesulfonate (alone and in combinations) and with ethylene and formamide. The gamma-ray induced mutants of winter fodder barley have 1-4% higher protein content. The mutant line 109 has, besides high protein content (17,37%), 5.96 lysine per 100 g protein, but its endosperm is wrinkeled. Mutants produced by chemical mutagens have 6-7% higher protein content than the initial cultivars. All induced mutants have 85-95 cm high stems, i.e. they are by 10-20 cm shorter than the initial cultivars. Some of these mutants are now resistant to the diseases Helminthosporium gramineum and Ustilago nuda. The recommended mutants could be successfully used in breeding programs for producing of higher protein content and quality in winter fodder barley

  18. Anti-Inflammatory Effects of Fargesin on Chemically Induced Inflammatory Bowel Disease in Mice

    Directory of Open Access Journals (Sweden)

    Bei Yue

    2018-06-01

    Full Text Available Fargesin is a bioactive lignan from Flos Magnoliae, an herb widely used in the treatment of allergic rhinitis, sinusitis, and headache in Asia. We sought to investigate whether fargesin ameliorates experimental inflammatory bowel disease (IBD in mice. Oral administration of fargesin significantly attenuated the symptoms of dextran sulfate sodium (DSS-induced colitis in mice by decreasing the inflammatory infiltration and myeloperoxidase (MPO activity, reducing tumor necrosis factor (TNF-α secretion, and inhibiting nitric oxide (NO production in colitis mice. The degradation of inhibitory κBα (IκBα, phosphorylation of p65, and mRNA expression of nuclear factor κB (NF-κB target genes were inhibited by fargesin treatment in the colon of the colitis mice. In vitro, fargesin blocked the nuclear translocation of p-p65, downregulated the protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, and dose-dependently inhibited the activity of NF-κB-luciferase in lipopolysaccharide (LPS-stimulated RAW264.7 macrophages. Taken together, for the first time, the current study demonstrated the anti-inflammatory effects of fargesin on chemically induced IBD might be associated with NF-κB signaling suppression. The findings may contribute to the development of therapies for human IBD by using fargesin or its derivatives.

  19. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    Science.gov (United States)

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  20. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    Directory of Open Access Journals (Sweden)

    Shuping Wang

    Full Text Available Chemical hybridization agent (CHA-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD, which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  1. PWR control rods wear by vibrations induced by coolant fluid

    International Nuclear Information System (INIS)

    Reynier, R.

    1997-01-01

    Flow induced vibrations in pressurised water reactors generate the wear of control rods against their guidance systems. Alternate sliding (at 320 deg. C in water) and impact-sliding tests (at room temperature in air) were carried out on 304 L austenitic stainless steel control rods' claddings. Microstructural analysis were made on the wear scars of the tube specimen using Scanning ELectron Microscopy, microhardness measurements and X-ray diffractometry. The alternate sliding leads to an important mass loss, a strong plastic deformation due to the strain hardening of the surface layers and generates strong compressive residual stresses. These results are specific to a severe wear case. Therefore, the impact-sliding mode induces martensitic phase, a cracked oxide layer and a compressive residual stresses weaker than those created in the alternate sliding case. This type of motion leads to a milder wear of the control rods

  2. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  3. Hunger, inhibitory control and distress-induced emotional eating.

    Science.gov (United States)

    van Strien, Tatjana; Ouwens, Machteld A; Engel, Carmen; de Weerth, Carolina

    2014-08-01

    Self-reported emotional eating has been found to significantly moderate distress-induced food intake, with low emotional eaters eating less after a stress task than after a control task and high emotional eaters eating more. The aim of the present study was to explore possible underlying mechanisms by assessing possible associations with (1) ability to experience the typical post-stress reduction of hunger and (2) inhibitory control. We studied these effects in 54 female students who were preselected on the basis of extremely high or low scores on an emotional eating questionnaire. Using a within subject design we measured the difference of actual food or snack intake after a control or a stress task (Trier Social Stress Test). As expected, the moderator effect of emotional eating on distress-induced food intake was found to be only present in females with a failure to report the typical reduction of hunger immediately after a stress task (an a-typical hunger stress response). Contrary to our expectations, this moderator effect of emotional eating was also found to be only present in females with high ability to stop motor impulses (high inhibitory control). These findings suggest that an a-typical hunger stress response but not poor inhibitory control may underlie the moderator effect of emotional eating on distress-induced food intake. However, inhibitory control may play a role whether or not there is a moderator effect of self-reported emotional eating on distress-induced food intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  5. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  6. Plant management in natural areas: balancing chemical, mechanical, and cultural control methods

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  7. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  8. Self-grooming induced by sexual chemical signals in male root voles (Microtus oeconomus Pallas).

    Science.gov (United States)

    Yu, Honghao; Yue, Pengpeng; Sun, Ping; Zhao, Xinquan

    2010-03-01

    Sniffing is one-way animals collect chemical signals, and many males self-groom when they encounter the odor of opposite-sex conspecifics. We tested the hypothesis that sexual chemical signals from females can induce self-grooming behavior in male root voles (Microtus oeconomus Pallas). Specifically, we investigated the sniffing pattern of male root voles in response to odors from the head, trunk, and tail areas of lactating and non-lactating females. The self-grooming behavior of males in response to female individual odorant stimuli was documented, and the relationship between self-grooming and sniffing of odors from the head, trunk, and tails areas were analyzed. Sniffing pattern results showed that males are most interested in odors from the head area, and more interested in odors from the tail as compared to the trunk area. Males displayed different sniffing and self-grooming behaviors when they were exposed to odors from lactating females as compared to non-lactating females. Males also spent more time sniffing and engaged in more sniffing behaviors in response to odors from the lactating females' tail area as compared to the same odors from non-lactating females. Similarly, males spent more time self-grooming and engaged in more self-grooming behaviors in the presence of individual odors from lactating females as compared to individual odors from non-lactating females. Partial correlation analyses revealed that the frequency of self-grooming was significantly correlated with the frequency of tail area sniffs. Results from this experiment suggest that sexual attractiveness of lactating females is stronger than that of non-lactating females. Furthermore, the partial correlation analysis demonstrated that self-grooming in males is induced by odors from the tail area of females. Collectively, these results support the hypothesis that sexual chemical signals from females can induce self-grooming behavior in male root voles. Self-grooming may also reflect the

  9. An approach to quantitate and control the mutagenic hazards of environmental chemical and radioactive pollutants

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1977-01-01

    Human population, both at the occupational and non-occupational levels, is exposed to the environment polluted by man-made chemicals and radiation sources. The parameters required for quantitating mutagenic hazards of any agent are listed and it has been pointed out that though sufficient information of this nature is available in the case of radiations, it is almost impossible to collect similar information for chemical substances due to their number running into astronomical figures. A short-cut approach, therefore, is suggested to quantitate and control the mutagenic hazards of these pollutants. It is to express the mutagenic hazards of a chemical substance in terms of equivalent radiation units. The unit proposed for this purpose is called as Rem-Equivalent Chemical (REC). Total mutagenic burden to the society should take account of exposure from both chemicals and radiations. Advantages and limitation of this approach are discussed. (M.G.B.)

  10. Chemical markers for the quality control of herbal medicines: an overview

    Directory of Open Access Journals (Sweden)

    Lung Cheng Chuen

    2008-06-01

    Full Text Available Abstract Selection of chemical markers is crucial for the quality control of herbal medicines, including authentication of genuine species, harvesting the best quality raw materials, evaluation of post-harvesting handling, assessment of intermediates and finished products, and detection of harmful or toxic ingredients. Ideal chemical markers should be the therapeutic components of herbal medicines. However, for most herbal medicines, the therapeutic components have not been fully elucidated or easily monitored. Bioactive, characteristic, main, synergistic, correlative, toxic and general components may be selected. This article reviews the effective use of chemical markers in the quality control of herbal medicines including the selection criteria considering the roles and physicochemical factors which may affect the effective use of chemical markers.

  11. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  12. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  13. Rain-Induced Wash-Off of Chemical Warfare Agent (VX) from Foliar Surfaces of Living Plants Maintained in a Surety Hood

    Science.gov (United States)

    2016-09-01

    RAIN-INDUCED WASH-OFF OF CHEMICAL WARFARE AGENT (VX) FROM FOLIAR SURFACES OF LIVING PLANTS MAINTAINED IN A...Final 3. DATES COVERED (From - To) May 2014 – Sep 2015 4. TITLE AND SUBTITLE Rain-Induced Wash-Off of Chemical Warfare Agent (VX) from Foliar...galli Foliage Chemical warfare agent (CWA) O-ethyl-S-(2

  14. Chemical signal activation of an organocatalyst enables control over soft material formation.

    Science.gov (United States)

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  15. Materials Safety Data Sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The data sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.

  16. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  17. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  18. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Directory of Open Access Journals (Sweden)

    Rawan Abdulhameed Edan

    Full Text Available Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3, inhibits lipopolysaccharide (LPS-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  19. Avaliação da atividade de indutores de resistência abiótica, fungicida químico e extratos vegetais no controle da podridão-negra em Abacaxi 'Pérola' Activity evaluation of abiotic resistance inducers, chemical fungicide and natural plant extracts on black rot of pineapple, cv. pérola

    Directory of Open Access Journals (Sweden)

    Mônica Danielly de Mello Oliveira

    2009-03-01

    probabilidade. O tratamento que apresentou melhor resultado foi o indutor de resistência Ecolife®, aumentando o período de vida útil dos frutos e diminuindo a severidade dos sintomas da doença.Black rot of pineapple, caused by Chalara paradoxa (De Seyn. Sacc., is a postharvest disease responsible by high losses on fruits destined to the fresh market and to the processing industry. Penetration of fungus inside cells occurs through wounds and stem cutting, causing infection. The objective of this work was to evaluate the effect of abiotic resistance inducers, chemical fungicide and natural plant extracts on black rot of pineapple control. 32 fruits of pineapple cv pérola were used. They were disinfested with sodium hypochlorite (commercial product at 4% for 5 minutes. After drying at room temperature, fruits were treated, by spraying, with: 1 Distilled water (control, 2 Derosal 3 Bion® (Acibenzolar-S-methyl; 4 Ecolife®; 5 Agro-Mos®; 6 Allium sativum extract at 20%; 7 A. cepa at 20% and 8 Azadirachta indica at 20%. Treated fruits were incubated on humid chamber with polyethylene bags during 24 hours before inoculation procedure using a mycelia disk added to a wound at the epidermic area of the fruit. Evaluation of disease progress was done by a disease index: 1- no symptoms, 2- black rot on epidermis reaching 1-5 simple fruits, 3- black rot on epidermis reaching 6-10 simple fruits, 4- internal brown yellow rot, 5- black rot and disintegration of internal area in more than 50%. The experimental design was a completely randomized with eight treatments and five replicates, using general linear models with multinomial distribution and the averages were compared by Scott-Knott test at 5%. The best results were found in the Ecolife treatment with longer fruit life span and less severity in the symptoms of the disease.

  20. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  1. Chemically induced dynamic electron polarization. Pulse radiolysis of aqueous solutions of alcohols

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Thurnauer, M.C.

    1975-01-01

    The radical pair model of chemically induced dynamic electron polarization (CIDEP) is experimentally verified. Aqueous solutions of alcohols were irradiated with 3 MeV electrons and observed with time resolved electron paramagnetic resonance (EPR) spectroscopy. Relative line intensities of the polarized EPR spectra of radicals from methanol and especially ethylene glycol, alone and in the presence of radicals from compounds containing halogens, illustrates the polarization dependence on the g-factor differences between the radical pair components. The observation of the relative polarization enhancement in the various lines of the multiline EPR spectra illustrates the polarization dependence on the hyperfine terms. Intrinsic enhancements are calculated and are shown to be proportional to the observed enhancement, showing that the radical pair model of CIDEP is qualitatively correct

  2. Chemical composition of waterfall-induced air ions: Spectrometry vs. simulations

    Energy Technology Data Exchange (ETDEWEB)

    Parts, T.-E.; Luts, A. [Tartu Univ. (Estonia). Dept. of Environmental Physics; Laakso, L.; Hirsikko, A.; Groenholm, T.; Kulmala, M. [Helsinki Univ. (Finland). Dept. of Physical Sciences

    2007-07-01

    Our measurements of ion size distributions near a waterfall provided new evidence for a waterfall-induced modification of air ion sizes. The ion size spectrum near a waterfall permanently differs from that in ordinary tropospheric air. In this paper we investigated the near-waterfall air ions chemical nature in detail. We carried out a simulation series of air small negative ion evolution, proposing that falling water, as a new environmental component, increases the concentration of OH{sup -} cluster ions. The produced OH{sup -} ions were employed as an extra input for our ion evolution model. The presence of additional OH{sup -} ions resulted in a decrease of typically model-provided NO{sub 3}{sup -} and/or HSO{sub 4}{sup -} cluster ion concentrations and an increase of the abundance of HCO{sub 3}{sup -} cluster ions. Near the waterfall the latter ions became dominant in our simulations. (orig.)

  3. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  4. Radiation-Induced Chemical Dynamics in Ar Clusters Exposed to Strong X-Ray Pulses

    Science.gov (United States)

    Kumagai, Yoshiaki; Jurek, Zoltan; Xu, Weiqing; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Nagaya, Kiyonobu; Wada, Shin-ichi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Sakai, Tsukasa; Matsunami, Kenji; Nishiyama, Toshiyuki; Umemoto, Takayuki; Nicolas, Christophe; Miron, Catalin; Togashi, Tadashi; Ogawa, Kanade; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Son, Sang-Kil; Ziaja, Beata; Santra, Robin; Ueda, Kiyoshi

    2018-06-01

    We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.

  5. Induced Phytoextraction of Lead Through Chemical Manipulation of Switchgrass and Corn; Role of Iron Supplement.

    Science.gov (United States)

    Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur

    2015-01-01

    The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.

  6. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  7. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    Science.gov (United States)

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA.

  8. Aggregation-induced chemical reactions: acid dissociation in growing water clusters.

    Science.gov (United States)

    Forbert, Harald; Masia, Marco; Kaczmarek-Kedziera, Anna; Nair, Nisanth N; Marx, Dominik

    2011-03-23

    Understanding chemical reactivity at ultracold conditions, thus enabling molecular syntheses via interstellar and atmospheric processes, is a key issue in cryochemistry. In particular, acid dissociation and proton transfer reactions are ubiquitous in aqueous microsolvation environments. Here, the full dissociation of a HCl molecule upon stepwise solvation by a small number of water molecules at low temperatures, as relevant to helium nanodroplet isolation (HENDI) spectroscopy, is analyzed in mechanistic detail. It is found that upon successive aggregation of HCl with H(2)O molecules, a series of cyclic heteromolecular structures, up to and including HCl(H(2)O)(3), are initially obtained before a precursor state for dissociation, HCl(H(2)O)(3)···H(2)O, is observed upon addition of a fourth water molecule. The latter partially aggregated structure can be viewed as an "activated species", which readily leads to dissociation of HCl and to the formation of a solvent-shared ion pair, H(3)O(+)(H(2)O)(3)Cl(-). Overall, the process is mostly downhill in potential energy, and, in addition, small remaining barriers are overcome by using kinetic energy released as a result of forming hydrogen bonds due to aggregation. The associated barrier is not ruled by thermal equilibrium but is generated by athermal non-equilibrium dynamics. These "aggregation-induced chemical reactions" are expected to be of broad relevance to chemistry at ultralow temperature much beyond HENDI spectroscopy.

