WorldWideScience

Sample records for controlling air-fuel ratio

  1. Control device of air-fuel ratio of alcohol-gasoline mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuo

    1987-08-19

    Concerning alcohol-gasoline mixed fuel, even the same amount of the fuel shows different air-fuel ratio depending upon alcohol concentration in the fuel, accordingly it is required to know the alcohol concentration when it is intended to make the air-fuel ratio to be the same as the predetermined ratio. Although a sensor which can detect in quick response and exactly the alcohol concentration has not been developed, the alcohol concentration in gasoline can be detected by detecting the concentration of the water in exhaust gas and many hygrometers which can detect the concentration of the water with high precision are available. With regard to an internal combustion engine equipped with a fuel supply device in order to supply alcohol-gasoline mixed fuel into an engine suction passage, this invention offers an air-fuel ratio control device to control the amount of the fuel to be supplied from the fuel supply device by detecting the concentration of alcohol in the gasoline from among the output signals of the main hygrometer and the auxiliary hygrometer. The former hygrometer to detect the concentration of the water in the exhaust gas is set in the engine exhaust gas passage and the latter is installed to detect the concentration of the water in the air. (4 figs)

  2. Development of air fuel ratio sensor; A/F sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, T; Hori, M [Denso Corp., Aichi (Japan); Nakamura, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The Air Fuel Ratio Sensor (A/F sensor), which is applied to a 1997 model year Low Emission Vehicle (LEV) was developed. This sensor enables the detection of the exhaust gas air fuel ratio, both lean and rich of stoichiometric. It has an effective air fuel ratio range from 12 to 18 as required for LEV regulation. It has the fast light off, - within 20 seconds - to minimize exhaust hydrocarbon content. Further, it has fast response time, less than 200 msec, to improve the air fuel ratio controllability. 3 refs., 7 figs.

  3. Air/fuel ratio visualization in a diesel spray

    Science.gov (United States)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  4. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  5. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    Science.gov (United States)

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  6. Alternative Observers for SI Engine Air/Fuel Ratio Control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Poulsen, Jannik; Olsen, Mads Bruun

    1996-01-01

    In earlier work it has been shown that a nonlinear observer based on the use of the manifold pressure state equation and a nonlinear fuel film compensator can maintain accurate A/F ratio control during both steady state and transient operation. This observer may be called a manifold absolute pres...... engine control system designer with a variety of robust control systems which can easily be made redundant in order to satisfy newer engine emissions and diagnosis requirements and legislation...

  7. Fast predictive control for air-fuel ratio of SI engines using a ...

    African Journals Online (AJOL)

    In this paper MPC based on an adaptive neural network model is attempted for air fuel ratio (AFR), in which the model is adapted on-line to cope with nonlinear dynamics and parameter uncertainties. A radial basis function (RBF) network is employed and the recursive least squares (RLS) algorithm is used for weight ...

  8. Relations between Air-Fuel Ratio and Dynamic Performance of Small Race Cars

    OpenAIRE

    位田, 晴良; Ida, Haruyoshi; 漁, 佑一郎; Sunadori, Yuichiro; 牧田, 俊太郎; Makita, Syuntaro; 宮﨑, 真央; Miyazaki, Manaka; 磯松, 弥司; Isomatsu, Yatsuka

    2017-01-01

    'It goes without saying that engine output power characteristics greatly affect the dynamic performance of the race car. One of the methods of changing the output power of the engine is to adjust the set amount of fuel supply. This method changes the air-fuel ratio of the air fuel mixture supplied to the engine. In this study, a slalom test run of a small race car was used to examine dynamic performance with attention to the air-fuel ratio changed by adjusting the set amount of fuel supply. T...

  9. Process and device for automatic control of air ratio in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, F J; Holick, H

    1976-06-24

    The device concerns a process for the automatic control of the air ratio in combustion, by setting the fuel-air mixture for combustion depending on the air number lambda. The control of the air ratio of combustion engines is carried out using a zirconium dioxide measuring probe, which is situated in the exhaust gas. It is a disadvantage that this is only sensitive for an air number lambda of 1. In order to achieve control of the air ratio for air numbers greater or smaller than 1, according to the invention an auxiliary gas is mixed with the hot exhaust gas, or a component of the gas is withdrawn, so that a corrected exhaust gas flow is produced, whose air number is detected by the measuring sensor and controlled to a value of about 1. The auxiliary gas flow is chosen so that an air ratio differing from lambda equals 1 is formed when the air number of the corrected exhaust gas flow is regulated to a value of lambda equals 1 approximately. In order to keep the demand for auxiliary gas low, only part of the exhaust gas flow is used for the measurement. The exhaust gas part flow is kept constant while the auxiliary gas flow or the removed component of gas flow are altered. Hydrogen or oxygen are used as auxiliary gases, depending whether excess or reduced air is required. Instead of hydrogen, fuel or its combustion products can be used. According to the invention, the hydrogen or oxygen can be produced electrolytically. Dosing takes place by the current used for electrolysis.

  10. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    Science.gov (United States)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  11. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    Science.gov (United States)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  12. Air-fuel ratio control of a lean burn Si engine using fuzzy self tuning method

    International Nuclear Information System (INIS)

    Akhlaghi, M.; Bakhtiari Nejad, F.; Azadi, S.

    2000-01-01

    Reducing the exhaust emission of an spark ignition engine by means of engine modifications requires consideration of the effects of these modifications on the variations of crankshaft torque and the engine roughness respectively. Only if the roughness does not exceed a certain level the vehicle do not begin to surge. This paper presents a method for controlling the air-fuel ratio for a lean burn engine. Fuzzy rules and reasoning are utilized on-line to determine the control parameters. The main advantages of this method are simple structure and robust performance in a wide range of operating conditions. A non-linear model of an Si engine with the engine torque irregularity simulation is used in this study

  13. A Soft Sensor-Based Fault-Tolerant Control on the Air Fuel Ratio of Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Yu-Jia Zhai

    2017-01-01

    Full Text Available The air/fuel ratio (AFR regulation for spark-ignition (SI engines has been an essential and challenging control problem for engineers in the automotive industry. The feed-forward and feedback scheme has been investigated in both academic research and industrial application. The aging effect can often cause an AFR sensor fault in the feedback loop, and the AFR control performance will degrade consequently. In this research, a new control scheme on AFR with fault-tolerance is proposed by using an artificial neural network model based on fault detection and compensation, which can provide the satisfactory AFR regulation performance at the stoichiometric value for the combustion process, given a certain level of misreading of the AFR sensor.

  14. Temperature and air-fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Kaymaz, I.

    2005-01-01

    The most important thermodynamic property used in heat release calculations for engines is the specific heat ratio. The functions proposed in the literature for the specific heat ratio are temperature dependent and apply at or near stoichiometric air-fuel ratios. However, the specific heat ratio is also influenced by the gas composition in the engine cylinder and especially becomes important for lean combustion engines. In this study, temperature and air-fuel ratio dependent specific heat ratio functions were derived to minimize the error by using an equilibrium combustion model for burned and unburned mixtures separately. After the error analysis between the equilibrium combustion model and the derived functions is presented, the results of the global specific heat ratio function, as varying with mass fraction burned, were compared with the proposed functions in the literature. The results of the study showed that the derived functions are more feasible at lean operating conditions of a spark ignition engine

  15. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  16. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  17. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    Directory of Open Access Journals (Sweden)

    Nidhi Arora

    2013-07-01

    Full Text Available A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed in this paper to alleviate combustion process. The method involves recording the time-varying flow of fuel components in combustion chamber. A Fuzzy Neural Network is trained for around 40 fuels to ascertain the required amount of air to form a standard mix to produce non-harmful gases and about 12 fuels are used for testing the network’s performance. The network then adaptively determines the additional/subtractive amount of air required for proper combustion. Mean square error calculation ensures the effectiveness of the network’s performance.

  18. Mixing ratio sensor of alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-07

    In order to improve combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing and change the condition of control depending upon the mixing ratio of the mixed fuel. In order to detect the mixing ratio of the mixed fuel, the above mixing ratio has so far been detected by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, in case when a light emitting diode is used for the light source above, two kinds of sensors are further needed. Concerning the two kinds of sensors above, this invention offers a mixing ratio sensor for the alcohol mixed fuel which can abolish a temperature sensor to detect the environmental temperature by making a single compensatory light receiving element deal with the compensation of the amount of light emission of the light emitting element due to the temperature change and the compensation of the critical angle caused by the temperature change. (6 figs)

  19. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  20. Mixing ratio sensor for alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-24

    In order to improve the combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing. In order to detect the mixing ratio of the mixed fuel, a mixing ratio sensor has so far been proposed to detect the above mixing ratio by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, because of the arrangement of its transparent substance in the fuel passage with the sealing material in between, this sensor invited the leakage of the fluid due to deterioration of the sealing material, etc. and its cost became high because of too many parts to be assembled. In view of the above, in order to reduce the number of parts, to lower the cost of parts and the assembling cost and to secure no fluid leakage from the fuel passage, this invention formed the above fuel passage and the above transparent substance both concerning the above mixing ratio sensor in an integrated manner using light transmitting resin. (3 figs)

  1. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.

    Science.gov (United States)

    Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R

    2016-10-01

    Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.

  2. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2011-04-15

    Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air-fuel ratios at constant engine speed of 1500 rpm and P-{theta} diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are 'maximum rate of pressure rise' and 'COV of indicated mean effective pressure (IMEP)'. (author)

  3. Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint Transient Operation and Air-Fuel Ratio Control of Spark-Ignition Port-Injected Engines

    Directory of Open Access Journals (Sweden)

    Le Moyne L.

    2006-12-01

    Full Text Available Sur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre. Air-fuel ratio excursions are observed on port-injected spark ignition engines during transients. This excursions result from the liquid fuel film deposited on intake port. They can be compensated by controlling the injected fuel mass. In order to have the amount of fuel that keeps air-fuel ratio constant, we have developed a 2D model of flows in the intake port during engine cycle. This separate phases model describes the flow of fresh gases, injected droplets, hot burned gases and film on port walls. We show that the model effectively predicts the equivalence ratio and how it allows to eliminate excursions. Equivalence ratio measures are made with an oxygen sensor which functioning is validated during transients by correlating it to maximal pressure during engine cycle.

  4. Adaptive Control Using Fully Online Sequential-Extreme Learning Machine and a Case Study on Engine Air-Fuel Ratio Regulation

    Directory of Open Access Journals (Sweden)

    Pak Kin Wong

    2014-01-01

    Full Text Available Most adaptive neural control schemes are based on stochastic gradient-descent backpropagation (SGBP, which suffers from local minima problem. Although the recently proposed regularized online sequential-extreme learning machine (ReOS-ELM can overcome this issue, it requires a batch of representative initial training data to construct a base model before online learning. The initial data is usually difficult to collect in adaptive control applications. Therefore, this paper proposes an improved version of ReOS-ELM, entitled fully online sequential-extreme learning machine (FOS-ELM. While retaining the advantages of ReOS-ELM, FOS-ELM discards the initial training phase, and hence becomes suitable for adaptive control applications. To demonstrate its effectiveness, FOS-ELM was applied to the adaptive control of engine air-fuel ratio based on a simulated engine model. Besides, controller parameters were also analyzed, in which it is found that large hidden node number with small regularization parameter leads to the best performance. A comparison among FOS-ELM and SGBP was also conducted. The result indicates that FOS-ELM achieves better tracking and convergence performance than SGBP, since FOS-ELM tends to learn the unknown engine model globally whereas SGBP tends to “forget” what it has learnt. This implies that FOS-ELM is more preferable for adaptive control applications.

  5. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    Science.gov (United States)

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  6. Study of fuel control strategy based on an fuel behavior model for starting conditions; Nenryo kyodo model ni motozuita shidoji no nenryo hosei hosho ni tsuite no kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Uchida, M; Iwano, H; Oba, H [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have applied a fuel behavior model to a fuel injection system which we call SOFIS (Sophisticated and Optimized Fuel Injection System) so that we get air/fuel ratio control accuracy and good driveability. However the fuel behavior under starting conditions is still not clear. To meet low emission rules and to get better driveability under starting conditions, better air/fuel ratio control is necessary. Now we have understood the ignition timing, injection timing, and injection pulse width required in such conditions. In former days, we analyzed the state of the air/fuel mixture under cold conditions and made a new fuel behavior model which considered fuel loss such as hydrocarbons and dissolution into oil and so on. Al this time, we have applied this idea to starting. We confirm this new model offers improved air/fuel ratio control. 6 refs., 9 figs., 3 tabs.

  7. The influence of air-fuel ratio on mixture parameters in port fuel injection engines

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2008-10-01

    Full Text Available Nowadays, research in the internal combustion engine field is focusing on detailed understanding of the processes that take place in certain parts of the aggregate, and can have a great influence on the engine’s performance and pollution levels. Such research is developed in this paper, in which using a numerical method based on the i-x air-fuel diagram, one can simulate a series of values for pressure, temperature and intake air humidity before and after mixture formation takes place in a spark ignition engine inlet port. The aim is to evaluate the final temperature of the air-fuel mixture near the inlet valve and evaluating the main factors of influence on the homogeneity of the mixture.

  8. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions

    International Nuclear Information System (INIS)

    Kim, Bosung; Cha, Dowon; Kim, Yongchan

    2015-01-01

    Highlights: • Effects of controlling parameters on the transient response of a PEMFC are studied. • The transient response is measured by varying air stoichiometry and air excess ratio. • Voltage drop, undershoot, and voltage fluctuation are analyzed under the load change. • Optimal air stoichiometry and air excess ratio are suggested for stable operation. - Abstract: The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell performance under load change conditions. The transient response of a PEMFC was measured and analyzed by varying air stoichiometry, air humidity, and air excess ratio (AER). The optimal air stoichiometry and AER were determined to minimize the voltage drop, undershoot, and voltage fluctuation under the load change, while maintaining high cell performance. Based on the present data, the optimal air stoichiometry was determined to be between 2.0 and 2.5, and the optimal AER was suggested to be between 1.65 and 2.0

  9. Estimation of Individual Cylinder Air-Fuel Ratio in Gasoline Engine with Output Delay

    Directory of Open Access Journals (Sweden)

    Changhui Wang

    2016-01-01

    Full Text Available The estimation of the individual cylinder air-fuel ratio (AFR with a single universal exhaust gas oxygen (UEGO sensor installed in the exhaust pipe is an important issue for the cylinder-to-cylinder AFR balancing control, which can provide high-quality torque generation and reduce emissions in multicylinder engine. In this paper, the system dynamic for the gas in exhaust pipe including the gas mixing, gas transport, and sensor dynamics is described as an output delay system, and a new method using the output delay system observer is developed to estimate the individual cylinder AFR. With the AFR at confluence point augmented as a system state, an observer for the augmented discrete system with output delay is designed to estimate the AFR at confluence point. Using the gas mixing model, a method with the designed observer to estimate the individual cylinder AFR is presented. The validity of the proposed method is verified by the simulation results from a spark ignition gasoline engine from engine software enDYNA by Tesis.

  10. Modeling and control of a proton exchange membrane fuel cell with the air compressor according to requested electrical current

    Directory of Open Access Journals (Sweden)

    Malekbala Mohammad Rahim

    2015-01-01

    Full Text Available The aim of this paper is to design and investigate the dynamic behavior of a PEM fuel cell system. Dynamic analysis of a PEM fuel cell system has been done in Matlab\\Simulink software according to electrical current that has been applied from hybrid system. In addition, dynamical fuel cell system has been explained according to oriented control that is started from air injection compressor model. Also hydrogen valve actuator has been controlled according to the compressor model. The results of the fuel cell dynamic model as well as the applied compressor model are fully validated based on the available results in the open literature. Finally, the effects of several operating parameters of the fuel cell system such as anode and cathode pressures, cell voltage, compressor voltage, compressor mass flow rate variation with respect to inlet pressure ratio, net and stack powers on the dynamic behavior of the hybrid system are investigated. The results show that the model can predict the dynamic behavior of the fuel cell system accurately and it can be used directly for any control purposes.

  11. Development of an engine control system using city gas and biogas fuel mixture

    International Nuclear Information System (INIS)

    Yamasaki, Yudai; Kanno, Masanobu; Suzuki, Yoshitaka; Kaneko, Shigehiko

    2013-01-01

    Highlights: ► The gas engine control system was developed using both city gas and biogas flexibly. ► The developed control system corporates with an original controller. ► The target value of O 2 emission is decided by Wobbe index of mixture fuel and load. ► The controller achieved stable operation for fuel mix ratio and load changing. -- Abstract: In this paper, a gas engine system capable of stable operation at any mix ratio of city gas 13A and biogas was developed. The gas engine system consists of a spark-ignition gas engine, an additional electric throttle valve for fuel and our own control algorithm. The engine is a 3-cylinder 1.6-l engine that was originally used for co-generation, and the fuel throttle valve was added to respond to different fuel compositions. The control algorithm was also designed to adjust the fuel and air ratio to attain a higher generation efficiency and lower NOx emission with different mix ratios of city gas 13A, biogas and load. Before developing the controller, the effect of the mix ratio on generation efficiency and NOx emission was investigated under various load conditions. The following summarizes the experimental results: a control algorithm using the Wobbe index for mixed fuels was formulated; this index determines the target fuel-to-air ratio. Next, operation tests were performed under varying fuel mix ratios and loads by applying the control algorithm to the gas engine. The target engine rotational speed and exhaust O 2 concentration was realized in 5 s when the biogas fraction varied from 20% to 40% and from 70% to 40%. When the load was also varied from 9.4 kW to 0.5 kW and from 0.5 kW to 9.4 kW at a constant rate, the rotational speed and exhaust O 2 concentration achieved the target values in 20 s. Under both transient operation conditions, the engine system met the NOx emission requirement, and the results indicate that the simple hardware modification to a conventional gas engine and our original control

  12. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    Science.gov (United States)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  13. Engine combustion control at low loads via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  14. Engine combustion control at low loads via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage

    2017-12-26

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  15. Project of multiple controller models for the maintenance of air/fuel ratio in natural gas internal combustion motors; Projeto de controladores multiplos modelos para manutencao da relacao ar/combustivel em motores de combustao interna movidos a gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Junior, Fernando Sousa e; Fleury, Agenor de Toledo [Sao Paulo Univ. SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mails: ffreitas@usp.br; agfleury@ipt.br

    2006-07-01

    The objective of this work is the study of advanced control techniques for the reduction of pollutant gases generated by internal combustion engines powered by natural gas. In this paper three techniques are applied to control the fuel injection and the ignition timing: the Generalized Predictive Control (GPC), the Linear Quadratic Regulator (LQR) and H{infinity} Control by Linear Matrix Inequalities (LMI). To each one of those techniques were developed a multiple model structure seeking to include the vast operation region of the engine. The controller's performance is measured by the efficiency in maintaining the fuel/air ratio around 1% of maximum deviation in relation to the stoichiometric value. The results show the possibility of controlling pollutant emission generated by this kind of engine to conform to international emission standards, improving life quality. (author)

  16. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  17. Pressurized solid oxide fuel cell integral air accumular containment

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  18. Commercial jet fuel quality control

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  19. Numerical simulation of fuel mixing with air in laminar buoyant vortex rings

    International Nuclear Information System (INIS)

    Prasad, M. Jogendra; Sundararajan, T.

    2016-01-01

    Highlights: • At large Reynolds number, small vortex ring is formed due to thin boundary layer. • At higher stroke to diameter ratio, larger vortex is formed which travels farther. • After formation, trailing stem transfers circulation and fuel to the ring by buoyancy. • Formation number of buoyant vortex ring is higher than that of non-buoyant ring. • Buoyant fuel puffs entrain more air than non-buoyant air-premixed fuel puffs. - Abstract: The formation and evolution of vortex rings consisting of methane-air mixtures have been numerically simulated for different stroke to diameter (L/D) ratios (1.5, 3.5 and 6), Reynolds numbers (1000 and 2000) and initial mixture compositions (fuel with 0%, 15% and 30% of stoichiometric air). The numerical simulations are first validated by comparing with the results of earlier computational studies and also with in-house data from smoke visualization studies. In pure methane case, buoyancy significantly aids the upward rise of the vortex ring. The increase of vortex core height with time is faster for larger L/D ratio, contributed mainly by the larger initial puff volume. The radial size of the vortex also increases rapidly with time during the formation stage; this is followed by a slight shrinkage when piston comes to a stop. Later, a slow radial growth of the ring occurs due to the entrainment of ambient air, except during vortex pinch-off. The boundary layer thickness δ_e at orifice exit decreases as Re"−"0"."5 at a fixed L/D ratio; this in turn, results in a vortex of smaller size and circulation level, at a relatively higher Reynolds number. For L/D values greater than the critical value, a trailing stem is formed behind the ring vortex which feeds circulation and fuel into the vortex ring in the later stages of vortex evolution. Mass fraction contours indicate that fuel-air mixing is more effective within the vortex than in the stem. Ambient air entrainment is larger at higher L/D ratio and lower Re, for the

  20. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  1. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  2. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  3. Oxygen-to-metal ratio control during fabrication of mixed oxide fast breeder reactor fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; Jentzen, W.R.; McCord, R.B.

    1979-05-01

    Oxygen-to-metal ratio (O/M) of mixed oxide fuel pellets can be controlled during fabrication by proper selection of binder (type and content) and sintering conditions. Sintering condition adjustments involved the passing of Ar--8% H 2 sintering gas across a cryostat ice bath controlled to temperatures ranging from -5 to -60 0 C to control as-sintered pellet O/M ratio. As-sintered fuel pellet O/M decreased with increasing Sterotex binder and PuO 2 concentrations, increasing sintering temperature, and decreasing sintering gas dew point. Approximate relationships between Sterotex binder level and O/M were established for PuO 2 --UO 2 and PuO 2 --ThO 2 fuels. O/M was relatively insensitive to Carbowax binder concentration. Several methods of increasing O/M using post-sintering pellet heat treatments were demonstrated, with the most reliable being a two-step process of first raising the O/M to 2.00 (stoichiometric) at 650 0 C in Ar--8% H 2 bubbled through H 2 O, followed by hydrogen reduction to specification O/M in oxygen-gettered Ar-8% H 2 at temperatures ranging from 1200 to 1690 0 C

  4. A phenomenological model of two-phase (air/fuel droplet developing and breakup

    Directory of Open Access Journals (Sweden)

    Pavlović Radomir R.

    2013-01-01

    Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.

  5. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  6. Toxic and hazardous air pollutants from co-firing biomass fuels, fossil fuels, MSW and RDF

    International Nuclear Information System (INIS)

    Junge, D.C.

    1991-01-01

    Toxic and hazardous pollutants are defined and then are considered from the perspective of pollutants which enter the combustion process with the fuel (principally the metals and metallic compounds) and pollutants which are formed as products of incomplete combustion. Control strategies are reviewed through the entire process including fuel preparation and storage, combustion control and the application of air pollution control devices. Measurement techniques for specific toxic and hazardous air pollutants are discussed

  7. Controlled shutdown of a fuel cell

    Science.gov (United States)

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  8. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  9. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium-low loads

    DEFF Research Database (Denmark)

    Zhao, Sinan; Fang, Qingyan; Yin, Chungen

    2017-01-01

    Due to the rapidly growing renewable power, the fossil fuel power plants have to be increasingly operated under large and rapid load change conditions, which can induce various challenges. This work aims to reduce NOx emissions of large-scale corner-fired boilers operated at medium–low loads....... The combustion characteristics and NOx emissions from a 1000 MWe corner-fired tower boiler under different loads are investigated experimentally and numerically. A new control strategy for the annular fuel air is proposed and implemented in the boiler, in which the secondary air admitted to the furnace through...... the air annulus around each coal nozzle tip is controlled by the boiler load, instead of being controlled by the output of the connected mill as commonly used in this kind of power plant. Both the experimental and simulation results show that the new control strategy reduces NOx emissions at the entrance...

  10. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  11. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  12. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  13. Dynamic Thermal Model And Control Of A Pem Fuel Cell System

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2013-01-01

    the fuel cell system. A PID temperature control is implemented to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. The model allows an assessment of the effect of operating parameters (stack...... power output, cooling water flow rate, air flow rate, and environmental temperature) and parameter interactions on the system thermal performance. The model represents a useful tool to determine the operating temperatures of the various components of the thermal system, and thus to fully assess......A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study...

  14. Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor

    Science.gov (United States)

    Regitz, S.; Collings, N.

    2008-07-01

    A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50-100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ~20 ms and enables cyclic AFR measurements for engine speeds of up to ~4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented.

  15. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  16. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Cheng; Ouyang, Minggao [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); Yi, Baolian [Dalian Institute of Chemical Physics, CAS, Dalian 116023 (China)

    2006-06-01

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control. (author)

  17. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    Science.gov (United States)

    Bao, Cheng; Ouyang, Minggao; Yi, Baolian

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control.

  18. An Investigation of the Composition of the Flow in and out of a Two-Stroke Diesel Engine and Air Consumption Ratio

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2017-06-01

    Full Text Available The aim of this research was to investigate the mass, substance and energy flow through two-stroke low speed Diesel engines. For this reason, a zero-dimensional model of the combustion in the engine was developed with a calculated amount and composition of exhaust gases. Due to the large amount of oxygen in the exhaust gases, a ratio of real air consumption and stoichiometric amount of air required for combustion of injected fuel was set. The calculated ratio showed that the engine consumed four times more air than needed for combustion in AFRstoich. In this work, this was called the Air Consumption Factor or Ratio, and has not previously been mentioned in scientific literature. The air consumption ratio is defined as a factor of dry or humid air. To be more comprehensive, a modified diagram of the composition of the flow in and out of a two-stroke fuel injection engine and the cylinder was made.

  19. Air-cooled, hydrogen-air fuel cell

    Science.gov (United States)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  20. Comparison of Fuel-Nox Formation Characteristics in Conventional Air and Oxy fuel Combustion Conditions

    International Nuclear Information System (INIS)

    Woo, Mino; Park, Kweon Ha; Choi, Byung Chul

    2013-01-01

    Nitric oxide (NO x ) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of co flow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the NO x emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the NO x emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the NO x emission in the condition of oxy fuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of NO x formation for various oxidizer compositions, 1a and 2a numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2 simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured NO x emissions

  1. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  2. A Lambda Control Observer With Fault Correction

    DEFF Research Database (Denmark)

    Vigild, Christian; Struwe, Michael; Jensen, Per Buchbjerg

    1998-01-01

    bandwidth. It seldom exceeds 2 Hz. This is altogether too small for accurate transient air/fuel ratio control. This paper presents a new lambda (normalized air/fuel ratio) control methodology based on a time delay observer. This technique makes possible a significant increase of the lambda control bandwidth...

  3. Optimal robust control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  4. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...... in CTS spectra have been suggested as the basis for a new fuel ion ratio diagnostic which would be well suited for reactor environments and capable of providing spatially resolved measurements in the plasma core. Such measurements were demonstrated in recent experiments in the TEXTOR tokamak. Here we...... conduct a sensitivity study to investigate the potential measurement accuracy of a CTS fuel ion ratio diagnostic on ITER. The study identifies regions of parameter space in which CTS can be expected to provide useful information on plasma composition, and we find that a CTS fuel ion ratio diagnostic could...

  5. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  6. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.

  7. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    Science.gov (United States)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  8. Interim results from UO2 fuel oxidation tests in air

    International Nuclear Information System (INIS)

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j.

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO 2 , fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO 2 pellets in the temperature range of 135 to 250 0 C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10 5 R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10 5 R/h gamma field. 33 refs., 51 figs., 6 tabs

  9. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  10. Analysis of the moderating ratio in BWR fuels

    International Nuclear Information System (INIS)

    Gomez, A.; Xolocostli, V.; Alonso, G.

    2001-01-01

    In all different light water nuclear reactors is very important the fuel assembly design. It has to be designed to achieve safety and efficiency performance in an economical way. The moderating ratio plays a very important role because an adequate election can provide an optimal energy production making the fuel assembly more efficient. This work analyze the moderation ratio as a function of the fuel assembly enrichment and ifs burnup, based on this study the optimal moderation ratio are obtained. Furthermore, based on numerical relations some simulation schemes are proposed to describe the behavior of the infinite multiplication factor as a function of the moderating ratio for a given fuel assembly enrichment at zero burnup. (Author)

  11. Thorium utilization: conversion ratio and fuel needs in thermal reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1975-01-01

    As a preparatory study for thorium utilization in thermal reactors a study has been made of the fuel comsumption in existing reactor types. A quantitative description is given of the influence of enrichment, burnup, amount of structural material, choise of coolant and control requirements on the convertion ratio. The enrichment is an important factor and a low fuel comsumption can be achieved by increasing the enrichment

  12. Air quality effects of alternative fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  13. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  14. Air/fuel supply system for use in a gas turbine engine

    Science.gov (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  15. Analysis of an employment of a gear ratio rate in CVT control system

    Science.gov (United States)

    Grzegożek, W.; Szczepka, M.

    2016-09-01

    Continuously variable transmissions(CVTs) potentially ensure the selection of such a gear ratio that scooter fuel consumption can reach minimum value. Traditionally these CVT gearboxes are mechanically controlled, causing a gear ratio to be an engine revs function. This solution does not ensure optimum gear ratio. In this paper the solution for fuel optimal control problem is presented. The results obtained during brake stand research of scooter powertrains show the significant values of brake specific fuel consumption for the velocity that is maximum for a scooter according to highway code. With the introduction of CVT gearbox in which the selection of gear ratio can be controlled according to the worked out strategy the solution for fuel consumption problem is possible. Electromechanical actuators ensure the selection of a gear ratio independently of engine revs. Such type of construction solution makes working out the suitable control strategy that ensures decreasing of scooter fuel consumption possible. Presented strategies do not use precise optimization techniques. The CVT efficiency has a strong influence on transient operation. In the paper the control strategy owing to which fuel consumption decreases by over 40% is presented. The strategy was worked out on the basis of fuel consumption map for a defined scooter exploitation model. The possibilities of realization of the worked out strategy were tested on the brake test stand.

  16. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  17. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  18. Instrumentation of cars for fuel economy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J E

    1982-04-01

    The development of an electronic system to control the air-fuel ratio (A/F) and ignition timing of an internal combustion engine to optimize fuel economy is described. Dynamometer and drive cycle testing of the system was performed. The results showed that a significant improvement in fuel economy can be achieved by a control system of the type developed. It is clear, however, that considerably more work needs to be done. One area mentioned is the need for more systematic fuel economy testing against speed and load as control parameters are varied for optimization, and a more economic air bypass system must be developed. (LCL)

  19. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    Ren Qisen; Liu Tong; Sheng Guofu

    2012-01-01

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  20. A design study of high breeding ratio sodium cooled metal fuel core without blanket fuels

    International Nuclear Information System (INIS)

    Kobayashi, Noboru; Ogawa, Takashi; Ohki, Shigeo; Mizuno, Tomoyasu; Ogata, Takanari

    2009-01-01

    The metal fuel core is superior to the mixed oxide fuel core because of its high breeding ratio and compact core size resulting from hard neutron spectrum and high heavy metal densities. Utilizing these characteristics, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void worth of less than 8 $, a core height of less than 150 cm, the maximum cladding temperature of 650degC, and the maximum fuel pin bundle pressure drop of 0.4 MPa. The breeding ratio of the resultant core was 1.34 with 6wt% zirconium content fuel. Applying 3wt% zirconium content fuel enhanced the breeding ratio up to 1.40. (author)

  1. Clean/alternative fueled fleet programs - 1990 Amendments to the Clean Air Act, the Colorado Air Pollution Prevention and Control Act, and Denver City and County regulations

    International Nuclear Information System (INIS)

    Bowles, S.L.; Manderino, L.A.

    1993-01-01

    Despite substantial regulations for nearly two decades, attainment of this ambient standards for ozone and carbon monoxide (CO) remain difficult goals to achieve, Even with of ozone precursors and CO. The 1990 Amendments to the Clean Air Act (CAA90) prescribe further reductions of mobile source emissions. One such reduction strategy is using clean fuels, such as methanol, ethanol, or other alcohols (in blends of 85 percent or more alcohol with gasoline or other fuel), reformulated gasoline or diesel, natural gas, liquified petroleum gas, hydrogen, or electricity. There are regulatory measures involving special fuels which will be required in areas heavily polluted with ozone and CO. The state of Colorado recently passed the 1992 Air Pollution Prevention and Control Act which included provisions for the use of alternative fuels which will be implemented in 1994. In addition to adhering to the Colorado state regulations, the city and county of Denver also have regulations pertaining to the use of alternative fuels in fleets of 10 or more vehicles. Denver's program began in 1992. This paper will address the issue of fleet conversion and its impact on industry in Colorado, and Denver in particular

  2. INTERACTION OF AIR TRANSPORTATION AND FUEL-SUPPLY COMPANIES

    Directory of Open Access Journals (Sweden)

    I. P. Zheleznaya

    2014-01-01

    Full Text Available The article describes the role of aviation fuel in the life of air transport. Fueling industry worldwide solves two main tasks - ensuring the safety and economy of air traffic. In Russia, there is one more task of airlines fuel supply. The article deals with fuel pricing taking into consideration today's realities.

