WorldWideScience

Sample records for controlled tungsten based

  1. Refining Tungsten Purification by Electron Beam Melting Based on the Thermal Equilibrium Calculation and Tungsten Loss Control

    Science.gov (United States)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Liu, Ye; Liu, Shuhua

    2015-10-01

    Electron beam melting (EBM) technology has been considered as one of the key steps for preparing high purity tungsten, and reasonable setting of process parameters is the premise. In this paper, the optimum process parameters obtained from thermal equilibrium calculation and evaporation loss control of tungsten are presented. Effective power is closely related to melting temperature, and the required power for maintaining the superheating melt linearly increases with the increase of melt superheat temperature. The evaporation loss behavior of tungsten is significantly influenced by melting rate and melting temperature. Analysis of experiments show that the best results are realized at melting rate of 1.82 g/s, melting temperature of 4200 K, and the corresponding melting power of 130 kW, in which the main impurity elements in tungsten, such as As, Cd, Mg and Sn, present high removal ratio of 90%, 95%, 85.7% and 90%, respectively.

  2. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  3. Development of Tungsten Based Composites

    Science.gov (United States)

    1992-02-01

    W-3.0% Ni-1.6% Fe and a zirconium foil (2 mils ) laminate. In addition, a GTE tungsten alloy (tungsten blended with 8% nickel and 2% iron) was...vescide.Wolframbleche sollten des- direction. i.e. the longitudinal direction. qu’elles sont lonaitudinales ou transver- ’AIM 1btakeristalliso tion noch 1 Stunde

  4. Computer Control For Gas/Tungsten-Arc Welding

    Science.gov (United States)

    Andersen, Kristinn; Springfield, James F.; Barnett, Robert J.; Cook, George E.

    1994-01-01

    Prototype computer-based feedback control system developed for use in gas/tungsten arc welding. Beyond improving welding technician's moment-to-moment general control of welding process, control system designed to assist technician in selecting appropriate welding-process parameters, and provide better automatic voltage control. Modular for ease of reconfiguration and upgrading. Modularity also reflected in software. Includes rack-mounted computer, based on VME bus, containing Intel 80286 and 80386 processors.

  5. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  6. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  7. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  8. Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement

    OpenAIRE

    Lucchese, Carl Joesph

    2010-01-01

    A aluminum matrix-W rod/wire structural material in support of DARPA initiative BAA 08-23 was developed and its density and mechanical strength ascertained, both being part of the DARPA matrices. Aluminum tubes and four 90 degree cross-ply tungsten fiber layers were arranged such that under extreme static pressure conditions the aluminum would viscoplastically flow into the tungsten arrangement to create a metal matrix composite. It was found that a cold isostatic process induced "Brazilian" ...

  9. pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor.

    Science.gov (United States)

    Sun, Qiang-Qiang; Xu, Maowen; Bao, Shu-Juan; Li, Chang Ming

    2015-03-20

    This work presents a controllable synthesis of nanowire-networked tungsten oxide aerogels, which was performed by varying the pH in a polyethyleneimine (PEI)-assisted hydrothermal process. An enzyme-tungsten oxide aerogel co-modified electrode shows high activity and selectivity toward glucose oxidation, thus holding great promise for applications in bioelectronics.

  10. Tungsten based catalysts for selective deoxygenation

    NARCIS (Netherlands)

    Gosselink, R.W.; Stellwagen, D.R.; Bitter, J.H.