  9. Controlling noise-induced behavior of excitable networks

    International Nuclear Information System (INIS)

    Patidar, S; Pototsky, A; Janson, N B

    2009-01-01

    The paper demonstrates the possibility to control the collective behavior of a large network of excitable stochastic units, in which oscillations are induced merely by external random input. Each network element is represented by the FitzHugh-Nagumo system under the influence of noise, and the elements are coupled through the mean field. As known previously, the collective behavior of units in such a network can range from synchronous to non-synchronous spiking with a variety of states in between. We apply the Pyragas delayed feedback to the mean field of the network and demonstrate that this technique is capable of suppressing or weakening the collective synchrony, or of inducing the synchrony where it was absent. On the plane of control parameters we indicate the areas where suppression of synchrony is achieved. To explain the numerical observations on a qualitative level, we use the semi-analytic approach based on the cumulant expansion of the distribution density within Gaussian approximation. We perform bifurcation analysis of the obtained cumulant equations with delay and demonstrate that the regions of stability of its steady state have qualitatively the same structure as the regions of synchrony suppression of the original stochastic equations. We also demonstrate the delay-induced multistability in the stochastic network. These results are relevant to the control of unwanted behavior in neural networks.

  10. [Systematically induced effects of Tetranychus cinnabarinus infestation on chemical defense in Zea mays inbred lines].

    Science.gov (United States)

    Zhu, Yu-xi; Yang, Qun-fang; Huang, Yu-bi; Li, Qing

    2015-09-01

    In the present study, we investigated the systematically induced production of defense-related compounds, including DIMBOA, total phenol, trypsin inhibitors (TI) and chymotrypsin inhibitor (CI), by Tetranychus cinnabarinus infestation in Zea mays. The first leaves of two corn in-bred line seedlings, the mite-tolerant line ' H1014168' and the mite-sensitive line 'H1014591', were sucked by T. cinnabarinus adult female for seven days, and then the contents of DIMBOA, total phenol, TI and CI were measured in the second leaf and in the roots, respectively. Results showed that as compared to the unsucked control, all contents of DIMBOA, total phenol, TI and CI induced by T. cinnabarinus sucking were significantly higher in the second leaf of both inbred lines as well as in the roots of the mite-tolerant 'H1014168'. However, in the roots of 'H1014591', these defense compounds had different trends, where there was a higher induction of TI and a lower level of total phenol than that of the healthy control, while had almost no difference in DIMBOA and CI. These findings suggested that the infestation of T. cinnabarinus could systematically induce accumulation of defense-related compounds, and this effect was stronger in the mite-tolerant inbred line than in the mite-sensitive inbred line.

  11. Potential for supernova-induced chemical enrichment of protoglobular cluster clouds

    International Nuclear Information System (INIS)

    Dopita, M.A.; Smith, G.H.; Dominion Astrophysical Observatory, Victoria, Canada)

    1986-01-01

    This paper seeks to explain the large internal abundance variations that are seen in the globular cluster Omega Cen in terms of supernova-induced chemical enrichment that occurred when the cluster was still largely in a gaseous phase and star formation was continuing. Using a simple power-law density model of this protoglobular gas cloud, the conditions under which this can occur have been established analytically. Clouds less massive than about 100,000 solar masses are completely disrupted by supernova explosions in their adiabatic phase. In clouds of greater mass, supernova explosions occurring near the tidal radius tend to lose their hot gas and metals to the intercloud medium. For explosions occurring closer to the mass center the ejecta must be slowed below the escape velocity, and this can only occur in clouds more massive than about 3 x 10 to the 6th solar masses. If this condition is met, then the slow isothermal momentum-conserving shocks generated by the supernova explosions may eventually induce secondary star formation. For such shocks converging on the mass center, it is found that a cloud mass of at least 10 to the 7th solar masses is required for this process to be efficient. From the observed properties of Omega Cen, a primordial mass of order 10 to the 8th solar masses is estimated, which emphasizes the unusual character of this object. 39 references

  12. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  13. The testing of materials within the purview of the laws concerning the control of chemical substances

    International Nuclear Information System (INIS)

    Bosselmann, K.; Linden, W.

    1989-01-01

    The main approach adopted for this book is the question of whether and to what extent the commercially available chemical products (ranging from foodstuffs and drugs to pesticides and similar pollutants) have been assessed for environmental and health safety prior to release. The relevant existing laws concerning the testing and characterisation of substances are analysed and compared with a view to the major environmental principle, to prevent chemicals-induced hazards to health and the environment. The book reviews the following laws (and their implementing provisions): law on chemical substances, pesticides, fertilisers, drugs, detergents, leaded petrol, food and feedstuffs, explosives, and transport of hazardous materials. Environmentally significant laws reviewed include the waste management act, the atomic energy act (non-recycable wastes, plutonium, tritium), the water management act, and the act for protection against harmful effects on the environment. (orig./HP) [de

  14. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Directory of Open Access Journals (Sweden)

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  15. Automatic control of the effluent turbidity from a chemically enhanced primary treatment with microsieving.

    Science.gov (United States)

    Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J

    2017-10-01

    For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.

  16. Report: EPA Should Assess Needs and Implement Management Controls to Ensure Effective Incorporation of Chemical Safety Research Products

    Science.gov (United States)

    Report #17-P-0294, June 23, 2017. With management controls that ensure the collaborative development of research products and prioritize chemical safety research needs, the EPA would be better able to conduct faster chemical risk assessments.

  17. H-2 restriction of the T cell response to chemically induced tumors: evidence from F1 → parent chimeras

    International Nuclear Information System (INIS)

    Lannin, D.R.; Yu, S.; McKhann, C.F.

    1982-01-01

    It has been well established that T cells that react to tumor antigen on virus-induced tumors must share H-2D or H-2K specificities with the tumor. It has been impossible to perform similar studies with chemically induced tumors because each chemically induced tumor expresses a unique tumor antigen that cannot be studied in association with other H-2 types. This study provies evidence that H-2 recognition is also necessary for recognition of chemically induced tumors. We have found that F 1 → parent chimeras preferentially recognize chemically induced tumors of parental H-2 type. C3H/HeJ and C57BL/6 mice were lethally irradiated and restored with (C3H x C57BL/6) F 1 hybrid bone marrow. The F 1 → C3H chimera but not the F 1 → C57BL/6 chimera was able to respond to a C3H fibrosarcoma in mixed lymphocyte-tumor cell culture and also to neutralize the tumor in an in vivo tumor neutralization assay. On the other hand, the F 1 → C57BL/6 chimera but not the F 1 → C3H chimera was able to kill the C57BL/6 lymphoma EL4 in an in vitro cytotoxicity assay. Both chimeras were tolerant to C3H and C57BL/6 alloantigens but could respond normally to Con A and to BALB/c spleen cells in mixed lymphocyte cultures and cytotoxicity assay

  18. Traceability and Quality Control in Traditional Chinese Medicine: From Chemical Fingerprint to Two-Dimensional Barcode

    Directory of Open Access Journals (Sweden)

    Yong Cai

    2015-01-01

    Full Text Available Chemical fingerprinting is currently a widely used tool that enables rapid and accurate quality evaluation of Traditional Chinese Medicine (TCM. However, chemical fingerprints are not amenable to information storage, recognition, and retrieval, which limit their use in Chinese medicine traceability. In this study, samples of three kinds of Chinese medicines were randomly selected and chemical fingerprints were then constructed by using high performance liquid chromatography. Based on chemical data, the process of converting the TCM chemical fingerprint into two-dimensional code is presented; preprocess and filtering algorithm are also proposed aiming at standardizing the large amount of original raw data. In order to know which type of two-dimensional code (2D is suitable for storing data of chemical fingerprints, current popular types of 2D codes are analyzed and compared. Results show that QR Code is suitable for recording the TCM chemical fingerprint. The fingerprint information of TCM can be converted into data format that can be stored as 2D code for traceability and quality control.

  19. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control.

    Science.gov (United States)

    Gabriel, David; Deshusses, Marc A

    2003-05-27

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8-20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control.

  20. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro

    International Nuclear Information System (INIS)

    Wang Baohong; He Jiliang; Jin Lifen; Lu Deqiang; Zheng Wei; Lou Jianlin; Deng Hongping

    2005-01-01

    The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3 h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P > 0.05). There were significant difference of DNA damage indexes between MMC group and RFR + MMC co-exposure group at 0 and 21 h incubation after treatment (P 0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2 h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious

  1. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    International Nuclear Information System (INIS)

    Moiseenko, V.; Waker, A.J.; Prestwich, W.V.

    1998-02-01

    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10 -12 - 10 -9 s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl radicals react

  2. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada); Waker, A J [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Prestwich, W V [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada)

    1998-02-01

    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10{sup -12}- 10{sup -9} s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl

  3. Economic Benefit from Progressive Integration of Scheduling and Control for Continuous Chemical Processes

    Directory of Open Access Journals (Sweden)

    Logan D. R. Beal

    2017-12-01

    Full Text Available Performance of integrated production scheduling and advanced process control with disturbances is summarized and reviewed with four progressive stages of scheduling and control integration and responsiveness to disturbances: open-loop segregated scheduling and control, closed-loop segregated scheduling and control, open-loop scheduling with consideration of process dynamics, and closed-loop integrated scheduling and control responsive to process disturbances and market fluctuations. Progressive economic benefit from dynamic rescheduling and integrating scheduling and control is shown on a continuously stirred tank reactor (CSTR benchmark application in closed-loop simulations over 24 h. A fixed horizon integrated scheduling and control formulation for multi-product, continuous chemical processes is utilized, in which nonlinear model predictive control (NMPC and continuous-time scheduling are combined.

  4. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  5. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang; Li, Shunbo; Wang, Limu; Yi, Xin; Hui, Yu Sanna; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  6. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  7. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  8. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  9. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  10. 76 FR 38169 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2011-06-29

    ... (7405M), Office of Pollution Prevention and Toxics, Environmental Protection Agency, 1200 Pennsylvania... gold leaf, dyeing mixtures, antifreeze mixtures, extraction of resins and waxes, preservative for...: June 21, 2011. Maria J. Doa, Director, Chemical Control Division, Office of Pollution Prevention and...

  11. A cellular automata approach to chemical reactions : 1 reaction controlled systems

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    A direct link between the chemical reaction controlled (shrinking core) model and cellular automata, to study the dissolution of particles, is derived in this paper. Previous research on first and second order reactions is based on the concentration of the reactant. The present paper describes the

  12. Natural control in cabbage root fly populations and influence of chemicals

    NARCIS (Netherlands)

    Abu Yaman, I.K.

    1960-01-01

    To facilitate studies on the natural and chemical control of Hylemya (Erioischia) brassicae (Bch.) in Holland, the bionomics and abundance of the Anthomyiid were investigated in 1959-9 in fields in which cauliflower was grown. The numbers of eggs and larvae were estimated by scrutiny of

  13. Non- chemical methods of seed treatment for control of seed- borne pathogens on vegetables

    NARCIS (Netherlands)

    Amein, T.; Wright, S.A.I.; Wickstrom, M.; Schmitt, A.; Koch, E.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Jahn, M.

    2006-01-01

    The aim of EU-project "Seed Treatments for Organic Vegetable Production" (STOVE) was to evaluate non-chemical methods for control of seed-borne pathogens in organic vegetable production. Physical (hot air, hot water and electron) and biologi-cal (microorganisms and different agents of natural

  14. Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions

    Science.gov (United States)

    Prezhdo, Oleg V.; Craig, Colleen F.; Fialkov, Yuriy; Prezhdo, Victor V.

    2007-01-01

    The study demonstrates that the solvent present in a system can highly alter and control the chemical equilibrium of a system. The results show that the dipole moment and polarizibility of a system can be highly altered by using different mixed solvents.

  15. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  16. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals

    NARCIS (Netherlands)

    Beek, van T.A.; Montoro, P.

    2009-01-01

    The chemical analysis and quality control of Ginkgo leaves, extracts, phytopharmaceuticals and some herbal supplements is comprehensively reviewed. The review is an update of a similar, earlier review in this journal [T.A. van Beek, J. Chromatogr. A 967 (2002) 21¿55]. Since 2001 over 3000 papers on

  17. Experimental Investigation of Electro-chemical Processes Controlled by High Magnetic Fields.

    Czech Academy of Sciences Publication Activity Database

    Mathon, Ph.; Nouri, A.; Alemany, A.; Chopart, J.P.; Sobolík, Václav

    2006-01-01

    Roč. 42, 4 (2006) , s. 363-369 ISSN 0024-998X Institutional research plan: CEZ:AV0Z40720504 Keywords : lorentz and magnetic force * diffusion-controlled regime * electrical current Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  18. 78 FR 40175 - Exempt Chemical Preparations Under the Controlled Substances Act

    Science.gov (United States)

    2013-07-03

    ...Standard, Inc M-8270-04-ASL, Method 8270B-- Amber ampule: 1 mL...... 1/28/2013 Base/Neutrals Mix. Accu... CSA and its implementing regulations are designed to prevent, detect, and eliminate the diversion of... controlled substances and listed chemicals for legitimate medical, scientific, research, and industrial...

  19. Chaos-induced resonant effects and its control

    International Nuclear Information System (INIS)

    Zambrano, Samuel; Casado, Jose M.; Sanjuan, Miguel A.F.

    2007-01-01

    This Letter shows that a suitable chaotic signal can induce resonant effects analogous to those observed in presence of noise in a bistable system under periodic forcing. By constructing groups of chaotic and random perturbations with similar one-time statistics we show that in some cases chaos and noise induce indistinguishable resonant effects. This reinforces the conjecture by which in some situations where noise is supposed to play a key role maybe chaos is the key ingredient. Here we also show that the presence of a chaotic signal as the perturbation leading to a resonance opens new control perspectives based on our ability to stabilize chaos in different periodic orbits. A discussion of the possible implications of these facts is also presented at the end of the Letter

  20. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    Science.gov (United States)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  1. Phase distribution of ecologically controlled chemical elements in production of extraction phosphoric acid

    International Nuclear Information System (INIS)

    Kazak, V.G.; Agnelov, A.I.; Zajtsev, P.M.

    1995-01-01

    Content of 16 ecologically controlled chemical element (among them Cd, Sr, Th, U, V, Y) in solid and liquid phases of extraction phosphorus acid (EPA) production is determined. These elements are recommended to control by Scientific research institute of human ecology and environment to establish their extraction coefficients to phosphogypsum and EPA and optimal variant of production of ecologically sate phosphorus fertilizers. X-ray fluorescent, atomic-absorption and polarographic methods are used for analysis these elements

  2. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  3. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    International Nuclear Information System (INIS)

    Matsui, T.; Izumi, Y.; Kamohara, M.; Nakagawa, K.; Yokoya, A.

    2006-01-01

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe 2 * excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N 0 , where N is the number of produced or decomposed molecule, and N 0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10 -4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  4. Chemical control of ticks on cattle and the resistance of these parasites to acaricides.

    Science.gov (United States)

    George, J E; Pound, J M; Davey, R B

    2004-01-01

    Toward the end of the nineteenth century a complex of problems related to ticks and tick-borne diseases of cattle created a demand for methods to control ticks and reduce losses of cattle. The discovery and use of arsenical solutions in dipping vats for treating cattle to protect them against ticks revolutionized tick and tick-borne disease control programmes. Arsenic dips for cattle were used for about 40 years before the evolution of resistance of ticks to the chemical, and the development and marketing of synthetic organic acaricides after World War II provided superior alternative products. Most of the major groups of organic pesticides are represented on the list of chemicals used to control ticks on cattle. Unfortunately, the successive evolution of resistance of ticks to acaricides in each chemical group with the concomitant reduction in the usefulness of a group of acaricides is a major reason for the diversity of acaricides. Whether a producer chooses a traditional method for treating cattle with an acaricide or uses a new method, he must recognize the benefits, limitations and potential problems with each application method and product. Simulation models and research were the basis of recommendations for tick control strategies advocating approaches that reduced reliance on acaricides. These recommendations for controlling ticks on cattle are in harmony with recommendations for reducing the rate of selection for acaricide resistance. There is a need to transfer knowledge about tick control and resistance mitigation strategies to cattle producers.