  3. Non-linear model reduction and control of molten carbonate fuel cell systems with internal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Min

    2007-10-12

    resulting reduced order model is of considerably lower order than the detailed model and requires much less computation time. It is used for the development of a model based control strategy in Chapter 5. The purpose of control is to guarantee a fast and safe dynamic response of the fuel cell system during load changes; an optimal steady state electric efficiency is also desired. Taking both considerations a control strategy with three main loops is designed. The first loop is composed of a master controller that imposed a load change and sets fuel gas, the steam to carbon ratio, air number and cathode gas recycle ratio to their corresponding conditions for optimal steady state electric efficiency. The other two loops are feedback PID controllers that for given temperature limits (maximum temperature and maximum temperature difference) respond by changing the air ratio and steam to carbon ratio around the default sets by the master controller. It turns out that for load changes, the PID controllers can successfully take the maximum temperatures as well as the spatial temperature differences to their desired set-points. In cases, where the maximum temperature and the maximum temperature difference cannot be measured directly, the proposed control scheme has to be combined with a state estimator. A suitable state estimator is developed based on the reduced-order model and the control strategy with the observer shows reasonable results. (orig.)

  4. Air pollution control. 3. ed.

    International Nuclear Information System (INIS)

    Baumbach, G.; Baumann, K.; Droescher, F.; Gross, H.; Steisslinger, B.

    1994-01-01

    Controlling the pollution of the air is an interdisciplinary problem. This introduction reaches from the origin of hazardous substances via their extension and conversion in the atmosphere, their effects of men, animals, plants and goods up to reduction methods for the various sources. Measuring techniques are one of the main points of interest, as it plays a key role in detecting hazardous substances and monitoring reduction measures. A survey of the history shows the historical dimension of the subject. The prescriptions relating to air pollution control give an impression of the present situation of air pollution control. Currently existing problems such as waste gases from motor vehicles, SO 2 transports, ozone in the ambient air, newly detected sorts of damage to the forests, emission reduction in the burning of fossile fuels, polychloried dibenzodioxins and furanes are dealt with. (orig.). 232 figs [de

  5. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  6. Fuelling clean air : municipal fuel purchasing policies that reduce emissions contributing to poor air quality and climate change

    International Nuclear Information System (INIS)

    Perrotta, K.

    2003-03-01

    Air quality can be improved by low sulphur fuels in two ways: through the direct reduction of sulphates, sulphur dioxide and PM; and by improving the effectiveness of existing emission control devices. This report examined three case studies involving the fuel purchasing policies in three Ontario municipalities: Toronto, Waterloo, and Brampton. Toronto favors purchasing conventional fuels with lower sulphur levels. Waterloo will purchase on-road diesel for its off-road diesel fleet; ultra low sulphur diesel (ULSD) for buses; and 10 per cent ethanol blended with 90 per cent gasoline (E10) for its gasoline-fuelled fleet. Brampton purchased 20 per cent biodiesel blended with 80 per cent on-road diesel (B20). Two approaches were examined for lowering emissions from gasoline fuelled vehicles: favouring gasoline with the lowest sulphur levels, and purchasing E10. It was recommended that the Greater Toronto Area (GTA) Clean Air Council look into: ownership of emissions trading credits created as a result of fuel purchasing policies; the benefits of, and mechanisms available for, pooling fuel purchases; and, establishing a subcommittee to monitor developments related to fuels, vehicles and emission control technologies. 48 refs., 18 tabs

  7. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  8. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Science.gov (United States)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  9. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  10. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  11. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  12. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  13. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  14. Advanced air staging techniques to improve fuel flexibility, reliability and emissions in fluidized bed co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aamand, Lars-Erik; Leckner, Bo [Chalmers Technical Univ., Goeteborg (Sweden); Luecke, Karsten; Werther, Joachim [Technical Univ. of Hamburg-Harburg (Germany)

    2001-12-01

    A joint research project between the Technical University of Hamburg-Harburg and Chalmers Technical University. For operation under co-combustion the following results should be considered: The high ash content of the sewage sludge results in significantly increased ash flows. Although high alkali metal concentrations are found in the sewage sludge ash, no critical concentrations were reached and tendencies to fouling were not observed. The trace metal input rises with increased sludge fraction. However, emissions of metal compounds were well below legal limits. The trace metals tend to accumulate on the fly ash. In general, very low fuel nitrogen conversions to NO and N{sub 2}O of 2 - 4 % are achievable. With coal as a base fuel alternative air staging with secondary air supply after solids separation attains even lower NO emissions than normal staging without strongly affecting CO and SO{sub 2} emissions. Alternative staging also reduces N{sub 2}O emissions. An optimum for the excess air ratio in the riser of 1.05 was found for a total excess air ratio of 1.2. The higher the volatile content of the fuel is, the less effective the NO reduction due to air staging becomes. The measurements suggest that the optimum gas residence time regarding the emissions in CFB combustors is around 6 to 7 s. These times are achieved in commercial scale plants due to their large cyclones that perhaps partly can replace a large afterburner chamber. The circulating fluidized bed boiler can be operated in a very flexible way with various fuel mixtures up to an energy fraction of sludge of 25% without exceeding legal emission limits.

  15. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Fernández-Moreno, J.; Guelbenzu, G.; Martín, A.J.; Folgado, M.A.; Ferreira-Aparicio, P.; Chaparro, A.M.

    2013-01-01

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H 2 . - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm −2 ) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H 2 . An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  16. chemical determination of burnup ratio in nuclear fuels

    International Nuclear Information System (INIS)

    Guereli, L.

    1997-01-01

    Measurements of the extent of fission are important to determine the irradiation performance of a nuclear fuel. The energy released per unit mass of uranium (burnup) can be determined from measurement of the percent of heavy atoms that have fissioned during irradiation.The preferred method for this determination is choosing a suitable fission monitor (usually ''1''4''8Nd) and its determination after separation from the fuel matrix. In thermal reactor fuels where the only heavy element in the starting material is uranium, uranium depletion can be used for burnup determination. ''2''3''5U depletion method requires measurement of uranium isotopic ratios of both irradiated and unirradiated fuel. Isotopic ratios can be determined by thermal ionization mass spectrometer following separation of uranium from the fuel matrix. Separation procedures include solvent extraction, ion exchange and anion exchange chromatography. Another fission monitor used is ''1''3''9La determination by HPLC. Because La is monoisotopic (''1''3''9La) in the fuel, it can be determined by chemical analysis techniques

  17. Control of air toxics

    International Nuclear Information System (INIS)

    Livengood, C.D.

    1995-01-01

    For more than 10 years, Argonne National Laboratory has supported the US DOE's Flue Gas Cleanup Program objective by developing new or improved environmental controls for industries that use fossil fuels. Argonne's pollutant emissions research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing, to pilot-scale field tests of several technologies. The work on air toxics is currently divided into two components: Investigating measures to improve the removal of mercury in existing pollution-control systems applied to coal combustion; and, Developing sensors and control techniques for emissions found in the textile industry

  18. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  19. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  20. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  1. The role of transportation control measures in California's air pollution control strategy

    International Nuclear Information System (INIS)

    Guensler, R.; Burmich, P.; Geraghty, A.

    1992-01-01

    In California, significant progress has been made to control emissions from industrial sources as well as from motor vehicles. Nonetheless, policy analysts still debate over whether it makes sense to control motor vehicle emissions through legislated reductions in vehicle use, especially when new vehicle emission standards are becoming even more stringent in California. In this paper, the emission reduction benefits of California's new low-emission vehicles and clean fuels program are reviewed. The air quality management plans of three major metropolitan areas in California are examined, to identify emission reductions needed to meet federal and state air quality standards. For each of these three areas, emission reductions expected from transportation control measure implementation are presented. Then, the extent to which the reductions are open-quotes significantclose quotes and relied upon in each of the local attainment efforts is analyzed. The emission reductions expected from the stringent exhaust emission standards of California's new low-emission vehicles and clean fuels program will not be sufficient to meet mandated clean air standards in the study areas. Based upon our review, transportation control measures appear to be necessary components of the air quality management plans in California's major metropolitan areas. The paper concludes that cost-effective transportation control measures (TCMs) will be needed as a complementary strategy to California's stringent tail-pipe standards in moderate to extreme nonattainment areas

  2. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels

    International Nuclear Information System (INIS)

    Benajes, Jesús; Molina, Santiago; García, Antonio; Monsalve-Serrano, Javier

    2015-01-01

    Highlights: • E85 requires notable lower premixed energy ratios to achieve a stable combustion. • E10-95 leads to shorter and advanced combustion with higher maximum RoHR peaks. • E20-95, E10-98 and E10-95 reach EURO VI NOx and soot levels for all the engine loads. • E10-95 allows a significant reduction in HC and CO emissions. - Abstract: This work investigates the effects of the direct injection timing and blending ratio on RCCI performance and engine-out emissions at different engine loads using four low reactivity fuels: E10-95, E10-98, E20-95 and E85 (port fuel injected) and keeping constant the same high reactivity fuel: diesel B7 (direct injected). The experiments were conducted using a heavy-duty single-cylinder research diesel engine adapted for dual-fuel operation. All the tests were carried out at 1200 rpm. To assess the blending ratio effect, the total energy delivered to the cylinder coming from the low reactivity fuel was kept constant for the different fuel blends investigated by adjusting the low reactivity fuel mass as required in each case. In addition, a detailed analysis of the air/fuel mixing process has been developed by means of a 1-D in-house developed spray model. Results suggest that notable higher diesel amount is required to achieve a stable combustion using E85. This fact leads to higher NOx levels and unacceptable ringing intensity. By contrast, EURO VI NOx and soot levels are fulfilled with E20-95, E10-98 and E10-95. Finally, the higher reactivity of E10-95 results in a significant reduction in CO and HC emissions, mainly at low load

  3. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    Science.gov (United States)

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  4. Forecasting Air Traffic and corresponding Jet-Fuel Demand until 2025

    International Nuclear Information System (INIS)

    Cheze, Benoit; Gastineau, Pascal; Chevallier, Julien

    2010-01-01

    This paper provides i) air traffic and ii) Jet-Fuel demand projections at the worldwide level and for eight geographical zones until 2025. The general methodology may be summarized in two steps. First, air traffic forecasts are estimated using econometric methods. The modeling is performed for eight geographical zones, by using dynamic panel-data econometrics. Once estimated from historical data, the model is then used to generate air traffic forecasts. Second, the conversion of air traffic projections into quantities of Jet-Fuel is accomplished using the 'Traffic Efficiency' method developed previously by UK DTI to support the IPCC (IPCC (1999)). One of our major contribution consists in proposing an alternative methodology to obtain Energy Efficiency coefficients and energy efficiency improvements estimates based on modeling at the macro-level. These estimates are obtained by directly comparing the evolution of both Jet-Fuel consumption and air traffic time series from 1983 to 2006. According to our 'Business As Usual' scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of about 4.7%. World Jet-Fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of about 1, 9% per year. Air traffic energy efficiency improvements yield effectively to reduce the effect of air traffic rise on the Jet-Fuel demand increase, but do not annihilate it. Thus, Jet- Fuel demand is unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted. (authors)

  5. Air quality assessment in Delhi: before and after CNG as fuel.

    Science.gov (United States)

    Chelani, Asha B; Devotta, Sukumar

    2007-02-01

    A number of policy measures have been activated in India in order to control the levels of air pollutants such as particulate matter, sulphur dioxide (SO(2)) and nitrogen dioxide (NO(2)). Delhi, which is one of the most polluted cities in the world, is also going through the implementation phase of the control policies. Ambient air quality data monitored during 2000 to 2003, at 10 sites in Delhi, were analyzed to assess the impact of implementation of these measures, specifically fuel change in vehicles. This paper presents the impact of policy measures on ambient air quality levels and also the source apportionment. CO and NO(2) concentration levels in ambient air are found to be associated with the mobile sources. The temporal variation of air quality data shows the significant effect of shift to CNG (Compressed Natural Gas) in vehicles.

  6. Design Optimization of a Micro-Combustor for Lean, Premixed Fuel-Air Mixtures

    Science.gov (United States)

    Powell, Leigh Theresa

    Present technology has been shifting towards miniaturization of devices for energy production for portable electronics. Micro-combustors, when incorporated into a micro-power generation system, provide the energy desired in the form of hot gases to power such technology. This creates the need for a design optimization of the micro-combustor in terms of geometry, fuel choice, and material selection. A total of five micro-combustor geometries, three fuels, and three materials were computationally simulated in different configurations in order to determine the optimal micro-combustor design for highest efficiency. Inlet velocity, equivalence ratio, and wall heat transfer coefficient were varied in order to test a comprehensive range of micro-combustor parameters. All simulations completed for the optimization study used ANSYS Fluent v16.1 and post-processing of the data was done in CFD Post v16.1. It was found that for lean, premixed fuel-air mixtures (φ = 0.6 - 0.9) ethane (C 2H6) provided the highest flame temperatures when ignited within the micro-combustor geometries. An aluminum oxide converging micro-combustor burning ethane and air at an equivalence ratio of 0.9, an inlet velocity of 0.5 m/s, and heat transfer coefficient of 5 W/m2-K was found to produce the highest combustor efficiency, making it the optimal choice for a micro-combustor design. It is proposed that this geometry be experimentally and computationally investigated further in order to determine if additional optimization can be achieved.

  7. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  8. Climate and air quality trade-offs in altering ship fuel sulfur content

    Science.gov (United States)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  9. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  10. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  11. Control system and method for a power delivery system having a continuously variable ratio transmission

    Science.gov (United States)

    Frank, Andrew A.

    1984-01-01

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

  12. Study on Air-cooled Self-humidifying PEMFC Control Method Based on Segmented Predict Negative Feedback Control

    International Nuclear Information System (INIS)

    Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng

    2014-01-01

    In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot

  13. The influence of droplet evaporation on fuel-air mixing rate in a burner

    Science.gov (United States)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  14. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ...The EPA is announcing two public hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''), which will be published separately in the Federal Register. The hearings will be held in Philadelphia, PA on April 24, 2013 and in Chicago, IL on April 29, 2013. The comment period for the proposed rulemaking will end on June 13, 2013.

  15. Investigation of the Behavior of Fuel in the Intake Manifold and its Relation to S. I. Engines, 1980-1983

    Science.gov (United States)

    Servati, Hamid Beyragh

    A liquid fuel film formation on the walls of an intake manifold adversely affects the engine performance and alters the overall air/fuel ratio from that scheduled by a fuel injector or carburetor and leads to adverse effects in vehicle driveability, exhaust emissions, and fuel economy. In this dissertation, the intake manifold is simulated by a horizontal circular duct. A model is provided to predict the rate of deposition and evaporation of the droplets in the intake manifold. The liquid fuel flow rate into the cylinders, mean film velocity and film thickness are determined as functions of engine parameters for both steady and transient operating conditions of the engine. A mathematical engine model is presented to simulate the dynamic interactions of the various engine components such as the air/fuel inlet element, intake manifold, combustion, dynamics and exhaust emissions. Inputs of the engine model are the intake manifold pressure and temperature, throttle angle, and air/fuel ratio. The observed parameters are the histories of fuel film thickness and velocity, fuel consumption, engine speed, engine speed hesitation time, and histories of CO, CO(,2), NO(,x), CH(,n), and O(,2). The effects of different air/fuel ratio control strategies on engine performance and observed parameters are also shown.

  16. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    International Nuclear Information System (INIS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V; Lempert, Walter R

    2010-01-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ∼ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  17. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  18. Porous fuel air mixing enhancing nozzle (PFAMEN)

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; Luijten, C.C.M.; Frijters, P.J.M.; Goey, de L.P.H.

    2009-01-01

    One of the challenges with conventional diesel engines is the emission of soot. To reduce soot emission whilst maintaining fuel efficiency, an important pathway is to improve the fuel-air mixing process. This can be achieved by creating small droplets in order to enhance evaporation. Furthermore,

  19. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  20. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0 2 ) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations

  1. Combustion engine. [for air pollution control

    Science.gov (United States)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  2. Performance analysis of air-standard Diesel cycle using an alternative irreversible heat transfer approach

    International Nuclear Information System (INIS)

    Al-Hinti, I.; Akash, B.; Abu-Nada, E.; Al-Sarkhi, A.

    2008-01-01

    This study presents the investigation of air-standard Diesel cycle under irreversible heat transfer conditions. The effects of various engine parameters are presented. An alternative approach is used to evaluate net power output and cycle thermal efficiency from more realistic parameters such as air-fuel ratio, fuel mass flow rate, intake temperature, engine design parameters, etc. It is shown that for a given fuel flow rate, thermal efficiency and maximum power output increase with decreasing air-fuel ratio. Also, for a given air-fuel ratio, the maximum power output increases with increasing fuel rate. However, the effect of the thermal efficiency is limited

  3. Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control

    International Nuclear Information System (INIS)

    Hsi, C.-L.; Kuo, J.-T.

    2008-01-01

    Estimating solid residue gross burning rate and heating value burning in a power plant furnace is essential for adequate manipulation to achieve energy conversion optimization and plant performance. A model based on conservation equations of mass and thermal energy is established in this work to calculate the instantaneous gross burning rate and lower heating value of solid residue fired in a combustion chamber. Comparing the model with incineration plant control room data indicates that satisfactory predictions of fuel burning rates and heating values can be obtained by assuming the moisture-to-carbon atomic ratio (f/a) within the typical range from 1.2 to 1.8. Agreement between mass and thermal analysis and the bed-chemistry model is acceptable. The model would be useful for furnace fuel and air control strategy programming to achieve optimum performance in energy conversion and pollutant emission reduction

  4. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  5. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    Science.gov (United States)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  6. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  7. An application of indirect model reference adaptive control to a low-power proton exchange membrane fuel cell

    Science.gov (United States)

    Yang, Yee-Pien; Liu, Zhao-Wei; Wang, Fu-Cheng

    2008-05-01

    Nonlinearity and the time-varying dynamics of fuel cell systems make it complex to design a controller for improving output performance. This paper introduces an application of a model reference adaptive control to a low-power proton exchange membrane (PEM) fuel cell system, which consists of three main components: a fuel cell stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system perspective, the dynamic model of the PEM fuel cell stack can be expressed as a multivariable configuration of two inputs, hydrogen and air-flow rates, and two outputs, cell voltage and current. The corresponding transfer functions can be identified off-line to describe the linearized dynamics with a finite order at a certain operating point, and are written in a discrete-time auto-regressive moving-average model for on-line estimation of parameters. This provides a strategy of regulating the voltage and current of the fuel cell by adaptively adjusting the flow rates of air and hydrogen. Experiments show that the proposed adaptive controller is robust to the variation of fuel cell system dynamics and power request. Additionally, it helps decrease fuel consumption and relieves the DC/DC converter in regulating the fluctuating cell voltage.

  8. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    Science.gov (United States)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  9. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  10. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  11. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  12. A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

    DEFF Research Database (Denmark)

    Jensen, P. B.; Olsen, M. B.; Poulsen, J.

    1997-01-01

    The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control.......The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control....

  13. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  14. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    Science.gov (United States)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  15. A study on the amount of pilot injection and its effects on rich and lean boundaries of the premixed CNG/air mixture for a CNG/diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang Lin; Wanhua Su [Tianjin University (China). State Key Laboratory of Engines

    2003-07-01

    A sequential port injection, lean-burn, fully electronically-controlled compressed natural gas (CNG)/diesel dual-fuel engine has been developed based on a turbo-charged and inter-cooled direct injection (D.I.) diesel engine. During the optimisation of engine overall performance, the effects of pilot diesel and premixed CNG/air mixture equivalence ratio on emissions (CO, HC, NO{sub x}, soot), knocking, misfire and fuel economy are studied. The rich and lean boundaries of the premixed CNG/air mixture versus engine load are also provided, considering the acceptable values of NO{sub x} and THC emissions, respectively. It is interesting to find that there is a critical amount of pilot diesel for each load and speed point, which proved to be the optimum amount of pilot fuel. Any decrease in the amount of pilot diesel from this optimum amount results in an increase of NO{sub x} emissions, because the premixed CNG/air mixture must be made richer, otherwise THC emissions would increase. However, the soot emissions remain almost unchanged at a very low level. (author)

  16. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  17. Spent fuel treatment to allow storage in air

    International Nuclear Information System (INIS)

    Williams, K.L.

    1988-01-01

    During Fiscal Year 1987 (FY-87), research began at the Idaho National Engineering Laboratory (INEL) to develop a treatment material and process to coat fuel rods in commercial spent fuel assemblies to allow the assemblies to be stored in hot (up to 380 0 C) air without oxidation of the fuel. This research was conducted under a research and development fund provided by the U.S. Department of Energy (DOE) and independently administered by EG and G Idaho, Inc., DOE's prime contractor at the INEL. The objectives of the research were to identify and evaluate possible treatment processes and materials, identify areas of uncertainty, and to recommend the most likely candidate to allow spent fuel dry storage in hot air. The results of the research are described: results were promising and several good candidates were identified, but further research is needed to examine the candidates to the point where comparison is possible

  18. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    Science.gov (United States)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  19. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  20. Assessment of environmentally friendly fuel emissions from in-use vehicle exhaust: low-blend iso-stoichiometric GEM mixture as example.

    Science.gov (United States)

    Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel

    2017-05-01

    Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend

  1. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    Science.gov (United States)

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  2. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  3. Air Quality and Acute Respiratory Illness in Biomass Fuel using homes in Bagamoyo, Tanzania

    Directory of Open Access Journals (Sweden)

    Satoshi Nakai

    2007-03-01

    Full Text Available Respiratory Diseases are public health concern worldwide. The diseases have been associated with air pollution especially indoor air pollution from biomass fuel burning in developing countries. However, researches on pollution levels and on association of respiratory diseases with biomass fuel pollution are limited. A study was therefore undertaken to characterize the levels of pollutants in biomass fuel using homes and examine the association between biomass fuel smoke exposure and Acute Respiratory Infection (ARI disease in Nianjema village in Bagamoyo, Tanzania. Pollution was assessed by measuring PM10, NO2, and CO concentrations in kitchen, living room and outdoors. ARI prevalence was assessed by use of questionnaire which gathered health information for all family members under the study. Results showed that PM10, NO2, and CO concentrations were highest in the kitchen and lowest outdoors. Kitchen concentrations were highest in the kitchen located in the living room for all pollutants except CO. Family size didn’t have effect on the levels measured in kitchens. Overall ARI prevalence for cooks and children under age 5 making up the exposed group was 54.67% with odds ratio (OR of 5.5; 95% CI 3.6 to 8.5 when compared with unexposed men and non-regular women cooks. Results of this study suggest an association between respiratory diseases and exposure to domestic biomass fuel smoke, but further studies with improved design are needed to confirm the association.

  4. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.M.; Tomita, E.; Kawahara, N.; Harada, Y.; Sakane, A. [Okayama University, Okayama (Japan). Dept. of Mechanical Engineering

    2009-12-15

    This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.

  5. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  6. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  7. Monte Carlo simulation of the effect of miniphantom on in-air output ratio

    International Nuclear Information System (INIS)

    Li Jun; Zhu, Timothy C.

    2010-01-01

    Purpose: The aim of the study was to quantify the effect of miniphantoms on in-air output ratio measurements, i.e., to determine correction factors for in-air output ratio. Methods: Monte Carlo (MC) simulations were performed to simulate in-air output ratio measurements by using miniphantoms made of various materials (PMMA, graphite, copper, brass, and lead) and with different longitudinal thicknesses or depths (2-30 g/cm 2 ) in photon beams of 6 and 15 MV, respectively, and with collimator settings ranging from 3x3 to 40x40 cm 2 . EGSnrc and BEAMnrc (2007) software packages were used. Photon energy spectra corresponding to the collimator settings were obtained from BEAMnrc code simulations on a linear accelerator and were used to quantify the components of in-air output ratio correction factors, i.e., attenuation, mass energy absorption, and phantom scatter correction factors. In-air output ratio correction factors as functions of miniphantom material, miniphantom longitudinal thickness, and collimator setting were calculated and compared to a previous experimental study. Results: The in-air output ratio correction factors increase with collimator opening and miniphantom longitudinal thickness for all the materials and for both energies. At small longitudinal thicknesses, the in-air output ratio correction factors for PMMA and graphite are close to 1. The maximum magnitudes of the in-air output ratio correction factors occur at the largest collimator setting (40x40 cm 2 ) and the largest miniphantom longitudinal thickness (30 g/cm 2 ): 1.008±0.001 for 6 MV and 1.012±0.001 for 15 MV, respectively. The MC simulations of the in-air output ratio correction factor confirm the previous experimental study. Conclusions: The study has verified that a correction factor for in-air output ratio can be obtained as a product of attenuation correction factor, mass energy absorption correction factor, and phantom scatter correction factor. The correction factors obtained in the

  8. Air Pollution Prevention and Control Policy in China.

    Science.gov (United States)

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  9. Cell pairing ratio controlled micro-environment with valve-less electrolytic isolation

    KAUST Repository

    Chen, Yu-Chih

    2012-01-01

    We present a ratio controlled cell-to-cell interaction chip using valve-less isolation. We incorporated electrolysis in a microfluidic channel. In each microfluidic chamber, we loaded two types of different cells at various pairing ratios. More than 80% of the microchambers were successfully loaded with a specific target pairing ratio. For the proof of concept, we have demonstrated the cell-to-cell interaction between prostate cancer cells and muscle stem cells can be controlled by cell pairing ratios through growth factor secretion. The experimental data shows that sealing of microenvironment by air generated from electrolysis does not affect cell viability and cell interaction assay results. © 2012 IEEE.

  10. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  11. Effects of alternative-fuel vehicles on air quality in Ontario, Canada

    International Nuclear Information System (INIS)

    Kantor, I.; Fowler, M.; Hajimiragha, A.; Canizares, C.; Elkamel, A.

    2009-01-01

    The economies of the developed world are increasingly including green technologies and processes that consider social, environmental and economic consequences. Hybrid electric vehicles and other fuel-efficient vehicle types can supply consumers with vehicles that decrease their ecological footprint and reduce the cost of fuel. However, one of the societal concerns often overlooked is the impact of alternative-fuel vehicle usage on the air quality in the urban environment. This paper presented a study that assessed the impact on air quality stemming from the operation of alternative fuel vehicles in urban environments. The study specifically focused on the province-wide emissions in Ontario and urban air pollution in the city of Toronto. The paper considered the life-cycle impacts of using alternative fuels for transportation purposes in terms of six major stressors for climate change, acidification and urban air quality. The two types of vehicles that were studied were plug-in hybrid electric vehicles (PHEVs) and fuel cell vehicles. Modeling of the penetration rates for both types of vehicles was completed based on the maximum capacity of the electrical grid including planned improvements. The scope of the study and discussion of health effects was first presented followed by data gathering and usage, methodology, results of supportable penetration and vehicle growth, and pollution abatement results. It was concluded that fuel cell vehicles have an advantage over, or near-equality with, PHEVs in almost every aspect of their emissions. 13 refs., 2 tabs., 10 figs

  12. Allowable spent LWR fuel storage temperatures in inert gases, nitrogen, and air

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Cunningham, M.E.; Simonen, E.P.; Thomas, L.E.; Campbell, T.K.; Barnhart, D.M.

    1990-01-01

    Spent fuel in inert dry storage is now a reality in the US; recommended maximum temperature-time conditions are specified in an IBM PC-compatible code. However, spent fuel cannot yet be stored in air because the data and theory needed for predicting allowable temperatures are still being developed. Tests to determine the behavior of spent UO 2 fragments and breached rod specimens in air are providing data that will be used to determine the temperatures that can be allowed for fuel stored in air. 13 refs., 5 figs

  13. Interactive Effect of Air-Water Ratio and Temperature on the Air ...

    African Journals Online (AJOL)

    Windows User

    KEYWORDS: Interactive effect, air-water ratio, temperature, volatile organic compounds, removal efficiency. [Received ... The rate of mass transfer of a VOC from wastewater to the ... where ΔHo is heat of evaporation of 1 mole of component.

  14. 76 FR 29180 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Science.gov (United States)

    2011-05-20

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen Oxides Emissions From... Pennsylvania. This revision pertains to the control of nitrogen oxide (NO X ) emissions from Portland cement... oxidation of chemically-bound nitrogen in the fuel and by thermal fixation of nitrogen in the combustion air...

  15. Higher fuel prices are associated with lower air pollution levels.

    Science.gov (United States)

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Development of the novel control algorithm for the small proton exchange membrane fuel cell stack without external humidification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Sang-Hyun; Kim, Wook; Lee, Jong-Hak; Cho, Kwan-Seok; Choi, Woojin [Department of Electrical Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Park, Kyung-Won [Department of Chemical/Environmental Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea)

    2010-09-15

    Small PEM (proton exchange membrane) fuel cell systems do not require humidification and have great commercialization possibilities. However, methods for controlling small PEM fuel cell stacks have not been clearly established. In this paper, a control method for small PEM fuel cell systems using a dual closed loop with a static feed-forward structure is defined and realized using a microcontroller. The fundamental elements that need to be controlled in fuel cell systems include the supply of air and hydrogen, water management inside the stack, and heat management of the stack. For small PEM fuel cell stacks operated without a separate humidifier, fans are essential for air supply, heat management, and water management of the stack. A purge valve discharges surplus water from the stack. The proposed method controls the fan using a dual closed loop with a static feed-forward structure, thereby improving system efficiency and operation stability. The validity of the proposed method is confirmed by experiments using a 150-W PEM fuel cell stack. We expect the proposed algorithm to be widely used for controlling small PEM fuel cell stacks. (author)

  17. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-08-01

    Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.

  18. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    Seki, Yoshitatsu

    1976-01-01

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  19. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  20. Improving indoor air quality for poor families: a controlled experiment in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, S. (World Bank. Research-DECRG/Ru, Washington DC (United States)); Wheeler, D. (Center for Global Development, Washington DC (United States)); Huq, M. (Development Policy Group, Dhaka (Bangladesh)); Khaliquzzaman, M. (World Bank, Dhaka (Bangladesh))

    2009-02-15

    The World Health Organization's 2004 Global and Regional Burden of Disease Report estimates that acute respiratory infections from indoor air pollution (pollution from burning wood, animal dung, and other bio-fuels) kill a million children annually in developing countries, inflicting a particularly heavy toll on poor families in South Asia and Africa. This paper reports on an experiment that studied the use of different fuels in conjunction with different combinations of construction materials, space configurations, cooking locations, and household ventilation practices (use of doors and windows) as potentially-important determinants of indoor air pollution. Results from controlled experiments in Bangladesh were analyzed to test whether changes in these determinants can have significant effects on indoor air pollution. Analysis of the data shows, for example, that pollution from the cooking area is transported into living spaces rapidly and completely. Furthermore, it is important to factor in the interaction between outdoor and indoor air pollution. Hence, the optimal cooking location should take 'seasonality' in account. Among fuels, seasonal conditions seem to affect the relative severity of pollution from wood, dung, and other biomass fuels. However, there is no ambiguity about their collective impact. All are far dirtier than clean (LPG and Kerosene) fuels. The analysis concludes that if cooking with clean fuels is not possible, then building the kitchen with permeable construction material and providing proper ventilation in cooking areas will yield a better indoor health environment. (au)

  1. Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia

    Science.gov (United States)

    Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo

    2018-04-01

    Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.

  2. Controlling fuel costs: Procurement strategies and regulatory standards

    International Nuclear Information System (INIS)

    Einhorn, H.A.; Levi, B.I.

    1992-01-01

    Since the oil price shocks and inflation of the 1970s, regulatory authorities and utilities have devoted considerable attention to controlling energy costs while maintaining reliable service. Although much of this concern has been directed towards capital cost containment, increasing scrutiny has been applied to a broad range of variable costs, especially to fuel procurement expenditures. With some 40% to 65% of the electric utility industry's annual operation and maintenance expenses paid to secure fuel supplies, even a small difference in fuel costs could have a substantial impact on costs to ratepayers. This increased attention to fuel cost containment can be expected to intensify as implementation of the 1990 amendments to the Clean Air Act affects fuel purchase decisions. To assure that fuel is purchased in a responsible and cost-effective manner, some state jurisdictions have initiated periodic reviews (audits) of the procurement practices that electric utilities follow when purchasing fuel. While a utility must demonstrate how it purchases fuel, there is wide variation in interest and scope of audits among jurisdictions. In this paper, the authors review: (1) the regulatory environment within which fuel procurement and audits occur, and (2) some particularly controversial issues that will receive increasing attention as the practice of conducting fuel procurement audits spreads

  3. The indicative effects of inefficient urban traffic flow on fuel cost and exhaust air pollutant emissions

    CSIR Research Space (South Africa)

    Moselakgomo, M

    2015-07-01

    Full Text Available Poor urban traffic management such as poor intersection controls, congestions, illegal roadway blockages and construction works causes “stop-go” driving conditions with excessive idling resulting in wasted fuel and increased air pollutant emissions...