    2013-01-01

    Over the past decades, impending oil shortages combined with petroleum market instability have prompted a search for a new source of both transportation fuels and bulk chemicals. Renewable bio-based feedstocks such as sugars, grains, and seeds are assumed to be capable of contributing to a significa

  11. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  12. Ablation study of tungsten-based nuclear thermal rocket fuel

    Science.gov (United States)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  13. Micro-mechanical behavior of porous tungsten/Zr-based metallic glass composite under cyclic compression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Q. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xue, Y.F., E-mail: xueyunfei@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, L.; Fan, Q.B.; Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, H.F.; Fu, H.M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-09-03

    The micro-mechanical behavior of porous tungsten/Zr-based metallic glass composites with different tungsten volume fraction was investigated under cyclic compression by synchrotron-based in-situ high-energy X-ray diffraction (HEXRD) and finite element modeling (FEM). During cyclic compression, the dislocation in the tungsten phase tangled near the interfaces, indicating that the elastic metallic glass phase restricted dislocation motion and obstructed the deformation of the tungsten phase because of the heterogeneity in stress. After the metallic glass phase yielded, the dislocation tended to propagate away from the interfaces, showing the decrease of the interphase stress affected the direction of motion in the dislocations. The tungsten phase exhibited increased yield strength with the increase of cyclic loading number. Yield stress of the tungsten phase decreased with increasing the tungsten volume fraction during cyclic compression, which was influenced by the elastic strain mismatch between the two phases. The stress heterogeneity and the stress distribution difference between the two phases resulted in that the yield strength of the metallic glass phase decreased with the increase of tungsten volume fraction, and accelerated the formation of shear bands in the metallic glass phase as well as cracks in the tungsten phase. The heterogeneity in stress also excessed the interface bonding strength, inducing interface fracture near interfaces.

  14. Behavior of tungsten fiber-reinforced tungsten based on single fiber push-out study

    Directory of Open Access Journals (Sweden)

    B. Jasper

    2016-12-01

    Full Text Available To overcome the intrinsic brittleness of tungsten (W, a tungsten fiber-reinforced tungsten-composite material (Wf/W is under development. The composite addresses the brittleness of W by extrinsic toughening through the introduction of energy dissipation mechanisms. These mechanisms allow the reduction of stress peaks and thus improve the materials resistance against crack growth. They do not rely on the intrinsinc material properties such as ductility. By utilizing powder metallurgy (PM one could benefit from available industrialized approaches for composite production and alloying routes. In this contribution the PM method of hot isostatic pressing (HIP is used to produce Wf/W samples containing W fibers coated with an Er2O3 interface. Analysis of the matrix material demonstrates a dense tungsten bulk, a deformed fiber and a deformed, but still intact interface layer. Metallographic analysis reveals indentations of powder particles in the interface, forming a complex 3D structure. Special emphasis is placed on push-out tests of single fiber HIP samples, where a load is applied via a small indenter on the fiber, to test the debonding and frictional properties of the Er2O3 interface region enabling the energy dissipation mechanisms. Together with the obtained experimental results, an axisymmetric finite element model is discussed and compared to existing work. In the HIP Wf/W composites the matrix adhesion is rather large and can dominate the push-out behavior. This is in contrast to the previously tested CVD produced samples.

  15. Tungsten based Anisotropic Metamaterial as an Ultra-broadband Absorber

    CERN Document Server

    Lin, Yinyue; Ding, Fei; Fung, Kin Hung; Ji, Ting; Li, Dongdong; Hao, Yuying

    2016-01-01

    The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we ca...

  16. A facile route to tungsten oxide nanomaterials with controlled morphology and structure

    Institute of Scientific and Technical Information of China (English)

    Hsuan-Ching Lin; Cherng-Yuh Su; Zhong-Kun Yang; Chung-Kwei Lin; Keng-Liang Ou

    2011-01-01

    Various tungsten oxide-based nanomaterials have been prepared by a modified plasma arc gas condensation technique without the use of catalysts or substrates.These products could be obtained by controlling the processing parameters during experiment.All the as-obtained samples were characterized by field emission gun scanning electron microscopy,high-resolution transmission electron microscopy,and Xray diffraction techniques.The results revealed that as-prepared tungsten oxide nanomaterials (WO3,W19O55 and W5O14 ) with different phases and morphologies could be obtained by decreasing the oxygen content in the chamber.In addition,W18O49 nanotubes and nanorod bundles were fabricated by controlling the Ar/O2 ratio under He plasma gas.W18O49/TiO2 core-shell nanoparticles were also prepared by evaporating a dual target.The experimental results showed that the present technique is unique and feasible for the fabrication of nanomaterials for use in different applications.