  5. Evaluation of Some Chemical Characteristics of barley Mutants induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.

    2011-01-01

    This study aims to evaluate the antioxidant activity of acetonic extract from some barley mutations (P1, P2 and P3 varieties) induced by gamma irradiation as compared with local barley variety (Hordeum vulgare L.) as control. Barley samples were obtained from Plant Breeding Unit, Plant Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. The measurements of the antioxidant activity using a radical scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ?-carotene bleaching assay were assessed in the barley acetonic extract. Furthermore, amino acids composition of barley mutant samples was determined. The results indicated that the acetonic extract of barley varieties under investigation possess marked antioxidant and anti radical capacities. The data showed that the acetonic extract of barley mutant P1 possessed the higher antioxidant activity as compared with the antioxidant activities of acetonic extract from control and other barley mutant samples. Meanwhile, the flour of barley mutations under investigation contained trace elements of iron, copper and manganese. GC and mass analyses were used to identify the active compound of extract of control and mutant barley samples. The results illustrated that the main components of the control sample of barely extract was pentane, 3 methyl (47.73%) while gamma irradiation caused noticeable change in the relative percentage of some components of acetonic extract from barley mutant samples. Moreover, the results presented that changes were disappeared, and some compounds of the acetonic extract from mutant barley samples were appeared. Furthermore, the results exhibited that barley flour supplemented with wheat flour at 30% level produced acceptable cookies. Accordingly, the phenolic constituents of barley acetonic extract induced by gamma irradiation, especially samples of P1 mutant, may have a future role as ingredients in the development of functional foods.

  6. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton

    2011-05-01

    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  7. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    International Nuclear Information System (INIS)

    Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S.

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  8. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  9. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Shafaq, E-mail: sarif2005@gmail.com [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Saleemi, Farhat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Rafique, M. Shahid [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan); Naab, Fabian; Toader, Ovidiu [Department of Nuclear Engineering and Radiological Sciences, Michigan Ion Beam Laboratory, University of Michigan, MI 48109-2104 (United States); Mahmood, Arshad; Aziz, Uzma [National Institute of Lasers & Optronics (NILOP), P.O. Nilore, Islamabad (Pakistan)

    2016-11-15

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag{sup +}) ion beam to various ion fluences ranging from 5 × 10{sup 13} to 5 × 10{sup 15} ions/cm{sup 2}. The effect of Ag{sup +} ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of −C=C− carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 10{sup 15} ions/cm{sup 2}). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag{sup +} implanted PMMA has increased from 2.14 × 10{sup −10} (pristine) to 9.6 × 10{sup −6} S/cm.

  10. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    Druwe, Ingrid; Freudenrich, Theresa M.; Wallace, Kathleen; Shafer, Timothy J.; Mundy, William R.

    2015-01-01

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  11. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-03-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 /alpha/-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author).

  12. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  13. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    Science.gov (United States)

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  14. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  15. Chemical weathering as a mechanism for the climatic control of bedrock river incision

    Science.gov (United States)

    Murphy, Brendan P.; Johnson, Joel P. L.; Gasparini, Nicole M.; Sklar, Leonard S.

    2016-04-01

    Feedbacks between climate, erosion and tectonics influence the rates of chemical weathering reactions, which can consume atmospheric CO2 and modulate global climate. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical weathering controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai‘i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical weathering, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision, the mechanism of chemical weathering can explain strong coupling between local climate and river incision.

  16. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  17. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    Science.gov (United States)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  18. Serum-induced G0/G1 transition in chemically transformed 3T3 cells

    International Nuclear Information System (INIS)

    Gray, H.E.; Buchou, T.; Mester, J.

    1987-01-01

    Quiescent, chemically transformed (benzo-a-pyrene) BALB/c 3T3 cells (BP A31) enter the cell division cycle when exposed to complete medium containing 10% fetal calf serum (FCS); the number of cells recruited is a function of the duration of serum exposure. The recruitment of cells by short (<4 h) serum pulses is not inhibited by simultaneous exposure to cycloheximide (CH), and therefore the initial commitment does not require protein synthesis. The cells enter S phase with a constant delay following the removal of CH, even if CH exposure has been continued for as long as 20 h after the end of the serum pulse. The cell recruitment by serum pulses was inhibited by 5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB), an inhibitor of cytoplasmic mRNA accumulation. These data suggest that serum exposure produces a stable memory that is necessary and sufficient for the eventual progression through G1 to S phase that occurs when protein synthesis is resumed after the removal of CH; this memory probably consists of mRNA species that are induced by serum and that are stable in the absence of protein synthesis. Unexpectedly, pretreatment of quiescent BP A31 cells with CH (8-24 h) dramatically increased the fraction of the total cell population that is recruited by a serum pulse of fixed duration

  19. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, U.; Rosengren, U.; Thelin, G.; Nihlgaard, B

    2003-05-01

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl{sub 2}) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed.

  20. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat.

    Science.gov (United States)

    Fujita, M; Hong, K; Ito, Y; Fujii, R; Kariya, K; Nishimuro, S

    1995-10-01

    Nattokinase is a new fibrinolytic enzyme which cleaves directly cross-linked fibrin in vitro. In this study, we investigated the thrombolytic effect of nattokinase on a thrombus in the common carotid artery of rat in which the endothelial cells of the vessel wall were injured by acetic acid. When a section of occluded vessel was stained for CD61 antigen by immunofluorescence utilizing a monoclonal antibody, the antigen was localized around the surface of the occluded blood vessels. This result suggests that the occlusive thrombosis was caused by platelet aggregation. In addition, thrombolysis with urokinase (UK; 50000 IU/kg, i.v.) or tissue plasminogen activator (tPA; 13300 IU/kg, i.v.) in our model was observed to restore the blood flow over a 60 min monitoring period. The results indicate that our chemically induced model is useful for screening and evaluating a thrombolytic agent. We evaluated the thrombolytic activity of nattokinase using this model and compared it with fibrino(geno)lytic enzyme, plasmin or elastase. On a molar basis, the recovery of the arterial blood flow with nattokinase, plasmin and elastase were 62.0 +/- 5.3%, 15.8 +/- 0.7% and 0%, respectively. The results indicate that the thrombolytic activity of nattokinase is stronger than that of plasmin or elastase in vivo.

  1. A multi target approach to control chemical reactions in their inhomogeneous solvent environment

    International Nuclear Information System (INIS)

    Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P P; Vivie-Riedle, Regina de

    2015-01-01

    Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble. (paper)

  2. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing.

    Science.gov (United States)

    Li, Jinyun; Trivedi, Pankaj; Wang, Nian

    2016-01-01

    Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.

  3. Mitochondrial control of cell death induced by hyperosmotic stress.

    Science.gov (United States)

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  4. A new route to nanoscale tomographic chemical analysis: Focused ion beam-induced auger electron spectrosocpy

    Science.gov (United States)

    Parvaneh, Hamed

    This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass

  5. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  6. Bifurcation and stability analysis of rotating chemical spirals in circular domains: Boundary-induced meandering and stabilization

    Science.gov (United States)

    Bär, Markus; Bangia, Anil K.; Kevrekidis, Ioannis G.

    2003-05-01

    Recent experimental and model studies have revealed that the domain size may strongly influence the dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hartmann et al. [Phys. Rev. Lett. 76, 1384 (1996)], report a frequency increase of spirals in circular domains with diameters substantially smaller than the spiral wavelength in a large domain for the catalytic NO+CO reaction on a microstructured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigenvectors very close to those corresponding to infinite medium translational invariance are observed. Upon decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these eigenvalues from being neutrally stable (zero real part). The latter phenomenon indicates that the translation symmetry of the spiral solution is appreciably broken due to the interaction with the (now nearby) wall. Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves towards the center of the circular domain corresponding to a negative real part of the “translational” eigenvalues. This effect is noticeable at a domain radius of Rinduced spiral meandering. A systematic study of the spiral rotation as a function of a control parameter and the domain size reveals that the meandering instability in large domains becomes suppressed, and the spiral rotation becomes rigid, at a critical radius Rcr,0. Boundary-induced

  7. Psilocybin-induced stimulus control in the rat.

    Science.gov (United States)

    Winter, J C; Rice, K C; Amorosi, D J; Rabin, R A

    2007-10-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT(2A) receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT(1A/7) receptor antagonist, WAY-100635, or the DA D(2) antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT(2A) receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT(1A) receptors appears to play no role in psilocybin-induced stimulus control.

  8. Examination of Icing Induced Loss of Control and Its Mitigations

    Science.gov (United States)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  9. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  10. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  11. Margins of safety provided by COSHH Essentials and the ILO Chemical Control Toolkit.

    Science.gov (United States)

    Jones, Rachael M; Nicas, Mark

    2006-03-01

    COSHH Essentials, developed by the UK Health and Safety Executive, and the Chemical Control Toolkit (Toolkit) proposed by the International Labor Organization, are 'control banding' approaches to workplace risk management intended for use by proprietors of small and medium-sized businesses. Both systems group chemical substances into hazard bands based on toxicological endpoint and potency. COSSH Essentials uses the European Union's Risk-phrases (R-phrases), whereas the Toolkit uses R-phrases and the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals. Each hazard band is associated with a range of airborne concentrations, termed exposure bands, which are to be attained by the implementation of recommended control technologies. Here we analyze the margin of safety afforded by the systems and, for each hazard band, define the minimal margin as the ratio of the minimum airborne concentration that produced the toxicological endpoint of interest in experimental animals to the maximum concentration in workplace air permitted by the exposure band. We found that the minimal margins were always occupational exposure limits, we argue that the minimal margins are better indicators of health protection. Further, given the small margins observed, we feel it is important that revisions of these systems provide the exposure bands to users, so as to permit evaluation of control technology capture efficiency.

  12. Testing the control of mineral supply rates on chemical erosion in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2017-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including the role of tectonics in the global carbon cycle, nutrient supply to soils and streams via soil production, and lithologic controls on landscape evolution. We aim to test the relationship between mineral supply rates and chemical erosion in the forested uplands of the Klamath mountains, along a latitudinal transect of granodioritic plutons that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. We present 10Be-derived erosion rates and Zr-derived chemical depletion factors, as well as bulk soil and rock geochemistry on 10 ridgetops along the transect to test hypotheses about supply-limited and kinetically-limited chemical erosion. Previous studies in this area, comparing basin-averaged erosion rates and modeled uplift rates, suggest this region may be adjusted to an approximate steady state. Our preliminary results suggest that chemical erosion at these sites is influenced by both mineral supply rates and dissolution kinetics.

  13. Cytogenetic damages induced in vivo in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The importance of various environmental exposures has been evident in variation in cancer incidence and mortality. Benzene is considered to be a human carcinogen, is clastogenic to rodents and humans, and it affects the immune response. Workers in various industrial plants, are exposed to benzene and benzene related compounds as a result of various activities in which benzene is processed, generated or used. Major sources of environmental exposure to benzene related compounds, continue to be active and passive smoking, auto exhaust, and driving or riding in automobiles. Benzene is of a particular interest, not only because of its known toxicity, but also because this was to be the parent compound and a model for extensive programs of metabolism of a variety of aromatic chemicals. Ionizing radiation is an unavoidable physical agent that is presented in environment, and public opinion is well aware against radiation risk and strongly against it. The aim of the presentation was comparison between cytogenetic damages induced in vivo by environmental chemicals with those of radiation. Results from biomonitoring survey on genotoxicity in human blood cells of benzene and benzene related compounds were compared to damages detected in lymphocytes of persons who had been accidentally exposed to gamma radiation. In the groups, that had been occupationally or environmentally exposed to benzene related compound, total aberration frequencies, or percent of aberrant cells ranged between 0 - 0.16 aberrations/cell or 16% of aberrant cells respectively. A multivariate regression analysis confirmed: (i) a significant association between cytogenetic damage and exposure to benzene related compound, (ii) a possible association between cytogenetic damage and cancer, (iii) a significant influence of smoking habit. In 1996 few persons were suspected of accidental exposure to gamma radiation. To estimate the absorbed doses, lymphocytes from their blood have been analyzed for the presence of

  14. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  15. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution.

    Science.gov (United States)

    Göstl, Robert; Senf, Antti; Hecht, Stefan

    2014-03-21

    The foundation of the chemical enterprise has always been the creation of new molecular entities, such as pharmaceuticals or polymeric materials. Over the past decades, this continuing effort of designing compounds with improved properties has been complemented by a strong effort to render their preparation (more) sustainable by implementing atom as well as energy economic strategies. Therefore, synthetic chemistry is typically concerned with making specific bonds and connections in a highly selective and efficient manner. However, to increase the degree of sophistication and expand the scope of our work, we argue that the modern aspiring chemist should in addition be concerned with attaining (better) control over when and where chemical bonds are being made or broken. For this purpose, photoswitchable molecular systems, which allow for external modulation of chemical reactions by light, are being developed and in this review we are covering the current state of the art of this exciting new field. These "remote-controlled synthetic tools" provide a remarkable opportunity to perform chemical transformations with high spatial and temporal resolution and should therefore allow regulating biological processes as well as material and device performance.

  16. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  17. Controlled air incineration of hazardous chemical and mixed waste at Los Alamos

    International Nuclear Information System (INIS)

    Borduin, L.C.; Hutchins, D.A.; Vavruska, J.J.; Warner, C.L.