  4. Engine control system having fuel-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  5. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures

    International Nuclear Information System (INIS)

    Uyumaz, Ahmet

    2015-01-01

    Highlights: • Combustion was retarded with the increase of the amount of isopropanol and n-butanol in the test fuels. • Combustion was advanced with the increase of air inlet temperature on HCCI combustion. • Isopropanol seems more suitable fuel due to controlling the HCCI combustion and preventing knocking. • Almost zero NO emissions were measured when alcohol used except for n-heptane and B20 test fuels. - Abstract: An experimental study was conducted in a single cylinder, four stroke port injection Ricardo Hydra test engine in order to determine the effects of pure n-heptane, the blends of n-heptane and n-butanol fuels B20, B30, B40 (including 20%, 30%, 40% n-butanol and 80%, 70%, 60% n-heptane by vol. respectively) and the blends of n-heptane and isopropanol fuels P20, P30, P40 (including 20%, 30%, 40% isopropanol and 80%, 70%, 60% n-heptane by vol. respectively) on HCCI combustion. Combustion and performance characteristics of n-heptane, n-butanol and isopropanol were investigated at constant engine speed of 1500 rpm and λ = 2 in a HCCI engine. The effects of inlet air temperature were also examined on HCCI combustion. The test results showed that the start of combustion was advanced with the increasing of inlet air temperature for all test fuels. Start of combustion delayed with increasing percentage of n-butanol and isopropanol in the test fuels. Knocking combustion was seen with B20 and n-heptane test fuels. Minimum combustion duration was observed in case of using B40. Almost zero NO emissions were measured with test fuels apart from n-heptane and B20. The test results also showed that CO and HC emissions decreased with the increase of inlet air temperature for all test fuels. Isopropanol showed stronger resistance for knocking compared to n-butanol in HCCI combustion due to its higher octane number. It was determined that n-butanol was more advantageous according to isopropanol as thermal efficiency. As a result it was found that the HCCI

  6. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  7. Spent Fuel Ratio Estimates from Numerical Models in ALE3D

    Energy Technology Data Exchange (ETDEWEB)

    Margraf, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunn, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-02

    Potential threat of intentional sabotage of spent nuclear fuel storage facilities is of significant importance to national security. Paramount is the study of focused energy attacks on these materials and the potential release of aerosolized hazardous particulates into the environment. Depleted uranium oxide (DUO2) is often chosen as a surrogate material for testing due to the unreasonable cost and safety demands for conducting full-scale tests with real spent nuclear fuel. To account for differences in mechanical response resulting in changes to particle distribution it is necessary to scale the DUO2 results to get a proper measure for spent fuel. This is accomplished with the spent fuel ratio (SFR), the ratio of respirable aerosol mass released due to identical damage conditions between a spent fuel and a surrogate material like depleted uranium oxide (DUO2). A very limited number of full-scale experiments have been carried out to capture this data, and the oft-questioned validity of the results typically leads to overly-conservative risk estimates. In the present work, the ALE3D hydrocode is used to simulate DUO2 and spent nuclear fuel pellets impacted by metal jets. The results demonstrate an alternative approach to estimate the respirable release fraction of fragmented nuclear fuel.

  8. Cruising in afterburner: Air force fuel use and emerging energy policy

    International Nuclear Information System (INIS)

    Lucia, David J.

    2011-01-01

    Operational and mission efficiency were estimated for Air Force fighters, bombers and transports from fuel use data from 2001 through 2008 as reported in the Air Force Total Cost of Ownership (AFTOC) database. This analysis estimated efficiency in terms of the best performance theoretically possible for each platform based upon the energy available in the fuel expended. Operational efficiency considered aircraft operations in general, without regard for the type of mission. Mission efficiency only considered use of allocated fuel for combat (non-training) sorties. The cost associated with fuel inefficiency of the combined fighter, bomber and tanker force were estimated based on the fiscal year 2008 costs of fuel, fully burdened to include the cost of aerial refueling. The total cost of operational inefficiency was estimated at $5 billion per year. The fully burdened cost of mission inefficiency added an additional $3.6 billion for a total per year cost estimate of $8.6 billion. This represents 21.5% of the $40 billion portion of the 2009 budget dedicated to modernization. A business case for force-structure change is presented, which describes how these cost savings can be leveraged for modernization. - Highlights: → I assess how efficiently the United States Air Force uses fuel for aviation. → I estimate the cost associated with fuel inefficiency. → Improved technology can dramatically improve fuel efficiency. → There is potentially a large cost savings associated with improved fuel efficiency. → I present a business case to leverage this cost savings for modernization.

  9. PARAMETERS OF AIR FIRED BOILER FED WITH DIFFERENT TYPES OF FUEL

    Directory of Open Access Journals (Sweden)

    Katarzyna Joanna Gładyszewska-Fiedoruk

    2016-09-01

    Full Text Available The measurement and interpretation of indoor carbon dioxide CO2 concentration can provide information on building indoor air quality and ventilation. On the other hand, concentration of carbon monoxide CO can show as how combustion process run and if the boiler is safe. When there is not sufficient air available to complete the combustion process, some of the fuel is left unburned, resulting in inefficiency and undesirable emissions. An examination of the CO2 and CO concentration in boiler and interpretation results help to improve indoor air quality. The paper presents characteristics of concentration CO2 and CO depend on used fuel in tested boiler rooms. The concentration curves show how each fuel combustion affect the amount of CO2 and CO that is produced.

  10. Air quality and use of natural gas fuels: Assessment of improvement

    International Nuclear Information System (INIS)

    Riva, A.; Andreetto, B.

    1992-01-01

    This paper describes the application of the ARICOM code in the evaluation of air pollution and air quality in the Italian district of Verona. The study compared the environmental effects resulting from the use of natural gas, diesel fuels and fuel oils in a variety of real and simulated consumption schemes involving different mixes of fuels for space heating, automobile operation and industrial processes. The Verona district was divided into one square kilometer sections and the exhaust emission data were utilized in a dispersion model to calculate ground level pollution concentration levels. Real condition scenario pollution concentration levels calculated with this code were validated by actual measurements taken with an air quality monitoring network. The results evidenced the reduction in sulfur oxide pollution levels which can be obtained with the increased use of natural gas

  11. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  12. Indoor air pollution from unprocessed solid fuels in developing countries.

    Science.gov (United States)

    Kaplan, Charlotte

    2010-01-01

    Approximately half of the world's population relies on biomass (primarily wood and agricultural residues) or coal fuels (collectively termed solid fuels) for heating, lighting, and cooking. The incomplete combustion of such materials releases byproducts with well-known adverse health effects, hence increasing the risk of many diseases and death. Among these conditions are acute respiratory infections, chronic obstructive pulmonary disease, heart disease, stroke, lung cancer, cataracts and blindness, tuberculosis, asthma, and adverse pregnancy outcomes. The International Agency for Research on Cancer has classified the indoor combustion of coal emissions as Group 1, a known carcinogen to humans. Indoor air pollution exposure is greatest in individuals who live in rural developing countries. Interventions have been limited and show only mixed results. To reduce the morbidity and mortality from indoor air pollution, countermeasures have to be developed that are practical, efficient, sustainable, and economical with involvement from the government, the commercial sector, and individuals. This review focuses on the contribution of solid fuels to indoor air pollution.

  13. Wideband SI Engine Lambda Control

    DEFF Research Database (Denmark)

    Jensen, Per Buchbjerg; Olsen, Mads Bruun; Poulsen, Jannik

    1998-01-01

    Long term control of the AFR (Air/Fuel Ratio) of spark ignition engines is currently accomplished with a self-oscialling PI control loop. Because of the intake/exhaust time delay, the oscillation frequency and hence bandwidth of this loop is small. This paper describes a new approach to the desig...

  14. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  15. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  16. Fuel savings through air management optimization; Kraftstoffeinsparung durch Optimierung der Drucklufterzeugung und -aufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Wilken, Christoph; Son, Frank van [WABCO, Hannover (Germany)

    2009-07-01

    Fuel prices, vehicles' total cost of ownership, CO2 reductions by further environmental regulations become more and more a major driver for the development of energy efficient products, operating in a commercial vehicle. By example for the delivery and management of compressed air in a commercial vehicle, a compressor and an electronic controlled air processing unit (WABCO E-APU) are able to contribute a significant impact on energy savings, once through the way of creating compressed air and secondly by intelligent control of the compressor and the pressure levels, through an E-APU. Starting with the generation of compressed air, WABCO offers different systems with varying influence on the vehicle's fuel consumption. Today's conventional compressor systems in Europe are mostly equipped with WABCO PR (Power Reduction) System, reducing the energy consumption of the compressor in its idle phases. Further reduction of energy consumption during compressor idling is given by the usage of clutch principles, where the energy consumption during theses idle phases is greatly reduced. Next step to reduce also the energy consumption during compressor on-load phases, was the development of the WABCO two stage compressors which are using, compared to conventional one stage compressors, a more energy efficient way of compressing the needed air. Most effective intelligent air management systems include a compressor, associated with an electronic controlled air processing system (WABCO E-APU). By performing intelligent regeneration and keeping the compressor line plus cartridge pressurized during compressor idling, it is possible to utilize shortest overrun phases for pumping compressed air into the system and herewith generate additional energy savings. In near future, more and more hybrid vehicles with high voltage systems will enter the market, the WABCO electronic driven compressor (e-comp) stands for the best choice. It runs at different speeds, independent of

  17. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  18. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  19. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.

    Science.gov (United States)

    Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J

    2017-08-25

    The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  1. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  2. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  3. Advanced engine management of individual cylinders for control of exhaust species

    Science.gov (United States)

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  4. Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method

    International Nuclear Information System (INIS)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2007-01-01

    For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

  5. Solid oxide fuel cells and hydrogen production

    International Nuclear Information System (INIS)

    Dogan, F.

    2009-01-01

    'Full text': A single-chamber solid oxide fuel cell (SC-SOFC), operating in a mixture of fuel and oxidant gases, provides several advantages over the conventional SOFC such as simplified cell structure (no sealing required). SC-SOFC allows using a variety of fuels without carbon deposition by selecting appropriate electrode materials and cell operating conditions. The operating conditions of single chamber SOFC was studied using hydrocarbon-air gas mixtures for a cell composed of NiO-YSZ / YSZ / LSCF-Ag. The cell performance and catalytic activity of the anode was measured at various gas flow rates. The results showed that the open-circuit voltage and the power density increased as the gas flow rate increased. Relatively high power densities up to 660 mW/cm 2 were obtained in a SC-SOFC using porous YSZ electrolytes instead of dense electrolytes required for operation of a double chamber SOFC. In addition to propane- or methane-air mixtures as a fuel source, the cells were also tested in a double chamber configuration using hydrogen-air mixtures by controlling the hydrogen/air ratio at the cathode and the anode. Simulation of single chamber conditions in double chamber configurations allows distinguishing and better understanding of the electrode reactions in the presence of mixed gases. Recent research efforts; the effect of hydrogen-air mixtures as a fuel source on the performance of anode and cathode materials in single-chamber and double-chamber SOFC configurations,will be presented. The presentation will address a review on hydrogen production by utilizing of reversible SOFC systems. (author)

  6. Political economy of low sulfurization and air pollution control policy in Japan : SOx emission reduction by fuel conversion

    OpenAIRE

    Terao, Tadayoshi

    2013-01-01

    In the early stages of the development of Japan’s environmental policy, sulfur oxide (SOx) emissions, which seriously damage health, was the most important air pollution problem. In the second half of the 1960s and the first half of the 1970s, the measures against SOx emissions progressed quickly, and these emissions were reduced drastically. The most important factor of the reduction was the conversion to a low-sulfur fuel for large-scale fuel users, such as the electric power industry. Howe...

  7. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  8. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Liu, Yan; Lei, Fulin; Xiao, Yunhan

    2014-01-01

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH ∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NO x and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NO x but lower CO emissions, while the increase of equivalence ratio led to the increase of NO x and the decrease of CO emissions

  9. Modelling for Fuel Optimal Control of a Variable Compression Engine

    OpenAIRE

    Nilsson, Ylva

    2007-01-01

    Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...

  10. Tamanu oil. An alternative fuel for variable compression ratio engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Mohan T. [SASTRA Univ., Thanjavur, Tamilnadu (India). Dept. of Mechanical Engineering; Kandasamy, Murugumohan Kumar K. [Pavendar Bharathidasan College of Engineering and Technology, Trichy, Tamilnadu (India). Dept. of Mechanical Engineering

    2012-11-01

    Biodiesel can be produced from vegetable oils and also from waste fats. Biodiesel is a monoalkyl- ester of long chain fatty acids derived from renewable feedstock such as vegetable oils by transesterification process. The esterified cotton seed oil, pungam oil, rice bran oil, and tamanu oil are chosen as the alternative fuels. Among these oils, tamanu oil is considered for the first time as an alternative fuel. An experiment is conducted to obtain the operating characteristics of the variable compression ratio (VCR) engine run by chosen esterified oils, and the results are compared with esterified tamanu oil. From the comparison of results, it is inferred that the engine performance is improved with significant reduction in emissions for the chosen oils without any engine modification. The effective compression ratio can be fixed based on the experimental results obtained in the engine since the findings of the present research work infer that the biodiesel obtained from tamanu oil is a promising alternative fuel for direct-injection four-stroke VCR engine. (orig.)

  11. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  12. A comparative study of emission motorcycle with gasoline and CNG fuel

    Science.gov (United States)

    Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.

    2016-03-01

    A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline

  13. Results of Am isotopic ratio analysis in irradiated MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shin-ichi; Osaka, Masahiko; Mitsugashira, Toshiaki; Konno, Koichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kajitani, Mikio

    1997-04-01

    For analysis of a small quantity of americium, it is necessary to separate from curium which has similar chemical property. As a chemical separation method for americium and curium, the oxidation of americium with pentavalent bismuth and subsequent co-precipitation of trivalent curium with BIP O{sub 4} were applied to analyze americium in irradiated MOX fuels which contained about 30wt% plutonium and 0.9wt% {sup 241}Am before irradiation and were irradiated up to 26.2GWd/t in the experimental fast reactor Joyo. The purpose of this study is to measure isotopic ratio of americium and to evaluate the change of isotopic ratio with irradiation. Following results are obtained in this study. (1) The isotopic ratio of americium ({sup 241}Am, {sup 242m}Am and {sup 243}Am) can be analyzed in the MOX fuels by isolating americium. The isotopic ratio of {sup 242m}Am and {sup 243}Am increases up to 0.62at% and 0.82at% at maximum burnup, respectively, (2) The results of isotopic analysis indicates that the contents of {sup 241}Am decreases, whereas {sup 242m}Am, {sup 243}Am increase linearly with increasing burnup. (author)

  14. Influence of oxygen-metal ratio on mixed-oxide fuel performance

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Leggett, R.D.

    1979-04-01

    The fuel oxygen-to-metal ratio (O/M) is recognized as an important consideration for performance of uranium--plutonium oxide fuels. An overview of the effects of differing O/M's on the irradiation performance of reference design mixed-oxide fuel in the areas of chemical and mechanical behavior, thermal performance, and fission gas behavior is presented. The pellet fuel has a nominal composition of 75 wt% UO 2 + 25 wt% PuO 2 at a pellet density of approx. 90% TD. for nominal conditions this results in a smeared density of approx. 85%. The cladding in all cases is 20% CW type 316 stainless steel with an outer diameter of 5.84 to 6.35 mm. O/M has been found to significantly influence fuel pin chemistry, mainly FCCI and fission product and fuel migration. It has little effect on thermal performance and overall mechanical behavior or fission gas release. The effects of O/M (ranging from 1.938 to 1.984) in the areas of fuel pin chemistry, to date, have not resulted in any reduction in fuel pin performance capability to goal burnups of approx. 8 atom% or more

  15. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    Science.gov (United States)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  16. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels

    International Nuclear Information System (INIS)

    Biagini, Enrico

    2016-01-01

    Highlights: • Equilibrium model validated for coals, torrefied/green biomasses, in different gasifiers. • Maps of syngas composition, LHV and CGE for ER = 0–0.6, T = 500–2000 K, EBP = 0.004–0.158. • Effect of unconverted carbon, fuel moisture and overoxidation quantified. • Parameters for the maximum efficiency determined as functions of EBP. • EBP proven to be a good parameter for the quantitative comparison of different fuels. - Abstract: A non-stoichiometric equilibrium model based on the minimization of the Gibbs free energy was used to study the isothermal and adiabatic air-blown gasification of solid fuels on a carbonization curve from fossil (hard/brown coals, peat) to renewable (green biomasses and cellulose) fuels, including torrefied biofuels. The maps of syngas composition, heating value and process efficiency were provided as functions of equivalent ratio (oxygen-to-fuel ratio) in the range 0–0.6, temperature in 500–2000 K, and a fuel parameter, which allowed different cases to be quantitatively compared. The effect of fuel moisture, unconverted carbon and conditions to limit the tar formation was also studied. Cold gas efficiency >0.75 can be achieved for coals at high temperature, using entrained beds (which give low unconverted carbon), and improved by moisture/added steam. The bigger efficiency of green biomasses is only potential, as the practical limits (high temperature required to limit tar formation, moisture content and unconverted carbon in small gasifiers) strongly reduce the gasification performance. Torrefied biomasses (and plastics having an intermediate fuel parameter between coals and green biomasses) can attain high efficiency also in real conditions. The results shown in this work can be useful to evaluate the most promising feedstock (depending on its composition and possible pre-treatment/upgrading), define the operating conditions for maximizing the syngas heating value or the global efficiency, assess the

  17. Practical experience in the application of quality control in water-reactor fuel fabrication

    International Nuclear Information System (INIS)

    Vollath, D.

    1984-07-01

    Highly industrialized countries have gained vast experience in manufacturing water reactor fuel. Manufacturing is followed by a stringent system of quality assurance and quality control. The Seminar on Practical Experience in the Application of Quality Control in Water-Reactor Fuel Fabrication provided a forum for an exchange of information on methods and systems of quality assurance and quality control for reactor fuel. In addition, many developing countries which have started or intend to set up a nuclear fuel industry are interested in the application of quality assurance and quality control. This meeting has been preceded by two different series of conferences: the IAEA meetings 1976 in Oslo, 1978 in Prague and 1979 in Buenos Aires, and the Karlsruhe meetings on Characterization and Quality Control of Nuclear Fuel held in 1978 and 1981. Quality control and quality assurance has many different facets. Unlike the purely technical aspects, covered by the Karlsruhe conference series, the IAEA meetings always relate to a wider field of topics. They include governmental regulations and codes for practical quality assurance. This volume contains the papers presented at the seminar and a record of the discussions. (orig.)

  18. Accountability control system in plutonium fuel facility

    International Nuclear Information System (INIS)

    Naruki, Kaoru; Aoki, Minoru; Mizuno, Ohichi; Mishima, Tsuyoshi

    1979-01-01

    More than 30 tons of plutonium-uranium mixed-oxide fuel have been manufactured at the Plutonium Facility in PNC for JOYO, FUGEN and DCA (Deuterium Critical Assembly) and for the purpose of irradiation tests. This report reviews the nuclear material accountability control system adopted in the Plutonium Facility. Initially, the main objective of the system was the criticality control of fissible materials at various stages of fuel manufacturing. The first part of this report describes the functions and the structure of the control system. A flow chart is provided to show the various stages of material flow and their associated computer files. The system is composed of the following three sub-systems: procedures of nuclear material transfer; PIT (Physical Inventory Taking); data retrieval, report preparation and file maintenance. OMR (Optical Mark Reader) sheets are used to record the nuclear material transfer. The MUF (Materials Unaccounted For) are evaluated by PIT every three months through computer processing based on the OMR sheets. The MUF ratio of Pu handled in the facility every year from 1966 to 1977 are presented by a curve, indicating that the MUF ratio was kept well under 0.5% for every project (JOYO, FUGEN, and DCA). As for the Pu safeguards, the MBA (Material Balance Area) and the KMP (Key Measurement Point) in the facility of PNC are illustrated. The general idea of the projected PINC (Plutonium Inventory Control) system in PNC is also shortly explained. (Aoki, K.)

  19. Nuclear fuel, mass balances, conversion ratio, doubling time, and uncertainty

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1976-11-01

    Information on the performance aspects of nuclear power plants is presented concerning conversion ratio, criticality, primitive economic analysis, stable breeder-converter industry, doubling time, breeder industry economic benefit, defining nuclear fuel, recommendations, and uncertainty

  20. Risk factors for pneumonia in infants and young children and the role of solid fuel for cooking: a case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Mahalanabis, D.; Gupta, S.; Paul, D.; Gupta, A.; Lahiri, M.; Khaled, M.A. [Society of Applied Studies, Calcutta (India)

    2002-08-01

    The paper evaluates the risk factors for childhood pneumonia with particular reference to indoor air-pollution associated with solid fuel use for cooking (e.g. coal, wood, dung), using a case-control study in a children's hospital in Calcutta. Cases were 127 children aged 2-35 months of either sex admitted with pneumonia and controls were 135 children attending their immunization clinic. Solid fuel use (odds ratio = 3.97, CI = 2.00-7.88), history of asthma in the child (OR = 5.49, CI = 2.37-12.74), poor economic status indicator (OR = 4.95, CI = 2.38 to 10.28), keeping large animals (OR = 6.03, CI = 1.13-32.27) were associated with high risk of pneumonia after adjusting for confounding (logistic regression analysis). Nearly 80% of people in India use such smoke producing fuel and the population attributable risk would be very high. This finding has important health policy implications. Furthermore, history of asthma is a useful prognostic indicator for early action for prevention of severe pneumonia.

  1. Influence of fuel ratios on auto combustion synthesis of barium ferrite

    Indian Academy of Sciences (India)

    Abstract. Single-domain barium ferrite nano particles have been synthesized with narrow particle-size distribution using an auto combustion technique. In this process, citric acid was used as a fuel. Ratios of cation to fuel were maintained variously at 1 : 1, 1 : 2 and 1 : 3. The pH was 7 in all cases. Of all three cases, a cation ...

  2. A COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF AIR FLOW THROUGH A TELECOM BACK-UP UNIT POWERED BY AN AIR-COOLED PROTON EXCHANGE MEMBRANE FUEL CELL

    DEFF Research Database (Denmark)

    Gao, Xin; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and heat....... This product heat has to be effectively removed from the fuel cell, and while automotive fuel cells are usually liquid-cooled using a secondary coolant loop similar to the internal combustion engines, stationary fuel cell systems as they are used for telecom back-up applications often rely on excessive air fed...... to the fuel cell cathode to remove the heat. Thereby, the fuel cell system is much simpler and cheaper while the fuel cell performance is substantially lower compared to automotive fuel cells. This work presents a computational fluid dynamics analysis on the heat management of an air-cooled fuel cell powered...

  3. Fuel conservation: the airline - ATC

    Energy Technology Data Exchange (ETDEWEB)

    Grundy, P.M.

    1982-05-01

    The air traffic control system has a greater impact on fuel conservation than any other factor in aviation, the most energy intensive industry in the world. The article discusses various measures that could be adopted by airlines and air traffic controllers to increase fuel conservation. These include: reducing operating empty weights, flying at optimum altitude, direct routing, linear holding, speed control, flight planning, loading for favorable center of gravity to reduce trim drag, minimizing route mileage, and clearance priorities for more fuel demanding aircraft during landing.

  4. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  5. Fossil fuels and air pollution in USA after the Clean Air Act

    International Nuclear Information System (INIS)

    Chuveliov, A.V.

    1990-01-01

    This paper addresses environmental issues in the USA after the Clean Air Act. Economic damage assessment to population and environment due to air pollution from stationary and mobile sources producing and utilizing fossil fuels in the USA for the period of 1970--1986 is determined and discussed. A comparison of environmental damage assessments for the USA and USSR is provided. The paper also addresses ecologo-economical aspects of hydrogen energy and technology. The effectiveness of hydrogen use in ferrous metallurgy and motor vehicles in the USA is determined and discussed

  6. ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR

    Directory of Open Access Journals (Sweden)

    A. G. Bakhanovich

    2017-01-01

    Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection  of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.

  7. Concentration ratio of radon progeny in air

    International Nuclear Information System (INIS)

    Kobayashi, Tsuneo

    2000-01-01

    Investigations have been made on the concentration ratio of radon progeny in air. Data have been acquired intermittently since 1988 using alpha spectroscopic method around the author's office that is located in the northeastern part of Japan. Clarifying the behavior of radon progeny is an issue of wide importance to radiation protection, predicting earthquakes, etc. Let Rabc=ECRn(RaA)/{ECRn(RaB) + ECRn(RaC)}; the concentration ratio, Rabc, is relevant to the stability of the air. Statistical and time series analyses indicated several interesting results. To examine the log-normal distribution, Lilliefors test was made for logarithm of outdoor data every one year. Rabc passed the test 6 times for 9 years, while Radon progeny passed 8 times. Outdoor data indicated that the value of Rabc was lower in the morning, in other world, the air was more stable in the morning than in the afternoon. To see the seasonal variation, one-way layout analysis was made for four groups of data, i.e., spring (March to May), summer (June to August), autumn (September to November), and winter (December to February). Rabc indicated significantly higher level in spring and winter, in other word, air was stable in summer and autumn. Time series analysis was made for various variables; power spectra were estimated with autoregressive model that is equivalent to maximum entropy method. Power spectrum for Rabc was most similar to that of wind speed. One-year period, that is always remarkable for radon progeny, was not significant for Rabc. Three- to nine-day periods were often seen for Rabc, radon progeny, wind speed, and atmospheric pressure. These several-day periods are probably attributed to the passage of air masses. Twenty-day to thirty-day peak may be attributed to meteorological phenomena corresponding to the rotation period of the sun. Temperature indicated no significant periodicity except overwhelming one-year period. Wind speed is well known to affect the radon progeny concentration

  8. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  9. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Science.gov (United States)

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  10. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel

    International Nuclear Information System (INIS)

    Kuprianov, Vladimir I.; Kaewklum, Rachadaporn; Chakritthakul, Songpol

    2011-01-01

    This work reports an experimental study on firing 80 kg/h rice husk in a swirling fluidized-bed combustor (SFBC) using an annular air distributor as the swirl generator. Two NO x emission control techniques were investigated in this work: (1) air staging of the combustion process, and (2) firing rice husk as moisturized fuel. In the first test series for the air-staged combustion, CO, NO and C x H y emissions and combustion efficiency were determined for burning 'as-received' rice husk at fixed excess air of 40%, while secondary-to-primary air ratio (SA/PA) was ranged from 0.26 to 0.75. The effects of SA/PA on CO and NO emissions from the combustor were found to be quite weak, whereas C x H y emissions exhibited an apparent influence of air staging. In the second test series, rice husks with the fuel-moisture content of 8.4% to 35% were fired at excess air varied from 20% to 80%, while the flow rate of secondary air was fixed. Radial and axial temperature and gas concentration (O 2 , CO, NO) profiles in the reactor, as well as CO and NO emissions, are discussed for the selected operating conditions. The temperature and gas concentration profiles for variable fuel quality exhibited significant effects of both fuel-moisture and excess air. As revealed by experimental results, the emission of NO from this SFBC can be substantially reduced through moisturizing rice husk, while CO is effectively mitigated by injection of secondary air into the bed splash zone, resulting in a rather low emission of CO and high (over 99%) combustion efficiency of the combustor for the ranges of operating conditions and fuel properties.

  11. Bi-fuel System - Gasoline/LPG in A Used 4-Stroke Motorcycle - Fuel Injection Type

    Science.gov (United States)

    Suthisripok, Tongchit; Phusakol, Nachaphat; Sawetkittirut, Nuttapol

    2017-10-01

    Bi-fuel-Gasoline/LPG system has been effectively and efficiently used in gasoline vehicles with less pollutants emission. The motorcycle tested was a used Honda AirBlade i110 - fuel injection type. A 3-litre LPG storage tank, an electronic fuel control unit, a 1-mm LPG injector and a regulator were securely installed. The converted motorcycle can be started with either gasoline or LPG. The safety relief valve was set below 48 kPa and over 110 kPa. The motorcycle was tuned at the relative rich air-fuel ratio (λ) of 0.85-0.90 to attain the best power output. From dynamometer tests over the speed range of 65-100 km/h, the average power output when fuelling LPG was 5.16 hp; dropped 3.9% from the use of gasoline91. The average LPG consumption rate from the city road test at the average speed of 60 km/h was 40.1 km/l, about 17.7% more. This corresponded to lower LPG’s energy density of about 16.2%. In emission, the CO and HC concentrations were 44.4% and 26.5% lower. Once a standard gas equipment set with ECU and LPG injector were securely installed and the engine was properly tuned up to suit LPG’s characteristics, the converted bi-fuel motorcycle offers efficiently, safely and economically performance with environmental friendly emission.

  12. Power, heat and chilliness with natural gas - fuel cells and air conditioning

    International Nuclear Information System (INIS)

    Krein, Stephan; Ruehling, Karin

    1999-01-01

    A new and innovative concept of the supply with power, heat and chilliness will realise in the new Malteser-hospital in Kamenz. The core of this demonstration-plant are a fuel cell, an adsorption cooling machine as well as multi-solar collectors. The fuel cell has two goals. Primary it produces power for the own demand. The selected dimension guarantees, that the power will consume nearly continuously. Secondly the produced heat of the fuel cell (and the solar-heat too) will use for heating and preparation of warm water. In the summer, the heat will use for the adsorption cooling machine, which produces chilliness for air-conditioning. The advantage in the face of common concepts of combining power and heat is the high-efficiently use of the fuel-energy for electric power generation on the one hand. Fuel cells work with high efficiency also at partial load. On the other hand, with the adsorption cooling machine the produced heat of fuel cell and multi-solar collectors can be used also in the summer. First experiences with this concept show, that an optimised co-operation of the components with an adaptive, self-learning control system based on the weather forecast as well as various storages for heat and chilliness can be achieve. A continuously operation, high fuel utilisation and reduced environmental pollution can be demonstrated. (author)

  13. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  14. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  15. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    Science.gov (United States)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon

    2015-11-02

    Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions. An attempt to scale the effect of pressure on total ignition delay was undertaken and the equivalence ratio exponent and activation energy in the Arrhenius expression of total ignition delay were determined. Ignition delay results indicated that there were strong correlations of pressure, temperature, and equivalence ratio under most conditions studied except at relatively low pressures. Diesel (DCN 52.5) and n-heptane (DCN 54) fuels exhibited reasonably similar ignition delay characteristics, while iso-octane showed a distinct behavior under low temperature regime having a two-stage ignition, which substantiate the adoption of the gradient method in determining ignition delay.

  17. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  18. Numerical Investigation of Injection Timing Influence on Fuel Slip and Influence of Compression Ratio on Knock Occurrence in Conventional Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mario Sremec

    2017-12-01

    Full Text Available Compressed natural gas can be used in diesel engine with great benefits, but because of its low reactivity it is usually used in a so called dual fuel combustion process. Optimal parameters for dual fuel engines are not yet investigated thoroughly which is the motivation for this work. In this work, a numerical study performed in a cycle simulation tool (AVL Boost v2013 on the influence of different injection timings on fuel slip into exhaust and influence of compression ratio on knock phenomena in port injected dual fuel engine was conducted. The introduction of natural gas into the intake port of a diesel engine usually results in some fuel slipping into the exhaust port due to valve overlap. By analysing the simulation results, the injection strategy that significantly decreases the natural gas slip is defined. The knock occurrence study showed that the highest allowed compression ratio that will result in knock free operation of the presented engine is 18 for ambient intake condition, while for charged intake conditions the compression ratio should be lowered to 16.

  19. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    Science.gov (United States)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  20. Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines

    Science.gov (United States)

    Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.

    1994-01-01

    Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.

  1. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  2. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B. [Sandia National Labs. (United States); Billone, M.C.; Tsai, H. [Argonne National Lab. (United States); Koch, W.; Nolte, O. [Fraunhofer Inst. fuer Toxikologie und Experimentelle Medizin (Germany); Pretzsch, G.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (Germany); Autrusson, B.; Loiseau, O. [Inst. de Radioprotection et de Surete Nucleaire (France); Thompson, N.S.; Hibbs, R.S. [U.S. Dept. of Energy (United States); Young, F.I.; Mo, T. [U.S. Nuclear Regulatory Commission (United States)

    2004-07-01

    We provide a detailed overview of an ongoing, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high energy density device, HEDD. The program participants in the U.S. plus Germany, France, and the U.K., part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC have strongly supported and coordinated this research program. Sandia National Laboratories, SNL, has the lead role for conducting this research program; test program support is provided by both the U.S. Department of Energy and Nuclear Regulatory Commission. WGSTSC partners need this research to better understand potential radiological impacts from sabotage of nuclear material shipments and storage casks, and to support subsequent risk assessments, modeling, and preventative measures. We provide a summary of the overall, multi-phase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on ''surrogate'' spent fuel, unirradiated depleted uranium oxide, and forthcoming actual spent fuel tests. The depleted uranium oxide test rodlets were prepared by the Institut de Radioprotection et de Surete Nucleaire, in France. These surrogate test rodlets closely match the diameter of the test rodlets of actual spent fuel from the H.B. Robinson reactor (high burnup PWR fuel) and the Surry reactor (lower, medium burnup PWR fuel), generated from U.S. reactors. The characterization of the spent fuels and fabrication into short, pressurized rodlets has been performed by Argonne National Laboratory, for testing at SNL. The ratio of the aerosol and respirable particles released from HEDD-impacted spent

  3. Cleaner fuels for the improvement of air quality

    International Nuclear Information System (INIS)

    Catani, R.; Marchionna, M.; Rossini, S.

    1998-01-01

    Harder standards of quality of the air and the consequent limits on the emissions involve the necessity to adopt various measures: programs for inspection/maintenance, technological advance on motors and catalytic mufflers and the reformulation of fuel. This last one is not the only solution but plays a remarkable role, because it has an immediate effect on the quality of the air. As result of that, the present paper explains the main variations that will regard the composition of ben zine and diesel oil

  4. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    Science.gov (United States)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  5. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    Science.gov (United States)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  6. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; He, Weihua; Wang, Haiman; Feng, Yujie

    2014-12-01

    The rolling catalyst layers in air cathode microbial fuel cells (MFCs) are prepared by introducing NH4HCO3 as pore former (PF) with four PF/activated carbon mass ratios of 0.1, 0.2, 0.3 and 1.0. The maximum power density of 892 ± 8 mW m-2 is obtained by cathodes with the mass ratio of 0.2, which is 33% higher than that of the control reactor (without PF, 671 ± 22 mW m-2). Pore analysis indicates the porosity increases by 38% and the major pore range concentrates between 0.5 μm-0.8 μm which likely facilitates to enrich the active reaction sites compared to 0.8 μm-3.0 μm in the control and other PF-cathodes. In addition, pore structure endows the cathode improved exchange current density by 2.4 times and decreased charge transfer resistance by 44%, which are the essential reasons to enhance the oxygen reduction. These results show that addition of NH4HCO3 proves an effective way to change the porosity and pore distribution of catalyst layers and then enhance the MFC performance.