  17. Microstructures and Wear Performance of PTAW Deposited Ni-Based Coatings with Spherical Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Dewei Deng

    2015-10-01

    Full Text Available The Ni-based coatings with different content of spherical tungsten carbide were deposited by plasma transfer arc welding (PTAW method on 304 austenitic stainless steel sheets in this study. The microstructure and wear property of spherical tungsten carbide particle reinforced composite coatings were investigated by means of optical microscope, scanning electron microscope (SEM, X-ray diffraction (XRD, electron probe microanalysis (EPMA and sliding wear test. It is shown that the fraction of spherical tungsten carbides has an important influence on microstructure of Ni-based overlay. The Ni40 overlay consists of γ-Ni dendrites with interdendritic Ni-based eutectics, borides and carbides improving the wear resistance. In the case of composite coatings with different content of tungsten carbide, many new phases are observed, such as Ni2W4C and NiW. In addition, there are a large number of irregular structures in composite coatings, such as acicular structure and irregular stripe organization. The results of sliding wear test indicate that the mass loss of coatings is influenced by the content of tungsten carbide. The mass loss decreases with the increase of tungsten carbide fraction. At high load, the abrasive resistance of composite coating with 60 wt. % tungsten carbide is improved about 50-fold compared to that of Ni40 overlay.

  18. Electrical properties of rare earth based tungsten bronze vanadates

    Institute of Scientific and Technical Information of China (English)

    B.B. Mohanty; P.S. Sahoo; R.N.P. Choudhary

    2012-01-01

    Barium based tungsten bronze (TB) oxides having high dielectric constant and low loss,can be effectively used as transducers,actuators,capacitors and also in memory devices.All these characteristics stimulated the researchers to replace toxic and hazardous lead based materials by barium based TB materials from industry.In the present research work,polycrystalline samples of Ba4SrRTi3V7O30 (R=Dy,Sm,La) were synthesized by a high temperature solid state reaction technique.Preliminary structural (X-ray diffraction) analyses of these compounds showed the formation of single-phase orthorhombic structures at room temperature having average crystallite size of the order of some nanometer for all the compounds.The scanning electron micrographs (SEM) provided information on the quality of the samples and showed more or less homogeneous distribution of grains over the entire surface of the samples.Detailed dielectric study in a wide temperature range (30-500 ℃) showed ferro to para phase transition for Dy and Sm substituted samples whereas no such transition was observed for La substituted samples.Both the grain and grain boundary resistances exhibited negative temperature coefficient of resistance behavior much like semiconductors.The dc conductivity of all the compounds obeyed Arrhenius relation.

  19. Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Dilek, E-mail: e145342@metu.edu.t [Department of Metallurgical and Materials Engineering, METU, 06531 Ankara (Turkey); Ak, Metin, E-mail: metinak@pamukkale.edu.t [Department of Chemistry, Pamukkale University, 20017 Denizli (Turkey); Durucan, Caner, E-mail: cdurucan@metu.edu.t [Department of Metallurgical and Materials Engineering, METU, 06531 Ankara (Turkey)

    2009-11-02

    Tungsten trioxide (WO{sub 3}) electrochromic coatings have been formed on indium tin oxide-coated glass substrates by aqueous routes. Coating sols are obtained by dissolving tungsten powder in acetylated (APTA) or plain peroxotungstic acid (PTA) solutions. The structural evolution and electrochromic performance of the coatings as a function of calcination temperature (250 {sup o}C and 400 {sup o}C) have been reported. Differential scanning calorimetry and X-ray diffraction have shown that amorphous WO{sub 3} films are formed after calcination at 250 {sup o}C for both processing routes; however, the coatings that calcined at 400 {sup o}C were crystalline in both cases. The calcination temperature-dependent crystallinity of the coatings results in differences in optical properties of the coatings. Higher coloration efficiencies can be achieved with amorphous coatings than could be seen in the crystalline coatings. The transmittance values (at 800 nm) in the colored state are 35% and 56% for 250 {sup o}C and 400 {sup o}C-calcined coatings, respectively. The electrochemical properties are more significantly influenced by the method of sol preparation. The ion storage capacities designating the electrochemical properties are found in the range of 1.62-2.74 x 10{sup -3} (mC cm{sup -2}) for APTA coatings; and 0.35-1.62 x 10{sup -3} (mC cm{sup -2}) for PTA coatings. As a result, a correlation between the microstructure and the electrochromic performance has been established.