    1987-01-01

    The Los Alamos National Laboratory (LANL) Controlled Air Incineration (CAI) system, originally developed for transuranic (TRU) waste volume reduction studies, is currently being qualified for hazardous chemical and mixed waste treatment under provisions of the Resource Conservation and Recovery Act (RCRA). The objective is to obtain a permanent RCRA Part B permit for thermal disposal of hazardous and mixed wastes generated by LANL. Constructed in the mid-1970s as a demonstration project for incineration of TRU solid wastes, the CAI process was substantially modified and tested in 1980-1983 for acceptance of both liquid and solid hazardous chemicals. Successful demonstration of TRU solid waste processing objectives in 1979 and later chemical waste incineration studies have been documented in several publications. In 1984, the LANL CAI became the first US Dept. of Energy (DOE) incinerator to be permitted for polychlorinated biphenyl disposal under the Toxic Substances Control Act. Following establishment of Environmental Protection Agency (EPA) jurisdiction over DOE chemical waste management in 1984, LANL sought and was granted interim status for the CAI and applied for a trial burn permit in the overall laboratory RCRA Part B application. A trial burn and final report have been completed; results have been submitted to EPA and the New Mexico Environmental Improvement Division. This paper provides an overview of trial burn planning and results together with the operational status of LANL's CAI

  18. Chemically induced immunotoxicity in a medium-term multiorgan bioassay for carcinogenesis with Wistar rats

    International Nuclear Information System (INIS)

    Spinardi-Barbisan, Ana Lucia Tozzi; Kaneno, Ramon; Barbisan, Luis Fernando; Viana de Camargo, Joao Lauro; Rodrigues, Maria Aparecida Marchesan

    2004-01-01

    A variety of chemicals can adversely affect the immune system and influence tumor development. The modifying potential of chemical carcinogens on the lymphoid organs and cytokine production of rats submitted to a medium-term initiation-promotion bioassay for carcinogenesis was investigated. Male Wistar rats were sequentially initiated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), N-butyl-N-(4hydroxybutyl)nitrosamine (BBN), dihydroxy-di-n-propylnitrosamine (DHPN), and 1,2-dimethylhydrazine (DMH) during 4 weeks. Two initiated groups received phenobarbital (PB) or 2-acetylaminofluorene (2-AAF) for 25 weeks and two noninitiated groups received only PB or 2-AAF. A nontreated group was used as control. Lymphohematopoietic organs, liver, kidneys, lung, intestines, and Zymbal's gland were removed for histological analysis. Interleukin (IL)-2, IL-12, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-10, and transforming growth factor beta1 (TGF-β1) levels were determined by ELISA in spleen cell culture supernatants. At the fourth week, exposure to the initiating carcinogens resulted in cell depletion of the thymus, spleen and bone marrow, and impairment of IL-2, IL-12, and IFN-γ production. However, at the 30th week, no important alterations were observed both in lymphoid organs and cytokine production in the different groups. The results indicate that the initiating carcinogens used in the present protocol exert toxic effects on the lymphoid organs and affect the production of cytokines at the initiation step of carcinogenesis. This early and reversible depression of the immune surveillance may contribute to the survival of initiated cells facilitating the development of future neoplasia

  19. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  20. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    Science.gov (United States)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  1. Combination of high-performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    International Nuclear Information System (INIS)

    Mueller, U; Philipp, M; Gervais, P-C; Sanctuary, R; Krueger, J K; Possart, W; Wehlack, C; Kieffer, J

    2010-01-01

    A combination of infrared spectroscopy and high-performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight into the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions.

  2. Combination of high-performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Gervais, P-C; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A avenue de la faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W; Wehlack, C [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany); Kieffer, J, E-mail: ulrich.mueller@uni.l [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI (United States)

    2010-08-15

    A combination of infrared spectroscopy and high-performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight into the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions.

  3. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  4. Los Alamos Controlled Air Incinerator for hazardous chemical and mixed radioactive wastes

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Koenig, R.A.; Warner, C.L.

    1986-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is currently the only radioactive waste incineration facility in the US permitted to treat polychlorinated biphenyls (PCBs). The CAI was developed in the mid-1970's as a demonstration system for volume reduction of transuranic (TRU) contaminated combustible solid wastes. It has since undergone additions and modifications to accommodate hazardous chemical wastes in response to a need within the Department of Energy (DOE) to treat mixed radioactive/chemical wastes. An overview of these additions which include a liquid feed system, a high intensity liquid injection burner, and an activated carbon adsorption unit is presented here. Also included is a discussion of the procedures required for Toxic Substances Control Act (TSCA) and Resource Conservation and Recovery Act (RCRA) permitting of the CAI

  5. Chemical Control for Host-Parasitoid Model within the Parasitism Season and Its Complex Dynamics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control, which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated. Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine the key parameters in designing the pest control strategy. The present research can help us to further understand the importance of timings of pesticide application in the pest control and to improve the classical chemical control and to make management decisions.

  6. 76 FR 17778 - Control of Ergocristine, a Chemical Precursor Used in the Illicit Manufacture of Lysergic Acid...

    Science.gov (United States)

    2011-03-31

    ... 1117-AB24 Control of Ergocristine, a Chemical Precursor Used in the Illicit Manufacture of Lysergic... for the List I chemicals ergotamine and ergonovine to illicitly manufacture the schedule I controlled..., due to growing concerns regarding its use for the illicit manufacture of LSD. [[Page 17779...

  7. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease.

    Science.gov (United States)

    Vardi, Ayelet; Zigdon, Hila; Meshcheriakova, Anna; Klein, Andrés D; Yaacobi, Chen; Eilam, Raya; Kenwood, Brandon M; Rahim, Ahad A; Massaro, Giulia; Merrill, Alfred H; Vitner, Einat B; Futerman, Anthony H

    2016-08-01

    Great interest has been shown in understanding the pathology of Gaucher disease (GD) due to the recently discovered genetic relationship with Parkinson's disease. For such studies, suitable animal models of GD are required. Chemical induction of GD by inhibition of acid β-glucosidase (GCase) using the irreversible inhibitor conduritol B-epoxide (CBE) is particularly attractive, although few systematic studies examining the effect of CBE on the development of symptoms associated with neurological forms of GD have been performed. We now demonstrate a correlation between the amount of CBE injected into mice and levels of accumulation of the GD substrates, glucosylceramide and glucosylsphingosine, and show that disease pathology, indicated by altered levels of pathological markers, depends on both the levels of accumulated lipids and the time at which their accumulation begins. Gene array analysis shows a remarkable similarity in the gene expression profiles of CBE-treated mice and a genetic GD mouse model, the Gba(flox/flox) ;nestin-Cre mouse, with 120 of the 144 genes up-regulated in CBE-treated mice also up-regulated in Gba(flox/flox) ;nestin-Cre mice. We also demonstrate that various aspects of neuropathology and some behavioural abnormalities can be arrested upon cessation of CBE treatment during a specific time window. Together, our data demonstrate that injection of mice with CBE provides a rapid and relatively easy way to induce symptoms typical of neuronal forms of GD. This is particularly useful when examining the role of specific biochemical pathways in GD pathology, since CBE can be injected into mice defective in components of putative pathological pathways, alleviating the need for time-consuming crossing of mice. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  9. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text.

    Science.gov (United States)

    Bravo, Àlex; Li, Tong Shu; Su, Andrew I; Good, Benjamin M; Furlong, Laura I

    2016-01-01

    Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects.Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V. © The Author(s) 2016. Published by Oxford University Press.

  10. Radiation induced chemical changes in foodstuffs model reaction systems and strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.

    1999-10-01

    In the first part of this work 4-hydroxybenzoic acid (4-HBA) and 4-hydroxybenzoic acid ethyl ester (4-HBAEE) were investigated in order to elucidate the reaction mechanisms leading to final products after reaction with OH-radicals (N 2 O-saturated and aerated aqueous solutions) at various pH. Irradiation of 5*10 -4 mol l -1 solutions of 4-HBA at pH 6.0 leads to formation of 3,4-dihydroxybenzoic acid and hydroquinone. In case of the ester neither hydroxylation nor decarboxylation products are observable. By means of pulse radiolysis it could be shown that water splitting from the ester OH-adducts is 17 times faster than from that of the acid. Therefore the main transients are phenoxyl radicals in case of the ester. At pH 10, where base catalyzed water elimination takes place, no hydroxylation products are observable either. In aerated solutions dihydroxy-compounds are formed with both substrates. In the case of 4-HBA 68 % of the OH-radicals result in 3,4-dihydroxyderivate, for 4-HBAEE these are only 25 %. Comparison of the initial degradation yields demonstrates 4-HBAEE to be 1.6-times more stable towards radiation. The second part of this work deals with radiation induced chemical changes in strawberries. Dose/concentration relationships could be obtained for 7 components, i.e. gallic acid, 4-hydroxybenzoic acid, cinnamic acid, 4-hydroxycinnamic acid, 3,4-dihydroxy-cinnamic acid, (-)-epicatechin and (+)-catechin. Linear dose relationships have been found for 4-HBA (formation) and (+)-catechin (degradation). In addition a specific radiolytically formed compound which can be used as marker for irradiation treatment of strawberries could be detected. There are strong indications that it is a radiolytic product of kaempferol, however, it could not yet be identified exactly. (author)

  11. 1H chemically induced dynamic nuclear polarization in the photodecomposition of uranyl carboxylates

    International Nuclear Information System (INIS)

    Rykov, S.V.; Khudyakov, I.V.; Skakovsky, E.D.; Burrows, H.D.; Formosinho, S.J.; Miguel, M. da G.M.

    1991-01-01

    Chemically induced dynamic nuclear polarization ( 1 H CIDNP) has been observed during photolysis of uranyl salts of pivalic, propionic, and acetic acids in D 2 O solution, [ 2 H 6 ]acetone, [ 2 H 4 ]methanol, or in some other solvent. The multiplet polarization of isobutene and isobutane protons has been found under photolysis of deoxygenated pivalate solution. The polarized compounds are formed in the triplet pairs of tert-butyl free radicals. 1 H Emission of the tert-butylperoxyl group and emission of 1 H from isobutene have been recorded under photolysis of air-saturated pivalate solutions. The CIDNP of butane protons stays as a multiplet. Such changes in the presence of air/oxygen have arisen apparently because of the formation of tert-butylperoxyl free radical and its reaction with tert-butyl radical products, i.e. hydroperoxide (peroxide) and isobutene. Isobutene probably forms a complex with molecular oxygen which has a very short proton relaxation time. During the photolysis of uranyl pivalate in the presence of p-benzoquinone (5 x 10 -2 -0.1 mol dm -3 ) we have not observed any CIDNP, whereas under p-benzoquinone concentrations of 10 -3 -10 -2 mol dm -3 the CIDNP from both hydroquinone and p-benzoquinone has been followed. Photolysis of uranyl propionate has led to CIDNP from butane protons. An emission from methyl group protons of a compound with an ethylperoxyl fragment in the presence of air/oxygen has been observed. The same polarization picture has arisen under interaction of photoexcited uranyl with propionic acid. During the photolysis of uranyl acetate at relatively low concentrations (10 -2 mol dm -3 ) a CIDNP very similar to that registered for uranyl propionate was recorded. The ethyl fragment is probably obtained in reactions for two methyl radicals formed from acetate with the parent uranyl acetate, namely hydrogen-atom abstraction and addition reactions. (author)

  12. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  13. Control charts technique - a tool to data analysis for chemical experiments

    International Nuclear Information System (INIS)

    Yadav, M.B.; Venugopal, V.

    1999-01-01

    A procedure using control charts technique has been developed to analyse data of a chemical experiment which was conducted to assign a value to uranium content in Rb 2 U(SO 4 ) 3 . A value of (34.164 ± 0.031)% has been assigned against (34.167 ± 0.042)% already assigned by analysis of variance (ANOVA) technique. These values do not differ significantly. Merits and demerits of the two techniques have been discussed. (author)

  14. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  15. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    Science.gov (United States)

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  16. Sister chromatid exchanges in the bone marrow cells of in vivo rats induced by gamma radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Rodriguez R, R.G.

    1981-01-01

    Sister chromatid exchanges (SCE) in the bone marrow of in vivo rats induced by gamma radiation doses and by the chemical mutagens, mitomycin C (MMC), cyclophosphamide (CP), and sulphonate-methylmethane (SMM), were studied. The purpose was to evaluate the sensitivity and reproducibility of a simplified SCE in vivo detecting system developed in our laboratory and to compare the results obtained with those reported elsewhere. Simplification consisted in administering the amounts of 5-bromo-2'-deoxyuridine (BrdU) necessary to observe the SCE, after first adsorbing the BrdU in activated carbon and then injecting it interperitoneally, into the rats. The results were a longer time in vivo ADN incorporation without convulsions in the rats, and a reduction in the time course as compared to other methods. We observed a basal rate of 3.6+-0.37 SCE/cell and that: 0.44 Gy of gamma radiation induced 7.7+-0.73 SCE/cell; 1.6 μg/g of MMC induced 8.1+-1.20 SCE/cell; 5 μg/g of CP induced 8.25+-1.5 SCE/cell, 40 μg/g of SMM induced 22.0+-5 SCE/cell and 380 μg/g of sulphonate-ethylmethane induced 8.6+-1.2 SCE/cell. This showed that all the agents were capable of inducing SCE in the bone marrow cells of rats in vivo under our conditions. We noted a greater induced efficiency for gamma radiation than the obtained by other investigators and a relatively similar efficiency in the case of chemical mutagens as reported in other studies. (author)

  17. Electrically-induced muscle fatigue affects feedforward mechanisms of control.

    Science.gov (United States)

    Monjo, F; Forestier, N

    2015-08-01

    To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, pcontrol trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  19. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  20. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  1. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    International Nuclear Information System (INIS)

    Zhang, Xuming; Cha, Min Suk

    2013-01-01

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297–773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH 4 and CO 2 , while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. (paper)

  2. Chemical control of different Digitaria insularis populations and management of a glyphosate-resistant population

    OpenAIRE

    CORREIA,N.M.; ACRA,L.T.; BALIEIRO,G.

    2015-01-01

    This study aimed to control different populations of Digitaria insularisby glyphosate herbicide, isolated and mixed, besides the combination of methods (chemical and mechanical) to manage resistant adult plants. Three experiments were conducted, one in pots which were maintained under non-controlled conditions and two under field conditions. In the experiment in pots, twelve populations of D. insularis were sprayed with isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16...

  3. X-ray fluorescence control of chemical composition of cast iron

    International Nuclear Information System (INIS)

    Prekina, I.M.; Rozova, O.F.; Loran, A.V.; Teplitskaya, G.A.; Smagunova, A.N.

    1995-01-01

    A method of x-ray fluorescence analysis developed for analytical set (KRF-18 diffractometer/DVK-3 computer) is used to control cast iron composition. A quantitative evaluation of errors attributed to the violation of conditions of cast iron sampling from the flow and to the quality of preparing samples for XFA is obtained. It is shown that the main component of the integral experimental error is attributed to nonuniformity of chemical composition of cast iron. Metrological studies show that reproductibility, convergence, accuracy, and sensitivity of the method match the requirements characteristic of the control process. 4 refs.; 2 tabs

  4. Amplitude and phase control of trichromatic electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Hu Xiangming; Zou Jinhua; Li Xing; Du Dan; Cheng Guangling

    2005-01-01

    We study the dependence of absorption and dispersion spectra on amplitudes and phases of the driving fields in multiple electromagnetically induced transparency. For this purpose we consider trichromatic excitation in a three-level Λ atomic system, in which a trichromatic control laser and a monochromatic probe laser are applied to two different transitions, respectively. We numerically calculate the absorption and dispersion spectra. Two characteristic features are found. Firstly, the central transparency can be made to appear or to disappear by utilizing the amplitudes and phases of the driving components. Secondly, so long as we fix the sum of two relative phases of two sideband excitation components to the central component, the absorption and dispersion spectra keep their own lineshapes unchanged no matter how we vary the respective relative phases

  5. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  6. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    Science.gov (United States)

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-05

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  8. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact

    Science.gov (United States)

    Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe

    2011-01-01

    Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895

  9. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  10. Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Maddaluno, Giorgio

    2012-01-01

    Graphical abstract: Laser-Induced-Breakdown-Spectroscopy was used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines. Highlights: ► Description and characterization of an LIBS set-up for diagnostics in fusion machines. ► Identification of atomic composition of multilayered tiles simulating plasma facing components. ► Qualitative applicability of the Calibration Free method for quantitative analysis. ► Feasibility of large scale application in the processes of control during the tiles fabrication. ► Feasibility of erosion monitoring during operation of fusion machines. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is nowadays a well established tool for qualitative, semi-quantitative and quantitative analyses of surfaces, with micro-destructive characteristics and capabilities for stratigraphy. LIBS is an appealing technique compared with many other types of elemental analysis thanks to the set up versatility facilitating non-invasive and remote analyses, as well as suitability to diagnostics in harsh environments. In this work, LIBS capabilities were used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines such as ITER. A new experimental setup was designed and realized in order to optimize the characteristics of an LIBS system working at low pressure and remotely, as it should be for an in situ system to be applied in monitoring the erosion and redeposition phenomena occurring on the inner walls of a fusion device. The effects of time delay and laser fluence on LIBS sensitivity at reduced pressure were examined, looking for operational conditions suitable to analytical applications. The quantitative analysis of some atomic species in the superficial layer has been carried out using a Calibration Free (CF) approach in the time