  7. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  8. Thermodynamic modeling of LPG combustion in dual-fuel engines; Modelisation thermodynamique de la combustion du GPL dans les moteurs dual-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bilcan, A.; Le Corre, O.; Tazerout, M. [Ecole des Mines de Nantes, 44 (France); Ramesh, A. [Indian Institute of Technology Madras (India)

    2002-07-01

    Dual-fuel engines are modified diesel engines burning simultaneously two fuels inside the cylinder: a gaseous one, called the primary fuel and a liquid one, called the pilot fuel. The thermal efficiency of the dual-fuel engine and of the diesel engine are comparable; the level of emissions is lower compared to the diesel one. This article presents a new procedure for the combustion modeling in a LPG-diesel dual-fuel engine. The procedures deals with the ignition delay period and with the rate of heat release inside the cylinder. This procedure is validated using experimental data issued front a collaboration with the Indian Institute of Technology from Madras, India. The used engine is a single-cylinder one, air-cooled. The pilot fuel is direct injected inside the cylinder The engine was run at constant load and with different diesel substitutions, i.e. for different air to fuel ratios of the primary fuel-air mixture. The general error of the procedure is below 10%. (authors)

  9. A Piston Geometry and Nozzle Spray Angle Investigation in a DI Diesel Engine by Quantifying the Air-Fuel Mixture

    Directory of Open Access Journals (Sweden)

    Pavlos Dimitriou

    2015-03-01

    Full Text Available Low temperature diesel combustion has been widely investigated over the last few years for reducing in-cylinder emissions of Direct Injection (DI diesel engines without sacrificing efficiency and fuel consumption. The spatial distribution of the fuel within the combustion chamber and the air-fuel mixing quality are the key factors affecting temperature generation within the cylinder. Avoiding fuel rich areas within the cylinder can significantly reduce the local high temperatures resulting in low NOx formation. This paper investigates the effects of the combustion chamber geometry and spray angle on the air-fuel mixing and emissions formation of a DI diesel engine. A new quantitative factor measuring the air-fuel mixing quality has been adopted in order to analyze and compare air-fuel mixing quality for different piston geometries. The results have shown that pistons with a narrow entrance and a deep combustion re-entrant chamber benefit from increased air-fuel mixtures due to the significantly higher swirl generated within the cylinder. However, the improved air-fuel mixing does not consequently lead to a reduced NOx generation, which is highly affected by the combustion efficiency of the engine.

  10. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  11. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  12. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Hubschmid, W; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  13. Air and fuel supercharge in the performance of a diesel cycle engine

    Directory of Open Access Journals (Sweden)

    Marcelo Silveira de Farias

    Full Text Available ABSTRACT: This paper aimed to evaluate the performance of a Diesel cycle engine, changing the configurations for the air and fuel supply system. Variables analyzed were torque, power, specific fuel consumption and thermal efficiency in four different engine configurations (aspirated, aspirated + service, turbocharged + service and turbocharged. For that, there were dynamometer experiments by power take-off of an agricultural tractor. The experimental outline used was entirely randomized, in a bifatorial design with three repetitions. Results indicated that the engine supercharge, compared to its original configuration, provided a significant increase of torque and power. Only the addition of turbo does not caused a significant effect in the engine performance. Application of turbocharger provides an improvement in the burning of the air/fuel mixture, which favors the increase of engine power and; consequently, reduced the specific fuel consumption.

  14. SPUTUM CYTOLOGY CULTURE HAEMATOLOGICAL CHANGES AND AIR QUALITY IN CHRONIC EXPOSURE TO SMOKE FROM BIOMASS FUEL IN RURAL AREA OF SOUTH INDIA

    Directory of Open Access Journals (Sweden)

    Razia Sultana

    2016-08-01

    Full Text Available BACKGROUND Air pollution is generally perceived as an urban problem associated with automobiles and industries. However, half of the world’s population in rural areas of the developing countries is exposed to some of the highest levels of air pollution due to burning of traditional biomass fuels. In view of this, the health impact of biomass fuel use in rural India has been evaluated in this study. OBJECTIVES To analyse the mass concentration in biomass fuel user and LPG user household and to investigate the effects of biomass smoke exposure in a group of rural women who cook regularly with biomass fuels and compare the results obtained from control group women who cook relatively cleaner fuel, liquefied petroleum gas (LPG. METHODS Respiratory health was evaluated from Questionnaire survey, Clinical examination, haematology, sputum cytology culture and serum C-reactive protein (CRP levels are investigated in biomass and control users. RESULTS A total of 150 women were approached, of which only 70 non-smoking women without any history of any major chronic illness in the past were selected for this study. CRP levels differ significantly in biomass exposure than control users. CONCLUSION From our study it is clear that with increasing duration of exposure to biomass fuel combustion. Women who used to cook with traditional biomass fuels had low haemoglobin & Red Blood Cells values, increased neutrophil and allergic manifestations. Sputum cytology of majority biomass users revealed bacterial infections & chronic inflammation.

  15. Improving indoor air quality for poor families: a controlled experiment in Bangladesh.

    Science.gov (United States)

    Dasgupta, S; Wheeler, D; Huq, M; Khaliquzzaman, M

    2009-02-01

    The World Health Organization's 2004 Global and Regional Burden of Disease Report estimates that acute respiratory infections from indoor air pollution (pollution from burning wood, animal dung, and other bio-fuels) kill a million children annually in developing countries, inflicting a particularly heavy toll on poor families in South Asia and Africa. This paper reports on an experiment that studied the use of different fuels in conjunction with different combinations of construction materials, space configurations, cooking locations, and household ventilation practices (use of doors and windows) as potentially-important determinants of indoor air pollution. Results from controlled experiments in Bangladesh were analyzed to test whether changes in these determinants can have significant effects on indoor air pollution. Analysis of the data shows, for example, that pollution from the cooking area is transported into living spaces rapidly and completely. Furthermore, it is important to factor in the interaction between outdoor and indoor air pollution. Hence, the optimal cooking location should take 'seasonality' in account. Among fuels, seasonal conditions seem to affect the relative severity of pollution from wood, dung, and other biomass fuels. However, there is no ambiguity about their collective impact. All are far dirtier than clean (LPG and Kerosene) fuels. The analysis concludes that if cooking with clean fuels is not possible, then building the kitchen with permeable construction material and providing proper ventilation in cooking areas will yield a better indoor health environment. Several village-level measures could significantly reduce IAP exposure in Bangladesh. All would require arrangements and the assert of male heads-of-household: negotiated bulk purchases of higher cost, cleaner fuels; purchase of more fuel-efficient stoves; peripheral location of cooking facilities; building the kitchen with permeable construction material; rotation of women in

  16. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  17. Performance and exhaust emissions in a natural-gas fueled dual-fuel engine; Tennen gas dual fuel kikan no seino oyobi haiki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M.; Ishiyama, T.; Shibata, H. [Kyoto Univ., Kyoto (Japan). Inst. of Atomic Energy; Ikegami, M. [Fukui Institute of Technology, Fukui (Japan). Faculty of Engineering

    2000-07-25

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, tests were made for some operational parameters and their combination on the engine performances and the exhaust emissions. The results show that the gas oil quantity should be increased and gas oil injection timing should be advanced to suppress unburned hydrocarbon emission at middle and low output range, while the quantity should be reduced and the timing should be retarded to avoid onset of knock at high loads. The unburned hydrocarbon emission and the thermal efficiency are improved at the same load avoiding too lean natural gas premixture by restriction of intake charge air. However the improvement is limited because the ignition and initial combustion of pilot diesel fuel is deteriorated when the cylinder pressure is excessively lowered by throttling. The increase in pilot gas oil amount is effective for low-load operation and the adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation. (author)

  18. Effects and control of long-range transboundary air pollution. Report prepared within the framework of the Convention on Long-range Transboundary Air Pollution

    International Nuclear Information System (INIS)

    1994-01-01

    This tenth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the eleventh session of the Executive Body held at Geneva from 1 to 3 December 1993. Part One is the Annual Review of Strategies and Policies for Air Pollution Abatement. National emission data and forecasts for sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), volatile organic compounds (VOCs), ammonia (NH 3 ) and carbon dioxide (CO 2 ) from 1980 to 2005 are presented. Conclusions are drawn concerning the status of implementation of the sulphur and nitrogen oxides protocols on the basis of these data. Part Two is an executive summary of the 1992 Report on the Forest Condition in Europe. The main objective of this report is to give a condensed description of the condition of forests in Europe, as it has been assessed by the transnational and national annual surveys, carried out jointly by the ECE under the Convention on Long-range Transboundary Air Pollution and by the European Community (EC). Part Three is a summary report that focuses on the reduction of air pollution from heat and electric energy production. It is based on discussion papers submitted to the fifth ECE Seminar on Emission Control Technology for Stationary Sources, held in Nuremberg (Germany) from 10 to 14 June 1991. This chapter presents the main control techniques to reduce emissions from fuel combustion, which is a major contribution in most ECE countries to air pollution by sulphur and nitrogen compounds, carbon oxides, organic compounds, as well as heavy metals. Three principal abatement options are reviewed: fuel cleaning and fuel conversion, low-emission combustion processes, and flue gas cleaning processes. Both technical and economic aspects of the different measures are discussed

  19. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyubaek; Jeong, Dongsoo [Engine Research Team, Eco-Machinery Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Gunfeel [Department of Clean Environmental system, University of Science and Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea); Bae, Choongsik [Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-10-15

    The characteristics of controlled auto-ignition (CAI) were investigated with a methane-air mixture and simulated residual gas, that represents internal exhaust gas recirculation (IEGR). Supply systems were additionally installed on the conventional rapid compression machine (RCM), and this modified machine - a rapid intake compression and expansion machine (RICEM) - was able to simulate an intake stroke for the evaluation of controlled auto-ignition with fuel-air mixture. The fuel-air mixture and the simulated residual gas were introduced separately into the combustion chamber through the spool valves. Various IEGR rates and temperatures of the IEGR gas were tested. The initial reaction and the development in controlled auto-ignition combustion were compared with spark-ignited combustion by visualization with a high-speed digital camera. Under the controlled auto-ignition operation, multi-point ignition and faster combustion were observed. With increasing the temperature of IEGR gas, the auto-ignition timing was advanced and burning duration was shortened. The higher rate of IEGR had the same effects on the combustion of the controlled auto-ignition. However, this trend was reversed with more than 47 per cent of IEGR. (author)

  20. Fuel flexible distributed combustion for efficient and clean gas turbine engines

    International Nuclear Information System (INIS)

    Khalil, Ahmed E.E.; Gupta, Ashwani K.

    2013-01-01

    Highlights: • Examined distributed combustion for gas turbines applications using HiTAC. • Gaseous, liquid, conventional and bio-fuels are examined with ultra-low emissions. • Novel design of fuel flexibility without any atomizer for liquid fuel sprays. • Demonstrated fuel flexibility with emissions x and CO, low noise, enhanced stability, higher efficiency and alleviation of combustion instability. Distributed reaction conditions were achieved using swirl for desirable controlled mixing between the injected air, fuel and hot reactive gases from within the combustor prior to mixture ignition. In this paper, distributed combustion is further investigated using a variety of fuels. Gaseous (methane, diluted methane, hydrogen enriched methane and propane) and liquid fuels, including both traditional (kerosene) and alternate fuels (ethanol) that cover a wide range of calorific values are investigated with emphasis on pollutants emission and combustor performance with each fuel. For liquid fuels, no atomization or spray device was used. Performance evaluation with the different fuels was established to outline the flexibility of the combustor using a wide range of fuels of different composition, phase and calorific value with specific focus on ultra-low pollutants emission. Results obtained on pollutants emission and OH * chemiluminescence for the specific fuels at various equivalence ratios are presented. Near distributed combustion conditions with less than 8 PPM of NO emission were demonstrated under novel premixed conditions for the various fuels tested at heat (energy) release intensity (HRI) of 27 MW/m 3 -atm. and a rather high equivalence ratio of 0.6. Higher equivalence ratios lacked favorable distributed combustion conditions. For the same conditions, CO emission varied for each fuel; less than 10 ppm were demonstrated for methane based fuels, while heavier liquid fuels provided less than 40 ppm CO emissions. Lower emissions of NO ( x can be possible by

  1. Increasing energy efficiency by in-situ oxygen measurement in combustion gas and optimized fuel-air-ratio control; Effizienzsteigerung durch in-situ Sauerstoffmessung im Verbrennungsgas

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Yvonne [Marathon Sensors Inc., West Chester, OH (United States); Winter, Karl-Michael [PROCESS-ELECTRONIC GmbH, Heiningen (Germany)

    2012-04-15

    High energy costs as well as the necessity to minimize exhaust emissions require a most efficient usage of fossil primary energy resources. In heat treating but also in power generation natural gas is mostly used. Efficient burner systems and preheating combustion air using recuperators or regenerators minimize exhaust losses to a high extent. Another well known but seldom used optimization method controls the excess oxygen percentage in the exhaust gas. Already partially in use in households and state-of-the-art in the combustion control of car engines this technique is still not widely used in industrial sized systems. For closed burners there are few sensor options available that can be integrated into the burner. This article presents a variety of measuring and control systems that have been tailored to this particular task, able to increase the efficiency of both, existing older installations and new burner systems. (orig.)

  2. Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries.

    Science.gov (United States)

    Pope, Daniel P; Mishra, Vinod; Thompson, Lisa; Siddiqui, Amna Rehana; Rehfuess, Eva A; Weber, Martin; Bruce, Nigel G

    2010-01-01

    Exposure to indoor air pollution from solid fuel use (IAP) has been linked to approximately 1.5 million annual deaths (World Health Organization (http://www.who.int/indoorair/publications/fuelforlife/en/index.html)) due to acute lower respiratory infections in children effect meta-analyses (I(2) = 0%) found that IAP was associated with increased risk of percentage LBW (odds ratio = 1.38, 95% confidence interval: 1.25, 1.52) and stillbirth (odds ratio = 1.51, 95% confidence interval: 1.23, 1.85) and reduced mean birth weight (-95.6 g, 95% confidence interval: -68.5, -124.7). Evidence from secondhand smoke, ambient air pollution, and animal studies--and suggested plausible mechanisms--substantiate these associations. Because a majority of pregnant women in developing countries, where rates of LBW and stillbirth are high, are heavily exposed to IAP, increased relative risk translates into substantial population attributable risks of 21% (LBW) and 26% (stillbirth).

  3. Evaluation of concepts for controlling exhaust emissions from minimally processed petroleum and synthetic fuels

    Science.gov (United States)

    Russell, P. L.; Beal, G. W.; Sederquist, R. A.; Shultz, D.

    1981-01-01

    Rich-lean combustor concepts designed to enhance rich combustion chemistry and increase combustor flexibility for NO(x) reduction with minimally processed fuels are examined. Processes such as rich product recirculation in the rich chamber, rich-lean annihilation, and graduated air addition or staged rich combustion to release bound nitrogen in steps of reduced equivalence ratio are discussed. Variations to the baseline rapid quench section are considered, and the effect of residence time in the rich zone is investigated. The feasibility of using uncooled non-metallic materials for the rich zone combustion construction is also addressed. The preliminary results indicate that rich primary zone staged combustion provides environmentally acceptable operation with residual and/or synthetic coal-derived liquid fuels

  4. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  5. Air pollution and fuel vapour induced changes in lung functions: are fuel handlers safe?

    Science.gov (United States)

    Chawla, Anuj; Lavania, A K

    2008-01-01

    Automobile exhaust derived air pollutants have become a major health hazard. Coupled with the inhalation of fuel vapour, as occurs in petrol station workers, this may lead to significant impairment of lung function. Spirometric lung functions were studied in 58 petrol station workers to examine this possibility. The forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow 25%-75% (FEF25-75) and peak expiratory flow (PEF) were recorded and analysed separately for smokers and non-smokers. The workers were divided into 5 groups for analysis of data based on the number of years of work in the petrol pumps. Outdoor air analysis was also carried out. The FVC, FEV1 and PEF declined significantly with increasing years of work in petrol stations in both smokers and non-smokers. Smoking as an independent variable was found to affect the FEV1 significantly but not FVC or PEF. The FEF25-75 was found to be the most affected spirometric value with a significant reduction with increasing years of work. Smoking as such did not affect it. Oxides of nitrogen (NOx), suspended particulate matter (SPM) and particulate matter less than 10 microns (PM10) in outdoor air were higher than the national ambient air quality standards. Exposure to automobile exhaust and fuel vapour impairs lung function in a time-dependent manner. Cigarette smoking appears to accelerate the decline.

  6. Cooling system and climate control of fuel cell electric vehicle (FCEV)

    Energy Technology Data Exchange (ETDEWEB)

    Ap, N.S. [Valeo Engine Cooling, La Varriere (France); Cloarec, M.; Rouveyre, L. [PSA-Renault, Trappes (France)

    2000-07-01

    This paper described the special thermal aspects of the fuel cell electric vehicle (FCEV) program established in 1999 by the combined efforts of the two French car manufacturers PSA and Renault. One of the objectives of the program was to examine the climate control and particularly the air conditioning in the passenger compartment which had not been previously studied. The heat dissipation of FCEV is in the order of 2.5 to 3 times higher than that of a comparable internal combustion engine vehicle (ICEV). In addition, the fuel cell powertrain has two temperature levels. The first level is high for the fuel cell stack and the second is low for the electrical, electronic components and other auxiliaries. This paper presented and described each component of two cooling loops along with the heat performance of each type. The first cooling loop used de-ionized water as a coolant, and the second made use of an ethylene-glycol-water mixture as a coolant. The air conditioning capability is a major aspect of the FCEV thermal management. The electrical source availability creates the condition to introduce an enhanced comfort level. Both winter preheating and summer precooling are possible. refs., figs.

  7. Experience of air transport of nuclear fuel material as type A package

    International Nuclear Information System (INIS)

    Kawasaki, Masashi; Kageyama, Tomio; Suzuki, Toru

    2004-01-01

    Special law on nuclear disaster countermeasures (hereafter called as to nuclear disaster countermeasures low) that is domestic law for dealing with measures for nuclear disaster, was enforced in June, 2000. Therefore, nuclear enterprise was obliged to report accidents as required by nuclear disaster countermeasures law, besides meeting the technical requirement of existent transport regulation. For overseas procurement of plutonium reference materials that are needed for material accountability, A Type package must be transported by air. Therefore, concept of air transport of nuclear fuel materials according to the nuclear disaster countermeasures law was discussed, and the manual including measures against accident in air transport was prepared for the oversea procurement. In this presentation, the concept of air transport of A Type package containing nuclear fuel materials according to the nuclear disaster countermeasures law, and the experience of a transportation of plutonium solution from France are shown. (author)

  8. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  9. Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lieuwen, Tim [Georgia Inst. of Technology, Atlanta, GA (United States); Santavicca, Dom [Georgia Inst. of Technology, Atlanta, GA (United States); Yang, Vigor [Georgia Inst. of Technology, Atlanta, GA (United States)

    2012-03-31

    During the duration of this sponsorship, we broadened our understanding of combustion instabilities through both analytical and experimental work. Predictive models were developed for flame response to transverse acoustic instabilities and for quantifying how a turbulent flame responds to velocity and fuel/air ratio forcing. Analysis was performed on the key instability mechanisms controlling heat release response for flames over a wide range of instability frequencies. Importantly, work was done closely with industrial partners to transition existing models into internal instability prediction codes. Experimentally, the forced response of hydrogen-enriched natural gas/air premixed and partially premixed flames were measured. The response of a lean premixed flame was investigated, subjected to velocity, equivalence ratio, and both forcing mechanisms simultaneously. In addition, important physical mechanisms controlling the response of partially premixed flames to inlet velocity and equivalence ratio oscillations were analyzed. This final technical report summarizes our findings and major publications stemming from this program.

  10. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  11. Air pollutant emissions and their control with the focus on waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Wandschneider + Gutjahr, Hamburg (Germany)

    2017-07-01

    This text and practical handbook thoroughly presents the control of air pollutant emissions from combustion processes focusing on waste incinerators. Special characteristics are emphasised and the differences to emission control from combustion processes with other fuels are explained. The author illustrates the origin and effects of air pollutants from incineration processes, the mechanics of their appearance in the incineration process, primary and secondary measures for their reduction, processes of measuring the emissions as well as the methods of disposing the residues. In particular, the pros and cons of procedural steps and their appropriate combination under various conditions are emphasised. Moreover, the book contains information and analyses of the emissions situation, the consumption of operating materials and of backlog quantities as well as of the cost structure of waste incinerators with regard to their applied control system. Furthermore, the author explicates the contemporary legal, scientific and technological developments and their influence on air pollutant emission control. An evaluation of the status quo of air pollutant control at waste incinerators in Germany, practical examples about possible combinations and typical performance data complete the content. Accordingly, this book is a guideline for planing a reasonable overall concept of an air pollutant control that takes the location and the segregation tasks into consideration.

  12. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  13. Draining Water from Aircraft Fuel Using Nitrogen Enriched Air

    Directory of Open Access Journals (Sweden)

    Michael Frank

    2018-04-01

    Full Text Available This paper concerns a computational study of the process of removing water from an aircraft’s fuel tank by pumping nitrogen enriched air (NEA from the bottom of the tank. This is an important procedure for the smooth, efficient, and safe operation of the aircraft’s engine. Due to the low partial pressure of water in the pumped NEA, it absorbs water from the fuel. The water-laden bubbles enter the ullage, the empty space above the fuel, and escape into the environment. The effects of the number of NEA inlets and the NEA mass flow rate on the timescale of the NEA pumping were investigated using Computational Fluid Dynamics. The results reveal that the absorption of water by the NEA bubbles is low and is not affected by the number of the inlets used. Yet, the water content in the fuel decreases fast during the procedure, which is the desired outcome. We show that this is due to the relatively dry NEA entering the ullage and displacing the moist air, thus reducing the partial pressure of water at the fuel/ullage interface. This shift from equilibrium conditions forces water to evaporate from the fuel’s entire surface. Furthermore, the amount of water migrating from the fuel directly into the ullage is significantly greater than that absorbed by the rising bubbles. In turn, the rate of decrease of the water content in the ullage is determined by the total NEA mass flow rate and this is the dominant contributor to the draining time, with the number of NEA nozzles playing a minor role. We confirmed this by pumping NEA directly into the ullage, where we observe a significant decrease of water even when the NEA is not pumped through the fuel. We also show that doubling the mass flow rate halves the draining time. When considering the capability of most modern aircraft to pump NEA through the fuel as part of their inerting system, the proposed method for removing water is particularly attractive, requiring very little (if at all design modification.

  14. Influence of in-plant air pollution control measures on power plant and system operation

    International Nuclear Information System (INIS)

    Kurten, H.

    1990-01-01

    The burning of fossil fuels causes the emission of air pollutants which have harmful environmental impact. Consequently many nations have in the last few years established regulations for air pollution control and have initiated the development and deployment of air pollution control systems in power plants. The paper describes the methods used for reducing particulate, SO 2 and NO x emissions, their application as backfit systems and in new plants, the power plant capacity equipped with such systems in the Federal Republic of Germany and abroad and the additional investment and operating costs incurred. It is to be anticipated that advanced power plant designs will produce lower pollutant emissions and less waste at enhanced efficiency levels. A comparison with power generation in nuclear power plants completes the first part of the paper. This paper covers the impact of the above-mentioned air pollution control measures on unit commitment in daily operation

  15. Enthalpy analysis and Heat Exchanger Sizing of an Air-cooled Proton Exchange Membrane Fuel Cell System

    DEFF Research Database (Denmark)

    Gao, Xin; Berning, Torsten; Kær, Søren Knudsen

    below -20 °C in the winter which make liquid-cooled fuel cells impossible. In such cases, air-cooled fuel cell systems are deployed where the air that is fed to the fuel cell serves both as reactant supplier and coolant to remove the waste heat that is generated during fuel cell operation. In some cases...... in order to optimize the operating conditions and the performance of such a system. The adjustable parameters include the fan speed that determines the amount of air that is brought into the system, and the size and rotating speed of the rotating enthalpy wheel. In addition, computational fluid dynamics...... or an ordinary heat exchanger can fulfill the heat recovery demand. Despite the fact that the air enters the stack at a cold temperature, even the forefront of the stack is at a much elevated and desired stack temperature with the help of supplying an acceptable amount of power to an electric stack heater. So...

  16. Nuclear fuel saving assessment of poison-free control in LWRs [light water reactors

    International Nuclear Information System (INIS)

    Abu-Zaied, G.

    1988-01-01

    If neutron losses to control absorbers are to be eliminated, an alternative reactivity control system has to be introduced. Due to improved neutron economy, the fuel utilization of these other alternatives is better than for a conventional poison-controlled PWR [pressurized water reactor]. It is the objective in this work to assess the uranium savings attributable to reactivity control without poison. An investigation into the savings due to the elimination of PWR control by neutron capture has been carried out. The most important finding was that up to a 30% savings in natural uranium can be achieved if fuel to moderator ratio, V f /V m , of SSC [spectral-shift-control] core at EOC [end of cycle] is similar to the standard core V f /V m

  17. Carbon isotope ratios of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Sakai, Hitoshi; Kishima, Noriaki; Tsutaki, Yasuhiro.

    1982-01-01

    The delta 13 C values relative to PDB were measured for carbon dioxide in air samples collected at various parts of Japan and at Mauna Loa Observatory, Hawaii in the periods of 1977 and 1978. The delta 13 C values of the ''clean air'' are -7.6 % at Hawaii and -8.1 per mille Oki and Hachijo-jima islands. These values are definitely lighter than the carbon isotope ratios (-6.9 per mille) obtained by Keeling for clean airs collected at Southern California in 1955 to 1956. The increase in 12 C in atmospheric carbon dioxide is attributed to the input of the anthropogenic light carbon dioxides (combustion of fossil fuels etc.) Taking -7.6 per mille to be the isotope ratio of CO 2 in the present clean air, a simple three box model predicts that the biosphere has decreased rather than increased since 1955, implying that it is acting as the doner of carbon rather than the sink. (author)

  18. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    Science.gov (United States)

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  19. Air pollution and economics: Alternate use of fuels in small scale industries

    International Nuclear Information System (INIS)

    Rao, B.P.S.; Pandit, V.I.

    1999-01-01

    In developing countries the problem of air pollution was recognized earlier, however, it has acquired a greater dimension due to the conventional use of low grade fuels like coal, baggase, rice husk, etc. having high sulphur and ash content. The industrial sources contribute about 30--40% of the total emissions. In India, the small scale industries (low investment group) contribute about 60--80% of the total industrial emissions. These industries are characterized with various environmental pollution problems due to cluster of small scale industries located in sensitive area; use of low grade fuel, primitive processing techniques without emission abatement facilities etc., thus leading to enormous pollution in an confined region. Acute need was felt to reduce the pollution problem associated with small scale industries by use of cleaner fuel so as to reduce the localized problem. The paper presents the emissions associated with use of coal/coke, natural gas, LPG, and propane along with the fuel cost for small scale industrial sector of Agra, Firozabad and Mathura region. The studies carried out would find applicability to meet the air pollution standards based on shift in fuel and associated cost

  20. Fuel conversion efficiency and energy balance of a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    A 400 kW (thermal) dual-distributor type fluidized bed gasifier developed for the energy recovery from cereal straw was used to investigate the effects of equivalence ratio (actual air-fuel ratio: stoichiometric air-fuel ratio), fluidization velocity and bed height on the fuel conversion efficiency from wheat straw. The energy balance was also performed on the system under those operating conditions. The results indicated that the equivalence ratio was the most significant parameter affecting the fuel conversion efficiency and the energy recovered from the straw in the form of gas. Both the fuel conversion efficiency and the energy recovery increased with increases in the equivalence ratio. The fluidization velocity and bed height had minimal effects on these parameters. A fuel conversion efficiency as high as 98% was obtained at the equivalence ratio of 0.35. The energy recovered in the form of gas and the sensible heat of the produced gas were in the ranges of 40--70% and 9--17%, respectively. Unaccounted losses showed a dramatic increase at lower equivalence ratios and were in the range of 6--53% depending on the operating condition.

  1. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  2. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas

    International Nuclear Information System (INIS)

    Bora, Bhaskor J.; Saha, Ujjwal K.; Chatterjee, Soumya; Veer, Vijay

    2014-01-01

    Highlights: • Maximum brake thermal efficiency of 20.04% was obtained in dual fuel mode. • Compression ratio of 18 produced the maximum brake thermal efficiency. • Maximum replacement of diesel was found to be 79.46% at a compression ratio of 18. • CO gets reduced by 26.22% with the increase of compression ratio from 16 to18. • HC gets reduced by 41.97% with the increase of compression ratio from 16 to18. - Abstract: The energy consumption of the world is increasing at a staggering rate due to population explosion. The extensive use of energy has led to fossil fuel depletion and the rise in pollution. Renewable energy holds the key solution to these aforementioned problems. Biogas, one such renewable fuel, can be used in a diesel engine under dual fuel mode for the generation of power. This work attempts to unfold the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. For this investigation, a 3.5 kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. Experiments have been conducted at various compression ratios (18, 17.5, 17 and 16) and under different loading conditions fixing the standard injection timing at 23° before top dead centre. At 100% load, the brake thermal efficiencies of the dual fuel mode are found to be 20.04%, 18.25%, 17.07% and 16.42% at compression ratios of 18, 17.5, 17 and 16, respectively, whereas at the same load, the diesel mode shows an efficiency of 27.76% at a compression ratio of 17.5. The maximum replacement of the precious fossil fuel is found to be 79.46%, 76.1%, 74% and 72% at compression ratios of 18, 17.5, 17 and 16, respectively at 100% load. For the dual fuel mode, on an average, there is a reduction in carbon monoxide as well as hydrocarbon emission by 26.22% and 41.97% when compression

  3. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  4. Advanced process control for solid fuel boilers. Phase 2; Avancerad processtyrning av fastbraensleeldade rostpannor. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Ehleskog, Rickard; Lundborg, Rickard; Schuster, Robert; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden)

    2002-04-01

    AaF-Energikonsult AB runs within the research programme 'Applied combustion technology' a bigger project under the title 'Possibilities to improved operation of forest-industrial bark boilers by optimised combustion control'. In the project several measures have been identified, that can help to improve the conditions favourable for the combustion and fluid dynamic, for four selected reference grate boilers and grate boilers in general. The boiler at Billerud's paper mill, which is underlying to this project in several ways, is now being rebuilt. During the modifications of the boiler the existing control system will be modified with modern technique to enable operation with low emissions. The new control system consists of several parts, of witch the IR-based ones for fuel input and grate feeding are two totally separated systems. The pressure of the dome, i.e. the effect of the boiler, is the most superior parameter, and is regulated with the combustion air. Amounts of secondary and tertiary air are quoted to the total combustion airflow. The primary oxygen level is primarily regulated with the tertiary air. But if this won't be done without the tertiary air to diverge from de defined working area, the secondary air will assist. The oxygen set point is constantly decreasing until the CO-level exceeds a defined level. Then, the set point will be momentary increased. CFD-calculations have been performed for the modified boiler in Karlsborg for two different loads. The simulations clearly show that the flue gases have a more even retention time in the modified boiler and that the flow pattern is significantly improved. However, concentration gradients of oxygen and temperature gradients still exist. The conclusion is that there is a potential for further improving of the air and flue gas control strategies. The following new control strategies are proposed in the project based on conventional analyse technology; If the furnace

  5. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  6. Indoor air quality scenario in India-An outline of household fuel combustion

    Science.gov (United States)

    Rohra, Himanshi; Taneja, Ajay

    2016-03-01

    Most of the research around the world has been on outdoor air pollution, but in India we have a more severe problem of Indoor Air Pollution (IAP). The foremost factor cited for is burning of fossil fuels for cooking. Among the 70% of the country's rural population, about 80% households rely on biomass fuel making India to top the list of countries with largest population lacking access to cleaner fuel for cooking. 4 million deaths and 5% disability-adjusted life-years is an upshot of exposure to IAP from unhealthy cooking making it globally the most critical environmental risk factor. India alone bears the highest burden (28% needless deaths) among developing countries. Moreover, about ¼ of ambient PM2.5 in the country comes from household cookfuels. These considerations have prompted the discussion of the present knowledge on the disastrous health effects of pollutants emitted by biomass combustion in India. Additionally, Particulate Matter as an indoor air pollutant is highlighted with main focus on its spatial temporal variation and some recent Indian studies are further explored. As there are no specific norms for IAP in India, urgent need has arisen for implementing the strategies to create public awareness. Moreover improvement in ventilation and modification in the pattern of fuel will also contribute to eradicate this national health issue.