  20. Structural and Mechanical Characterization of Nanocrystalline Tungsten and Tungsten-Based Alloy Thin Films for Extreme Environment Applications

    Science.gov (United States)

    Martinez, Gustavo

    Extreme environments associated with nuclear applications often results in degradation of the physical, mechanical and thermo-mechanical properties of the materials. Tungsten (W) exhibits unique physical and mechanical properties, which makes tungsten a good candidate for nuclear applications; however, intrinsic W exhibits low fracture toughness at all temperatures in addition to a high ductile to brittle transition. In the present work, nanocrystalline W, W-Y and W-Mo alloys were nanoengineered for nuclear applications. Nanocrystalline tungsten coatings with a thickness of 1 microm were deposited onto Silicon (100) and Sapphire (C-plane) using RF and DC sputtering techniques under various growth conditions. Yttrium content in W-Y alloys has been varied to enhance the irradiation tolerance under optimum concentration. The W, W-Y coatings were characterized to understand the structure and morphology and to establish a mapping of conditions to obtain phase and size controlled materials. The samples were then subjected to depth-controlled irradiation by neutrons and Au3+ ions. Solid solution strengthening was achieved by doping molybdenum (Mo) solute atoms to W matrix under varied sputtering pressures and temperatures with the intention of creating interstitial point defects in the crystals that impede dislocation motion, increasing the hardness and young modulus of the material. The effect of PAr (3-19 mTorr) was also investigated and associated microstructure are significant on the mechanical characteristics; the hardness (H) and modulus of elasticity (Er) of the nc W-Mo thin films were higher at lower pressures but decreases continuously with increasing PAr. Using nano-indentation and nano-scratch technique, mechanical characterization testing was performed before and after irradiation. The structure, mechanics and irradiation stability of the W and W-Y coatings will be presented and discussed to demonstrate that Y-addition coupled with nano-scale features

  1. Controlling factors for the brittle-to-ductile transition in tungsten single crystals

    Science.gov (United States)

    Gumbsch; Riedle; Hartmaier; Fischmeister

    1998-11-13

    Materials performance in structural applications is often restricted by a transition from ductile response to brittle fracture with decreasing temperature. This transition is currently viewed as being controlled either by dislocation mobility or by the nucleation of dislocations. Fracture experiments on tungsten single crystals reported here provide evidence for the importance of dislocation nucleation for the fracture toughness in the semibrittle regime. However, it is shown that the transition itself, in general, is controlled by dislocation mobility rather than by nucleation.

  2. Evaluation of health and environmental risks associated with the life-cycle of tungsten-based ammunition

    NARCIS (Netherlands)

    Langenberg, J.P.; Horst, R.M. van der; Carol-Visser, J.; Hulst, M. van; Grand, N.P. le; Elst, O.A.A.M. ter; Lander, H.J.; Brekelmans, F.J.A.M.

    2009-01-01

    Tungsten-based ammunition is generally considered to be less harmful and more environmentally friendly than ammunition based on depleted uranium. However, recent studies have shown severe health effects in rats after embedding fragments of weapons grade Tungsten/Nickel/Cobalt in their leg muscle tis

  3. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites

    Science.gov (United States)

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  4. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    Science.gov (United States)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  5. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  6. Tungsten toxicity.