  11. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    Science.gov (United States)

    Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561

  12. Uso de diferentes herbicidas no controle de Myriophyllum aquaticum Chemical Control of Myriophyllum aquaticum

    Directory of Open Access Journals (Sweden)

    E. Negrisoli

    2003-01-01

    Full Text Available Este estudo teve a finalidade de avaliar, em condições de caixa d'água, o controle químico de Myriophyllum aquaticum (pinheiro-d'água, através de herbicidas aplicados em pós-emergência. Os herbicidas e respectivas doses (g ha-1 foram: diquat (Reward a 204 g i.a. ha-1; diquat a 102 e 204 g i.a. ha-1 + Agral a 0,1%; 2,4-D (DMA 806 BR a 167, 335, 670 e 1.340 g e.a. ha-1; glyphosate (Rodeo a 3.360 g e.a. ha-1 + Aterbane a 0,5%; e imazapyr (Arsenal a 250 g e.a. ha-1. As parcelas foram constituídas por caixas d'água de 0,60 x 0,60 x 0,45 m, com 120 litros de água + 20 litros de solo e 20 ramos por caixa. Utilizou-se um pulverizador costal a pressão constante de CO2 a 2 bar, pontas 110.02 VS, com um consumo de calda de 180 l ha-1. O controle foi avaliado visualmente aos 2, 6, 9,11, 13, 17, 20, 23, 26, 30 e 36 dias após a aplicação dos herbicidas (DAAH. Inicialmente, o herbicida diquat foi o composto que apresentou os sintomas mais severos de intoxicação nos ramos de pinheiro-d'água aos 2 DAAH, com 65% de controle em média, e aos 20 DAAH ele atingiu o controle máximo (99%, porém ocorreram rebrotas a partir dos 23 DAAH, independentemente da adição ou não de Agral e das doses testadas. O herbicida 2,4-D proporcionou 100% de controle dos ramos a partir dos 23 DAAH para as doses de 1.340 e 670 g ha-1, não ocorrendo rebrotas; já para as demais doses testadas (335 e 167 g ha-1 o controle não foi eficiente, pois ocorreram rebrotas. Os herbicidas glyphosate e imazapyr não foram eficientes no controle desta espécie.This work was carried out at the Advanced Weed Research Nucleus - UNESP, Botucatu-SP, to evaluate the control of Myriophyllum aquaticum by applying different herbicides in post emergence. The herbicides and doses (g ha-1 tested were: diquat (Reward at 204 g a.i. ha-1, diquat at 102 and 204 g a.i. ha-1 + agral at 0.1% v/v; 2,4-D (DMA 806 BR at 1,340, 670, 335 and 167 g a.e. ha-1; glyphosate (Rodeo at 3.360 g a.e. ha-1

  13. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustar

    Directory of Open Access Journals (Sweden)

    Tanushree Mondal

    2017-04-01

    Full Text Available To study the impact of reduced dose of chemical fertilizer and its combination with biofertilizer and vermicompost on morpho-physiological and biochemical traits of mustard (Brassica campestris cv. B9, field experiments were conducted during winter seasons of November to February 2011–2012 and 2012–2013 respectively in an old alluvial soil zone of Crop Research and Seed Multiplication Farm, Burdwan University, Burdwan, West Bengal, India. Mustard was cultivated using a full recommended dose of chemical fertilizer (N:P:K–100:50:50 and along with six different reduced doses of chemical fertilizer combined with biofertilizers and vermicompost. The performance of the crop was adjudged in terms of various parameters viz. leaf area index (LAI, leaf area duration (LAD, leaf area ratio (LAR, crop growth rate (CGR, net assimilation rate (NAR, photosynthetic rate (PR, harvest index (HI and biochemical attributes such as total chlorophyll, sugar and proline content of physiologically active leaves of mustard. Differential significant (p < 0.05 treatment response was reflected for the studied traits during crop maturity. The data revealed that vermicompost application significantly stimulated most of the studied attributes. It was concluded that 25% reduced dose of chemical fertilizer and its combination with vermicompost (T4 was optimum for most of the parameters studied as compared to the control at both crop stages.

  14. Comparison of two chemically-induced colitis-models in adult zebrafish, using optical projection tomography and novel transcriptional markers

    DEFF Research Database (Denmark)

    Haarder, Simon; Kania, Per Walter; Holm, Thomas

    2016-01-01

    , induced by the haptenizing agents oxazolone and TNBS. In addition, goblet cell dynamics in the scales and intestine and 5-HT (serotonin) in intestinal tissues were investigated through optical projection tomography. Gene expression studies revealed a distinct and significant upregulation...... of proinflammatory cytokines, acute-phase reactants and metalloprotease 9 in both chemical models, primarily after 72 hours. In comparison, transcription factors and cytokines associated with Th1 and Th17 (Crohn’s) and Th2 (ulcerative colitis) were mainly not affected in this acute setting. However, elevated...... transcript levels were detected in Foxp3, IL-10 and T-bet, which are linked with tolerance and Tregs in mammals. Goblet cells in scales were depleted in both chemical models and in the intestine of oxazolone-treated fish. A marked 5-HT signal was noted in intestinal tissue of some chemically treated...

  15. Physical and chemical changes induced by 70 MeV carbon ions in polyvinylidene difluoride (PVDF) polymer

    International Nuclear Information System (INIS)

    Virk, H.S.; Chandi, P.S.; Srivastava, A.K.

    2001-01-01

    Physical and chemical changes induced by 70 MeV carbon ions ( 12 C 5+ ) have been investigated in bulk polyvinylidene fluoride (PVDF) polymer. The induced changes have been studied with respect to their optical, chemical and structural response using UV-visible, FTIR and XRD techniques. The ion fluences ranging from 2.5x10 11 to 9x10 13 ions cm -2 have been used to study the irradiation effects. It has been observed that at the fluence of 9x10 13 ions cm -2 the PVDF sample became brittle and practically it was not possible to handle it for any further measurements. The recorded UV-visible spectra show that the optical absorption increases with increasing fluence, indicating maximum absorption at 200 nm. An interesting feature of UV-visible spectra is that dips change into peaks and vice versa with increase of fluence. In the FTIR spectra, development of new peaks at 1714 and 3692 cm -1 along with disappearance of peaks at 2363 and 3025 cm -1 and shifting of peak at 2984-2974 cm -1 have been observed due to high energy irradiation, indicating the chemical changes induced by 12 C 5+ . The diffraction pattern of PVDF indicates that this polymer is semi-crystalline in nature; a large decrease in the diffraction intensity indicates decrease in crystallinity. Increase in crystallite size has also been observed due to heavy ion irradiation

  16. Home-based chemically-induced whitening of teeth in adults.

    Science.gov (United States)

    Hasson, H; Ismail, A I; Neiva, G

    2006-10-18

    During the last decade tooth whitening products have become widely available in the USA for sale over-the-counter or dispensed by dentists for use at home. With the current rapid growth in demand for tooth whitening it is imperative that the dental community base its recommendations to patients on sound scientific evaluations conducted in well-designed and independent studies. To evaluate the effectiveness (versus a placebo or another active product) and side effects of over-the-counter or dentist-dispensed chemically-based tooth whitening products designed for home use. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2005, Issue 3); MEDLINE (January 1966 to September week 2 2005); and EMBASE (1988 to week 39 2005). The tables of content of selected dental journals published since 1995 were searched for additional references. Written requests for additional studies and information were mailed to experts in this area of research. After a final set of studies was identified, the list of references reported in the included reports was reviewed to identify additional studies. Studies published in English and non-English were considered in this review. Randomised controlled trials and quasi-randomised controlled trials of dentist-dispensed or over-the-counter tooth whitening products with a chemical action (rather than abrasive action), for home use. Screening of titles and abstracts, data extraction and quality assessment were undertaken independently and in duplicate. A total of 416 articles were identified, 25 of which met the inclusion criteria and presented data that could be used in the analysis. All included trials measured effectiveness immediately after 2 weeks of product application. Only 13 studies reported outcome data 1 week after the 2-week application period, and of those only six reported outcome data after 1 month or longer. Four of the included trials were assessed as at moderate risk of bias and the

  17. Combined comparative and chemical proteomics on the mechanisms of levo-tetrahydropalmatine-induced antinociception in the formalin test.

    Science.gov (United States)

    Wang, Chen; Zhou, Jiangrui; Wang, Shuowen; Ye, Mingliang; Jiang, Chunlei; Fan, Guorong; Zou, Hanfa

    2010-06-04

    This study investigated the mechanisms involved in the antinociceptive action induced by levo-tetrahydropalmatine (l-THP) in the formalin test by combined comparative and chemical proteomics. Rats were pretreated with l-THP by the oral route (40 mg/kg) 1 h before formalin injection. The antinociceptive effect of l-THP was shown in the first and second phases of the formalin test. To address the mechanisms by which l-THP inhibits formalin-induced nociception in rats, the combined comparative and chemical proteomics were applied. A novel high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS was applied to simultaneously evaluate the deregulated proteins involved in the response of l-THP treatment in formalin-induced pain rats. Thousands of proteins were identified, among which 17 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (Neurabin-1 and Calcium-dependent secretion activator 1) were randomly selected, and their expression levels were further confirmed by Western Blots. The results matched well with those of proteomics. In the present study, we also described the development and application of l-THP immobilized beads to bind the targets. Following incubation with cellular lysates, the proteome interacting with the fixed l-THP was identified. The results of comparative and chemical proteomics were quite complementary. Although the precise roles of these identified moleculars in l-THP-induced antinociception need further study, the combined results indicated that proteins associated with signal transduction, vesicular trafficking and neurotransmitter release, energy metabolism, and ion transport play important roles in l-THP-induced antinociception in the formalin test.

  18. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS.

    Science.gov (United States)

    Tipikin, Dmitriy S; Swarts, Steven G; Sidabras, Jason W; Trompier, François; Swartz, Harold M

    2016-12-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation-reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable sulfur

  19. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS

    Science.gov (United States)

    Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.

    2016-01-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable

  20. Controllingchemical nose” biosensor characteristics by modulating gold nanoparticle shape and concentration

    Directory of Open Access Journals (Sweden)

    Mohit S. Verma

    2015-09-01

    Full Text Available Conventional lock-and-key biosensors often only detect a single pathogen because they incorporate biomolecules with high specificity. “Chemical nose” biosensors are overcoming this limitation and identifying multiple pathogens simultaneously by obtaining a unique set of responses for each pathogen of interest, but the number of pathogens that can be distinguished is limited by the number of responses obtained. Herein, we use a gold nanoparticle-based “chemical nose” to show that changing the shapes of nanoparticles can increase the number of responses available for analysis and expand the types of bacteria that can be identified. Using four shapes of nanoparticles (nanospheres, nanostars, nanocubes, and nanorods, we demonstrate that each shape provides a unique set of responses in the presence of different bacteria, which can be exploited for enhanced specificity of the biosensor. Additionally, the concentration of nanoparticles controls the detection limit of the biosensor, where a lower concentration provides better detection limit. Thus, here we lay a foundation for designing “chemical nose” biosensors and controlling their characteristics using gold nanoparticle morphology and concentration. Keywords: Morphology, Color change, Staphylococcus aureus, Point-of-care, Nanocubes, Nanorods

  1. Noise-induced multistability in chemical systems: Discrete versus continuum modeling

    Czech Academy of Sciences Publication Activity Database

    Duncan, A.; Liao, S.; Vejchodský, Tomáš; Erban, R.; Grima, R.

    2015-01-01

    Roč. 91, č. 4 (2015), s. 042111 ISSN 1539-3755 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : chemical master equation * chemical Fokker-Planck equation * multimodality Subject RIV: BA - General Mathematics Impact factor: 2.288, year: 2014 http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042111

  2. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  3. Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

    Science.gov (United States)

    Yao Chen; Jianmin Gao; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes...

  4. Patterns in the Physical, Chemical, and Biological Composition of Icelandic Lakes and the Dominant Factors Controlling Variability Across Watersheds

    Science.gov (United States)

    Greco, A.; Strock, K.; Edwards, B. R.

    2017-12-01

    Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the

  5. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    Science.gov (United States)

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  6. Chemical control of channel interference in two-photon absorption processes.

    Science.gov (United States)

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan; Ruud, Kenneth

    2014-05-20

    channel interference by chemical means, and (2) the role of channel interference in the anomalous solvent dependence of certain TP chromophores. For example, we will show that simple structurally induced changes in certain dihedral angles of the well-known betaine dye (TB type) will help fine-tune the constructive channel interference and hence increase the overall TP activity of molecules with this general TP channel structure. Another intriguing result we will discuss is observed for a tweezer-trinitrofluorinone complex (TS type) where, on moving from polar to essentially nonpolar solvents, the nature of the channel interference switches from destructive to constructive, leading to a net abnormal solvent dependence of the TP activity of the system. The present Account highlights the usefulness of the channel interference effect and establishes it as a new and unique way of controlling the TP transition probability in different types of three-dimensional molecules.

  7. Development of hazard analysis by critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities.

    Science.gov (United States)

    Ropkins, Karl; Ferguson, Andrew; Beck, Angus J

    2003-01-01

    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards in the food chain. Effective HACCP requires the consideration of all chemical microbiological, and physical hazards. However, current procedures focus primarily on microbiological and physical hazards, while chemical aspects of HACCP have received relatively little attention. In this article we discuss the application of HACCP to organic chemical contaminants and the problems that are likely to be encountered in agriculture. We also present generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, that is, cereal crops,raw meats, and milk.

  8. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.

    1981-01-01

    Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures

  9. Control of optically induced currents in semiconductor crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Kapil Kumar

    2010-06-01

    The generation and control of optically induced currents has the potential to become an important building block for optical computers. Here, shift and rectification currents are investigated that emerge from a divergence of the optical susceptibility. It is known that these currents react to the shape of the impinging laser pulse, and especially to the shape of the pulse envelope. The main goal is the systematic manipulation of the pulse envelope with an optical pulse shaper that is integrated into a standard THz emission setup. The initial approach, the chirping of the laser pulse only has a weak influence on the envelope and the currents. Instead, a second approach is suggested that uses the combined envelope of a phase-stable pulse-pair as a parameter. In a laser pulse, the position of the maxima of the electrical field and the pulse envelope are shifted relative to each other. This shift is known as the Carrier-Envelope Phase (CEP). It is a new degree of freedom that is usually only accessible in specially stabilized systems. It is shown, that in a phase-stable pulse-pair, at least the relative CEP is usable as a new degree of freedom. It has a great influence on the shape of the pulse envelope and thus on the current density. It is shown that this approach enables the coherent control of the current density. The experiments are corroborated by a theoretical model of the system. The potential of this approach is demonstrated in an application. A framework is presented that uses an iterative genetic algorithm to create arbitrarily shaped THz traces. The algorithm controls the optical pulse shaper, and varies the phase of the impinging laser pulses until the desired target trace is found. (orig.)