  7. Influence of swirl ratio on fuel distribution and cyclic variation under flash boiling conditions in a spark ignition direct injection gasoline engine

    International Nuclear Information System (INIS)

    Yang, Jie; Xu, Min; Hung, David L.S.; Wu, Qiang; Dong, Xue

    2017-01-01

    Highlights: • Influence of swirl on fuel distribution studied using laser induced fluorescence. • Gradient is sufficient for fuel spatial distribution variation analysis. • Close relation between fuel distribution and flame initiation/development. • Quantitative analysis shows high swirl suppresses variation of fuel distribution. • High order modes capable of identifying the distribution fluctuation patterns. - Abstract: One effective way of suppressing the cycle-to-cycle variation in engine is to design a combustion system that is robust to the root causes of engine variation over the entire engine working process. Flash boiling has been demonstrated as an ideal technique to produce stable fuel spray. But the generation of stable intake flow and fuel mixture remains challenging. In this study, to evaluate the capability of enhanced swirl flow to produce repeatable fuel mixture formation, the fuel distribution inside a single cylinder optical engine under two swirl ratios were measured using laser induced fluorescence technique. The swirl ratio was regulated by a swirl control valve installed in one of the intake ports. A 266 nm wavelength laser sheet from a frequency-quadrupled laser was directed into the optical engine through the quartz liner 15 mm below the tip of the spark plug. The fluorescence signal from the polycyclic aromatic hydrocarbon in gasoline was collected by applying a 320–420 nm band pass filter mounted in front of an intensified charge coupled device camera. Test results show that the in-cylinder fuel distribution is strongly influenced by the swirl ratio. Specifically, under high swirl condition, the fuel is mainly concentrated on the left side of the combustion chamber. While under the low swirl flow, fuel is distributed more randomly over the observing plane. This agrees well with the measurements of the stable flame location. Additionally, the cycle-to-cycle variation of the fuel distribution were analyzed. Results show that well

  8. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yang Daijun; Ma Jianxin; Xu Lin; Wu Minzhong; Wang Haijiang

    2006-01-01

    The effects of NO x on the performance of proton exchange membrane (PEM) fuel cell were investigated through the introduction of a mixture containing NO and NO 2 , in a ratio of 9:1, into the cathode stream of a single PEM fuel cell. The NO x concentrations used in the experiments were 1480 ppm, 140 ppm and 10 ppm, which cover a range of three orders. The experimental results obtained from the tests of durability, polarization, reversibility and electrochemical impedance spectroscopy (EIS) showed a detrimental effect of NO x on the cell performance. The electrochemical measurements results suggested that the impacts of NO x are mainly resulted from the superposition of the oxygen reduction reaction (ORR), NO and HNO 2 oxidation reactions, and the increased cathodic impedance. Complete recovery of the cell performance was reached after operating the cell with clean air and then purging with N 2 for hours

  9. Influence of fuel ratios on auto combustion synthesis of barium ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles. D BAHADUR*, S RAJAKUMAR and ANKIT KUMAR. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology,. Mumbai 400 076 e-mail: dhirenb@iitb.ac.in. Abstract. Single-domain barium ferrite nano ...

  10. Comparative tests of bench equipment for fuel control system testing of gas-turbine engine

    Science.gov (United States)

    Shendaleva, E. V.

    2018-04-01

    The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.

  11. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  12. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  13. Impact of sulfur content regulations of shipping fuel on coastal air quality

    Science.gov (United States)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    Shipping traffic is a sector that faces an enormous growth rate and contributes substantially to the emissions from the transportation sector, but lacks regulations and controls. Shipping is not enclosed in the Kyoto Protocol. However, the International Maritime Organization (IMO) introduced sufhur limits for marine heavy fuels, nitrogen oxide limits for newly-built ship engines and established Emission Control Areas (ECA) in the North and Baltic Sea as well as around North America with the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78 Annex VI). Recently, on the 1st of January 2015, the allowed sulfur content of marine fuels inside Sulfur Emission Control Areas has been significantly decreased from 1.0% to 0.1%. However, measurements of reactive trace gases and the chemical composition of the marine troposphere along shipping routes are sparse and up to now there is no regular monitoring system available. The project MeSmarT (measurements of shipping emissions in the marine troposphere) is a cooperation between the University of Bremen, the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz-Zentrum Geesthacht. This study aims to analyse the influence of shipping emissions on the coastal air quality by evaluating ground-based remote sensing measurements using the MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) technique. Measurements of the atmospheric trace gases nitrogen dioxide (NO2) and sulfur dioxide (SO2) have been carried out in the marine troposphere at the MeSmarT measurement sites in Wedel and on Neuwerk and on-board several ship cruises on the North and Baltic Sea. The capability of two-channel MAX-DOAS systems to do simultaneous measurements in the UV and visible spectral range has been used in the so called "onion-peeling" approach to derive spatial distributions of ship emissions and to analyse the movement of the exhausted

  14. Comparison of DUPIC fuel composition heterogeneity control methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity of the spent PWR fuel. In order to reduce the variation of isotopic composition of the DUPIC fuel, the inter-assembly mixing operation was taken three times. Then, three options have been considered: reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity of DUPIC fuel can be tightly controlled with the minimum amount of fresh uranium feed. For the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. 13 refs., 6 figs., 16 tabs. (Author)

  15. Evaluation of a blender for HTGR fuel particles

    International Nuclear Information System (INIS)

    Johnson, D.R.

    1977-03-01

    An experimental blender for mixing HTGR fuel particles prior to molding the particles into fuel rods was evaluated. The blender consists of a conical chamber with an air inlet in the bottom. A pneumatically operated valve provides for discharge of the particles out of the bottom of the cone. The particles are mixed by periodically levitating with pulses of air. The blender has provision for regulating the air flow rate and the number and duration of the air flow pulses. The performance of the blender was governed by the particle blend being mixed, the air flow rate, and the pulse time. Adequately blended fuel rods can be made, if the air flow rate and pulse time are carefully controlled for each fuel rod composition

  16. Comparison of DUPIC fuel composition heterogeneity control methods

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. (author). 13 refs., 16 tabs., 6 figs

  17. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    Science.gov (United States)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  18. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  19. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  20. Alcohol Fuel in Passenger Car

    Directory of Open Access Journals (Sweden)

    Adam Polcar

    2016-01-01

    Full Text Available The present article studies the effects of combustion of high-percentage mixture of bioethanol and gasoline on the output parameters of a passenger car engine. The car engine has not been structurally modified for the combustion of fuels with higher ethanol content. The mixture used consisted of E85 summer blend and Natural 95 gasoline in a ratio of 50:50. The parameters monitored during the experiment included the air-fuel ratio in exhaust gasses, the power output and torque of the engine and also the specific energy consumption and efficiency of the engine. As is apparent from the results, E85+N95 (50:50 mixture combustion results in lean-burn (λ > 1 due to the presence of oxygen in bioethanol. The lean-burn led to a slight decrease in torque and power output of the engine. However, due to the positive physicochemical properties of bioethanol, the decrease has not been as significant as would normally be expected from the measured air-fuel ratio. These findings are further confirmed by the calculated energy required to produce 1 kWh of energy, and by the higher efficiency of the engine during the combustion of a 50% bioethanol mixture.

  1. Air traffic control activity increases attention capacity in air traffic controllers.

    Science.gov (United States)

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Amorim, Gutemberg Guerra; Ribas, Renata de Melo Guerra; de Almeida, Cláudia Ângela Vilela; Ribas, Valéria Ribeiro; de Vasconcelos, Carlos Augusto Carvalho; Lima, Murilo Duarte Costa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2010-01-01

    Air traffic controllers simultaneously develop complex and multiple tasks in the course of their activities. In this context, concern is raised over the high level of attention needed by these professionals which can ultimately be affected by stress and fatigue. The objective of this study was to assess attention level in air traffic controllers (ATCo). 45 flight protection professionals were evaluated, comprising 30 ATCo, subdivided into ATCo with ten or more years in the profession (ATCo≥10, n=15) and ATCo with less than ten years in the profession (ATCo air traffic control activity after ten years may be associated with a high level of attention.

  2. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  3. Pathologic analysis of control plans for air pollution management in tehran metropolis: a qualitative study.

    Science.gov (United States)

    Shahrabi, Narges Salehi; Pourezzat, Aliasghar; Ahmad, Fayaz-Bakhsh; Mafimoradi, Shiva; Poursafa, Parinaz

    2013-09-01

    Regarding the importance of air pollution issue for large cities, as Tehran metropolis, many plans, programs, projects and regulations have been developed to manage urban air pollution. However, most of them failed to decline the pollution. The purpose of this study is to pathologically analyze air-pollution control plans in order to offer effective solutions for Tehran metropolis. A qualitative content analysis and a semi-structured interview with 14 practicing professionals were used to identify key causes and sources of Tehran's air pollution, to recognize challenges and obstacles towards effective performance of air-pollution control plans in this metropolitan area, and to suggest the most effective controlling solutions. Challenges related to air-pollution control plans can be divided into two major categories: Firstly lack of integrated and organized stewardship and secondly those related to political, economical, social and technical environmental abbreviated as PEST, challenges. For effective control of the Tehran air pollution, the following eight controlling alternatives were identified: Systematization of plan preparation process, organizing the stewardship, standardization and utilization of new technologies and professional experts, cultural and infrastructural development, realization of social justice, developing coordination and controlling mechanisms, improving citizen's participatory capacity, and focusing on effective management of fuel and energy. Controlling air pollution in Tehran should be considered as a priority for policymakers to make enforcements through applying a systemic cycle of preparation effective and comprehensive plans. Further, implement the enforcements and evaluate the environmental impact of the plans through involving all stakeholders.

  4. Numerical and experimental investigation of the effect of geometry on combustion characteristics of solid-fuel ramjet

    Science.gov (United States)

    Gong, Lunkun; Chen, Xiong; Musa, Omer; Yang, Haitao; Zhou, Changsheng

    2017-12-01

    Numerical and experimental investigation on the solid-fuel ramjet was carried out to study the effect of geometry on combustion characteristics. The two-dimensional axisymmetric program developed in the present study adopted finite rate chemistry and second-order moment turbulence-chemistry models, together with k-ω shear stress transport (SST) turbulence model. Experimental data were obtained by burning cylindrical polyethylene using a connected pipe facility. The simulation results show that a fuel-rich zone near the solid fuel surface and an air-rich zone in the core exist in the chamber, and the chemical reactions occur mainly in the interface of this two regions; The physical reasons for the effect of geometry on regression rate is the variation of turbulent viscosity due to the geometry change. Port-to-inlet diameter ratio is the main parameter influencing the turbulent viscosity, and a linear relationship between port-to-inlet diameter and regression rate were obtained. The air mass flow rate and air-fuel ratio are the main influencing factors on ramjet performances. Based on the simulation results, the correlations between geometry and air-fuel ratio were obtained, and the effect of geometry on ramjet performances was analyzed according to the correlation. Three-dimensional regression rate contour obtained experimentally indicates that the regression rate which shows axisymmetric distribution due to the symmetry structure increases sharply, followed by slow decrease in axial direction. The radiation heat transfer in recirculation zone cannot be ignored. Compared with the experimental results, the deviations of calculated average regression rate and characteristic velocity are about 5%. Concerning the effect of geometry on air-fuel ratio, the deviations between experimental and theoretical results are less than 10%.

  5. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.

    Science.gov (United States)

    Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan

    2013-06-06

    Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.

  6. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  7. Wartsila 32DF, the dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-06-01

    This paper gives details of the development of the Wartsila 32DF duel-fuel lean-burn engine that can burn liquid or gaseous fuels, and reports on the installation of four of the engines in Turkey. The combustion process, and the design of the gas admission, pilot fuel, cylinder control, air-fuel control, and engine control and monitoring systems are described. The advantages of the engine are discussed.

  8. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    Energy Technology Data Exchange (ETDEWEB)

    Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  9. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary

    International Nuclear Information System (INIS)

    Brucher, Wenzel; Koch, Wolfgang; Pretzsch, Gunter Guido; Loiseau, Olivier; Mo, Tin; Billone, Michael C.; Autrusson, Bruno A.; Young, F. I.; Coats, Richard Lee; Burtseva, Tatiana; Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver; Thompson, Nancy Slater; Hibbs, Russell S.; Gregson, Michael Warren; Lange, Florentin; Molecke, Martin Alan; Tsai, Han-Chung

    2005-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  10. Air Traffic Control Tools Assessment

    Directory of Open Access Journals (Sweden)

    Tomáš Noskievič

    2017-04-01

    Full Text Available Undoubtedly air transport in today’s world wouldn’t be able to exist without any air traffic control service. As the air transport has been coming through major changes and it has been expanding, it is assumed that its volume will be doubled in the next 15 years. Air traffic control uses strictly organised procedures to ensure safe course of air operations. With the skies covered with more airplanes every year, new tools must be introduced to allow the controllers to manage this rising amount of flying aircraft and to keep the air transport safe. This paper provides a comprehensive and organized material, which describes the newest tools and systems used by air traffic control officers. It proposes improvements for further research and development of ATC tools.

  11. Safety-related control air systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This Standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this Standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  12. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  13. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  14. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    Science.gov (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  15. Performance of cladding on MOX fuel with low 240Pu/239Pu ratio

    International Nuclear Information System (INIS)

    McCoy, K.; Blanpain, P.; Morris, R.

    2015-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world's first commercial irradiation of MOX fuel with a 240 Pu/ 239 Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding. (authors)

  16. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    Science.gov (United States)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  17. Oxidation of Alkane Rich Gasoline Fuels and their Surrogates in a Motored Engine

    KAUST Repository

    Shankar, Vijai S B

    2015-03-30

    The validation of surrogates formulated using a computational framework by Ahmed et al.[1]for two purely paraffinic gasoline fuels labelled FACE A and FACE C was undertaken in this study. The ability of these surrogate mixtures to be used in modelling LTC engines was accessed by comparison of their low temperature oxidation chemistry with that of the respective parent fuel as well as a PRF based on RON. This was done by testing the surrogate mixtures in a modified Cooperative Fuels Research (CFR) engine running in Controlled Autoignition Mode (CAI) mode. The engine was run at a constant speed of 600 rpm at an equivalence ratio of 0.5 with the intake temperature at 150 °C and a pressure of 98 kPa. The low temperature reactivity of the fuels were studied by varying the compression ratio of the engine from the point were very only small low temperature heat release was observed to a point beyond which auto-ignition of the fuel/air mixture occurred. The apparent heat release rates of different fuels was calculated from the pressure histories using first law analysis and the CA 50 times of the low temperature heat release (LTHR) were compared. The surrogates reproduced the cool flame behavior of the parent fuels better than the PRF across all compression ratios.

  18. Oxidation of Alkane Rich Gasoline Fuels and their Surrogates in a Motored Engine

    KAUST Repository

    Shankar, Vijai S B; Al-Qurashi, Khalid; Ahmed, Ahfaz; Atef, Nour; Chung, Suk-Ho; Roberts, William L.; Sarathy, Mani

    2015-01-01

    The validation of surrogates formulated using a computational framework by Ahmed et al.[1]for two purely paraffinic gasoline fuels labelled FACE A and FACE C was undertaken in this study. The ability of these surrogate mixtures to be used in modelling LTC engines was accessed by comparison of their low temperature oxidation chemistry with that of the respective parent fuel as well as a PRF based on RON. This was done by testing the surrogate mixtures in a modified Cooperative Fuels Research (CFR) engine running in Controlled Autoignition Mode (CAI) mode. The engine was run at a constant speed of 600 rpm at an equivalence ratio of 0.5 with the intake temperature at 150 °C and a pressure of 98 kPa. The low temperature reactivity of the fuels were studied by varying the compression ratio of the engine from the point were very only small low temperature heat release was observed to a point beyond which auto-ignition of the fuel/air mixture occurred. The apparent heat release rates of different fuels was calculated from the pressure histories using first law analysis and the CA 50 times of the low temperature heat release (LTHR) were compared. The surrogates reproduced the cool flame behavior of the parent fuels better than the PRF across all compression ratios.

  19. Nonlinear control of a spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Bidan, P [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Boverie, S; Chaumerliac, V [Siemens AutomotiveSA, MIRGAS Laboratory, 31 - Toulouse (France)

    1994-12-31

    This paper describes the improvements which can be made to spark ignition engine by extensive use of automatic control. Particular emphasis is placed on fast transient phases produced by simultaneous action on the throttle and the electronic fuel injection device. The aim is to achieve better performance for the fuel/air ratio regulation system, thereby improving engine efficiency and exhaust emission during these transient phases. The authors begin by presenting an average dynamic model of the intake manifold validated on an engine test bench and goes on to develop a closed-loop system controlling average pressure in the intake manifold using the reference tracking model method. The air supply control system is combined with a predictor to compensate for delays in the injection procedure. The paper concludes with a comparison between the results obtained using simulation and those obtained experimentally from the engine. (author) 10 refs.

  20. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  1. Experimental study on two-stage air supply downdraft gasifier and dual fuel engine system

    Energy Technology Data Exchange (ETDEWEB)

    Nhuchhen, Daya Ram; Salam, P.A. [Asian Institute of Technology, Energy Field of Study, School of Environment Resource and Development, P. O. Box 4, Klong Luang, Pathumthani (Thailand)

    2012-06-15

    Biomass is a widely used renewable energy resource with net balanced carbon dioxide absorptions and emissions. An inefficient use of solid biomass in combustion process emits more gaseous pollutants, increasing the pollution level. Biomass gasification is one of the techniques to support efficient use of biomass. Multistage gasification is a method of gasification to improve quality of the producer gas in which two separate reactors are designed for separating gasification reactions. This study presents experimental results of gasification using Eucalyptus wood in a single long cylindrical reactor with two air supply ports, i.e., primary and secondary. The effect of different air supply rates on the heating values of the producer gas was studied. Optimum primary and secondary air supply rate of 100 and 80 l/min at equivalence ratio of 0.38 was observed with producer gas lower heating value of 4.72 MJ Nm{sup -3}. The performance of a diesel engine in the dual fuel mode was also evaluated. The overall gasifier engine system efficiency was 13.86 % at an electrical load of 10.54 kW{sub e} with specific energy consumption of 16.22 MJ kWh{sup -1}. The heat recovery system was designed and tested to recover heat from producer gas in the form of hot water. (orig.)

  2. Generator module architecture for a large solid oxide fuel cell power plant

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  3. Intelligent Engine Systems: Alternate Fuels Evaluation

    Science.gov (United States)

    Ballal, Dilip

    2008-01-01

    The performance and gaseous emissions were measured for a well-stirred reactor operating under lean conditions for two fuels: JP8 and a synthetic Fisher-Tropsch fuel over a range of equivalence ratios from 0.6 down to the lean blowout. The lean blowout characteristics were determined in LBO experiments at loading parameter values from 0.7 to 1.4. The lean blowout characteristics were then explored under higher loading conditions by simulating higher altitude operation with the use of nitrogen as a dilution gas for the air stream. The experiments showed that: (1) The lean blowout characteristics for the two fuels were close under both low loading and high loading conditions. (2) The combustion temperatures and observed combustion efficiencies were similar for the two fuels. (3) The gaseous emissions were similar for the two fuels and the differences in the H2O and CO2 emissions appear to be directly relatable to the C/H ratio for the fuels.

  4. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  5. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  6. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  7. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  8. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    Science.gov (United States)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  9. Dual fuel injection piggyback controller system

    Science.gov (United States)

    Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim

    2017-09-01

    Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.

  10. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  11. Air conditioning facilities in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kawasaki, Michitaka; Oka, Tsutomu

    1987-01-01

    Reprocessing plants are the facilities for separating the plutonium produced by nuclear reaction and unconsumed remaining uranium from fission products in the spent fuel taken out of nuclear reactors and recovering them. The fuel reprocessing procedure is outlined. In order to ensure safety in handling radioactive substances, triple confinement using vessels, concrete cells and buildings is carried out in addition to the prevention of criticality and radiation shielding, and stainless steel linings and drip trays are installed as occasion demands. The ventilation system in a reprocessing plant is roughly divided into three systems, that is, tower and tank ventilation system to deal with offgas, cell ventilation system for the cells in which main towers and tanks are installed, and building ventilation system. Air pressure becomes higher from tower and tank system to building system. In a reprocessing plant, the areas in a building are classified according to dose rate. The building ventilation system deals with green and amber areas, and the cell ventilation system deals with red area. These three ventilation systems are explained. Radiation monitors are installed to monitor the radiation dose rate and air contamination in working places. The maintenance and checkup of ventilation systems are important. (Kako, I.)

  12. Pathologic analysis of control plans for air pollution management in tehran metropolis: A qualitative study

    Directory of Open Access Journals (Sweden)

    Narges Salehi Shahrabi

    2013-01-01

    Full Text Available Background: Regarding the importance of air pollution issue for large cities, as Tehran metropolis, many plans, programs, projects and regulations have been developed to manage urban air pollution. However, most of them failed to decline the pollution. The purpose of this study is to pathologically analyze air-pollution control plans in order to offer effective solutions for Tehran metropolis. Methods: A qualitative content analysis and a semi-structured interview with 14 practicing professionals were used to identify key causes and sources of Tehran′s air pollution, to recognize challenges and obstacles towards effective performance of air-pollution control plans in this metropolitan area, and to suggest the most effective controlling solutions. Results: Challenges related to air-pollution control plans can be divided into two major categories: Firstly lack of integrated and organized stewardship and secondly those related to political, economical, social and technical environmental abbreviated as PEST, challenges. For effective control of the Tehran air pollution, the following eight controlling alternatives were identified: Systematization of plan preparation process, organizing the stewardship, standardization and utilization of new technologies and professional experts, cultural and infrastructural development, realization of social justice, developing coordination and controlling mechanisms, improving citizen′s participatory capacity, and focusing on effective management of fuel and energy. Conclusions: Controlling air pollution in Tehran should be considered as a priority for policymakers to make enforcements through applying a systemic cycle of preparation effective and comprehensive plans. Further, implement the enforcements and evaluate the environmental impact of the plans through involving all stakeholders.

  13. Environmental impact of alternative fuel on Tehran air pollution

    International Nuclear Information System (INIS)

    Ebtekar, T.

    1995-01-01

    Seventy percent of the air pollution in the city of Tehran stems from mobile sources, and in comparison with other major cities of the world, Iran's capital experiences one of the most polluted metropolitan areas. There exists a surplus of liquid petroleum gas (LPG) in the Persian Gulf and Iranian market, in addition, Iran possesses the second largest reservoir of natural gas in the world. These alternative energy resources create a favorable potential fuel for city of Tehran. Experiments carried out in Tehran indicate that in converting the taxis from gasoline to a dual fuel (LPG/gasoline) car or to a dual fuel natural gas vehicle (NGV) reduce all major pollutants (CO, HC, NOX, Pb) substantially. Following the author's recommendation, the number of LPG dispensing units in gas stations are increasing and the number of dual fuel taxis amount to several thousands in the metropolitan area. The conversion of diesel buses in the Tehran Public Transportation Corporation to natural gas (NGV) has been recommended by the author and vast experimental works are underway at the present time

  14. Wavelet analysis of cyclic variability in a spark ignition engine powered by gasoline-hydrogen fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Asok K. [Richard G. Lugar Centre for Renewable Energy, and Department of Mathematical Sciences, Indiana University, (United States)], email: asen@iupui.edu; Akif Ceviz, M.; Volkan Oner, I. [Department of Mechanical Engineering, University of Ataturk (Turkey)], email: aceviz@atauni.edu.tr

    2011-07-01

    The cycle-to-cycle variations (CCV) of the indicated mean effective pressure (IMEP) in a spark ignition engine fuelled by gasoline and gasoline-hydrogen blends is investigated. CCVs are estimated by using the coefficient of variation (COV) and the overall spectral power given by the global wavelet spectrum (GWS). It was found that the addition of hydrogen reduces the CCV of the IMEP. Analysis of the wavelet can also identify the dominant modes of variability and delineate the engine cycles over which these modes can persist. Air-fuel ratio was varied from 1.0 to 1.3, and hydrogen was added up to 7.74% by volume. The engine was operated at 2000 rpm. Results demonstrate that subject to air-fuel ratio and % of hydrogen added, IMEP time series can exhibit multiscale dynamics consisting of persistent oscillations and intermittent fluctuations. These results can help develop effective control strategies to reduce cyclic variability in a spark ignition engine fuelled by gasoline-hydrogen mixtures.

  15. A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures

    Science.gov (United States)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2017-11-01

    A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.

  16. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  17. Performance of artificially defected LWR fuel rods in an unlimited air dry storage atmosphere

    International Nuclear Information System (INIS)

    Einziger, R.E.; Knecht, R.L.; Cantley, D.A.; Cook, J.A.

    1983-09-01

    Thus far the tests are inconclusive as to whether breached LWR fuel can be stored at 230 0 C for long periods of time in air without fuel oxidation and dispersion. There is every indication, as expected, that there is no oxidation problem in an inert atmosphere. Only one of four defects exposed to unlimited air gave any indication of fuel oxidation. It has been suggested that this might be an incubation effect and continued operation would result in oxidation occurring at all four defects. As yet the destructive examination of the BWR rod has not been completed, so it is not possible to determine if cladding splitting was due to an anomoly in this test rod or something that can be expected in LWR rods in general. Thus far there is no indication of respirable particle dispersal even if fuel oxidation does occur

  18. Power plant fuel switching and air quality in a tropical, forested environment

    Science.gov (United States)

    Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.; Magalhaes, Mateus R.; Morais, Marcos V. B.; Rafee, Sameh A. A.; Ribeiro, Igor O.; Andreoli, Rita V.; Martins, Jorge A.; Martins, Leila D.; Martin, Scot T.; Souza, Rodrigo A. F.

    2017-07-01

    How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NOx and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NOx-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies favoring the burning of

  19. Power plant fuel switching and air quality in a tropical, forested environment

    Directory of Open Access Journals (Sweden)

    A. S. S. Medeiros

    2017-07-01

    Full Text Available How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NOx and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NOx-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies

  20. Effects of fractal grid on emissions in burner combustion by using fuel-water-air premix injector derived from biodiesel crude palm oil (CPO base

    Directory of Open Access Journals (Sweden)

    Suardi Mirnah

    2017-01-01

    Full Text Available The alternative fuel is attracted good attention from worldwide especially for renewable and prevention energy such as biodiesel. Biodiesel is one of the hydrocarbon fuels and it has potential for external combustion. As one of the different solutions to these problems, rapid mixing of biodiesel-water-air technique is one of the most significant approaches to improve the combustion and reduce the emissions. The gas emission can be reduced by two methods. First is by improving an injector with fractal and the other is by using a biodiesel-water mixture as an alternative fuel. Mixing of water with fuel in the combustion process is a low cost and effective way. This research used biodiesel Crude Palm Oil (CPO as fuels in which blended with diesel. This study investigated the effects of water content and equivalence ratio on emissions with the rapid mixing injector. Fuels used are diesel, CPO5, CPO10 and CPO15 and the exhausts gaseous tested are CO, CO2, HC and NOX. The gas emissions processes are tested by using the gas analyzer. In this research, water premix of percentage up to 15vol% and blending biodiesel ratio was varied from 5vom% - 15vol%. The result shows that increasing of water content will effected decrement of CO, CO2 and HC emissions but increasing the NOX emissions.

  1. Speed Control of General Purpose Engine with Electronic Governor

    Science.gov (United States)

    Sawut, Umerujan; Tohti, Gheyret; Takigawa, Buso; Tsuji, Teruo

    This paper presents a general purpose engine speed control system with an electronic governor in order to improve the current system with a mechanical governor which shows unstable characteristics by change of mecanical friction or A/F ratio (Air/Fuel ratio). For the control system above, there are problems that the feedback signal is only a crank angle because of cost and the controlled object is a general purpose engine which is strongly nonlinear. In order to overcome these problems, the system model is shown for the dynamic estimation of the amount of air flow and the robust controller is designed. That is, the proposed system includes the robust sliding-mode controller by the feedback signal of only a crank angle where Genetic Algorithm is applied for the controller design. The simulation and the experiments by MATLAB/Simulink are performed to show the effectiveness of our proposal.

  2. Controlling air pollution from passenger ferries: cost-effectiveness of seven technological options.

    Science.gov (United States)

    Farrell, Alexander E; Corbett, James J; Winebrake, James J

    2002-12-01

    Continued interest in improving air quality in the United States along with renewed interest in the expansion of urban passenger ferry service has created concern about air pollution from ferry vessels. This paper presents a methodology for estimating the air pollution emissions from passenger ferries and the costs of emissions control strategies. The methodology is used to estimate the emissions and costs of retrofitting or re-powering ferries with seven technological options (combinations of propulsion and emission control systems) onto three vessels currently in service in San Francisco Bay. The technologies include improved engine design, cleaner fuels (including natural gas), and exhaust gas cleanup devices. The three vessels span a range of ages and technologies, from a 25-year-old monohull to a modern, high-speed catamaran built only four years ago. By looking at a range of technologies, vessel designs, and service conditions, a sense of the broader implications of controlling emissions from passenger ferries across a range of vessels and service profiles is provided. Tier 2-certified engines are the most cost-effective choice, but all options are cost-effective relative to other emission control strategies already in place in the transportation system.

  3. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    International Nuclear Information System (INIS)

    Komatsu, Y; Brus, G; Szmyd, J S; Kimijima, S

    2012-01-01

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  4. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    Science.gov (United States)

    Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2012-11-01

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  5. α-MnO2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg-Air Fuel Cell

    International Nuclear Information System (INIS)

    Jiang, Min; He, Hao; Huang, Chen; Liu, Bo; Yi, Wen-Jun; Chao, Zi-Sheng

    2016-01-01

    Highlights: • α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. • The performance of α-MnO 2 NWs/graphene is close to the Pt/C. • The ORR mechanism involves a one-step, quasi-4-electron pathway. • A large area (5 cm*5 cm) cathode was prepared and tested in a full cell. - Abstract: This paper reports the preparation of α-MnO 2 NWs/graphene composites as the cathode catalyst for magnesium-air fuel cell and its excellent electrochemistry performance. The composites are synthesized by self-assembly of α-MnO 2 nan α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. owires (NWs) on the surface of graphene via a simple hydrothermal method. The α-MnO 2 NWs/graphene composites showed a higher electrochemical activity than the commercial MnO 2 . The oxygen reduction peak of the α-MnO 2 NWs/graphene composites catalyst is tested in a 0.1 M KOH solution at −0.252 V, which is more positive than the commercial MnO 2 (−0.287 V). The ORR limit current density for 28% α-MnO2 NWs/graphene composite is approximately 2.74 mA/cm 2 , which is similar to that of the 20% Pt/C(2.79 mA/cm 2 ) in the same conditions. Based on the Koutecky–Levich plot, the ORR mechanism of the composite involves a one-step, quasi-4-electron pathway. In addition, magnesium-air fuel cell with α-MnO 2 NWs/graphene as catalyst possesses higher current density (140 mA/cm 2 ) and power density (96 mW/cm 2 ) compared to the commercial MnO 2 . This study proves that the cost-effective α-MnO 2 NWs/graphene with higher power generation ability make it possible for the substitute of the noble metals catalyst in the Mg-air fuel cell.

  6. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  7. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  8. 14 CFR 25.1161 - Fuel jettisoning system controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel jettisoning system controls. 25.1161... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1161 Fuel jettisoning system controls. Each fuel jettisoning system control must have guards...

  9. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure-risk functions

    Science.gov (United States)

    Bruce, Nigel; Pope, Dan; Rehfuess, Eva; Balakrishnan, Kalpana; Adair-Rohani, Heather; Dora, Carlos

    2015-04-01

    Background: 2.8 billion people use solid fuels as their primary cooking fuel; the resulting high levels of household air pollution (HAP) were estimated to cause more than 4 million premature deaths in 2012. The people most affected are among the world's poorest, and past experience has shown that securing adoption and sustained use of effective, low-emission stove technologies and fuels in such populations is not easy. Among the questions raised by these challenges are (i) to what levels does HAP exposure need to be reduced in order to ensure that substantial health benefits are achieved, and (ii) what intervention technologies and fuels can achieve the required levels of HAP in practice? New WHO air quality guidelines are being developed to address these issues. Aims: To address the above questions drawing on evidence from new evidence reviews conducted for the WHO guidelines. Methods: Discussion of key findings from reviews covering (i) systematic reviews of health risks from HAP exposure, (ii) newly developed exposure-response functions which combine combustion pollution risk evidence from ambient air pollution, second-hand smoke, HAP and active smoking, and (iii) a systematic review of the impacts of solid fuel and clean fuel interventions on kitchen levels of, and personal exposure to, PM2.5 and carbon monoxide (CO). Findings: Evidence on health risks from HAP suggest that controlling this exposure could reduce the risk of multiple child and adult health outcomes by 20-50%. The new integrated exposure-response functions (IERs) indicate that in order to secure these benefits, HAP levels require to be reduced to the WHO IT-1 annual average level (35 μg/m3 PM2.5), or below. The second review found that, in practice, solid fuel 'improved stoves' led to large percentage and absolute reductions, but post-intervention kitchen levels were still very high, at several hundreds of μg/m3 of PM2.5, although most solid fuel stove types met the WHO 24-hr average guideline

  10. Effects of ashes in solid fuels on fuel particle charging during combustion in an air stream

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.G.; Fialkov, B.S.; Mel' nichuk, A.Yu.; Khvan, L.A.