    Science.gov (United States)

    Witten, Mark L; Sheppard, Paul R; Witten, Brandon L

    2012-04-05

    There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.

  7. Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors

    Science.gov (United States)

    Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.

    1994-07-01

    Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.

  8. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips

    KAUST Repository

    Khan, Yasser

    2012-01-01

    Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as dynamic electrochemical etching and reverse biasing after drop-off are utilized, and two-step dynamic electrochemical etching is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc drop-off technique is reduced to ?36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel dynamic electrochemical etching. Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30° variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes. © 2012 American Institute of Physics.

  9. A NEURAL NETWORK FOR WELD PENETRATION CONTROL IN GAS TUNGSTEN ARC WELDING

    Institute of Scientific and Technical Information of China (English)

    C.S. Wu; J.Q. Gao; Y.H. Zhao

    2006-01-01

    Realizing of weld penetration control in gas tungsten arc welding requires establishment of a model describing the relationship between the front-side geometrical parameters of weld pool and the back-side weld width with sufficient accuracy. A neural network model is developed to attain this aim. Welding experiments are conducted to obtain the training data set (including 973 groups of geometrical parameters of the weld pool and back-side weld width) and the verifying data set (108 groups). Two data sets are used for training and verifying the neural network, respectively.The testing results show that the model has sufficient accuracy and can meet the requirements of weld penetration control.

  10. Electrodeposition-Based Fabrication and Characteristics of Tungsten Trioxide Thin Film

    OpenAIRE

    Li Lin; Chin-Pao Cheng; Tun-Ping Teng

    2016-01-01

    In this study, tungsten trioxide (WO3) thin films were electrodeposited on indium tin oxide (ITO) glass to form WO3-coated glass. The electrodeposition (ED) time (tED) and ED current (IED) were varied to control the film thickness and morphology. Furthermore, the crystallization of the thin films was controlled by annealing them at 250°C, 500°C, and 700°C. The results showed that the thickness of the WO3 thin films increased with tED and IED. The as-deposited thin films and those annealed at ...

  11. Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    Science.gov (United States)

    Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET

    2017-05-01

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

  12. Direct Observation on the Evolution of Shear Banding and Buckling in Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite

    Science.gov (United States)

    Chen, J. H.; Chen, Y.; Jiang, M. Q.; Chen, X. W.; Fu, H. M.; Zhang, H. F.; Dai, L. H.

    2014-11-01

    The evolution of micro-damage and deformation of each phase in the composite plays a pivotal role in the clarification of deformation mechanism of composite. However, limited model and mechanical experiments were conducted to reveal the evolution of the deformation of the two phases in the tungsten fiber reinforced Zr-based bulk metallic glass composite. In this study, quasi-static compressive tests were performed on this composite. For the first time, the evolution of micro-damage and deformation of the two phases in this composite, i.e., shear banding of the metallic glass matrix and buckling deformation of the tungsten fiber, were investigated systematically by controlling the loading process at different degrees of deformation. It is found that under uniaxial compression, buckling of the tungsten fiber occurs first, while the metallic glass matrix deforms homogeneously. Upon further loading, shear bands initiate from the fiber/matrix interface and propagate in the metallic glass matrix. Finally, the composite fractures in a mixed mode, with splitting in the tungsten fiber, along with shear fracture in the metallic glass matrix. Through the analysis on the stress state in the composite and resistance to shear banding of the two phases during compressive deformation, the possible deformation mechanism of the composite is unveiled. The deformation map of the composite, which covers from elastic deformation to final fracture, is obtained as well.