  10. Attempts to identify a control system for chemical reactivity in the living state using virtual energy.

    Science.gov (United States)

    Reid, B L; Bourke, C

    2001-07-01

    This thesis explores the activation of chemicals in metabolic systems from the viewpoint that this activation is under the control of elements of the space-sea in which the chemicals are immersed. Themselves inert, the chemicals are theorised to exploit a force or action issuing from space (fluctuation) and characterized by the homogeneity (termed symmetry) of this medium. The fluctuation is heterogenized upon collision with matter from the intervention of well recognized fields of gravity and electromagnetism at the instant of its issue to form the near field of radiation. Fractions of original space waves and of their intrinsic spin are produced resulting in the activation of the orbitals (valency) in the chemical itself. The thesis continues: the disturbed fluctuation must return to space, obliging in turn, a prior return to the homogeneous state requiring special restorative wave rearrangements known as resonance. The success of the restorative resonance is signalled by a singularity of the fluctuation now propelled to infinity (space), and the contingent chemical reactions thereby terminated. Compromise to this return can occur from many causes and, in its presence, activation of the orbitals continues. They now effectively constitute autonomous reactions alienated from the system as a whole. The thesis is supported from evidence from diverse fields such as space theory, history of quantum field theory in attempts to derive its meaning, dielectrics and the near field of electromagnetic radiation, electron-space interactions at the Fermi surface during phase transitions and evolution of equilibrium conditions in resonance phenomena. The utility of the hypothesis rests on recognition of the resonance condition at various points in the system sufficiently macroscopic as to be available clinically as an abrupt interface between physiology and pathology. Copyright 2001 Harcourt Publishers Ltd.

  11. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    International Nuclear Information System (INIS)

    Sadikovic, Bekim; Haines, Thomas R; Butcher, Darci T; Rodenhiser, David I

    2004-01-01

    Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

  12. [Risk assessment and risk control for occupational exposure to chemical toxicants from an isophorone nitrile device].

    Science.gov (United States)

    Wang, Dejun; Fu, Xiaokuan; Kong, Fanling; Sui, Shaofeng; Jiang, Yuanyuan; Du, Yinglin; Zhou, Jingyang

    2014-06-01

    Risk assessment and risk control for occupational exposure to chemical toxicants were performed on an isophorone nitrile device with an annual production of 5,000 tons, based on improved Singaporean semi-quantitative risk assessment method, with consideration of actual situation in China and in the present project. With the use of engineering analysis and identification of occupational hazards in the improved Singaporean semi-quantitative risk assessment method, hazard rating (HR) and risk assessment were performed on chemical toxicants from an isophorone nitrile device with an annual production of 5,000 tons. The chemical toxicants in the isophorone nitrile device were mainly isophorone, hydrocyanic acid, methanol, phosphoric acid, sodium hydroxide, and sodium cyanide; the HR values were mild hazard (2), extreme hazard (5), mild hazard (2), mild hazard (2), moderate hazard (3), and extreme hazard (5), respectively, and the corresponding exposure rating (ER) values were 2.09, 2.72, 2.76, 1.68, 2.0, and 1.59, respectively. The risk of chemical toxicants in this project was assessed according to the formula Risk = [HR×ER](1/2). Hydrocyanic acid was determined as high risk, sodium hydroxide and sodium cyanide as medium risk, and isophorone, methanol, and phosphoric acid as low risk. Priority in handling of risks was determined by risk rating. The table of risk control measure was established for pre-assessment of occupational hazards. With risk assessment in this study, we concluded that the isophorone nitrile device with 5,000 ton annual production was a high-occupational hazard device. This device is a project of extreme occupational hazard. The improved Singaporean semi-quantitative risk assessment method is a scientific and applicable method, and is especially suitable for pre-evaluation of on-site project with no analogy.

  13. Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition

    Science.gov (United States)

    Puretzky, Alexander A.; Geohegan, David B.; Pannala, Sreekanth; Rouleau, Christopher M.; Regmi, Murari; Thonnard, Norbert; Eres, Gyula

    2013-06-01

    The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures.The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally

  14. Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system

    International Nuclear Information System (INIS)

    Lim, Sung Hoon; Park, Kyu Chang; Moon, Jong Hyun; Yoon, Hyun Sik; Pribat, Didier; Bonnassieux, Yvan; Jang, Jin

    2006-01-01

    We report on the growth mechanism and density control of vertically aligned carbon nanotubes using a triode plasma enhanced chemical vapor deposition system. The deposition reactor was designed in order to allow the intermediate mesh electrode to be biased independently from the ground and power electrodes. The CNTs grown with a mesh bias of + 300 V show a density of ∼ 1.5 μm -2 and a height of ∼ 5 μm. However, CNTs do not grow when the mesh electrode is biased to - 300 V. The growth of CNTs can be controlled by the mesh electrode bias which in turn controls the plasma density and ion flux on the sample

  15. Efficacy of different chemicals for the control of aphid (acyrthosiphon pisum) on guar (cymopisis tetragonolobus) crop

    International Nuclear Information System (INIS)

    Din, Q.M.U.; Hussain, I.; Abbas, G.; Abbas, Z.

    2009-01-01

    An experiment was carried out to evaluate the efficacy of different chemicals far the control of aphid on guar crop at Adaptive Research Farm Karor during the three successive kharif seasons i.e. 2006-07 and 2008. The experiments were laid out in Randomized Complete Block Design with three replications and five treatments viz T1=control, T2 Bifenthrin at the rate 375 ml ha/sup -1/, T3=Primore 50PP at the rate 850 ml ha/sup -1/ T4=Furathiocrab at the rate 750 ml ha/sup -1/ and T5=Carbosulfan at the rate 1250 ml ha/sup -1/. All the treatments (T4) caused significant decrease in the Pest population as compared to the control. Treatment (T4) where Furathiocrab was applied at the rate. 750 ml ha/sup -1/ during the years 2006, 2007 and 2008 respectively. (author)

  16. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    that is typically formulated as a mathematical programming (optimization with constraints) problem is solved by the so-called reverse approach by decomposing it into four sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection......This thesis describes the development and application of a new systematic modelbased methodology for performing integrated process design and controller design (IPDC) of chemical processes. The new methodology is simple to apply, easy to visualize and efficient to solve. Here, the IPDC problem...... are ordered according to the defined performance criteria (objective function). The final selected design is then verified through rigorous simulation. In the pre-analysis sub-problem, the concepts of attainable region and driving force are used to locate the optimal process-controller design solution...

  17. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  18. Ginger effects on control of chemotherapy induced nausea and vomiting

    Directory of Open Access Journals (Sweden)

    Seyyed Meisam Ebrahimi

    2013-09-01

    Full Text Available Background : Chemotherapy-induced nausea (CIN in the anticipatory and acute phase is the most common side effect in cancer therapy. The purpose of this study was to investigate the effect of ginger capsules on the alleviation of this problem. Methods : This randomized, double-blind, placebo-controlled clinical trial was performed on 80 women with breast cancer between August till December 2009 in Imam Khomeini Hospital, Tehran, Iran. These patients underwent one-day chemotherapy regime and suffering from chemotherapy-induced nausea. After obtaining written consent, samples were randomly assigned into intervention and control groups. Two groups were matched based on the age and emetic effects of chemotherapy drugs used. The intervention group received ginger capsules (250 mg, orally four times a day (1 gr/d and the same samples from the placebo group received starch capsules (250 mg, orally for three days before to three days after chemotherapy. To measure the effect of capsules a three-part questionnaire was used, so the samples filled every night out these tools. After collecting the information, the gathered data were analyzed by statistical tests like Fisher’s exact, Kruskal-Wallis and Chi-square using version 8 of STATA software. Results : The mean ± SD of age in the intervention and placebo groups were 41.8 ± 8.4 and 45.1 ± 10 years, respectively. Results indicated that the severity and number of nausea in the anticipatory phase were significantly lower in the ginger group compared with placebo group (P=0.0008, P=0.0007, respectively. Also, the intensity (P=0.0001 and number (P=0.0001 of nausea in the acute phase were significantly lower in the ginger group. On the other hand, taking ginger capsules compared with placebo did not result in any major complications. Conclusion: Consuming ginger root powder capsules (1 gr/d from three days before chemotherapy till three days after it in combination with the standard anti-emetic regimen can

  19. Induced mutations in chickpea (Cicer arietinum L.) I. comparative mutagenic effectiveness and efficiency of physical & chemical mutagens

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    1998-01-01

    Mutagenic effectiveness usually means the rate of mutation as related to dose. Mutagenic efficiency refers to the mutation rate in relation to damage. Studies on comparative mutagenic effectiveness and efficiency of two physical (gamma rays and fast neutrons) and two chemical mutagens (NMU and EMS) on two desi (G 130 & H 214), one kabuli (C 104) and one green seeded (L 345) chickpea (Cicer arietinum L.) have been reported. The treatments included three doses each of gamma rays (400, 500 and 600 Gy) and fast neutrons (5, 10 and 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU 0.01% 20h and 0.02% 8h) and EMS (0.1% 20h and 0.2% 8h). Results indicated that chemical mutagens, particularly NMU are not only more effective but also efficient than physical mutagens in inducing mutations in chickpea. Mutagenic effectiveness and efficiency showed differential behaviour depending upon mutagen and varietal type. Chemical mutagens were more efficient than physical in inducing cholorophyll as well as viable and total number of mutations. Among the mutagens NMU was the most potent, while in the physical, gamma rays were more effective. Out of four mutagens, NMU was the most effective and efficient in inducing a high frequency and wide spectrum of chlorophyll mutations in the M2 followed by fast neutrons. While gamma rays showed least effectiveness, EMS was least efficient mutagens. Major differences in the mutagenic response of the four cultivars were observed. The varieties of desi type were more resistant towards mutagenic treatment than kabuli and green seeded type

  20. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  1. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    Science.gov (United States)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  2. In silico models for predicting vector control chemicals targeting Aedes aegypti

    Science.gov (United States)

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  3. NMR studies on the chemical alteration of soil organic matter precursors during controlled charring

    Science.gov (United States)

    Knicker, Heike

    2010-05-01

    Beside the production of volatiles, vegetation fire transforms various amounts of labile organic components into recalcitrant dark colored and highly aromatic structures. They are incorporated into soils and are assumed to represent an important sink within the global carbon cycle. In order to elucidate the real importance of PyOM as a C-sink, a good understanding of its chemistry is crucial. Although several 'Black Carbon' (BC) models are reported, a commonly accepted view of the chemistry involved in its formation is still missing. Its biogeochemical recalcitrance is commonly associated with a highly condensed aromatic structure. However, recent studies indicated that this view may be oversimplified for PyOM derived from vegetation fire. In order to bring some more light on the structural properties of PyOM produced during vegetation fire, charred plant residues and model chars derived from typical plant macromolecules (casein, cellulose, lignin and condensed tannins) were subjected to controlled charring under oxic conditions (350°C and 450°C) and then characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Subsequently, the chemical features of the PyOM were related to its chemical recalcitrance as determined by chemical oxidation with acid potassium dichromate. Charring cellulose (350°C, 8 min) yielded in a low C-recovery (11%). Treating casein in the same way resulted in a survival of 62% of its C and 46% of its N. Comparable high C-recoveries are reported for lignin. After charring Lolium perenne, 34% of its N and C were recovered. NMR-spectroscopic studies revealed that for this sample most of the charred N and C occurred in pyrrole-type structures. Our studies further indicate that the aromatic skeleton of char accumulating after a vegetation fire must contain remains of the lignin backbone and considerable contributions of furans and anhydrosugars from thermally altered cellulose. Enhancing the temperature during the

  4. Comparison of numerical and physico-chemical models for on-line spectrophotometric control of uranium

    International Nuclear Information System (INIS)

    Corriou, J.P.; Boisde, G.

    1986-04-01

    In view of on-line spectrophotometric control of fuel reprocessing streams, a physico-chemical model able to predict uranium and nitric acid concentrations in an uranyl nitrate-nitric acid system has been searched. Thus the influences of the following parameters: uranium, nitrate, hydrogen ion concentrations, ionic strength, on the equilibria of complexation of uranium (VI) nitrate have been evaluated. Extinction coefficients for the uranium mononitrate and uranium dinitrate complexes are given between 410 and 440 nm. The apparent equilibrium constants are determined as a function of the ionic strength. The limitations of this predictive model are emphasized and comparisons with numerical models are discussed. (16 refs)

  5. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  6. Chemical control of vegetation on urban sites: agronomic and ecotoxicological aspects

    International Nuclear Information System (INIS)

    Zanin, G.; Otto, S.

    1996-01-01

    The problem of the chemical control of spontaneous vegetation on urban sites is tackled. A method is presented to identify the best herbicides under both the agronomic and ecotoxicological aspects. Selection of the herbicides from the agronomic point of view is on the basis of the qualitative characteristics of the vegetation (life-form types periodicity types botanical composition), surveyed at 5 different times on the year while selection from the environmental viewpoint is based on an evaluation integrated with a series of ecotoxicological indices. The best solution was tested in a pilot area and the contamination of the water compartment evaluated both on entering and leaving the water treatment works

  7. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  8. Noise-induced multistability in chemical systems: Discrete versus continuum modeling

    Czech Academy of Sciences Publication Activity Database

    Duncan, A.; Liao, S.; Vejchodský, Tomáš; Erban, R.; Grima, R.

    2015-01-01

    Roč. 91, č. 4 (2015), s. 042111 ISSN 1539-3755 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : chemical master equation * chemical Fokker-Planck equation * multimodality Subject RIV: BA - General Mathematics Impact factor: 2.288, year: 2014 http://journals. aps .org/pre/abstract/10.1103/PhysRevE.91.042111

  9. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  10. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine.

    Science.gov (United States)

    Muthumalage, Thivanka; Prinz, Melanie; Ansah, Kwadwo O; Gerloff, Janice; Sundar, Isaac K; Rahman, Irfan

    2017-01-01

    Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6) and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS). We hypothesized that the flavoring chemicals used in e-juices/e-liquids induce an inflammatory response, cellular toxicity, and ROS production. Methods: Two monocytic cell types, MM6 and U937 were exposed to commonly used e-cigarette flavoring chemicals; diacetyl, cinnamaldehyde, acetoin, pentanedione, o-vanillin, maltol and coumarin at different doses between 10 and 1,000 μM. Cell viability and the concentrations of the secreted inflammatory cytokine interleukin 8 (IL-8) were measured in the conditioned media. Cell-free ROS produced by these commonly used flavoring chemicals were also measured using a 2',7'dichlorofluorescein diacetate probe. These DCF fluorescence data were expressed as hydrogen peroxide (H 2 O 2 ) equivalents. Cytotoxicity due to the exposure to selected e-liquids was assessed by cell viability and the IL-8 inflammatory cytokine response in the conditioned media. Results: Treatment of the cells with flavoring chemicals and flavored e-liquid without nicotine caused cytotoxicity dose-dependently. The exposed monocytic cells secreted interleukin 8 (IL-8) chemokine in a dose-dependent manner compared to the unexposed cell groups depicting a biologically significant inflammatory response. The measurement of cell-free ROS by the flavoring chemicals and e-liquids showed significantly increased levels of H 2 O 2 equivalents in a dose-dependent manner compared to the control reagents. Mixing a variety of flavors resulted in greater cytotoxicity and cell-free ROS levels compared to the treatments

  11. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine

    Directory of Open Access Journals (Sweden)

    Thivanka Muthumalage

    2018-01-01

    Full Text Available Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6 and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS. We hypothesized that the flavoring chemicals used in e-juices/e-liquids induce an inflammatory response, cellular toxicity, and ROS production.Methods: Two monocytic cell types, MM6 and U937 were exposed to commonly used e-cigarette flavoring chemicals; diacetyl, cinnamaldehyde, acetoin, pentanedione, o-vanillin, maltol and coumarin at different doses between 10 and 1,000 μM. Cell viability and the concentrations of the secreted inflammatory cytokine interleukin 8 (IL-8 were measured in the conditioned media. Cell-free ROS produced by these commonly used flavoring chemicals were also measured using a 2′,7′dichlorofluorescein diacetate probe. These DCF fluorescence data were expressed as hydrogen peroxide (H2O2 equivalents. Cytotoxicity due to the exposure to selected e-liquids was assessed by cell viability and the IL-8 inflammatory cytokine response in the conditioned media.Results: Treatment of the cells with flavoring chemicals and flavored e-liquid without nicotine caused cytotoxicity dose-dependently. The exposed monocytic cells secreted interleukin 8 (IL-8 chemokine in a dose-dependent manner compared to the unexposed cell groups depicting a biologically significant inflammatory response. The measurement of cell-free ROS by the flavoring chemicals and e-liquids showed significantly increased levels of H2O2 equivalents in a dose-dependent manner compared to the control reagents. Mixing a variety of flavors resulted in greater cytotoxicity and cell-free ROS levels compared to the

  12. Use of direct washing of chemical dispense nozzle for defect control

    Science.gov (United States)

    Linnane, Michael; Mack, George; Longstaff, Christopher; Winter, Thomas

    2006-03-01

    Demands for continued defect reduction in 300mm IC manufacturing are driving process engineers to examine all aspects of the chemical apply process for improvement. Historically, the defect contribution from photoresist apply nozzles has been minimized through a carefully controlled process of "dummy dispenses" to keep the photoresist in the tip "fresh" and remove any solidified material, a preventive maintenance regime involving periodic cleaning or replacing of the nozzles, and reliance on a pool of solvent within the nozzle storage block to keep the photoresist from solidifying at the nozzle tip. The industry standard has worked well for the most part but has limitations in terms of cost effectiveness and absolute defect elimination. In this study, we investigate the direct washing of the chemical apply nozzle to reduce defects seen on the coated wafer. Data is presented on how the direct washing of the chemical dispense nozzle can be used to reduce coating related defects, reduce material costs from the reduction of "dummy dispense", and can reduce equipment downtime related to nozzle cleaning or replacement.