    1982-09-01

    Black coal from the Karaganda basin is mixed with sodium chloride and graphite. Coal characteristics are given in a table (density, ashes, content of silica, aluminium oxides, iron oxides, calcium oxides, potassium oxides and magnesium oxides). Effects of ash fluctuations on electric potential of fuel particles during combustion are analyzed. Analyses show that with increasing ash content electric potential of fuel particles decreases and reaches the minimum when ash content ranges from 70 to 80 %. Particles with electric potential are generated during chemical processes between carbon and oxygen when coal is burned in an air stream. (5 refs.) (In Russian)

  11. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  12. Analysis of cyclic variations of liquid fuel-air mixing processes in a realistic DISI IC-engine using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Goryntsev, D.; Sadiki, A.; Klein, M.; Janicka, J.

    2010-01-01

    Direct injection spark ignition (DISI) engines have a large potential to reduce emissions and specific fuel consumption. One of the most important problem in the design of DISI engines is the cycle-to-cycle variations of the flow, mixing and combustion processes. The Large Eddy Simulation (LES) based analysis is used to characterize the cycle-to-cycle fluctuations of the flow field as well as the mixture preparation in a realistic four-stroke internal combustion engine with variable charge motion system. Based on the analysis of cycle-to-cycle velocity fluctuations of in-cylinder flow, the impact of various fuel spray boundary conditions on injection processes and mixture preparation is pointed out. The joint effect of both cycle-to-cycle velocity fluctuations and variable spray boundary conditions is discussed in terms of mean and standard deviation of relative air-fuel ratio, velocity and mass fraction. Finally a qualitative analysis of the intensity of cyclic fluctuations below the spark plug is provided.

  13. Advanced diesel electronic fuel injection and turbocharging

    Science.gov (United States)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  14. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    Science.gov (United States)

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  15. Recent advances in the chemical quality control of MOX fuel for PFBR

    International Nuclear Information System (INIS)

    Prakash, Amrit; Das, D.K.; Behere, P.G.; Afzal, Mohd

    2012-01-01

    Uranium-plutonium mixed oxide (MOX) fuel for Prototype Fast Breeder Reactor (PFBR) is being fabricated at Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre (BARC),Tarapur. A number of quality control steps are required to ensure the quality of the fuel. Chemical characterization of the fuel is very important from reactor performance point of view. More than three hundred batches have been analysed till to date for various specifications like percentage composition, heavy metal content, oxygen to metal ratio, trace metallic impurities, trace non-metallic impurities, cover gas content, total gas content, homogeneity test etc. During these analyses by recommended techniques, studies were carried out to see the feasibility of using methodologies which can reduce the total analysis time, convenience/safety in operation and man rem problems. The present paper describes a glimpse of those studies carried out

  16. Fuel control apparatus of carburetor in deceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, N

    1974-11-20

    A fuel control valve for carburetors during deceleration operation is described for fuel conservation. The device cuts off the fuel supply to the cylinder during deceleration. The control valve is regulated by a magnetic switch, and the electrical current to the switch is controlled through a device sensible to the pressure difference to both sides of the throttle valve in the carburetor. When the cylinder becomes lower in pressure than the atmospheric pressure, the pressure activates the electrical current switch, thus activating the magnetic switch to close the fuel control valve. The device also prevents the engine from running after the ignition key is disconnected.

  17. Sulfur isotope ratios and the origins of the aerosols and cloud droplets in California stratus

    International Nuclear Information System (INIS)

    Ludwig, F.L.

    1976-01-01

    Marine aerosols often have sulfur-to-chloride ratios greater than that found in seawater. Sulfur isotope ratios ( 34 S/ 32 S) were measured in aerosol and cloud droplet samples collected in the San Francisco Bay Area in an attempt to understand the processes that produce the observed sulfur-to-chloride ratios. Seawater sulfur usually has very high sulfur isotope ratios: fossil fuel sulfur tends to have smaller isotope ratios and sulfur of bacteriogenic origin still smaller. Samples collected in unpolluted marine air over the hills south of San Francisco had sulfur ratios that were significantly lower than the values for samples collected in nearby areas that were subject to urban pollution. The highest sulfur isotope ratios were found in the offshore seawater. The results suggest bacteriogenic origins, of the marine air sulfur aerosol material. The low isotope ratios in the marine air cannot be explained as a mixture of seawater sulfur and pollutant sulfur, because both tend to have higher isotope ratios. (Auth.)

  18. Dry air oxidation kinetics of K-Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

    1998-06-01

    The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation

  19. Store for burnt-up fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Burnt-up fuel elements of nuclear reactors have to be cooled during storage. For this reason the boxes which surround the fuel elements can have cooling air flowing round them in natural flow. This air is taken through the walls of a storage building through zones of parallel pipes, whose diameter and spacing are in the ratio of 1 : 0.5 to 1 : 2. The pipes have dust filters. Prefilters with fan drive are situated in parallel with the inlet pipe zones. (orig.) [de

  20. Impacts of Particulate Pollution from Fossil Fuel and Biomass Burnings on the Air Quality and Human Health in Southeast Asia

    Science.gov (United States)

    Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.

    2017-12-01

    Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.

  1. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    Science.gov (United States)

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  2. Atmospheric ammonia mixing ratios at an open-air cattle feeding facility.

    Science.gov (United States)

    Hiranuma, Naruki; Brooks, Sarah D; Thornton, Daniel C O; Auvermann, Brent W

    2010-02-01

    Mixing ratios of total and gaseous ammonia were measured at an open-air cattle feeding facility in the Texas Panhandle in the summers of 2007 and 2008. Samples were collected at the nominally upwind and downwind edges of the facility. In 2008, a series of far-field samples was also collected 3.5 km north of the facility. Ammonium concentrations were determined by two complementary laboratory methods, a novel application of visible spectrophotometry and standard ion chromatography (IC). Results of the two techniques agreed very well, and spectrophotometry is faster, easier, and cheaper than chromatography. Ammonia mixing ratios measured at the immediate downwind site were drastically higher (approximately 2900 parts per billion by volume [ppbv]) than thos measured at the upwind site (open-air animal feeding operations, especially under the hot and dry conditions present during these measurements.

  3. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-01-01

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  4. Impact of partial fuel switch on household air pollutants in sub-Sahara Africa

    International Nuclear Information System (INIS)

    Tumwesige, Vianney; Okello, Gabriel; Semple, Sean; Smith, Jo

    2017-01-01

    Over 700 million people in Sub-Saharan Africa depend on solid biomass fuel and use simple cookstoves in poorly ventilated kitchens, which results in high indoor concentrations of household air pollutants. Switching from biomass to biogas as a cooking fuel can reduce airborne emissions of fine particulate matter (PM 2.5 ) and carbon monoxide (CO), but households often only partially convert to biogas, continuing to use solid biomass fuels for part of their daily cooking needs. There is little evidence of the benefits of partial switching to biogas. This study monitored real-time PM 2.5 and CO concentrations in 35 households in Cameroon and Uganda where biogas and firewood (or charcoal) were used. The 24 h mean PM 2.5 concentrations in households that used: (1) firewood and charcoal; (2) both firewood (mean 54% cooking time) and biogas (mean 46% cooking time); and (3) only biogas, were 449 μg m −3 , 173 μg m −3 and 18 μg m −3 respectively. The corresponding 24 h mean CO concentrations were 14.2 ppm, 2.7 ppm and 0.5 ppm. Concentrations of both PM 2.5 and CO were high and exceeded the World Health Organisation guidelines when firewood and charcoal were used. Partially switching to biogas reduced CO exposure to below the World Health Organisation guidelines, but PM 2.5 concentrations were only below the 24 h recommended limits when households fully converted to biogas fuel. These results indicate that partial switching from solid fuels to biogas is not sufficient and continues to produce concentrations of household air pollution that are likely to harm the health of those exposed. Programmes introducing biogas should aim to ensure that household energy needs can be fully achieved using biogas with no requirement to continue using solid fuels. - Highlights: • Air pollution exceeds WHO limits in African households using solid biomass fuels. • A partial switch to biogas reduced CO concentrations to below the WHO limit. • Particulates only fall to

  5. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  6. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  7. Engine control techniques to account for fuel effects

    Science.gov (United States)

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  8. System and method for determining an ammonia generation rate in a three-way catalyst

    Science.gov (United States)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    2014-12-30

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  9. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    Science.gov (United States)

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  10. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  11. Sipping machine control system new design to perform integrity of nuclear fuel test in Cofrentes power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M., E-mail: mpalomo@iqn.upv.es [Departamento de Ingenieria Quimica y Nuclear. Universidad Politecnica de Valencia (Spain); Urrea, M., E-mail: Matias.urrea@iberdrola.es [C.N.Cofrentes - Iberdrola Generacion S.A., Cofrentes, Valencia (Spain); Curiel, M., E-mail: m.curiel@lainsa.com [LAINSA Grupo Dominguis, Valencia (Spain); Arnaldos, A., E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Tecnologicos SL, Grupo Dominguis, Valencia (Spain)

    2011-07-01

    This paper we present is related to SIPPING machine control system new design to perform integrity of nuclear fuel test. This test is a non destructive technique used for evaluating the radiated nuclear fuel coating structural integrity. It is based on the radioactive emission detection of fission elements in the reactor cooling system, using the fuel inspection equipment (SIPPING). SIPPING equipment consists of one simultaneous test bell-shaped vessel of eight fuel elements, and another one for individual element test, a control workstation and some accessories (cables, thermocouples, hoses). SIPPING inspection is carried out by means of fuel element vessel. Through air injection, water flows around the element and heat evacuation is reduced, so fuel elements temperature increases. Those elements with faults shall expelled fission components dissolved in water and/or as a gas component. The project aim is the SIPPING system control design and software based on LabVIEW, for control, monitoring and documentation of the SIPPING Test. This project shall give a major functionality to the system and, at the same time, shall facilitate the user a friendlier and interactive environment allowing: to substitute the present work platform with a real-time electronic system based on cRIO and a control software ad-hoc designed for SIPPING system; to equip new system of a major redundancy for data storage, minimising loss probability of the same. (author)

  12. Sipping machine control system new design to perform integrity of nuclear fuel test in Cofrentes power plant

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Urrea, M. [Iberdrola Generacion S. A., Central Nuclear Cofrentes, Carretera Almansa Requena s/n, 04662 Cofrentes, Valencia (Spain); Vaquer, J., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    This paper related to Sipping machine control system new design to perform integrity of nuclear fuel test. This test is a non destructive technique used for evaluating the radiated nuclear fuel coating structural integrity. It is based on the radioactive emission detection of fission elements in the reactor cooling system, using the fuel inspection equipment Sipping. The equipment consists of one simultaneous test bell-shaped vessel of eight fuel elements, and another one for individual element test, a control workstation and some accessories (cables, thermocouples, hoses). Sipping inspection is carried out by means of fuel element vessel. Through air injection, water flows around the element and heat evacuation is reduced, so fuel elements temperature increases. Those elements with faults shall expelled fission components dissolved in water and/or as a gas component. The project aim is the Sipping system control design and software based on LabVIEWTM, for control, monitoring and documentation of the Sipping test. This project shall give a major functionality to the system and, at the same time, shall facilitate the user a friendlier and interactive environment allowing: 1) To substitute the present work platform with a real-time electronic system based on cRIO and a control software ad-hoc designed for Sipping system. 2) To equip new system of a major redundancy for data storage, minimising loss probability of the same. (Author)

  13. Sipping machine control system new design to perform integrity of nuclear fuel test in Cofrentes power plant

    International Nuclear Information System (INIS)

    Curiel, M.; Palomo, M. J.; Urrea, M.; Vaquer, J.

    2010-10-01

    This paper related to Sipping machine control system new design to perform integrity of nuclear fuel test. This test is a non destructive technique used for evaluating the radiated nuclear fuel coating structural integrity. It is based on the radioactive emission detection of fission elements in the reactor cooling system, using the fuel inspection equipment Sipping. The equipment consists of one simultaneous test bell-shaped vessel of eight fuel elements, and another one for individual element test, a control workstation and some accessories (cables, thermocouples, hoses). Sipping inspection is carried out by means of fuel element vessel. Through air injection, water flows around the element and heat evacuation is reduced, so fuel elements temperature increases. Those elements with faults shall expelled fission components dissolved in water and/or as a gas component. The project aim is the Sipping system control design and software based on LabVIEWTM, for control, monitoring and documentation of the Sipping test. This project shall give a major functionality to the system and, at the same time, shall facilitate the user a friendlier and interactive environment allowing: 1) To substitute the present work platform with a real-time electronic system based on cRIO and a control software ad-hoc designed for Sipping system. 2) To equip new system of a major redundancy for data storage, minimising loss probability of the same. (Author)

  14. Association of biomass fuel use with acute respiratory infections among under- five children in a slum urban of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Sanbata, Habtamu; Asfaw, Araya; Kumie, Abera

    2014-10-31

    Indoor air pollution from biomass fuel is responsible for 50,320 annual deaths of children under-five year, accounting for 4.9% of the national burden of disease in Ethiopia. Acute respiratory infections are the leading cause of mortality among children in Ethiopia. There is limited research that has examined the association between the use of biomass fuel and acute respiratory infections among children. A community based cross-sectional study was conducted during January to February 2012 among 422 households in the slum of Addis Ababa. Data were collected by using structured and pretested questionnaire. Odds ratio was done to determine association between independent variables and acute respiratory infections by using logistic regression analysis. Multivariate logistic regression was used to determine the presence of an association between biomass fuel use and acute respiratory infections after controlling for other confounding variables. Nearly 253 (60%) of children live in households that predominately used biomass fuel. The two weeks prevalence of acute respiratory infection was 23.9%. The odds ratios of acute respiratory infection were 2.97 (95% CI: 1.38-3.87) and 1.96 (95% CI: 0.78-4.89) in households using biomass fuel and kerosene, respectively, relative to cleaner fuels. There is an association between biomass fuel usage and acute respiratory infection in children. The relationship needs investigation which measure indoor air pollution and clinical measures of acute respiratory infection.

  15. Quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Abdelhalim, A.S.; Elsayed, A.A.; Shaaban, H.I.

    1988-01-01

    The department of metallurgy, NRC Inchass is embarking on a programme of on a laboratory scale, fuel pins containing uranium dioxide pellets are going to be produced. The department is making use of the expertise and equipment at present available and is going to utilize the new fuel pin fabrication unit which would be shortly in operation. The fabrication and testing of uranium dioxide pellets then gradually adapt them and develop, a national know how in this field. This would also involve building up of indigenous experience through proper training of qualified personnel. That are applied to ensure quality of U o 2 pellets, the techniques implemented, the equipment used and the specifications of the equipment presently available. The following parameters are subject to quality control tests: density. O/U ration, hydrogen content, microstructure, each property will be discussed, measurements related to U o 2 powders, including flow ability, bulk density, O/U ratio, bet surface area and water content will be critically discussed. Relevant tests to ensure Q C of pellets are reviewed. These include surface integrity, density, dimensions, microstructure.4 fig., 1 tab

  16. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    Science.gov (United States)

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  17. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    Science.gov (United States)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  18. Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems

    International Nuclear Information System (INIS)

    Colpan, C.O.; Hamdullahpur, F.; Dincer, I.; Yoo, Y.

    2009-01-01

    In this study, an integrated SOFC and biomass gasification system is modeled. For this purpose, energy and exergy analyses are applied to the control volumes enclosing the components of the system. However, SOFC is modeled using a transient heat transfer model developed by the authors in a previous study. Effect of gasification agent, i.e. air, enriched oxygen and steam, on the performance of the overall system is studied. The results show that steam gasification case yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency. For this case, it is found that electrical, fuel utilization and exergetic efficiencies are 41.8%, 50.8% and 39.1%, respectively, and the power-to-heat ratio is 4.649. (author)

  19. Biomass fuel use and indoor air pollution in homes in Malawi

    Science.gov (United States)

    Fullerton, D G; Semple, S; Kalambo, F; Suseno, A; Malamba, R; Henderson, G; Ayres, J G; Gordon, S B

    2009-01-01

    Background: Air pollution from biomass fuels in Africa is a significant cause of mortality and morbidity both in adults and children. The work describes the nature and quantity of smoke exposure from biomass fuel in Malawian homes. Methods: Markers of indoor air quality were measured in 62 homes (31 rural and 31 urban) over a typical 24 h period. Four different devices were used (one gravimetric device, two photometric devices and a carbon monoxide (HOBO) monitor. Gravimetric samples were analysed for transition metal content. Data on cooking and lighting fuel type together with information on indicators of socioeconomic status were collected by questionnaire. Results: Respirable dust levels in both the urban and rural environment were high with the mean (SD) 24 h average levels being 226 μg/m3 (206 μg/m3). Data from real-time instruments indicated respirable dust concentrations were >250 μg/m3 for >1 h per day in 52% of rural homes and 17% of urban homes. Average carbon monoxide levels were significantly higher in urban compared with rural homes (6.14 ppm vs 1.87 ppm; p<0.001). The transition metal content of the smoke was low, with no significant difference found between urban and rural homes. Conclusions: Indoor air pollution levels in Malawian homes are high. Further investigation is justified because the levels that we have demonstrated are hazardous and are likely to be damaging to health. Interventions should be sought to reduce exposure to concentrations less harmful to health. PMID:19671533

  20. Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation

    Directory of Open Access Journals (Sweden)

    Alan Cruz Rojas

    2017-01-01

    Full Text Available This paper deals with the design of a control scheme for improving the air supply subsystem of a Proton Exchange Membrane Fuel Cell (PEMFC with maximum power of 65 kW. The control scheme is evaluated in a plant simulator which incorporates the balance of plant (BOP components and is built in the aspenONE® platform. The aspenONE® libraries and tools allows introducing the compressor map and sizing the heat exchangers used to conduct the reactants temperature to the operating value. The PEMFC model and an adaptive controller were programmed to create customized libraries used in the simulator. The structure of the plant control is as follows: the stoichiometric oxygen excess ratio is regulated by manipulating the compressor power, the equilibrium of the anode-cathode pressures is achieved by tracking the anode pressure with hydrogen flow manipulation; the oxygen and hydrogen temperatures are regulated in the heat exchangers, and the gas humidity control is obtained with a simplified model of the humidifier. The control scheme performance is evaluated for load changes, perturbations and parametric variations, introducing a growing current profile covering a large span of power, and a current profile derived from a standard driving speed cycle. The impact of the control scheme is advantageous, since the control objectives are accomplished and the PEMFC tolerates reasonably membrane damage that can produce active surface reduction. The simulation analysis aids to identify the safe Voltage-Current region, where the compressor works with mechanical stability.

  1. Methodology for determining criteria for storing spent fuel in air

    International Nuclear Information System (INIS)

    Reid, C.R.; Gilbert, E.R.

    1986-11-01

    Dry storage in an air atmosphere is a method being considered for spent light water reactor (LWR) fuel as an alternative to storage in an inert gas environment. However, methods to predict fuel integrity based on oxidation behavior of the fuel first must be evaluated. The linear cumulative damage method has been proposed as a technique for defining storage criteria. Analysis of limited nonconstant temperature data on nonirradiated fuel samples indicates that this approach yields conservative results for a strictly decreasing-temperature history. On the other hand, the description of damage accumulation in terms of remaining life concepts provides a more general framework for making predictions of failure. Accordingly, a methodology for adapting remaining life concepts to UO 2 oxidation has been developed at Pacific Northwest Laboratory. Both the linear cumulative damage and the remaining life methods were used to predict oxidation results for spent fuel in which the temperature was decreased with time to simulate the temperature history in a dry storage cask. The numerical input to the methods was based on oxidation data generated with nonirradiated UO 2 pellets. The calculated maximum allowable storage temperatures are strongly dependent on the temperature-time profile and emphasize the conservatism inherent in the linear cumulative damage model. Additional nonconstant temperature data for spent fuel are needed to both validate the proposed methods and to predict temperatures applicable to actual spent fuel storage

  2. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  3. The influence of Compression Ratio to Performance of Four Stroke Engine Use of Arak Bali as a Fuel

    Directory of Open Access Journals (Sweden)

    I Dewa Made Krishna Muku

    2012-11-01

    Full Text Available Arak bali is alternative fuel as ethanol. Ethanol has octane number 108. Octane number which was higher can over come adetonation, and can work at higher compression ratio. This experiment has done to now how the effect of compression ratiovariation to the performance four strokes engine by arak bali fuel. This research was done by changing the compressionratio that is 8,8 : 1, 8,9 : 1, 9 : 1 and 9,3 : 1. The change was done by reducing combustion chamber by scrap the cylinderhead. The result, for the used arak bali fuel to the vehicle is, if engine compression ratio to increase can be influence ofengine performance to be increase and engine fuel consumption to be decrease. For premium is, if engine compression ratioto increase to influence of engine performance to be decrease and engine fuel consumption to be increase.

  4. Control system of fuel transporting device

    International Nuclear Information System (INIS)

    Yokota, Minoru.

    1981-01-01

    Purpose: To effectively avoid an obstacle in a fuel transporting device by reading the outputs of absolute position detectors mounted on movable trucks, controlling the movements of the trucks, and thereby smoothly and accurately positioning the fuel transporting device at predetermined position and providing a contact detector thereat. Method: The outputs from absolute position detectors which are mounted on a longitudinally movable truck and a laterally movable truck are input to an input/output control circuit. The input/output control circuit serves to compare, the position a fuel transporting device is to be moved to, with the present position on the basis of said input detection signal and a command signal from an operator console, to calculate the amount of movement to be driven, to produce an operation signal therefor to a control panel, and to drive and control the drive motors which are respectively mounted on the trucks for the fuel transfer device. On the other hand, in case that the transfer device comes into contact with an obstacle, the contact detector will immediately operate to produce a stop command through the control panel to the transporting device, and avoid a collision with the obstacle. (Yoshino, Y.)

  5. Pollution prevention for cleaner air: EPA's air and energy engineering research laboratory

    International Nuclear Information System (INIS)

    Shaver, E.M.

    1992-01-01

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribute to air quality problems. The Laboratory has successfully developed and demonstrated cost-effective sulfur dioxide, nitrogen oxides, and particulate control technologies for fossil fuel combustion sources. More recently, it has expanded its research activities to include indoor air quality, radon, organic control, stratospheric ozone depletion, and global warming. AEERL also develops inventories of air emissions of many types. Over the last several years, it has made substantial efforts to expand research on pollution prevention as the preferred choice for air emissions reduction

  6. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    Science.gov (United States)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  7. Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, 10617 Taipei (China)

    2009-03-15

    This paper applies fixed-order multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system, and implements the designed controllers on a microchip for system miniaturization. In previous studies, robust control was applied to guarantee system stability and to reduce hydrogen consumption for a PEMFC system. It was noted that for standard robust control design, the order of resulting H{sub {infinity}} controllers is dictated by the plants and weighting functions. However, for hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, in this paper the PEMFC is modeled as multivariable transfer matrices, then three fixed-order robust control algorithms are applied to design controllers with specified orders for a PEMFC. Finally, the designed controllers are implemented on a microchip to regulate the air and hydrogen flow rates. From the experimental results, fixed-order robust control is deemed effective in supplying steady power and reducing fuel consumption. (author)

  8. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    Energy Technology Data Exchange (ETDEWEB)

    Kassa, Mateos [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Hall, Carrie [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Ickes, Andrew [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA; Wallner, Thomas [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA

    2016-10-07

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air

  9. Control-oriented model of a membrane humidifier for fuel cell applications

    International Nuclear Information System (INIS)

    Solsona, Miguel; Kunusch, Cristian; Ocampo-Martinez, Carlos

    2017-01-01

    Highlights: • A control-oriented model of a Nafion® membrane gas humidifier has been developed. • The control-oriented model has been experimentally validated. • A non-linear control strategy has been used to test its suitability for control purposes. - Abstract: Improving the humidification of polymer electrolyte membrane fuel-cells (PEMFC) is essential to optimize its performance and stability. Therefore, this paper presents an experimentally validated model of a low temperature PEMFC cathode humidifier for control/observation design purposes. A multi-input/multi-output non-linear fourth order model is derived, based on the mass and heat dynamics of circulating air. In order to validate the proposed model and methodology, experimental results are provided. Finally, a non-linear control strategy based on second order sliding mode is designed and analyzed in order to show suitability and usefulness of the approach.

  10. Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns

    International Nuclear Information System (INIS)

    Granados, D.A.; Chejne, F.; Mejía, J.M.

    2015-01-01

    Highlights: • A one-dimensional model for oxy-fuel combustion in a rotary kiln was developed. • Flue gas recirculation becomes an important parameter for controlling the process. • Combustion process decreases the flame length making it more dense. • Increases of 12% in raw material with 40% of FGR and conversion of 98% was obtained. - Abstract: The effect of Flue Gas Recirculation (FGR) on the decarbonation process during oxy-fuel combustion in a lime (and cement) rotary kiln is analyzed using an unsteady one-dimensional Eulerian–Lagrangian mathematical model. The model considers gas and limestone as continuous phases and the coal particles as the discrete phase. The model predicts limestone decarbonation, temperature and species distribution of gas and solid phases along the kiln. Simulation results of an air-combustion case are successfully validated with reported experimental data. This model is used to study and to compare the conventional air combustion process with oxy-fuel combustion with FGR ratios between 30% and 80% as controller parameter in this process. Changes in decarbonation process due to energy fluxes by convection and radiation with different FGRs were simulated and analyzed. Simulation results indicate a temperature increase of 20% in the gas and solid phases and a higher decarbonation rate of 40% in relation to the air-combustion case, for a given constant fuel consumption rate. However, for a given temperature, the increase of the CO_2 partial pressure in the oxy-fuel case promotes a reduction of the decarbonation rate. Therefore, there is a compromise between FGR and decarbonation rate, which is analyzed in the present study. Simulation results of the decarbonation step in low FGR cases, compared to air-combustion case, shows that conversion takes place in shorter distances in the kiln, suggesting that the production rate can be increased for existing kilns in oxy-fuel kilns or, equivalently, shorter kilns can be designed for an

  11. Air ventilation/controlling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-12-12

    When all electricity supply from the outside of a power plant are lost, a power generator directly connected to an emergency steam turbine which is driven by steams introduced from a nuclear reactor is driven to supply electricity required in the power plant. Cool water prepared by a refrigerator is used as cooling water in an air ventilation/controlling facility of a room equipped with the power generating facility. As the refrigerator, a refrigerator of an existent emergency air cooling water system for an auxiliary air ventilation/controlling equipment is used. This can extend the period of time till the temperature of the room where the power generator is disposed exceeds the temperature range capable of keeping the integrity of the power generator even when all the AC power supply are lost to inactivate the function of the air ventilation/controlling system. (I.S.)

  12. Power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell system with discrete ejector control

    Science.gov (United States)

    Nikiforow, K.; Pennanen, J.; Ihonen, J.; Uski, S.; Koski, P.

    2018-03-01

    The power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell (PEMFC) system are studied theoretically and experimentally for grid support service applications. The fuel supply is implemented with a fixed-geometry ejector and a discrete control solution without any anode-side pressure fluctuation suppression methods. We show that the stack power can be ramped up from 2.0 kW to 4.0 kW with adequate fuel supply and low anode pressure fluctuations within only 0.1 s. The air supply is implemented with a centrifugal blower. Air supply ramp rates are studied with a power increase executed within 1 and 0.2 s after the request, the time dictated by grid support service requirements in Finland and the UK. We show that a power ramp-up from 2.0 kW to 3.7 kW is achieved within 1 s with an initial air stoichiometry of 2.5 and within 0.2 s with an initial air stoichiometry of 7.0. We also show that the timing of the power ramp-up affects the achieved ancillary power capacity. This work demonstrates that hydrogen fueled and ejector-based PEMFC systems can provide a significant amount of power in less than 1 s and provide valuable ancillary power capacity for grid support services.

  13. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  14. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  15. Solid fuels, indoor air quality and health: a major issue in developing countries

    International Nuclear Information System (INIS)

    Mandin, C.; Ezratty, V.

    2009-01-01

    This article intends to do a synthesis of knowledge about the relationship between the indoor air pollution and the use of solid fuels ( such wood or biomass) for heating and cooking, from publications since 200 by specifying the fuels, the pollutants and the concerned geographical areas as well as the sanitary effects and more generally the impact in term of public health. (N.C.)

  16. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter

    2008-01-01

    in accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...... activity resulting in a lowered pH and thus a decreased FA concentration, promoting further growth of NOB. Yet, in some cases a situation with a nitrate-to-nitrite ratio of 1 and moderate pH remained stable even under varying air load and water supply, suggesting that additional mechanisms were involved......In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting...

  17. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ferrari, Mario L.

    2015-01-01

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  18. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  19. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  20. Fuel and control modifications to fire oil and gas individually or simultaneously

    International Nuclear Information System (INIS)

    Des Chenes, C.D.; Connolly, J.M.

    1992-01-01

    Jacksonville Electric Authority's (JEA's) Northside station Unit 1 (NS-1) is now modified to fire natural gas as well as the original No. 6 fuel oil. Hardware and control modifications accommodate oil, gas. or simultaneous oil and gas firing in the boiler. Working with Stone and Webster Engineering Corporation, this flexibility derives from control modifications not previously used in North American power plants. This paper reports that the modifications not only reduce fuel costs, but also increase flexibility in meeting air emissions requirements. Emission levels for particulate and nitrous oxides (NO x ) on oil were demonstrated prior to the modification. No emission increases are allowed as a result of the modification in any firing mode. Particulate emission limits in pounds per million British thermal units (lb/mmBtu) are 0.1/mm Btu and NO x limits are 0.45 lb/mmBtu. No x emissions from gas firing are also stipulated to be below oil emission limits

  1. Hierarchical control of vehicular fuel cell / battery hybrid powertrain

    OpenAIRE

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Hua, Jianfeng

    2010-01-01

    In a proton exchange membrane (PEM) fuel cell/battery hybrid vehicle, a fuel cell system fulfills the stationary power demand, and a traction battery provides the accelerating power and recycles braking energy. The entire system is coordinated by a distributed control system, incorporating three key strategies: 1) vehicle control, 2) fuel cell control and 3) battery management. They make up a hierarchical control system. This paper introduces a hierarchical control strategy for a fuel cell / ...

  2. Advance planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, G L

    1972-11-01

    An air quality management program for nitric acid plants emitting pollutants which include nitrogen oxides is proposed. The program consists of the following five phases: an inventory of the handling equipment within the plant, including the identification of potential emission sources in terms of process material balances; source testing (if required); ambient air quality measurements; emission control analysis; and the development of a complete air management plan which includes a balance between air exhausted from buildups and processes and air supplied in a controlled economical manner. Typical NOx air pollution problems associated with nitric acid plants are reviewed along with various approaches to control and by-product recovery.

  3. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  4. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities

    KAUST Repository

    Luong, Minhbau

    2013-10-01

    The effects of fuel composition, thermal stratification, and turbulence on the ignition of lean homogeneous primary reference fuel (PRF)/air mixtures under the conditions of constant volume and elevated pressure are investigated by direct numerical simulations (DNSs) with a new 116-species reduced kinetic mechanism. Two-dimensional DNSs were performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields with different fuel compositions to elucidate the influence of variations in the initial temperature fluctuation and turbulence intensity on the ignition of three different lean PRF/air mixtures. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs fast with increasing thermal stratification regardless of the fuel composition under elevated pressure and temperature conditions. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to vanish with increasing thermal stratification. Chemical explosive mode (CEM), displacement speed, and Damköhler number analyses revealed that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, rendering the mean heat release rate more distributed over time subsequent to thermal runaway occurring at the highest temperature regions in the domain. These analyses also revealed that the vanishing of the fuel effect under the high degree of thermal stratification is caused by the nearly identical propagation characteristics of deflagrations of different PRF/air mixtures. It was also found that high intensity and short-timescale turbulence can effectively homogenize mixtures such that the overall ignition is apt to occur by spontaneous ignition. These results suggest that large thermal stratification leads to smooth operation of homogeneous charge compression-ignition (HCCI

  5. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  6. Engine control system having fuel-based adjustment

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  7. An experimental investigation on engine performance and emissions of a supercharged H{sub 2}-diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Murari Mohon [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi [Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo (Japan)

    2010-01-15

    This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen and ignited by a pilot amount of diesel fuel in dual-fuel mode. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with charge dilution. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first with hydrogen-operation condition up to the maximum possible fuel-air equivalence ratio of 0.3. A maximum IMEP of 908 kPa and a thermal efficiency of about 42% were obtained. Equivalence ratio could not be further increased due to knocking of the engine. The emission of CO was only about 5 ppm, and that of HC was about 15 ppm. However, the NOx emissions were high, 100-200 ppm or more. The charge dilution by N{sub 2} was then performed to obtain lower NOx emissions. The 100% reduction of NOx was achieved. Due to the dilution by N{sub 2} gas, higher amount of energy could be supplied from hydrogen without knocking, and about 13% higher IMEP was produced than without charge dilution. (author)

  8. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    Science.gov (United States)

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.

  9. Pathologic Analysis of Control Plans for Air Pollution Management in Tehran Metropolis: A Cross-Sectional Study.

    Science.gov (United States)

    Salehi Shahrabi, Narges; Pourezzat, Aliasghar; Mobaraki, Hossein; Mafimoradi, Shiva

    2013-11-01

    The centralization of human activities is associated with different pollutants which enter into environment easily and cause the urban environment more vulnerable. Regarding the importance of air pollution issue for Tehran metropolis, many plans and regulations have been developed. However, most of them failed to decline the pollution. The purpose of this study was to pathologically analyze air-pollution control plans to offer effective solutions for Tehran metropolis. A Qualitative content analysis in addition to a semi-structured interview with 14 practicing professional were used to identify 1) key sources of Tehran's air pollution, 2) recognize challenges towards effective performance of pertinent plans and 3), offer effective solutions. Related challenges to air-pollution control plans can be divided into two major categories including lack of integrated and organized stewardship and PEST challenges. For controlling the air pollution of Tehran effectively, various controlling alternatives were identified as systematization of plan preparation process, standardization and utilization of new technologies & experts, infrastructural development, realization of social justice, developing coordination mechanisms, improving citizens' participatory capacity and focusing on effective management of fuel and energy. Controlling air pollution in Tehran needs a serious attention of policymakers to make enforcements through applying a systemic cycle of preparation comprehensive plans. Further, implement the enforcements and evaluate the environmental impact of the plans through involving all stakeholders.