  13. Recent progress in tungsten oxides based memristors and their neuromorphological applications

    Science.gov (United States)

    Qu, Bo; Younis, Adnan; Chu, Dewei

    2016-09-01

    The advance in conventional silicon based semiconductor industry is now becoming indeterminacy as it still along the road of Moore's Law and concomitant problems associated with it are the emergence of a number of practical issues such as short channel effect. In terms of memory applications, it is generally believed that transistors based memory devices will approach to their scaling limits up to 2018. Therefore, one of the most prominent challenges today in semiconductor industry is the need of a new memory technology which is able to combine the best characterises of current devices. The resistive switching memories which are regarded as "memristors" thus gain great attentions thanks to their specific nonlinear electrical properties. More importantly, their behaviour resembles with the transmission characteristic of synapse in biology. Therefore, the research of synapses biomimetic devices based on memristor will certainly bring a great research prospect in studying synapse emulation as well as building artificial neural networks. Tungsten oxides (WO x ) exhibits many essential characteristics as a great candidate for memristive devices including: accredited endurance (over 105 cycles), stoichiometric flexibility, complimentary metal-oxide-semiconductor (CMOS) process compatibility and configurable properties including non-volatile rectification, memorization and learning functions. Herein, recent progress on Tungsten oxide based materials and its associating memory devices had been reviewed. The possible implementation of this material as a bio-inspired artificial synapse is also highlighted. The penultimate section summaries the current research progress for tungsten oxide based biological synapses and end up with several proposals that have been suggested for possible future developments.

  14. Jiangxi Again Discovered Worldclass Tungsten Mine with Controlled Volume Topping 1 million tonnes

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>The reporter recently learned from Jiangxi Province Geological Mineral Prospecting & Development Bureau that following the discovery of ultra large tungsten mine in northwestern Jiangxi in 2010, Jiangxi Province again discovered a world-class large tungsten mine in Zhuxi Mining Zone in Fuliang County in northeastern Jiangxi.

  15. Near infrared electrochromic variable optical attenuator based on ruthenium complex and polycrystalline tungsten oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jidong; WU Xianguo; YU Hongan; YAN Donghang; WANG Zhiyuan

    2005-01-01

    A near infrared (NIR) electrochromic attenuator based on a dinuclear ruthenium complex and polycrystalline tungsten oxide was fabricated and characterized. The results show that the use of the NIR-absorbing ruthenium complex as a counter electrode material can improve the device performance. By replacing the visible electrochromic ferrocene with the NIR-absorbing ruthenium complex, the optical attenuation at 1550 nm was enhanced from 19.1 to 30.0 dB and color efficiency also increased from 29.2 to 121.2 cm2/C.

  16. Electrochromic Devices Based on Porous Tungsten Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Y. Djaoued

    2012-01-01

    Full Text Available Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3 thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3 thin films. XRD measurements of the intercalation/deintercalation of Li+ into/from the WO3 layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3 layers during Li+ ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70% due to intercalation/deintercalation of Li ions into/from the WO3 layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.

  17. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.

    Science.gov (United States)

    Wang, Aiqin; Zhang, Tao

    2013-07-16

    With diminishing fossil resources and increasing concerns about environmental issues, searching for alternative fuels has gained interest in recent years. Cellulose, as the most abundant nonfood biomass on earth, is a promising renewable feedstock for production of fuels and chemicals. In principle, the ample hydroxyl groups in the structure of cellulose make it an ideal feedstock for the production of industrially important polyols such as ethylene glycol (EG), according to the atom economy rule. However, effectively depolymerizing cellulose under mild conditions presents a challenge, due to the intra- and intermolecular hydrogen bonding network. In addition, control of product selectivity is complicated by the thermal instabilities of cellulose-derived sugars. A one-pot catalytic process that combines hydrolysis of cellulose and hydrogenation/hydrogenolysis of cellulose-derived sugars proves to be an efficient way toward the selective production of polyols from cellulose. In this Account, we describe our efforts toward the one-pot catalytic conversion of cellulose to EG, a typical petroleum-dependent bulk chemical widely applied in the polyester industry whose annual consumption reaches about 20 million metric tons. This reaction opens a novel route for the sustainable production of bulk chemicals from biomass and will greatly decrease the dependence on petroleum resources and the associated CO₂ emission. It has attracted much attention from both industrial and academic societies since we first described the reaction in 2008. The mechanism involves a cascade reaction. First, acid catalyzes the hydrolysis of cellulose to water-soluble oligosaccharides and glucose (R1). Then, oligosaccharides and glucose undergo C-C bond cleavage to form glycolaldehyde with catalysis of tungsten species (R2). Finally, hydrogenation of glycolaldehyde by a transition metal catalyst produces the end product EG (R3). Due to the instabilities of glycolaldehyde and cellulose

  18. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  19. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  20. Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes

    Science.gov (United States)

    Calvo, A.; Ordás, N.; Iturriza, I.; Pastor, J. Y.; Tejado, E.; Palacios, T.; García-Rosales, C.