  13. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu.

    Science.gov (United States)

    Pelizza, Sebastian A; Schalamuk, Santiago; Simón, María R; Stenglein, Sebastian A; Pacheco-Marino, Suani G; Scorsetti, Ana C

    Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is one of the major lepidopteran pests defoliating soybeans (Glycine max Merrill) in Argentina. The combined use of chemical insecticides and entomopathogenic fungi is a promising pest-control option to minimize adverse chemical effects. In this work, we evaluated the interactions between five insecticides-two being considered biorational-and five fungal entomopathogenic strains under laboratory conditions in order to determine the possible usefulness of combinations of these agents against R. nu. The insecticides were tested for compatibility at four doses by in vitro bioassay and for the lethality of R. nu by inoculations at three doses. Fungal strains were applied at 1×10 8 , 1×10 6 , and 1×10 4 conidia/ml. The combinations of those insecticides with Beauveria bassiana (LPSc 1067, LPSc 1082, LPSc 1098), Metarhizium anisopliae (LPSc 907), and Metarhizium robertsii (LPSc 963) caused higher R. nu-larval mortalities than any of the individual agents alone. We observed significant differences in the in vitro conidial viability, vegetative growth, and conidia production of the five strains of entomopathogenic fungi exposed to different doses of the chemical insecticides. The combination gamma-cyhalothrin-LPSc-1067 caused the highest percent mortality of R. nu larvae, with synergism occurring between the two agents at 50% and 25% of the maximum field doses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Host Resistance and Chemical Control for Management of Sclerotinia Stem Rot of Soybean in Ohio.

    Science.gov (United States)

    Huzar-Novakowiski, Jaqueline; Paul, Pierce A; Dorrance, Anne E

    2017-08-01

    Recent outbreaks of Sclerotinia stem rot (SSR) of soybean in Ohio, along with new fungicides and cultivars with resistance to this disease, have led to a renewed interest in studies to update disease management guidelines. The effect of host resistance (in moderately resistant [MR] and moderately susceptible [MS] cultivars) and chemical control on SSR and yield was evaluated in 12 environments from 2014 to 2016. The chemical treatments evaluated were an untreated check, four fungicides (boscalid, picoxystrobin, pyraclostrobin, and thiophanate-methyl), and one herbicide (lactofen) applied at soybean growth stage R1 (early flowering) alone or at R1 followed by a second application at R2 (full flowering). SSR developed in 6 of 12 environments, with mean disease incidence in the untreated check of 2.5 to 41%. The three environments with high levels of SSR (disease incidence in the untreated check >20%) were used for further statistical analysis. There were significant effects (P Pyraclostrobin increased SSR compared with the untreated check in the three environments with high levels of disease. In the six fields where SSR did not develop, chemical treatment did not increase yield, nor was the yield from the MR cultivar significantly different from the MS cultivar. For Ohio, MR cultivars alone were effective for management of SSR in soybean fields where this disease has historically occurred.

  15. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based...

  16. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  17. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  18. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Science.gov (United States)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  19. The controlled fabrication of nanopores by focused electron-beam-induced etching

    International Nuclear Information System (INIS)

    Yemini, M; Ashkenasy, N; Hadad, B; Goldner, A; Liebes, Y

    2009-01-01

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 x 10 -6 Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  20. Phyto chemical Protection against Diethylnitrosoamine Induced Hepato carcinogenesis by Trigonella foenum graecum in Female Rats

    Energy Technology Data Exchange (ETDEWEB)

    Abdelgawad, M R; Mustafa, M M.M.; Kottb, M K.I. [Egyptian Atomic Energy Authority, Nuclear Research Center, Biological Applications Department, Cairo (Egypt)

    2012-05-15

    Trigonella foenum graecum (fenugreek) is traditionally used to treat. Recent studies suggest that fenugreek and its active constituents may possess anti carcinogenic potential. The preventive efficacy of dietary fenugreek seed 2% and 4% (w/w feed) on diethylnitrosamine-induced rat liver carcinogenesis were evaluated. Rats were sacrificed when rats became very weak with unstable shelf live were chosen as an end point. Egypt is an Islamic country alcoholic prohibition so the possible use of ethanol extraction may be accepted with high restriction towards its applications in human, that it may affect the active constituents of fenugreek seeds. Whereby, fenugreek seeds contain >8% oil, many valuable phenolic compounds, protein and amino acids, etc ... with different concentrations according to the extraction method. So, the present study was carried out to evaluate the effect of fenugreek powder on adult female rats fed experimental diets containing 2% or 4% (w/w) fenugreek seed powder (FSP) for 2 weeks and have phenobarbital in a dose of 200 mg/L ad lib. before and after a single injection with diethylnitrosamine (200 mg/kg body weight). Rats were sacrificed 20 weeks after intra-peritoneal (i.p) diethylnitrosamine injection and their livers, spleens, kidneys and lungs were excised washed well with cold saline, weighted and processed through paraffin wax preparation, staining and pathological changes were examined. It was found that, by comparison with control, continuous feeding of FSP 2% and 4% suppressed hepatocarcinogensity up to 20% and 50%, respectively. In addition, on the basis of these findings, the invaluable and precious fenugreek constituents are diosgenin [(25 R)-5-spirosten-3h-ol] and [5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3,4,5-trihydroxy-6(hydroxymethyl) tetra- hydro-2H-pyran-2-yl)chroman-4-one] besides, others. Finally, fenugreek seeds seem to have potential role as a novel cancer preventive agent and that needs further investigations

  1. Postharvest biological control of brown rot in peaches after cold storage preceded by preharvest chemical control 1

    Directory of Open Access Journals (Sweden)

    Elizandra Pivotto Pavanello

    2015-12-01

    Full Text Available ABSTRACT Pathogenic fungi cause skin darkening and peach quality depreciation in post harvest. Therefore, alternative techniques to chemical treatment are necessary in order to reduce risks to human health. The aim of this study was to evaluate the effect of the application of Trichoderma harzianum in association with different fungicides applied before harvest to 'Eldorado' peaches for brown rot control and other quality parameters during storage. The treatments consisted of five preharvest fungicide applications (control, captan, iprodione, iminoctadine and tebuconazole associated with postharvest application of T. harzianum, after cold storage (with and without application, in three evaluation times (zero, two and four days at 20 °C, resulting in a 5x2x3 factorial design. The application of T. harzianum only brought benefits to the control of brown rot when combined with the fungicide captan, at zero day shelf life. After two days, there was a greater skin darkening in peaches treated with T. harzianum compared with peaches without the treatment, except for peaches treated with the fungicide iprodione and T. harzianum The application of T. harzianum during postharvest showed no benefits for the control of brown rot, however, the association with fungicides reduced the incidence of Rhizopus stolonifer during the shelf life.

  2. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    Science.gov (United States)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve

  3. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  4. Down-Regulation of Homer1b/c Protects Against Chemically Induced Seizures Through Inhibition of mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lei Cao

    2015-03-01

    Full Text Available Background: Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. Reducing Homer1b/c expression has been shown in previous studies to be protective against excitotoxic insults, implicating Homer1b/c in the physiological regulation of aberrant neuronal excitability. Methods: To test the efficacy of a Homer1b/c reducing therapy for disorders with a detrimental hyperexcitability profile in mice, we used small interfere RNA (siRNA to decrease endogenous Homer1b/c expression in mouse hippocampus. The baseline motor and cognitive behavior was measured by sensorimotor tests, Morris water maze and elevated plus maze tasks. The anti-epileptic effects of Homer1b/c knockdown were determined in two chemically induced seizure models induced by Picrotoxin (PTX or pentylenetetrazole (PTZ administration. Results: The results of sensorimotor tests, Morris water maze and elevated plus maze tasks showed that Homer1b/c reduction had no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced Homerb/c protein had less severe seizures than control mice. Total Homer1b/c protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of Homer1b/c. In addition, the phosphorylation of mammalian target of rapamycin (mTOR and its target protein S6 was significantly inhibited in Homer1b/c down-regulated mice. Homer1b/c knockdown-induced inhibition of mTOR pathway was partially ablated by the metabotropic glutamate receptor 5 (mGluR5 agonist CHPG. Conclusion: Our results demonstrate that endogenous Homer1b/c is integral for regulating neuronal hyperexcitability in adult animals and suggest that reduction of Homer1b/c could protect against chemically induced seizures through inhibition mTOR pathway.

  5. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    Science.gov (United States)

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model

    Energy Technology Data Exchange (ETDEWEB)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com [Molecular Devices, LLC, Sunnyvale, CA (United States); Grimm, Fabian A. [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Ryan, Kristen R. [Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Iwata, Yasuhiro; Chiu, Weihsueh A. [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Parham, Frederick [Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Wignall, Jessica A. [ICF, Fairfax, VA (United States); Anson, Blake [Cellular Dynamics International, Madison, WI (United States); Cromwell, Evan F. [Protein Fluidics, Inc., Burlingame, CA (United States); Behl, Mamta [Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Rusyn, Ivan [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Tice, Raymond R. [Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    2017-05-01

    An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30 min or 24 h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca{sup 2+} flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30 min of exposure. In contrast, after 24 h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. - Highlights:

  7. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model

    International Nuclear Information System (INIS)

    Sirenko, Oksana; Grimm, Fabian A.; Ryan, Kristen R.; Iwata, Yasuhiro; Chiu, Weihsueh A.; Parham, Frederick; Wignall, Jessica A.; Anson, Blake; Cromwell, Evan F.; Behl, Mamta; Rusyn, Ivan; Tice, Raymond R.

    2017-01-01

    An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30 min or 24 h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca 2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30 min of exposure. In contrast, after 24 h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. - Highlights:

  8. Chemical quality of different argentine honey varieties, irradiated to control american foulbrood

    International Nuclear Information System (INIS)

    Zunich, C.D.; Markowski, I.; Narvaiz, Patricia

    2011-01-01

    'American foulbrood' is a disease that seriously affects bees. Honey may be contaminated with spores of the related bacteria, Paenibacillus larvae larvae, which is a great drawback for trade. The scientific literature reports that these spores, resistant to heat and chemicals, are inactivated in honey when it is irradiated al 10 kGy, being this treatment mandatory in the Republic of Southafrica. Irradiated food wholesomeness is endorsed by the World Health Organization. Considering that Argentina is an important honey producer and exporter, the aim of this work was to evaluate the effect of ionizing radiation on some of its commercial chemical parameters along storage time. Honeys with different characteristics, coming from five different regions of the country: Middle, Patagonia, North, Litoral, Humid Pampa, were provided by producers from a commission called 'Packaged honey' of the National Food, Fishery and Agriculture Ministry. Fifteen kg of each honey variety were packaged in 500 g polypropylene recipes with polyethylene lids, and irradiated at the semi industrial cobalt-60 facility of the Ezeiza Atomic Center, 500,000 Ci of activity, with doses of 0, 10 and 20 kilo Grays. Control and irradiated samples were stored at room temperature for 10 months. Some standardized chemical analysis required by the Argentine Food Code (AFC) were performed on the first, fourth and tenth storage months: water content, acidity, diastase content, reducing sugars, and hydroxymethylfurfural. Reducing sugars and diastase activity slightly diminished, and acidity slightly increased, along storage which is typical in this product; no significant differences were found between control and irradiated samples. Hydroxymethylfurfural values, related to aging or thermal abuse, diminished slightly though significantly due to irradiation, which would not affect the product quality as regulations require not to surpass a maximum value, 40 mg/kg in the AFC. So ionizing

  9. Post-control surveillance of Triatoma infestans and Triatoma sordida with chemically-baited sticky traps.

    Science.gov (United States)

    Rojas de Arias, Antonieta; Abad-Franch, Fernando; Acosta, Nidia; López, Elsa; González, Nilsa; Zerba, Eduardo; Tarelli, Guillermo; Masuh, Héctor

    2012-01-01

    Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity. Chemically-baited traps are widely used in vector and pest control-surveillance systems; here, we test this approach for Triatoma spp. detection under field conditions in the Gran Chaco. Using a repeated-sampling approach and logistic models that explicitly take detection failures into account, we simultaneously estimate vector occurrence and detection probabilities. We then model detection probabilities (conditioned on vector occurrence) as a function of trapping system to measure the effect of chemical baits. We find a positive effect of baits after three (odds ratio [OR] 5.10; 95% confidence interval [CI(95)] 2.59-10.04) and six months (OR 2.20, CI(95) 1.04-4.65). Detection probabilities are estimated at p ≈ 0.40-0.50 for baited and at just p ≈ 0.15 for control traps. Bait effect is very strong on T. infestans (three-month assessment: OR 12.30, CI(95) 4.44-34.10; p ≈ 0.64), whereas T. sordida is captured with similar frequency in baited and unbaited traps. Chemically-baited traps hold promise for T. infestans surveillance; the sensitivity of the system at detecting small re-infestation foci rises from 12.5% to 63.6% when traps are baited with semiochemicals. Accounting for imperfect detection, infestation is estimated at 26% (CI(95) 16-40) after three and 20% (CI(95) 11-34) after six months. In the same assessments, traps detected infestation in 14% and 8.5% of dwellings, whereas timed manual searches (the standard approach) did so in just 1.4% of dwellings only in the first survey. Since infestation rates are the main indicator used for decision-making in control programs, the approach we present may help improve T

  10. Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses.