  10. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    Science.gov (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  11. Gamma-ray spectrometric measurements of fission rate ratios between fresh and burnt fuel following irradiation in a zero-power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kröhnert, H., E-mail: hanna.kroehnert@ensi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Perret, G.; Murphy, M.F. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2013-01-11

    The gamma-ray activity from short-lived fission products has been measured in fresh and burnt UO{sub 2} fuel samples after irradiation in a zero-power reactor. For the first time, short-lived gamma-ray activity from fresh and burnt fuel has been compared and fresh-to-burnt fuel fission rate ratios have been derived. For the measurements, well characterized fresh and burnt fuel samples, with burn-ups up to 46 GWd/t, were irradiated in the zero-power research reactor PROTEUS. Fission rate ratios were derived based on the counting of high-energy gamma-rays above 2200 keV, in order to discriminate against the high intrinsic activity of the burnt fuel. This paper presents the measured fresh-to-burnt fuel fission rate ratios based on the {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) high-energy gamma-ray lines. Comparisons are made with the results of Monte Carlo modeling of the experimental configuration, carried out using the MCNPX code. The measured fission rate ratios have 1σ uncertainties of 1.7–3.4%. The comparisons with calculated predictions show an agreement within 1–3σ, although there appears to be a slight bias (∼3%).

  12. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    Science.gov (United States)

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups explained more between-worker variability than job categories. Personal exposure to JP-8 varied by job and was positively associated with the relative humidity. However, self-reported exposure to JP-8 was an even stronger predictor of measured exposure than job title categories, suggesting that self-reported JP-8 exposure is a valid surrogate metric of exposure when

  13. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  14. Microbial contamination control in fuels and fuel systems since 1980 - a review

    Energy Technology Data Exchange (ETDEWEB)

    Passman, Frederick J. [Biodeterioration Control Associates, Inc (United States)], email: fredp@biodeterioration-control.com

    2011-07-01

    This paper presents a review of microbial contamination control in fuel and fuel systems. Some examples of the biodeterioration of components of fuel systems are given. Root cause analysis (RCA) and modeling can help in condition monitoring of fuel systems. RCA is a systematic process that starts after symptoms become apparent and facilitates improvement. Modeling, by contrast, starts before the problem occurs and the objective is to improve understanding of the process. Some of the different areas creating risk due to the process are climate, microbiology, chemistry, maintenance, and engineering. Condition monitoring is explained in detail, using representative samples. Contamination control plays a very important role. Various aspects of microbial contamination control are design, inventory control, house keeping and remediation. These aspects are explained in detail, using various examples. Since the deterioration cost involved is very high, its is important to avoid this problem by reducing the quantity of water used and using better risk assessment models.

  15. Core-control assembly with a fixed fuel support

    International Nuclear Information System (INIS)

    Challberg, R.C.

    1993-01-01

    A core-control assembly is described comprising: a control rod having a plurality of blades; a control-rod guide tube for guiding vertical motion of said control rod; a fuel support for supporting fuel bundles separated by said blades, said fuel support having an aperture conforming to a cross section of said control rod through said blades for preventing rotational movement of said control rod to a decoupling orientation when said control rod is between a maximum power position and a minimum power position, said minimum power position being above said maximum power position, said fuel support being supported by said control-rod guide tube; control-rod drive means for controlling vertical motion of said control rod, said control-rod drive means providing for vertical motion between said maximum power position and said minimum power position, said control-rod drive means providing for vertical movement to a decoupling position, said decoupling position being no lower than said minimum power position, said decoupling position being at a level sufficient to permit said control rod to rotate to a decoupling orientation relative to said fuel support; and coupling means for coupling said control rod to said control rod drive means, said coupling means being releasable by rotational movement of said control rod to said decoupling orientation relative to said control-rod drive means

  16. Economic policy instruments for the control of air pollution in Poland

    International Nuclear Information System (INIS)

    Bates, R.W.

    1993-01-01

    The World Bank is analyzing the role of economic policy instruments for the control of air pollution in Poland, in cooperation with Polish and international experts. The first stage, covering Poland as a whole, was recently completed, jointly financed with the U.S. E.P.A. and the Government of the Netherlands. The second stage, now under way, will extend the analysis into a specific regional framework. Stage 2 is financed by the World Bank, the Polish Government, and the U.K. Environment Know-How Fund. Air Pollution in Poland is overwhelmingly caused by energy production and uses, due to the fact that the Polish economy depends heavily on coal and lignite. At present, vehicles contribute less to total emissions than do coal burning and industrial processes, although they account for 25-35% of nitrogen oxides, carbon monoxide, hydrocarbons and lead; and the concentrated in areas of high population density. The paper shows how economic, technical and meteorological modelling can be used, to reach conclusions about cost-effective strategies for the control of emissions and the improvement of ambient air quality. A simulation approach is presented, to compare alternative policy instruments, in terms of their impact on emissions and control costs for Poland as a whole. The main instruments considered are open-quotes command-and-controlclose quotes regimes (C ampersand C) and economic incentives, namely fuel taxes, emissions taxes and emissions trading. Next, the paper describes how the analysis is being extended, to link emissions with ambient air quality, using air dispersion modelling, based on a case study for Krakow. Finally, some conclusions are drawn on the importance of sound economic policies for air quality management, the costs of alternative standards, C ampersand C approaches versus economic incentives, a practical strategy to develop an effective role for emissions taxes and trading, and the regional differentiation of policy instruments

  17. Regulatory control of fuel design and manufacturing

    International Nuclear Information System (INIS)

    1994-01-01

    The regulatory control of the design and manufacturing of the nuclear fuel and of the control rods aims to ensure conformance to set requirements during normal operating conditions, anticipated operational transients and postulated accident conditions. The regulatory control of design, manufacturing, receiving inspections and the start of operation of the nuclear fuel are specified in the guide. The regulatory control procedure also applies to the control rods and the shield elements

  18. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  19. Ontario Hydro's integrated air management plan

    International Nuclear Information System (INIS)

    Kalvins, A.K.; Brown, D.; Camacho, F.; Howes, H.; Jantzi, B.; Lin, X.; Lui, P.; Melo, O.T.; Mortimer, W.P.; Reuber, B.

    1992-01-01

    Ontario Hydro is developing an integrated air management plan as a tool for comparing the environmental impacts of fossil-fuel power generation options. The goal is to relate equipment, location, emissions, and impacts and to identify the optimum way to manage the utility's fossil generation system in view of upcoming environmental regulations and public expectations. The eight steps of the plan are briefly described: definition of power generation scenarios (upgrading, conversion to natural gas, non-utility generation, alternative technologies); estimation of emissions for each generation and fuel option studied; identification of impact of air emissions on building materials, agriculture, forests, lakes, and fisheries; modelling of air emissions dispersion; quantification of damage to pollution receptors; quantification of full fuel cycle effects; and comparison of the scenarios. The scenario having the lowest overall environmental impact involved upgrading the existing fossil-fuel system with additional air emissions controls and two integrated gasification combined cycle plants. 9 refs., 3 figs., 3 tabs

  20. Boiler control using on-line determination of moisture content for incoming fuel; Forskning kring pannstyrning med on-line fukthaltsmaetning paa biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Avelin, Anders; Dahlquist, Erik; Moden, Per Erik

    2008-10-15

    Incoming fuels to the biomass fueled boiler are the main source for uncertainties in the combustion process. Fuel quality has large impact on the combustion and the heat transfer in the boiler. There are several possibilities to control the boiler when the bed temperature varies. Flue gas recirculation is one of the variables used for control of the bed temperature in the boiler. Another parameter to use for controlling the bed temperature is to adjust the humidification of the combustion air. The parameter with the major influence on the bed temperature is the amount of primary air. These three parameters are all used as control variables for control of the bed temperature. One part of the study has been to investigate how much and how fast each parameter influences bed temperature and how the information of the moisture content in the incoming fuel can be used for feed-forward information for controlling bed temperature. At the reception terminal all the incoming deliveries are registered with quality and moisture content. This study has also investigated how to use the information about the moisture content of incoming fuel, based on NIR measurements on the fuel transported in to the boiler, and the fluctuation of the bed temperature. Another question is how to connect this information for the bed control. This part of the study is used to evaluate if the information to the operators about the moisture content from the NIR has affect on the variation of the bed temperature. A process model has been developed of the Bubbling Fluidised Bed boiler (BFB) that is one of the boilers at the power plant in Eskilstuna. The model has been used to analyze the process. Process models have become more common and important in the heat and power industry. Nowadays process models are used for training of the staff in simulators of the real plant and for offline tests of control systems

  1. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, M.A.R. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2004-12-01

    The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Researchers have found that hydrogen presents the best and an unprecedented solution to the energy crises and pollution problems, due to its superior combustion qualities and availability. This paper discusses analytically and provides data on the effect of compression ratio, equivalence ratio and engine speed on the engine performance, emissions and pre-ignition limits of a spark ignition engine operating on hydrogen fuel. These data are important in order to understand the interaction between engine performance and emission parameters, which will help engine designers when designing for hydrogen. (author)

  2. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    Science.gov (United States)

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  3. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  4. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  5. 77 FR 2643 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control District

    Science.gov (United States)

    2012-01-19

    ...EPA is finalizing a limited approval and limited disapproval of revisions to the Placer County Air Pollution Control District (PCAPCD) portion of the California State Implementation Plan (SIP). This action was proposed in the Federal Register on September 6, 2011 and concerns oxides of nitrogen (NOX) emissions from biomass fuel-fired boilers. Under authority of the Clean Air Act as amended in 1990 (CAA or the Act), this action simultaneously approves a local rule that regulates these emission sources and directs California to correct rule deficiencies.

  6. PAH diagnostic ratios for the identification of pollution emission sources

    International Nuclear Information System (INIS)

    Tobiszewski, Marek; Namieśnik, Jacek

    2012-01-01

    Polycyclic aromatic hydrocarbon (PAH) diagnostic ratios have recently come into common use as a tool for identifying and assessing pollution emission sources. Some diagnostic ratios are based on parent PAHs, others on the proportions of alkyl-substituted to non-substituted molecules. The ratios are applicable to PAHs determined in different environmental media: air (gas + particle phase), water, sediment, soil, as well as biomonitor organisms such as leaves or coniferous needles, and mussels. These ratios distinguish PAH pollution originating from petroleum products, petroleum combustion and biomass or coal burning. The compounds involved in each ratio have the same molar mass, so it is assumed they have similar physicochemical properties. Numerous studies show that diagnostic ratios change in value to different extents during phase transfers and environmental degradation. The paper reviews applications of diagnostic ratios, comments on their use and specifies their limitations. - Highlights: ► PAH diagnostic ratios may identify pollution coming from petroleum spills, fuel combustion and coal or biomass burning. ► They are sensitive to changes during PAHs environmental fate processes. ► Some diagnostic ratios are of limited value due to fast photodegradation of one of the compounds. - The paper reviews PAH diagnostic ratios that are applied to identify pollution emission originating from petroleum products, fuel combustion or coal and biomass burning.

  7. Alpha-in-air monitor for continuous monitoring based on alpha to beta ratio

    International Nuclear Information System (INIS)

    Somayaji, K.S.; Venkataramani, R.; Swaminathan, N.; Pushparaja

    1997-01-01

    Measurement of long-lived alpha activity collected on a filter paper in continuous air monitoring of ambient working environment is difficult due to interference from much larger concentrations of short-lived alpha emitting daughter products of 222 Rn and 220 Rn. However, the ratio between the natural alpha and beta activity is approximately constant and this constancy of the ratio is used to discriminate against short-lived natural radioactivity in continuous air monitoring. Detection system was specially designed for the purpose of simultaneous counting of alpha and beta activity deposited on the filter paper during continuous monitoring. The activity ratios were calculated and plotted against the monitoring duration up to about six hours. Monitoring was carried out in three facilities with different ventilation conditions. Presence of any long-lived alpha contamination on the filter paper results in increase in the alpha to beta ratio. Long-lived 239 Pu contamination of about 16 DAC.h could be detected after about 45 minutes of commencement of the sampling. The experimental results using prototype units have shown that the approach of using alpha to beta activity ratio method to detect long-lived alpha activity in the presence of short-lived natural activity is satisfactory. (author)

  8. Technique for Selecting Optimum Fan Compression Ratio based on the Effective Power Plant Parameters

    Directory of Open Access Journals (Sweden)

    I. I. Kondrashov

    2016-01-01

    Full Text Available Nowadays, civilian aircrafts occupy the major share of global aviation industry market. As to medium and long - haul aircrafts, turbofans with separate exhaust streams are widely used. Here, fuel efficiency is the main criterion of this engine. The paper presents the research results of the mutual influence of fan pressure ratio and bypass ratio on the effective specific fuel consumption. Shows the increasing bypass ratio to be a rational step for reducing the fuel consumption. Also considers the basic features of engines with a high bypass ratio. Among the other working process parameters, fan pressure ratio and bypass ratio are the most relevant for consideration as they are the most structural variables at a given level of technical excellence. The paper presents the dependence of the nacelle drag coefficient on the engine bypass ratio. For computation were adopted the projected parameters of prospective turbofans to be used in the power plant of the 180-seat medium-haul aircraft. Computation of the engine cycle was performed in Mathcad using these data, with fan pressure ratio and bypass ratio being varied. The combustion chamber gas temperature, the overall pressure ratio and engine thrust remained constant. Pressure loss coefficients, the efficiency of the engine components and the amount of air taken for cooling also remained constant. The optimal parameters corresponding to the minimum effective specific fuel consumption were found as the result of computation. The paper gives recommendations for adjusting optimal parameters, depending on the considered external factors, such as weight of engine and required fuel reserve. The obtained data can be used to estimate parameters of future turbofan engines with high bypass ratio.

  9. Fuel cycle and quality control

    International Nuclear Information System (INIS)

    Stoll, W.

    1979-01-01

    The volume of the fuel cycle is described in its economic importance and its through put, as it is envisaged for the Federal Republic of Germany. Definitions are given for quality continuing usefulness of an object and translated into quality criteria. Requirements on performance of fuel elements are defined. The way in which experimental results are translated into mass production of fuel rods, is described. The economic potential for further quality effort is derived. Future ways of development for quality control organisation and structure are outlined. (Auth.)

  10. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  11. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    Directory of Open Access Journals (Sweden)

    J.-F. Vinuesa

    2006-01-01

    Full Text Available The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE, the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 μg m-3 as 1 hourly average. New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100% using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted

  12. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    Science.gov (United States)

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  13. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...... to conventional PEM fuel cells, that use liquid water as a proton conductor and thus operate at temperatures below 100oC. The HTPEM fuel cell membrane in focus in this work is the BASF Celtec-P polybenzimidazole (PBI) membrane that uses phosphoric acid as a proton conductor. The absence of water in the fuel cells...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...

  14. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  15. Passive-X-ray fluorescence determination of the plutonium and uranium ratio in burnt-up fuel

    International Nuclear Information System (INIS)

    Zhelev, Z.

    1983-05-01

    This non-destructive method was proposed for comparatively simple and not labour-intensive determination of the Pu and U ratio in WWER-440 (PWR type) reactor spent fuel. For this purpose the mini-tablets (2mm and length 5mm) were irradiated for 65 and 130 days in dry channel of the WWER-440 reactor passed through its active core. The ratio of Pu and U and ratio of the isotopes 134 Cs and 137 Cs were determined by means of KX-rays and gamma-scanning analyses correspondingly. It was shown that there was a simple functional dependance between the ratio of Pu and U and the ratio of Cs isotopes

  16. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    Science.gov (United States)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  17. Air Oxidation Behaviors of Zircaloy-4 Cladding During a LOCA In Spent Fuel Pool

    International Nuclear Information System (INIS)

    Bang, Je Geon; Chun, Tae Hyun; Kim, Sun Ki; Koo, Yang Hyun

    2014-01-01

    It is well known that air oxidation induces a serious degradation of the Zircaloy cladding material, compared with steam oxidation. From the oxidant point of view, in comparison with steam, chemical heat release during oxidation in air is higher by 80%, which may lead to a more rapid degradation of the Zircaloy cladding, and further evolution of the accident.. Additionally, the oxidation kinetics in air is much faster than in steam due to the formation of non-protective oxide layer. From the safety point of view, the barrier effect of the cladding against release of fission products is lost much earlier in air compared to steam. The objective of this study is to investigate the oxidation behaviors of fuel cladding in two different conditions such as isothermal and transient condition and to generate its kinetic data under an accident condition in the spent fuel pool. In this study, the oxidation behaviors and its kinetics of the Zircaloy-4 were investigated in air environment for various air ingress scenarios in the temperature range 600 .deg. C-1,400 .deg. C by thermo-gravimetric analysis. In this study, the oxidation behaviors of the Zircaloy-4 for both isothermal condition and transient condition were investigated in air environment. In comparison with isothermal condition, the retardation of oxidation rate in transient condition was observed at both 1,200 .deg. C and 1,400 .deg. C. This seems to be ascribed to the effect of thin oxide formed during a heating

  18. Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles

    Science.gov (United States)

    2010-03-01

    Electrolyte Membrane PEMFC PEM Fuel Cell RAM Rapid Aircraft Modeler R/C Radio Controlled RMFC Reformed Methanol Fuel Cell SBIR Small Business...of rechargeable batteries, the Proton Exchange Membrane Fuel Cell ( PEMFC ) is only limited by the amount of hydrogen it can store, and can be...of fuel cells within MAVs through the creation of the Hornet. This slightly heavier, 380 g MAV integrated a 10 W PEMFC into the wing surface for a

  19. Wood combustion and NOx formation control

    International Nuclear Information System (INIS)

    Tewksbury, C.

    1991-01-01

    The control of wood combustion on stoker fed grates for optimum efficiency and the limiting of NO x (oxides of nitrogen) formation are not necessarily contradictory. This paper presents a matrix of air/fuel ratio control options, then discusses simple on-line monitoring techniques and the importance of operator training and alertness. The significance of uniform fuel feed and air distribution is emphasized. The relationships between combustion control and NO x formation are outlined both in theory and as tested. The experience of the McNeil Generating Station (the largest wood-fired, single boiler, stoker grate, utility electric generating station in the world) is used to demonstrate the theoretical principles. It has been observed that NO x emissions firing 100% whole tree chips with moisture contents as low as 40% by weight can be as low as 0.13 lb/MMBtu (MMBtu = 10 6 Btu) while still achieving a boiler efficiency in the range of 68% to 73% (in the high end of the design range) without the use of post-combustion treatment or flue gas recirculation (FGR). Problems of combustion and emissions control at steaming rates other than normal full-load are also examined. 2 figs., 4 tabs

  20. Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

    OpenAIRE

    Leila Torkaman; Nasser Ghassembaglou

    2015-01-01

    Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured ...

  1. Study of recent fuel oil cost in air lines (Part 2). Saikin no airline no nenyuhi ni kansuru ichikosatsu (2); Nenryo shohi to hiyo tai koka

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yoshikazu.

    1989-03-01

    Through an arrangement of published data about American air lines during 1985 through 1987, the overall expense vs. transportation fee (expense vs. effect) was studied as a main viewpoint. As a result, the fuel oil cost, even in case of wide fuselage plane, high in transportation efficiency, was high in ratio, 32 to 52% (3 to 5 times as high as that 12 to 14 years ago), and fluctuated connectedly with the oil price. While the jet fuel price fluctuated connectedly with the oil price per equal volume with 1.3 to 1.4 of price ratio. Further, the flight range ratio was recorded to be approx. 0.06 to 0.24 km/kg. While the transportation efficiency was lower than approx. 5000kg*km/kg with a wide range of overall expense, approx. 9 to 87 cents per compensative transportation ton*km. Because even a sudden decrease in transportation quantity did not decrease the overall expense, it was known to be important in management to secure the transportation quantity. 30 refs., 15 figs., 1 tab.

  2. Simulation of the charge ratio of cosmic ray muons in extensive air showers using CORSIKA

    Energy Technology Data Exchange (ETDEWEB)

    Ochilo, Livingstone [University of Siegen (Germany); Kenyatta University, Nairobi (Kenya); Hashim, Nadir; Okumu, John [Kenyatta University, Nairobi (Kenya)

    2013-07-01

    The interaction of primary cosmic rays in the atmosphere produces, among other particles, pions and kaons. They decay to muons, which form an important component of extensive air showers. The ratio of positively to negatively charged muons, called the muon charge ratio, provides important information about the cosmic ray interactions in the atmosphere. In this study, the theoretical hadronic interaction models in the cosmic ray simulation code CORSIKA have been used to study the charge ratio of cosmic ray muons simulated in extensive air showers. An East - West effect on the charge ratio of simulated cosmic ray muons is observed. It is more pronounced for inclined and low-energy muons (momentum less than 100 GeV/c and zenith angle greater than 80 ). Experimental data from ''MINOS Near'' experiment gives similar results.

  3. The state of transboundary air pollution: Effects and control

    International Nuclear Information System (INIS)

    1990-01-01

    This fifth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention of Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the sixth session of the Executive Body held at Sofia (Bulgaria) from 31 October to 4 November 1988. Part one is the annual review of strategies and policies for air pollution abatement. Country-by-country, recent legislative and regulatory developments are summarized, including ambient-air quality standards, fuel-quality standards, emission standards, as well as economic instruments for air pollution abatement. Part two summarizes the results of the third phase (1984-1986) of the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP). Part three is an executive summary of the 1987 forest damage survey in Europe, carried out under the International Co-operative Programme for Assessment and Monitoring of Air Pollution Effects on Forests. This survey covered more than 50 per cent of all coniferous forests and about 40 per cent of the broadleaved forests in Europe. Part four describes the current geographical extent of acidification in rivers, lakes and reservoirs in the ECE region. Part five contains guidelines for determining the cost of emission control activities. The guidelines aim at harmonizing cost estimates and cost accounts for anti-pollution measures at the level of individual plants or companies. The proposed calculation scheme includes cost items related to investment, material and energy consumption, manpower and other costs, taking into account depreciation and revenues from by-product utilization. Refs

  4. Hydrogen-ethanol blending as an alternative fuel of spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-07-01

    The performance and pollutant emission of a four-stroke spark ignition engine using hydrogen-ethanol blends as fuel have been studied. The tests were performed using 2, 4, 6, 8, 1 0 and 12 mass% hydrogen-ethanol blends. Gasoline fuel was used as a basis for comparison. The effect of using different blends of hydrogen-ethanol on engine power, specific fuel consumption, CO and NO{sub x} emission was studied. Operating test results for a range of compression ratio (CR) and equivalent ratio are presented. The results show that the supplemental hydrogen in the ethanol-air mixture improves the combustion process and hence improves the combustion efficiency, expands the range of combustibility of the ethanol fuel, increases the power, reduces the s.f.c. and reduces toxic emissions. The important improvement of hydrogen addition is to reduce the s.f.c. of ethanol engines. Results were compared to those with gasoline fuel at 7 CR and stoichiometric equivalence ratio. (author)

  5. Impact of domestic air pollution from cooking fuel on respiratory allergies in children in India

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Nagar, J.K.; Raj, N.; Kumar, P.; Kushwah, A.S.; Meena, M.; Gaur, S.N. [University of Delhi, Delhi (India)

    2008-12-15

    This study undertaken in India was aimed at identifying the effects of the indoor air pollutants SO{sub 2}, NO{sub 2} and total suspended particulate matter (SPM) generated from fuel used for cooking on respiratory allergy in children in Delhi. A total of 3,456 children were examined (59.2% male and 40.8% female). Among these, 31.2% of the children's families were using biomass fuels for cooking and 68.8% were using liquefied petroleum gas. Levels of indoor SO{sub 2}, NO{sub 2} and SPM, measured using a Handy Air Sampler (Low Volume Sampler), were 4.60 {+-} 5.66 {mu}g/m{sup 3}, 30.70 {+-} 23.95 {mu}g/m{sup 3} and 705 {+-} 441.6 {mu}g/m{sup 3}, respectively. The mean level of indoor SO{sub 2} was significantly higher (p = 0.016) for families using biomass fuels (coal, wood, cow dung cakes and kerosene) for cooking as compared to families using LP gas. The mean level of indoor NO{sub 2} for families using biomass fuels for cooking was significantly higher in I.T.O. (p = 0.003) and Janakpuri (p = 0.007), while indoor SPM was significantly higher in Ashok Vihar (p = 0.039) and I.T.O. (p = 0.001), when compared to families using LP gas. Diagnoses of asthma, rhinitis and upper respiratory tract infection (URTI) were made in 7.7%, 26.1% and 22.1% of children, respectively. Respiratory allergies in children, which included asthma, rhinitis and URTI, could be associated with both types of fuels (liquefied petroleum gas (LPG) and biomass) used for cooking in the different study areas. This study suggests that biomass fuels increased the concentrations of indoor air pollutants that cause asthma, rhinitis and URTI in children. LP gas smoke was also associated with respiratory allergy.

  6. Development of wireless vehicle remote control for fuel lid operation

    Science.gov (United States)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  7. Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence.

    Science.gov (United States)

    Storch, Michael; Lind, Susanne; Will, Stefan; Zigan, Lars

    2016-10-20

    In this work, the planar laser-induced fluorescence of a fuel tracer is applied for the analysis of mixture formation for various ethanol/iso-octane blends in a direct-injection spark-ignition (DISI) engine. The tracer triethylamine (TEA) was added to pure iso-octane and ethanol as well as to their blends E20 and E85 for the measurement of the fuel/air ratio. In general, ethanol blending strongly affects the mixture formation process, which is caused by specific physical fuel properties influencing the evaporation process of ethanol in comparison to iso-octane. As interactions of the fuel and tracer fluorescence appear possible, TEA fluorescence was studied for different fuel blends in a cuvette, in a calibration cell under constant conditions, and in an optically accessible internal combustion engine at late injection timing. It was found that ethanol blending strongly affects the fluorescence intensity of TEA in the liquid phase, which can be explained by the interaction of the tracer and ethanol molecules. However, in the gas phase a quantification of the fuel/air ratio is possible for different ethanol fuel blends, which is demonstrated in a DISI engine. Under stratified charge conditions the engine results showed a significant impact of a high amount of ethanol on the mixture formation process, leading to a leaner mixture in comparison to iso-octane.

  8. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for

  9. Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng Shiming

    2008-01-01

    A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment

  10. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  11. Emission characteristics of kerosene-air spray combustion with plasma assistance

    Directory of Open Access Journals (Sweden)

    Xingjian Liu

    2015-09-01

    Full Text Available A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  12. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC).

    Science.gov (United States)

    Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan

    2017-06-01

    Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R 2  > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Advanced methods of quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Onoufriev, Vladimir

    2004-01-01

    Under pressure of current economic and electricity market situation utilities implement more demanding fuel utilization schemes including higher burn ups and thermal rates, longer fuel cycles and usage of Mo fuel. Therefore, fuel vendors have recently initiated new R and D programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel. In the beginning of commercial fuel fabrication, emphasis was given to advancements in Quality Control/Quality Assurance related mainly to product itself. During recent years, emphasis was transferred to improvements in process control and to implementation of overall Total Quality Management (TQM) programmes. In the area of fuel quality control, statistical control methods are now widely implemented replacing 100% inspection. This evolution, some practical examples and IAEA activities are described in the paper. The paper presents major findings of the latest IAEA Technical Meetings (TMs) and training courses in the area with emphasis on information received at the TM and training course held in 1999 and other latest publications to provide an overview of new developments in process/quality control, their implementation and results obtained including new approaches to QC

  14. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  15. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  16. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  17. Safety-related control air systems - approved 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  18. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  19. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  20. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  1. Fuel element radiometry system for quality control

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  2. Compliance with air quality regulations

    International Nuclear Information System (INIS)

    Steen, D.V.; Tackett, D.L.

    1990-01-01

    Due to the probable passage of Clean Air Act Amendments in 1990, electric utilities throughout the United States are faced with numerous choices to comply with the new acid rain regulations, expected in 1991. The choice of a compliance plan is not a simple task. Every compliance option will be costly. At Ohio Edison, deliberations are quite naturally influenced by past compliance with air quality regulations. This paper discusses compliance with air quality regulations in the 1970's, clean coal technologies and advanced scrubbers, and compliance with air quality regulations in 1995 - 2000. The choice of a compliance strategy for many utilities will involve serving customer loads through some combination of scrubbers, clean coal technologies, fuel switching, fuel blending, redispatch of units, and emissions trading. Whatever the final choice, it must be economic while providing sufficient flexibility to accommodate the critical uncertainties of load growth, state regulatory treatment, markets for emission allowances, advancements in control technologies, additional federal requirements for air emissions, equipment outages and fuel supply disruptions.s

  3. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    Science.gov (United States)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  4. Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Wang, Qingxin; Zhou, Chengzhong; Mo, Chunlan; Wang, Xueqiang

    2016-01-01

    Highlights: • The effects of EGR and blend fuels on particulate emission were studied in CI engine. • EGR ⩽ 20%, gasoline or n-butanol increases total particulate number concentration. • EGR ⩾ 30%, gasoline or n-butanol reduces total particulate number concentration. • As EGR ratio increased, the particulate mass concentrations of four fuels increased. • Gasoline or n-butanol increases the ratio of sub-25 nm particles number concentration. - Abstract: The particle emission characteristics of a high-pressure common-rail engine under different EGR conditions were investigated, using pure diesel (D100), diesel/gasoline (with a volume ratio of 70:30, D70G30), diesel/n-butanol (with a volume ratio of 70:30, D70B30) and diesel/gasoline/n-butanol (with a volume ratio of 70:15:15, D70G15B15) for combustion. Our results show that, with increasing EGR ratios, the in-cylinder pressure peak decreases and the heat release is delayed for the combustion of each fuel. At an EGR ratio of 30%, the combustion pressure peaks of D70G30, D70B30, D70G15B15 and D100 have similar values; with an EGR ratio of 40%, the combustion pressure peaks and release rate peaks of D70G30 and D70G15B15 are both lower with respect to D100. For small and medium EGR ratios (⩽20%), after the addition of gasoline and/or n-butanol to the fuel, the total particle number concentration (TPNC) increases, while both the soot emissions and the average geometric size of particles decrease. At large EGR ratios (30% and 40%), the TPNC of D70B30, D70G15B15 and D70G20 compared to D100 are reduced by a maximum amount of 74.7%, 66.7% and 28.6%, respectively. As the EGR ratio increases, the total particle mass concentration increases gradually for all four fuels. Blending gasoline or/and n-butanol into diesel induces an increase in the number concentration of sub-25 nm particles (PN25) which may be harmful in terms of health. However, the PN25 decreases with increasing the EGR ratio for all the tested fuels

  5. Feasibility Study of Correcting Circuit Scheme for Automatic Control System of Total Air in Boiler

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2013-01-01

    Full Text Available The paper contains results of investigations on dynamic characteristics automatic control system (ACS for total air consumption (TAC in a boiler with corrections for О2 and СО. From transition process point of view the ACS TAC with correction for СО is considered as the most optimum one as with disturbance attack on fuel expenditure so discharging beyond boiler furnace.

  6. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    Homogeneous charge compression ignition (HCCI) is a third mode of operation for internal combustion engines, beside spark ignition and conventional compression ignition. This report concentrates on the requirements that HCCI operation puts on fuels for these engines. For readers with limited time available, this summary describes the main findings. Policy makers that need some more background information may turn directly to chapter 7, 'Fuels for HCCI engines'. The rest of this report can be considered as a reference guide for more detailed information. The driving force to investigate HCCI engines is the potential of low emissions and simultaneously high energy efficiency. HCCI is gaining attention the last few years. However, HCCI engines are still in the research phase. After many experiments with prototype engines, people have now started working on computer simulations of the combustion process, to obtain a fundamental understanding of HCCI combustion and to steer future engine developments. In HCCI engines, an air/fuel mixture is prepared before it enters the combustion chamber. The homogeneous mixture is in the combustion chamber compressed to auto-ignition. Unlike in conventional engines, combustion starts at many different locations simultaneously and the speed of combustion is very high, so there is no flame front. Lean air/fuel mixtures (excess air) are used to control combustion speed. Because of the excess air, combustion temperature is relatively low, resulting in low NOx emissions. When the fuel is vaporised to a truly homogeneous mixture, complete combustion results in low particulate emissions. The most important advantages of HCCI engines are: - Emissions of NOx and particulates are very low. - Energy efficiency is high. It is comparable to diesel engines. - Many different fuels (one at a time) can be used in the HCCI concept. There are also some hurdles to overcome: - Controlling combustion is difficult, it complicates engine design

  7. Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NOx in California South Coast Air Basin

    International Nuclear Information System (INIS)

    Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H.