    2016-02-01

    Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.

  1. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires

    Science.gov (United States)

    Yun, Hee Mann; Titran, Robert H.

    1993-01-01

    The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

  2. China Limits the Mining Quantity of Tungsten and Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Based on a notice issued by the Ministry of Land Resources, China’s tungsten mining quantity in 2006 will be controlled to 59,060 tons in concentrates form, which include 4,250 tons of recycled tungsten. And the rare earth mining quantity in 2006 will also be controlled to 86,620 tons (REO) including 8,320 tons of heavy rare earth and 78,200 tons of light rare earth.

  3. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.

    2015-12-04

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  4. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    Science.gov (United States)

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad M.

    2016-01-01

    Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WN x ). As-deposited WN x thin films have high Young’s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WN x switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  5. Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data

    Science.gov (United States)

    Nave, Maryana I.; Kornev, Konstantin G.

    2017-03-01

    Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.

  6. Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data

    Science.gov (United States)

    Nave, Maryana I.; Kornev, Konstantin G.

    2016-12-01

    Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.

  7. Interaction between tungsten monocarbide and an iron-based metallic melt

    Science.gov (United States)

    Chumanov, I. V.; Anikeev, A. N.

    2015-12-01

    A technique and results of investigation of compacted tungsten carbide substrates by scanning microscopy are reported. Samples are prepared in the course of studies of the wettability of tungsten carbide substrates with the iron melt, which are performed in accordance with the sessile drop method using two different heating strategies, namely, contact and noncontact heating of metal.

  8. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    Science.gov (United States)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  9. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.; Yan, K.; Zhou, Y. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Xu, L. X., E-mail: xulixin@ustc.edu.cn; Gu, C. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China); Zhan, Q. W. [Electro-Optics Program, University of Dayton, Dayton, Ohio 45469 (United States)

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  10. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  11. Homogenous Silver-Tungsten Composite Production for Electrical Contacts

    Directory of Open Access Journals (Sweden)

    Shahid M. Azhar

    2015-03-01

    Full Text Available Silver-tungsten composite materials have been widely used as medium duty electrical contacts since they offer the advantages of both refractory tungsten (welding and erosion resistance and silver (efficient electro-thermal conductivities. Since there is no alloying between the two elements (Ag and W, the properties of the composite depends on their composition. So for any particular application, a balance must be struck between the desirable properties of the two metals. Both welding and erosion resistance properties of silver-tungsten contacts depend on particle size, morphology and distribution of both elements within the composite, with finer W particles in Ag matrix give better performance. The main objective of this study is to produce an intimately mixed silver-tungsten powder with homogeneous distribution of both phases (silver and tungsten in the composite. Thus, to produce homogenous elemental silver-tungsten powder, the reduction behavior of each tungstate is studied at various reduction temperatures using TGA technique. Based on the results obtained from TGA, the reduction of silver tungstate carried out in two stage reduction process for producing elemental silver-tungsten powder with controlled particle size of tungsten. Also, small quantities of Fe and Co as sinter aids are introduced into tungstates by co-precipitation technique. However, the precipitated Fe and Co doped silver tungstates are reduced to yield Iron and cobalt doped silver-tungsten powders. The effect of Fe and Co on the morphology and particle size of the tungsten is studied using SEM. The reduced products will be used for subsequent sintering experiments to produce high density sintered compact for contact fabrication.