    Science.gov (United States)

    Batista, C A S; Viana, R L; Ferrari, F A S; Lopes, S R; Batista, A M; Coninck, J C P

    2013-04-01

    Thermally sensitive neurons present bursting activity for certain temperature ranges, characterized by fast repetitive spiking of action potential followed by a short quiescent period. Synchronization of bursting activity is possible in networks of coupled neurons, and it is sometimes an undesirable feature. Control procedures can suppress totally or partially this collective behavior, with potential applications in deep-brain stimulation techniques. We investigate the control of bursting synchronization in small-world networks of Hodgkin-Huxley-type thermally sensitive neurons with chemical synapses through two different strategies. One is the application of an external time-periodic electrical signal and another consists of a time-delayed feedback signal. We consider the effectiveness of both strategies in terms of protocols of applications suitable to be applied by pacemakers.

  11. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?

    Science.gov (United States)

    Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E

    2015-11-04

    Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.

  12. Recent applications of Chemical Imaging to pharmaceutical process monitoring and quality control.

    Science.gov (United States)

    Gowen, A A; O'Donnell, C P; Cullen, P J; Bell, S E J

    2008-05-01

    Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing CI implementation and likely future developments in the technology are also discussed.

  13. Physical and chemical properties of gels. Application to protein nucleation control in the gel acupuncture technique

    Science.gov (United States)

    Moreno, Abel; Juárez-Martínez, Gabriela; Hernández-Pérez, Tomás; Batina, Nikola; Mundo, Manuel; McPherson, Alexander

    1999-09-01

    In this work, we present a new approach using analytical and optical techniques in order to determine the physical and chemical properties of silica gel, as well as the measurement of the pore size in the network of the gel by scanning electron microscopy. The gel acupuncture technique developed by García-Ruiz et al. (Mater. Res. Bull 28 (1993) 541) García-Ruiz and Moreno (Acta Crystallogr. D 50 (1994) 484) was used throughout the history of crystal growth. Several experiments were done in order to evaluate the nucleation control of model proteins (thaumatin I from Thaumatococcus daniellii, lysozyme from hen egg white and catalase from bovine liver) by the porous network of the gel. Finally, it is shown how the number and the size of the crystals obtained inside X-ray capillaries is controlled by the size of the porous structure of the gel.

  14. A survey of process control computers at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Dahl, C.A.

    1989-01-01

    The Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory is charged with the safe processing of spent nuclear fuel elements for the United States Department of Energy. The ICPP was originally constructed in the late 1950s and used state-of-the-art technology for process control at that time. The state of process control instrumentation at the ICPP has steadily improved to keep pace with emerging technology. Today, the ICPP is a college of emerging computer technology in process control with some systems as simple as standalone measurement computers while others are state-of-the-art distributed control systems controlling the operations in an entire facility within the plant. The ICPP has made maximal use of process computer technology aimed at increasing surety, safety, and efficiency of the process operations. Many benefits have been derived from the use of the computers for minimal costs, including decreased misoperations in the facility, and more benefits are expected in the future

  15. Assessing and controlling risks from the emission of organic chemicals from construction products into indoor environments.

    Science.gov (United States)

    Brown, Veronica M; Crump, Derrick R; Harrison, Paul T C

    2013-12-01

    Construction products can be a significant source of indoor pollutants, including volatile organic compounds that may be a risk to the health and well-being of building occupants. There are currently a number of schemes for the labelling of products according to their potential to emit organic compounds. Assessment of the complex mixtures of compounds that may be released has mandated the development of test methods that allow the determination of the concentrations of the chemicals released from products in controlled test chamber environments. In response to concerns about the financial burden faced by manufacturers required to test products according to the various different labelling schemes currently in existence, the European Commission has investigated the scope for greater harmonisation. This initiative has sought to harmonise the process for the assessment of emissions data, complementing work led by the European standards organisation focussed on harmonising the test chamber procedures. The current labelling schemes have a range of requirements with respect to the number of chemicals to be quantified. A comparison of 13 schemes worldwide has identified 15 lists of target compounds, with a total of 611 chemicals occurring on at least one of the target lists. While harmonisation may clarify and perhaps simplify these requirements, at least in Europe, it can be expected that future changes to product formulations, the introduction of new products and our increasing knowledge about the potential risks to health, will require continued development of new and improved measurement techniques. There is, therefore, a particular challenge for analytical chemists to ensure the efficient provision of high quality emissions data and thereby ultimately enable effective control of risks to human health through the prevention or reduction of indoor air pollution.

  16. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.

    Science.gov (United States)

    Card, Marcella L; Gomez-Alvarez, Vicente; Lee, Wen-Hsiung; Lynch, David G; Orentas, Nerija S; Lee, Mari Titcombe; Wong, Edmund M; Boethling, Robert S

    2017-03-22

    Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21 st Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19 th century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20 th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

  17. Evaluation of chemical stabilizers and windscreens for wind erosion control of uranium mill tailings

    International Nuclear Information System (INIS)

    Elmore, M.R.; Hartley, J.N.

    1984-08-01

    Potential wind erosion of uranium mill tailings is a concern for the surface disposal of tailings at uranium mills. Wind-blown tailings may subsequently be redeposited on areas outside the impoundment. Pacific Northwest Laboratory (PNL) is investigating techniques for fugitive dust control at uranium mill tailings piles. Laboratory tests, including wind tunnel studies, were conducted to evaluate the relative effectiveness of 43 chemical stabilizers. Seventeen of the more promising stabilizers were applied to test plots on a uranium tailings pile at the American Nuclear Corporation-Gas Hills Project mill site in central Wyoming. The durabilities of these materials under actual site conditions were evaluated over time. In addition, field testing of commercially available windscreens was conducted. Test panels were constructed of eight different materials at the Wyoming test site to compare their durability. A second test site was established near PNL to evaluate the effectiveness of windscreens at reducing wind velocity, and thereby reduce the potential for wind erosion of mill tailings. Results of the laboratory land field tests of the chemical stabilizers and windscreens are presented, along with costs versus effectiveness of these techniques for control of wind erosion at mill tailings piles. 12 references, 4 figures, 6 tables

  18. Effect of an invasive ant and its chemical control on a threatened endemic Seychelles millipede.

    Science.gov (United States)

    Lawrence, James M; Samways, Michael J; Henwood, Jock; Kelly, Janine

    2011-06-01

    The impact of invasive species on island faunas can be of major local consequence, while their control is an important part of island ecosystem restoration. Among these invasive species are ants, of which some have a disruptive impact on indigenous arthropod populations. Here, we study the impact of the invasive African big-headed ant, Pheidole megacephala, on a small Seychelles island, Cousine, and assess the impact of this ant, and its chemical control, using the commercially available hydramethylnon-based bait, Siege, on the endemic keystone Seychelles giant millipede species, Sechelleptus seychellarum. We found no significant correlations in landscape-scale spatial overlap and abundance between the ant and the millipede. Furthermore, the ant did not attack healthy millipedes, but fed only on dying and dead individuals. The chemical defences of the millipede protected it from ant predation. Ingestion of the bait at standard concentration had no obvious impact on the millipede. The most significant threat to the Seychelles giant millipede in terms of P. megacephala invasion is from possible catastrophic shifts in ecosystem function through ant hemipteran mutualisms which can lead to tree mortality, resulting in alteration of the millipede's habitat.

  19. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    Science.gov (United States)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  20. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Wasson, J.A.; Durham, D.L.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.

  1. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects.

    Science.gov (United States)

    Hu, Lingling; Zhu, Jingmin; Rotchell, Jeanette M; Wu, Lijiao; Gao, Jinjuan; Shi, Huahong

    2015-03-01

    The frog embryo teratogenesis assay-Xenopus (FETAX) is an established method for the evaluation of the developmental toxicities of chemicals. To develop an enhanced FETAX that is appropriate for common environmental contaminants, we exposed Xenopus tropicalis embryos to eight compounds, including tributyltin, triphenyltin, CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic acid and 9-cis-retinoic acid. Multiple malformations were induced in embryos particularly following exposure to tributyltin, triphenyltin and pyraclostrobin at environmentally relevant concentrations. Based on the range of observed malformations, we proposed a phenotypic assessment method with 20 phenotypes and a 0-5 scoring system. This derived index exhibited concentration-dependent relationships for all of the chemicals tested. Furthermore, the phenotype profiles were characteristic of the different tested chemicals. Our results indicate that malformation phenotypes can be quantitatively integrated with the primary endpoints in conventional FETAX assessments to allow for increased sensitivity and measurement of quantitative effects and to provide indicative mechanistic information for each tested chemical. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Chemical effects induced by dissolving γ-irradiated alkali halides in aqueous nitrate, permanganate and chromate solutions

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Bapat, L.; Ravishankar, D.

    1982-01-01

    Dissolution of γ-irradiated alkali halides in aqueous solutions of sodium nitrate, potassium permanganate and potassium chromate at neutral pH induces chemical changes leading to the formation of NO 2 - in nitrate, Mn(IV) and Cr(III) species in permanganate and chromate solutions, respectively. Further, the studies on nitrate and permanganate systems show that the amount of NO 2 - and Mn(IV) formed grows by increasing the dose of γ-irradiation of the salt and the amount of irradiated salt. Moreover, the extent of chemical changes effected by irradiated chlorides has been found to be more than that of bromides. The mesh size of the irradiated salt and the presence of scavengers like I - and methanol in the system, affects the yield of NO 2 - . (author)

  3. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  4. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Strategy for control and integrated optimization of chemical processes; Estrategia para o controle e otimizacao integrada de processos quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Antonio Ignacio de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Quimica]. E-mail: ailac@vm.uff.br; Araujo, Ofelia de Queiroz Fernandes; Medeiros, Jose Luiz de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica]. E-mail: ofelia@eq.ufrj.br; jlm@eq.ufrj.br

    2004-12-01

    The increasingly market competitiveness, the frequent changes in costs of raw materials and imposition of environmental restrictions require quick responses from the industries and better control of their production. The growing increase of the computational systems processing capacity and advances in analysis and instrumentation systems favor the formulation of new strategies geared to the operational optimization of industrial processes. The optimization of a process, within a more rigid context, assumes that it is made through the optimal control theory. In this aspect, comparative studies are carried out between some formulations of the problem in terms of optimal control and a new methodology of economic optimization. The study process was a pyrolysis oven for which an economic function was developed. Such function considers the effects of the oven operation on the other subsequent parts of the Ethylene Plant, taking into account their energy consumptions and their operational restrictions. A rigorous thermal-dynamic analysis was made in the development thereof involving major parts of the product separation system upstream the oven. The results obtained met the expectations and the new optimization criterion tested can be implemented in a relatively simple computational system using personal computers currently available. Although the work is oriented towards the pyrolysis of hydrocarbons the proposed structure may be applied to other types of chemical and petrochemical processes with the same topology: a reaction system and a separation system. (author)

  6. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  7. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    evaluated the periportal fibrosis gene signature in the GEO dataset - GSE13747 [34]. In this dataset, liver fibrosis was induced by bile duct ...dataset, liver fibrosis was induced by bile duct ligation. Figure 10-D shows the observed correlation between log-ratios of periportal fibrosis...at 15 days of exposure obtained from TG-GATEs, and D) liver fibrosis produced by bile duct ligation obtained from GSE13747. doi:10.1371/journal.pone

  8. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    International Nuclear Information System (INIS)

    Moore, R.; Fondren, W.M.; Marcum, H.

    1987-01-01

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45 Ca 2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45 Ca 2+ . Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increase with (1) currents between 8-35 mA, and (2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that (1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, (2) exogenously induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, (3) the gravity-induced downward movement of exogenously-applied 45 Ca 2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, (4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca 2+ ) induces root curvature and (5) electrically-induced curvature is apparently dependent on auxin transport. These result are discussed relative to a model to account for the lack of graviresponsiveness by these roots

  9. Impact of a low intensity controlled-fire in some chemical soil properties.

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  10. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-01-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  11. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  12. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.

    Science.gov (United States)

    Gill, Rafaqat A; Zang, Lili; Ali, Basharat; Farooq, Muhammad A; Cui, Peng; Yang, Su; Ali, Shafaqat; Zhou, Weijun

    2015-02-01

    In nature, plants are continuously exposed to several biotic and abiotic stresses. Among these stresses, chromium (Cr) stress is one of the most adverse factors that affects the plant growth, and productivity, and imposes a severe threat for sustainable crop production. In the present study, toxic effects of Cr were studied in hydroponically grown seedlings of four different cultivars of Brassica napus L. viz. ZS 758, Zheda 619, ZY 50 and Zheda 622. The study revealed that elevated Cr concentrations reduced the plant growth rate and biomass as compared to respective controls in all the cultivars and this decline was more obvious in Zheda 622. It was observed that reduction of photosynthetic attributes was more pronounced in Zheda 622 as compared to other cultivars; while, cultivar ZS 758 performed better under Cr-toxicity. Results showed that Cr contents in different parts of seedlings were higher in Zheda 622 as compared to other cultivars and Cr contents were higher in roots than shoots in all the cultivars. Accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) were induced under different Cr concentrations. Results showed that some of anti-oxidant enzyme activities in leaves and roots were increased under the Cr-toxicity. The electron microscopic study showed that ultrastructural damages in leaf mesophyll and root tip cells were more prominent in Zheda 622 as compared to other cultivars under 400 μM Cr stress. Under 400 μM Cr concentration, changes like broken cell wall, immature nucleus, a number of mitochondria, ruptured thylakoid membranes and large size of vacuole and starch grains were observed in leaf ultrastructures. The damages in root cells were observed in the form of disruption of golgibodies and diffused cell wall under the higher concentration of Cr (400 μM). On the basis of these observations, it was concluded that Zheda 622 was found to be more sensitive as followed by ZY 50, Zheda 619 and ZS 758 under Cr-toxicity. Copyright

  13. A facile way to control phase of tin selenide flakes by chemical vapor deposition

    Science.gov (United States)

    Wang, Zhigang; Pang, Fei

    2018-06-01

    Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.

  14. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, A. [Institute of Nuclear Physics, Cracow (Poland)

    1997-12-31

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  15. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1997-01-01

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  16. A FLUORESCENCE-BASED SCREENING ASSAY FOR DNA DAMAGE INDUCED BY GENOTOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    The possibility of deliberate or accidental release of toxic chemicals in industrial, commercial or residential settings has indicated a need for rapid, cost-effective and versatile monitoring methods to prevent exposures to humans and ecosystems. Because many toxic industrial c...

  17. Optimizing chemically induced resistance in tomato against Botrytis cinerea

    DEFF Research Database (Denmark)

    Luna, Estrella; Beardon, Emily G; Ravnskov, Sabine

    2016-01-01

    repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified...

  18. COMPARISON OF CHEMICAL-INDUCED CHANGES IN PROLIFERATION AND APOPTOSIS IN HUMAN AND MOUSE NEUROPROGENITOR CELLS.

    Science.gov (United States)

    There is a need to develop rapid and efficient models for screening chemicals for their potential to cause developmental neurotoxicity. Use of in vitro neuronal models, including human cells, is one approach that allows for timely, cost-effective toxicity screening. The present s...

  19. Comparison of Chemical-induced Changes in Proliferation and Apoptosis in Human and Mouse Neuroprogenitor Cells.***

    Science.gov (United States)

    There is a need to develop rapid and efficient models to screen chemicals for their potential to cause developmental neurotoxicity. Use of in vitro neuronal models, including human cells, is one approach that allows for timely, cost-effective toxicity screening. The present study...

  20. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues

    Czech Academy of Sciences Publication Activity Database

    Blom, J. F.; Horňák, Karel; Šimek, Karel; Pernthaler, J.

    2010-01-01

    Roč. 12, č. 9 (2010), s. 2486-2495 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : aggregate formation * Sphingobium sp. * chemical cues * growth state Subject RIV: EE - Microbiology, Virology Impact factor: 5.537, year: 2010