    1992-01-01

    In the present study, the author performed a top-down validation of the reactive organic gas and carbon monoxide emission inventories for California's South Coast Air Basin by comparing speciation profiles for nonmethane organic gases (NMOG) and ratios of CO/NO x and NMOG/NO x derived from early-morning (0700 to 0800) ambient measurements taken during the 1987 Southern California Air Quality Study with the corresponding ratios and speciation profiles derived from day-specific, hourly, gridded emission inventories. Twenty separate comparisons were considered for each ratio, each representing a different combination of season, emission category, and spatial and temporal averaging of emissions. It was determined that the most appropriate comparison in summer was ambient pollutant ratios with ratios derived from morning on-road motrovehicle emission inventories, and in the fall, ambient ratios with ratios derived from overnight on-road motor vehicle emission inventories with some contribution from overnight stationary-source NO x emission inventories. From these comparisons, the ambient CO/CO x and NMOG/NO x ratios are about 1.5 and 2 to 2.5 times higher, respectively, than the corresponding inventory ratios. On the assumption that inventories of NO x emissions are reasonably correct, these results indicate that on-road motor vehicle CO and NMOG emissions are significantly underestimated. Comparisons of measured CO, NMOG, and NO x concentrations and CO/NO x and NMOG/NO x ratios with air quality model predictions obtained by the California Air Resources Board show similar differences

  8. Stress Calculation of a TRISO Coated Particle Fuel by Using a Poisson's Ratio in Creep Condition

    International Nuclear Information System (INIS)

    Cho, Moon-Sung; Kim, Y. M.; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.; Kim, W. K.

    2007-01-01

    KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) project since 2004, has been developing a performance analysis code for the TRISO coated particle fuel named COPA (COated Particle fuel Analysis). COPA predicts temperatures, stresses, a fission gas release and failure probabilities of a coated particle fuel in normal operating conditions. KAERI, on the other hand, is developing an ABAQUS based finite element(FE) model to cover the non-linear behaviors of a coated particle fuel such as cracking or debonding of the TRISO coating layers. Using the ABAQUS based FE model, verification calculations were carried out for the IAEA CRP-6 benchmark problems involving creep, swelling, and pressure. However, in this model the Poisson's ratio for elastic solution was used for creep strain calculation. In this study, an improvement is made for the ABAQUS based finite element model by using the Poisson's ratio in creep condition for the calculation of the creep strain rate. As a direct input of the coefficient in a creep condition is impossible, a user subroutine for the ABAQUS solution is prepared in FORTRAN for use in the calculations of the creep strain of the coating layers in the radial and hoop directions of the spherical fuel. This paper shows the calculation results of a TRISO coated particle fuel subject to an irradiation condition assumed as in the Miller's publication in comparison with the results obtained from the old FE model used in the CRP-6 benchmark calculations

  9. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    Science.gov (United States)

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  10. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    International Nuclear Information System (INIS)

    Uddi, M; Jiang, N; Adamovich, I V; Lempert, W R

    2009-01-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ∼8 x 10 12 cm -3 (∼4.14 ppm) occurring at ∼250 μs after the pulse, with decay time of ∼16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of ψ = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of ψ = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N 2 (C 3 Π) and NO(A 2 Σ) in air at P = 60 Torr decay within ∼20 ns and ∼1 μs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (∼100 μs) metastable states, such as N 2 (X 1 Σ,v) and O 2 (b 1 Σ), formed by quenching of the metastable N 2 (A 3 Σ) state by ground electronic state O 2 , may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O 2 , as well as by conversion into NO 2 in a reaction

  11. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    Science.gov (United States)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  12. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  13. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natori, Hisahide; Kurihara, Kunitoshi.

    1982-01-01

    Purpose: To increase the fuel safety by decreasing the gap conductance between fuels and cladding tubes, as well as improve the reactor core controllability by rendering the void coefficient negative. Constitution: Fuel assemblies in a pressure tube comprise a tie-rod, fuel rods in a central region, and fuel rods with burnable poison in the outer circumference region. Here, B 4 C is used as the burnable poison by 1.17 % by weight ratio. The degrees of enrichment for the fissile plutonium as PuO 2 -UO 2 fuel used in the assemblies are 2.7 %, 2.7 % and 1.5 % respectively in the innermost layer, the intermediate layer and the outermost layer. This increases the burn-up degree to improve the plant utilizability, whereby the void coefficient is rendered negative to improve the reactor core controllability. (Horiuchi, T.)

  14. Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe

    Directory of Open Access Journals (Sweden)

    Visschedijk A. H. J.

    2013-04-01

    Full Text Available An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were calculated bottom-up using energy use activity data and collected fuel and sector-specific emissions factors, taking into account various emission control measures. The NW European emissions were dominated by combustion of heavy fuel oil and petroleum cokes. Total emissions for 2005 amounted to 1569 tons/yr. The major sources are sea going ships (39%, petroleum refineries (35% and industry (19%. Emission is strongly concentrated at the densely populated cities with major sea ports. The location of sources at or near the major port cities was confirmed by observational data, as was the downward trend in emissions due to emission control, fuel switches in industry and fuel quality improvement. The results show the positive impact of lower sulphur fuels on other possible health relevant air pollutants such as particle bound Vanadium. The emission inventory can be expanded to the full European domain and can be used to for air quality modeling and particularly for the tracing of source contributions from certain types of fossil fuels (petroleum coke and residual fuel oil. Moreover, it will allow the monitoring of changes in fuel use over time.

  15. Inlet for fuel assembly having finger control rods

    International Nuclear Information System (INIS)

    Berglund, A.; Suvanto, A.; Tornblom, L.

    1975-01-01

    A nuclear reactor with vertically arranged fuel assemblies positioned on supporting members and with control rods displaceably arranged in guide tubes between the fuel rods inside the fuel assemblies is described. The supporting plate is provided with a transverse end piece with throttling means for the liquid flow which passes from below up through the supporting member and past the fuel rods in the fuel assembly. The inlets for the guide tubes for the control rods are located below the end piece and the throttling means. In this way a higher pressure prevails at the inlet to the guide tubes than above the end piece, so that a stronger flow of coolant is produced through guide tubes than through the fuel assembly. (U.S.)

  16. An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame with Varied H2/CO Proportion

    Directory of Open Access Journals (Sweden)

    Chih-Pin Chiu

    2017-07-01

    Full Text Available For industrial applications, we propose a concept of clean and efficient combustion through burning syngas on an impinging burner. We performed experimental measurements of particle image velocimetry, OH radical (OH* chemiluminescence, flame temperature, and CO emission to examine the fuel mixing and reaction of premixed impinging flames of CH4/syngas/air with H2/CO in varied proportions. The velocity distribution of the combustion flow field showed that a deceleration area in the main flow formed through the mutual impingement of two jet flows, which enhanced the mixing of fuel and air because of an increased momentum transfer. The deceleration area expanded with an increased CO proportion, which indicated that the mixing of fuel and air also increased with the increased CO proportion. Our examination of the OH* chemiluminescence demonstrated that its intensity increased with increased CO proportion, which showed that the reaction between fuel and air accordingly increased. CO provided in the syngas hence participated readily in the reaction of the CH4/syngas/air premixed impinging flames when the syngas contained CO in a large proportion. Although the volume flow rate of the provided CO quadrupled, the CO emission increased by only 12% to 15%. The results of this work are useful to improve the feasibility of fuel-injection systems using syngas as an alternative fuel.

  17. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    Science.gov (United States)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  18. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  19. Disease burden due to biomass cooking-fuel-related household air pollution among women in India.

    Science.gov (United States)

    Sehgal, Meena; Rizwan, Suliankatchi Abdulkader; Krishnan, Anand

    2014-01-01

    Household air pollution (HAP) due to biomass cooking fuel use is an important risk factor for a range of diseases, especially among adult women who are primary cooks, in India. About 80% of rural households in India use biomass fuel for cooking. The aim of this study is to estimate the attributable cases (AC) for four major diseases/conditions associated with biomass cooking fuel use among adult Indian women. We used the population attributable fraction (PAF) method to calculate the AC of chronic bronchitis, tuberculosis (TB), cataract, and stillbirths due to exposure to biomass cooking fuel. A number of data sources were accessed to obtain population totals and disease prevalence rates. A meta-analysis was conducted to obtain adjusted pooled odds ratios (ORs) for strength of association. Using this, PAF and AC were calculated using a standard formula. Results were presented as number of AC and 95% confidence intervals (CI). The fixed effects pooled OR obtained from the meta-analysis were 2.37 (95% CI: 1.59, 3.54) for chronic bronchitis, 2.33 (1.65, 3.28) for TB, 2.16 (1.42, 3.26) for cataract, and 1.26 (1.12, 1.43) for stillbirths. PAF varied across conditions being maximum (53%) for chronic bronchitis in rural areas and least (1%) for cataract in older age and urban areas. About 2.4 (95% CI: 1.4, 3.1) of 5.6 m cases of chronic bronchitis, 0.3 (0.2, 0.4) of 0.76 m cases of TB, 5.0 (2.8, 6.7) of 51.4 m cases of cataract among adult Indian women and 0.02 (0.01, 0.03) of 0.15 m stillbirths across India are attributable to HAP due to biomass cooking fuel. These estimates should be cautiously interpreted in the light of limitations discussed which relate to exposure assessment, exposure characterization, and age-specific prevalence of disease. HAP due to biomass fuel has diverse and major impacts on women's health in India. Although challenging, incorporating the agenda of universal clean fuel access or cleaner technology within the broader framework of rural

  20. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  1. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  2. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  3. Fuel followed control rod installation at AFRRI

    International Nuclear Information System (INIS)

    Moore, Mark; Owens, Chris; Forsbacka, Matt

    1992-01-01

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  4. Roots Air Management System with Integrated Expander

    Energy Technology Data Exchange (ETDEWEB)

    Stretch, Dale [Eaton Corporation, Menomonee Falls, WI (United States); Wright, Brad [Eaton Corporation, Menomonee Falls, WI (United States); Fortini, Matt [Eaton Corporation, Menomonee Falls, WI (United States); Fink, Neal [Ballard Power Systems, Burnaby, BC (Canada); Ramadan, Bassem [Kettering Univ., Flint, MI (United States); Eybergen, William [Eaton Corporation, Menomonee Falls, WI (United States)

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted the peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.

  5. Air quality impacts of increased use of indigenous fuels for power generation in the Philippines

    International Nuclear Information System (INIS)

    Orbeta, E.M.

    2003-01-01

    The 2002-2011 Philippine Energy plan promotes the restructuring of its troubled power sector to ensure efficiency, reliability in supply and competitive electricity pricing. In particular, the plan promotes the use of indigenous fuels to increase self-sufficiency and reduce dependence on imported fuels. However, the indigenous fuel that will replace imported oil includes coal (a highly polluting energy source) and geothermal power. This paper assessed the environmental and health impacts associated with the development of coal and geothermal energy in the Philippines. It was determined that from 2001 to 2011, the development of geothermal energy could result in less air pollution than a scenario in which only current energy sources are developed. However, the expected increase in generating capacity in the Philippines will result in a general increase in air pollution levels. Local coal is singled out as the primary polluting energy source. Several pollution reduction initiatives were recommended, including improved pollution monitoring and energy efficiency measures. 18 refs., 21 tabs., 4 figs., 8 appendices

  6. Proposals to enhance thermal efficiency programs and air pollution control in south-central Chile

    International Nuclear Information System (INIS)

    Schueftan, Alejandra; González, Alejandro D.

    2015-01-01

    Major cities in South-central Chile suffer high levels of particulate matter PM 10 and PM 2.5 due to combustion of solid fuels for heating. Exposure to these air pollutants is recognized as a major contribution to ill health in the region. Here we discuss new strategies to reduce air pollution. Regulations and subsidies focusing on improved combustion by providing drier wood fuel and better stoves have been in effect since 2007. However, air pollution due to combustion of wood fuel has been steadily rising, along with reports on health consequences. The paper analyzes a survey of 2025 households in the city of Valdivia, which found that wood fuel quality, stove renewal, and awareness of programs are strongly affected by income level, and that higher consumption of wood fuel is found in households already having better stoves and drier wood fuel. The analysis suggests that regulations intended to improve combustion are influenced by user's behavior and have limited potential for lowering pollution. We conclude that thermal refurbishment has a larger potential for improvement, not yet been implemented as an energy policy for the majority. Here we propose improvements and additions to current programs to enhance effectiveness and cover the whole social spectrum. - Highlights: • High levels of PM 2.5 from wood combustion affect cities of south-central Chile. • Current programs on dry wood fuel and stoves renewal have not reduced air pollution. • Real operation of wood stoves strongly depends on user's behavior. • Buildings' energy efficiency has greater potential for reducing emissions. • Retrofit prevents degradation of native forest and improves indoor temperature

  7. Optimization of in-core fuel management and control rod strategy in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1975-01-01

    An in-core fuel management problem is formulated for the equilibrium fuel cycle in an N-region nuclear reactor model. The formulation shows that the infinite multiplication factor k infinity requisite for newly charged fuel can be separated into two terms - one corresponding to the average k infinity at the end of the cycle and the other representing the direct contribution of the shuffling scheme and control rod programming. This formulation is applied to a three-region cylindrical reactor to obtain simultaneous optimization of shuffling and control rod programming. It is demonstrated that this formulation aids greatly in gaining a better understanding of the effects of changes in the shuffling scheme and control rod programming on equilibrium fuel cycle performance. (auth.)

  8. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  9. Techniques for enhancing durability and equivalence ratio control in a rich-lean, three-stage ground power gas turbine combustor

    Science.gov (United States)

    Schultz, D. F.

    1982-01-01

    Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.

  10. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  11. Numerical investigation of combustion phenomena in pulse detonation engine with different fuels

    Science.gov (United States)

    Alam, Noor; Sharma, K. K.; Pandey, K. M.

    2018-05-01

    The effects of different fuel-air mixture on the cyclic operation of pulse detonation engine (PDE) are numerically investigated. The present simulation is to be consider 1200 mm long straight tube combustor channel and 60 mm internal diameter, and filled with stoichiometric ethane-air and ethylene-air (C2H6-air & C2H4) fuel mixture at atmospheric pressure and temperature of 0.1 MPa and 300 K respectively. The obstacles of blockage ratio (BR) 0.5 and having 60 mm spacing among them are allocated inside the combustor tube. There are realizable k-ɛ turbulence model used to analyze characteristic of combustion flame. The objective of present simulation is to analyze the variation in combustion mechanism for two different fuels with one-step reduced chemical reaction model. The obstacles were creating perturbation inside the PDE tube. Therefore, flame surface area increases and reduces deflagration-to-detonation transition (DDT) run-up length.

  12. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  13. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    Science.gov (United States)

    Nguyen, Quang-Viet

    2008-01-01

    A fiber-optic sensor system has been developed that can remotely measure the concentration of molecular oxygen (O2), nitrogen (N2), hydrocarbon vapor, and other gases (CO2, CO, H2O, chlorofluorocarbons, etc.) in the ullage of a liquid-fuel tank. The system provides an accurate and quantitative identification of the above gases with an accuracy of better than 1 percent by volume (for O2 or N2) in real-time (5 seconds). In an effort to prevent aircraft fuel tank fires or explosions similar to the tragic TWA Flight 800 explosion in 1996, OBIGGS are currently being developed for large commercial aircraft to prevent dangerous conditions from forming inside fuel tanks by providing an inerting gas blanket that is low in oxygen, thus preventing the ignition of the fuel/air mixture in the ullage. OBIGGS have been used in military aircraft for many years and are now standard equipment on some newer large commercial aircraft (such as the Boeing 787). Currently, OBIGGS are being developed for retrofitting to existing commercial aircraft fleets in response to pending mandates from the FAA. Most OBIGGS use an air separation module (ASM) that separates O2 from N2 to make nitrogen-enriched air from compressed air flow diverted from the engine (bleed air). Current OBIGGS systems do not have a closed-loop feedback control, in part, due to the lack of suitable process sensors that can reliably measure N2 or O2 and at the same time, do not constitute an inherent source of ignition. Thus, current OBIGGS operate with a high factor-of-safety dictated by process protocol to ensure adequate fuel-tank inerting. This approach is inherently inefficient as it consumes more engine bleed air than is necessary compared to a closed-loop controlled approach. The reduction of bleed air usage is important as it reduces fuel consumption, which translates to both increased flight range and lower operational costs. Numerous approaches to developing OBIGGS feedback-control sensors have been under

  14. Premixer assembly for mixing air and fuel for combustion

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul

    2016-12-13

    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  15. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    Science.gov (United States)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  16. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new

  17. Visual and auditory reaction time for air traffic controllers using quantitative electroencephalograph (QEEG) data.

    Science.gov (United States)

    Abbass, Hussein A; Tang, Jiangjun; Ellejmi, Mohamed; Kirby, Stephen

    2014-12-01

    The use of quantitative electroencephalograph in the analysis of air traffic controllers' performance can reveal with a high temporal resolution those mental responses associated with different task demands. To understand the relationship between visual and auditory correct responses, reaction time, and the corresponding brain areas and functions, air traffic controllers were given an integrated visual and auditory continuous reaction task. Strong correlations were found between correct responses to the visual target and the theta band in the frontal lobe, the total power in the medial of the parietal lobe and the theta-to-beta ratio in the left side of the occipital lobe. Incorrect visual responses triggered activations in additional bands including the alpha band in the medial of the frontal and parietal lobes, and the Sensorimotor Rhythm in the medial of the parietal lobe. Controllers' responses to visual cues were found to be more accurate but slower than their corresponding performance on auditory cues. These results suggest that controllers are more susceptible to overload when more visual cues are used in the air traffic control system, and more errors are pruned as more auditory cues are used. Therefore, workload studies should be carried out to assess the usefulness of additional cues and their interactions with the air traffic control environment.

  18. Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load

    International Nuclear Information System (INIS)

    Pedrozo, Vinícius B.; May, Ian; Dalla Nora, Macklini; Cairns, Alasdair; Zhao, Hua

    2016-01-01

    Highlights: • Dual-fuel combustion offers promising results on a stock heavy-duty diesel engine. • The use of split diesel injections extends the benefits of the dual-fuel mode. • Ethanol–diesel dual-fuel combustion results in high indicated efficiencies. • NOx and soot emissions are significantly reduced. • Combustion efficiency reaches 98% with an ethanol energy ratio of 53%. - Abstract: Conventional diesel combustion produces harmful exhaust emissions which adversely affect the air quality if not controlled by in-cylinder measures and exhaust aftertreatment systems. Dual-fuel combustion can potentially reduce the formation of nitrogen oxides (NOx) and soot which are characteristic of diesel diffusion flame. The in-cylinder blending of different fuels to control the charge reactivity allows for lower local equivalence ratios and temperatures. The use of ethanol, an oxygenated biofuel with high knock resistance and high latent heat of vaporisation, increases the reactivity gradient. In addition, renewable biofuels can provide a sustainable alternative to petroleum-based fuels as well as reduce greenhouse gas emissions. However, ethanol–diesel dual-fuel combustion suffers from poor engine efficiency at low load due to incomplete combustion. Therefore, experimental studies were carried out at 1200 rpm and 0.615 MPa indicated mean effective pressure on a heavy-duty diesel engine. Fuel delivery was in the form of port fuel injection of ethanol and common rail direct injection of diesel. The objective was to improve combustion efficiency, maximise ethanol substitution, and minimise NOx and soot emissions. Ethanol energy fractions up to 69% were explored in conjunction with the effect of different diesel injection strategies on combustion, emissions, and efficiency. Optimisation tests were performed for the optimum fuelling and diesel injection strategy. The resulting effects of exhaust gas recirculation, intake air pressure, and rail pressure were

  19. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1996-01-01

    The ratio of 210 Pb air concentration to the short-lived radon ( 222 Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5±2.2) x 10 -5 (arithmetic mean±S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of 210 Pb air concentration is characterized by high values from October through February. Consequently, high ratios of 210 Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, 210 Pb and 214 Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of 210 Po to 210 Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to 210 Pb and 210 Po, were 1:7.5x10 -5 and 1:0.6 x 10 -5 , respectively

  20. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  1. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  2. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  3. Air pollution control in India

    International Nuclear Information System (INIS)

    Jain, S.K.

    1995-01-01

    Prior to rapid spurt in industrialization in India, people were used to inhale pure air containing about 78% nitrogen, 21% oxygen and some carbon dioxide. But afterwards this composition of pure air was disturbed as a result of increased economic activities. Air, now a days also contains sulphur dioxide, carbon monoxide, nitrogen oxides etc., etc. which are extremely harmful for human health. Virulence of air pollution was realised in late eighties after Bhopal Gas Tragedy (BGT) and an effective air quality management started taking shape in India afterwards. The basic components of air quality management are legislation and regulations, emission inventory, air quality standards and monitoring, air dispersion models and installation of pollution control equipment which are being discussed in this paper. (author). 15 refs., 5 tabs

  4. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  5. Jatropha oil and biogas in a dual fuel CI engine for rural electrification

    International Nuclear Information System (INIS)

    Luijten, C.C.M.; Kerkhof, E.

    2011-01-01

    This work presents the first dual fuel measurements with pure jatropha oil and biogas, using a 12 kW diesel engine generator. Reference tests are done with pure jatropha oil and with diesel to characterize the engine's thermal efficiency η t , volumetric efficiency η v and air-excess ratio λ versus output power. An extensive parameter study is done to predict/explain the effect of dual fuel operation on η v and λ. Dual fuel experiments, adding different qualities (CH 4 /CO 2 ratios) of synthetic biogas to the intake air, show that thermal efficiency is hardly affected for higher loads. For lower loads, biogas addition results in a decrease up to 10% in thermal efficiency, independent of biogas quality. Both η v and λ decrease with addition of biogas, in quantitative agreement with predictions. The engine runs well up to a certain heat release fraction of methane; at higher fractions irregularities are observed, probably attributable to light end-gas knock.

  6. On-line fuel and control rod integrity management in BWRs

    International Nuclear Information System (INIS)

    Larsson, Irina; Sihver, Lembit

    2011-01-01

    Surveillance of fuel and control rod integrity in a BWR core is essential to maintain a safe and reliable operation of a nuclear power plant. An accurate and prompt way to monitor fuel integrity in a reactor core during reactor operation is by using on-line measurements of the gamma emitting noble gas activities in the off-gas system. The integrity of control rods can be efficiently followed by on-line measurements of the helium (He) concentration in the off-gases. This method also gives information about fuel rod failures since He is used as a fill gas in the fuel rods. To survey fuel and control rod integrity during reactor operation, a system consisting of combined gamma and He on-line measurements in the off-gases should be used. Such a system can detect and follow the behavior of fuel and control rod failures. In addition, it can separate fuel failures from control rod failures since fuel rods contain both He and gamma emitting noble gases, while control rods only contain He. Moreover, the system is able to distinguish primary fuel failures from degradation of already existing ones. In this paper we present a combined system for on-line measurements of He and gamma emitting noble gases in the reactor off-gas system and measuring experiences from different BWRs. (author)

  7. Air pollution control regulation. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, K

    1975-05-01

    The Basic Law for Environmental Pollution Control is reviewed. The fundamental ideology of pollution control, range of pollution control, environmental standards, and national policy concerning pollution control are discussed. The content of the Air Pollution Control Law is summarized. The purpose of the Air Pollution Control Law, a list of substances regulated by the law, the type of facilities regulated by the law, control standards, type of control means, and emission standards for flue gas (sulfur oxides, particulate matters, and toxic substances) are described. The environmental standard for each pollutant and the target date for achieving the environmental standard are also given. The list of cities where the 7-rank K value control regulation for SOx is enforced is given. The procedure for registration in compliance with the law is also described.

  8. Roles of programmable logic controllers in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Mishra, Hrishikesh; Balakrishnan, V.P.; Pandya, G.J.

    1999-01-01

    Fuel charging facility is another application of Programmable Logic Controllers (PLC) in fuel reprocessing plants, that involves automatic operation of fuel cask dolly, charging motor, pneumatic doors, clutches, clamps, stepper motors and rod pushers in a pre-determined sequence. Block diagram of ACF system is given for underlining the scope of control and interlocks requirements involved for automation of the fuel charging system has been provided for the purpose at KARP Plant, Kalpakkam

  9. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  10. Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel

    International Nuclear Information System (INIS)

    Yueksel, F.; Ceviz, M.A.

    2003-01-01

    This paper investigates the effects of adding constant quantity hydrogen to gasoline-air mixture on SI engine thermal balance and performance. A four stroke, four-cylinder SI engine was used for conducting this study. Thermal balance tests were conducted for engine thermal efficiency, heat loss through the exhaust gases, heat loss to the cooling water and unaccounted losses (i.e. heat lost by lubricating oil, radiation), while performance tests were in respect to the brake power, specific fuel consumption and air ratio. Hydrogen supplementations were used with three different and fixed mass flow rates; 0.129, 0.168 and 0.208 kg h -1 at near three-fourth throttle opening position and variable engine speed ranging from 1000 to 4500 rpm. The results showed that supplementation of hydrogen to gasoline decreases the heat loss to cooling water and unaccounted losses, and the heat loss through the exhaust gas is nearly the same with pure gasoline experiments. Additionally, specific fuel consumption decreases, while the engine thermal efficiency and the air ratio increase. Engine performance parameters such as thermal efficiency and specific fuel consumption improved the level of the ratio of hydrogen mass flow rate to that of gasoline up to 5%

  11. Production process and quality control for the HTTR fuel

    International Nuclear Information System (INIS)

    Yoshimuta, S.; Suzuki, N.; Kaneko, M.; Fukuda, K.

    1991-01-01

    Development of the production and inspection technology for High Temperature Engineering Test Reactor (HTTR) fuel has been carried out by cooperative work between Japan Atomic Energy Research Institute (JAERI) and Nuclear Fuel Industries, Ltd (NFI). The performance and the quality level of the developed fuel are well established to meet the design requirements of the HTTR. For the commercial scale production of the fuel, statistical quality control and quality assurance must be carefully considered in order to assure the safety of the HTTR. It is also important to produce the fuel under well controlled process condition. To meet these requirements in the production of the HTTR fuel, a new production process and quality control system is to be introduced in the new facilities. The main feature of the system is a computer integrated control system. Process control data at each production stage of products and semi-products are all gathered by terminal computers and processed by a host computer. The processed information is effectively used for the production, quality and accountancy control. With the aid of this system, all the products will be easily traceable from starting materials to final stages and the statistical evaluation of the quality of products becomes more reliable. (author). 8 figs

  12. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  13. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies

    International Nuclear Information System (INIS)

    Carvalho, Vanessa Silveira Barreto; Freitas, Edmilson Dias; Martins, Leila Droprinchinski; Martins, Jorge Alberto; Mazzoli, Caroline Rosario; Andrade, Maria de Fátima

    2015-01-01

    Highlights: • Air pollutants concentrations shows benefits of Brazil's emission control policies. • Reduction in concentrations were due to vehicular emission control program. • SO 2 concentration reduction was due to a decrease in sulphur content used in fuels. • Monthly, weekly and diurnal cycle averages indicate the effects of vehicle emissions. - Abstract: Fourteen years of regulated air pollutants concentrations were analyzed in order to characterize the benefits of Brazil's emission control policies on air quality conditions and to evaluate the temporal patterns between 1996 and 2009 over the Metropolitan Area of São Paulo (MASP). MASP includes one of the largest cities in the world (São Paulo) and its light-duty vehicular fleet has a very important characteristic in that it uses, on a large scale, fuels such as ethanol derived from sugar cane and compressed natural gas. Nowadays, ethanol makes up more than 50% of the fuel used in Brazil. The frequent episodes with high ozone and PM 10 concentration values in the MASP are mostly associated with vehicular emissions – primary emission of particles and gases enrolled in ozone photochemical production and formation of secondary fine particles. Although the fleet has increased at a substantial rate, annual mean values show a diminishing tendency for all pollutants except for ozone, which presents no significant tendency. This diminishing tendency in the analyzed period is due to the vehicular emission control program established by the Brazilian Government in 1986, called PROCONVE (Program for the Control of Vehicular Emission). Monthly mean values, as expected, show higher concentrations of all pollutants except for ozone during wintertime. The diurnal cycle of the pollutants in most of the stations shows two peaks, associated with rush hours, except for ozone, whose peak follows the maximum radiation incidence. Secondary (nocturnal) ozone concentration maxima were sometimes verified around

  14. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells.

    Science.gov (United States)

    Dong, Heng; Yu, Hongbing; Wang, Xin; Zhou, Qixing; Feng, Junli

    2012-11-01

    Single chambered air-cathode microbial fuel cells (MFCs) are promising to be scaled up as sustainable wastewater treatment systems. However, the current air-cathode made by brushing noble metal catalyst and Nafion binder onto carbon matrix becomes one of the biggest bottlenecks for the further development of MFCs due to its high cost, huge labor-consuming and less accuracy. A novel structure of air-cathode was constructed here by rolling activated carbon (AC) and polytetrafluoroethylene (PTFE) as catalyst layer to enhance the reproducibility and improve the performance by an optimized three-phase interface (TPI). Air-cathodes with AC/PTFE ratios of 3, 5, 6, 8 and 11 in the catalyst layer were prepared, and the physical and electrochemical techniques were employed to investigate their surface microstructure and electrochemical characteristics. Uniform cross-linked ropiness networks were observed from the catalyst layer of all the cathodes and increased as the AC/PTFE ratio decreased, while the exchange currents were positively related to this ratio. Maximum power densities (MPDs) decreased as follows: AC/PTFE = 6 (802 mW m(-2) at 3.4 A m(-2)), 5 (704 mW m(-2) at 2.2 mA m(-2)), 8 (647 mW m(-2) at 2.2 A m(-2)), 3 (597 mW m(-2) at 2.1 A m(-2)) and 11 (584 mW m(-2) at 2.0 mA m(-2)), which was due to the changes of both the capacitance characteristics and conductivities according to the electrochemical impedance spectrum (EIS) analysis. This study demonstrated that inexpensive, highly reproducible, high performance and scalable air-cathode can be produced by rolling method without using noble metal and expensive binder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  16. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  17. Performance evaluation of a stack cooling system using CO{sub 2} air conditioner in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chul; Won, Jong Phil [Thermal Management Research Center, Korea Automotive Technology Institute, Chungnam 330-912 (Korea); Park, Yong Sun; Lim, Tae Won [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi 449-912 (Korea); Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

    2009-01-15

    A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO{sub 2} air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO{sub 2} air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling. (author)

  18. Nuclear fuel pin controlled failure device

    International Nuclear Information System (INIS)

    Schlenker, L.D.

    1975-01-01

    Each fuel pin of a fuel assembly for a water-cooled nuclear reactor is provided with means for rupturing the cladding tube at a predetermined location if an abnormal increase in pressure of the gases present occurs due to a loss-of-coolant accident. Preferably all such rupture means are oriented to minimize the hydraulic resistance to the flow of emergency core coolant such as all rupture means pointing in the same direction. Rupture means may be disposed at different elevations in adjacent fuel pins and, further, fuel pins may be provided with two or more rupture means, one of which is in the upper portion of the fuel pin. Rupture means are mechanical as by providing a locally weakened condition of a controlled nature in the cladding. (U.S.)

  19. Impact of Equivalence Ratio on the Macrostructure of Premixed Swirling CH 4 /Air and CH 4 /O 2 /CO 2 Flames

    KAUST Repository

    Watanabe, Hirotatsu

    2015-06-15

    Premixed CH4/O2/CO2 flames (oxy-flames) and CH4/air flames (air-flames) were experimentally studied in a swirl-stabilized combustor. For comparing oxy and air flames, the same equivalence ratio and adiabatic flame temperature were used. CO2 dilution was adjusted to attain the same adiabatic temperature for the oxy-flame and the corresponding air-flame while keeping the equivalence ratio and Reynolds number (=20,000) the same. For high equivalence ratios, we observed flames stabilized along the inner and outer shear layers of the swirling flow and sudden expansion, respectively, in both flames. However, one notable difference between the two flames appears as the equivalence ratio reaches 0.60. At this point, the outer shear layer flame disappears in the air-flame while it persists in the oxy-flame, despite the lower burning velocity of the oxy-flame. Prior PIV measurements (Ref. 9) showed that the strains along the outer shear layer are higher than along the inner shear layer. Therefore, the extinction strain rates in both flames were calculated using a counter-flow premixed twin flame configuration. Calculations at the equivalence ratio of 0.60 show that the extinction strain rate is higher in the oxy than in the air flame, which help explain why it persists on the outer shear layer with higher strain rate. It is likely that extinction strain rates contribute to the oxy-flame stabilization when air flame extinguish in the outer shear layer. However, the trend reverses at higher equivalence ratio, and the cross point of the extinction strain rate appears at equivalence ratio of 0.64.

  20. Advanced Hydrocarbon Fuel Development

    Science.gov (United States)

    Bai, S. Don; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    As a part of a high energy density materials (HEDM) development, the hot fire tests for Quadricyclane, 1,7 Octadiyne, AFRL-1, Biclopropylidene, and CINCH (Dimethyl amino ethyl azide) have been conducted at NASA/MSFC. The first 4 materials for this task are provided from Air Force Research Laboratory at Edward Air Force Base and US Army provided CINCH. The performance of these fuels is compared with RP-1. The preliminary results of these tests are presented. The preliminary results of Quadricyclane tests indicate that the specific impulse and c-star efficiency for quadricyclane at the mixture ratio 1.94 are approximately 5 sec and 105 ft/sec better than the RP-1 at mixture ratio 1.9. The 1,7 Octadiyne test indicate that the specific impulse and c-star efficiency at the mixture ratio 2.1 are approximately -1 sec and 89 ft/sec differ than the RP-1 at mixture ratio 2.04. The Quadricyclane soot buildup at the combustor is a little more than RP-1, but detail study of soot formation is not considered at this time. There was no visual soot buildup for the 1,7 Octadiyne and AFRL-1.