  12. Root Cause Analysis of Tungsten-Induced Protein Aggregation in Pre-filled Syringes.

    Science.gov (United States)

    Liu, Wei; Swift, Rob; Torraca, Gianni; Nashed-Samuel, Yasser; Wen, Zai-Qing; Jiang, Yijia; Vance, Aylin; Mire-Sluis, Anthony; Freund, Erwin; Davis, Janice; Narhi, Linda

    2010-01-01

    Particles isolated from a pre-filled syringe containing a protein-based solution were identified as aggregated protein and tungsten. The origin of the tungsten was traced to the tungsten pins used in the supplier's syringe barrel forming process. A tungsten recovery study showed that the vacuum stopper placement process has a significant impact on the total amount of tungsten in solutions. The air gap formed in the syringe funnel area (rich in residual tungsten) becomes accessible to solutions when the vacuum is pulled. Leachable tungsten deposits that were not removed by the supplier's wash process are concentrated in this small area. Extraction procedures used to measure residual tungsten in empty syringes would under-report the tungsten quantity unless the funnel area is wetted during the extraction. Improved syringe barrel forming and washing processes at the supplier have lowered the residual tungsten content and significantly reduced the risk of protein aggregate formation. This experience demonstrates that packaging component manufacturing processes, which are outside the direct control of drug manufacturers, can have an impact on the drug product quality. Thus close technical communication with suppliers of product contact components plays an important role in making a successful biotherapeutic.

  13. The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons.

    Science.gov (United States)

    Botella, Pablo; Solsona, Benjamín; García-González, Ester; González-Calbet, José M; López Nieto, José M

    2007-12-21

    Mixed metal oxides with tetragonal tungsten bronze (TTB) structure, showing high activity and selectivity for the gas phase partial oxidation of olefins, have been prepared by hydrothermal synthesis from Keggin-type heteropolyacids.

  14. Comparison of Three Control Methods in Penetration Control of Pulsed Gas Tungsten Arc Welding

    Institute of Scientific and Technical Information of China (English)

    陈文杰; 陈善本; 林涛

    2003-01-01

    An artificial neural network model for backside bead width was established and three control meth-ods PID, fuzzy and neuron were designed, simulated and tested. The test results of bead-on-plate weld ofGTAW indicate that the artificial neural network (ANN) modeling and learning control method have more advan-tages than the conventional method. They show that the ANN modeling and learning control method is an effectiveapproach to real time control of welding dynamics and ideal quality.

  15. Couches minces electrochromiques d'oxyde de tungstene dense et poreux pour des applications de controle energetique

    Science.gov (United States)

    Camirand, Hubert

    Nanotechnology has modified the landscape of energy generation, energy storage and energy saving devices. Architectural fenestration can extensively benefit from green nanotechnologies. Amongst them, active fenestration or "smart" windows are able to modify their coloration state upon the application of a small electrical voltage, when based on electrochromic materials. In fact, the amount of visible and near-infrared light that can penetrate through the window can be altered. Therefore, their implementation can allow for a significant reduction in energy consumption in buildings. Furthermore, the capability of optimizing indoor comfort is user-controlled, thus an additional degree of freedom is given by electrochromic-based technology. It is worth mentioning that such devices can be largely advantageous in countries with variable seasons, such as here in Canada. As a matter of fact, the large temperature difference between the hot and cold season influences the requirement of impeding or enabling visible and thermal radiation to pass through. This master's thesis is entirely devoted to tungsten trioxide (WO 3), which is the most widely studied electrochromic material. In the present case, WO3 thin films are synthesized by radiofrequency magnetron sputtering. By varying the deposition pressure and power, the porosity content/packing density of the films is modified. This work's main topic is the characterization of electrochromic samples by in situ spectroscopic ellipsometry simultaneously with the application of an electrical voltage in an aqueous electrolytic medium made of sulfuric acid (H2SO 4). The methodology developed here allows for an in-depth study of electro-active materials. To corroborate this, optical properties of WO3 are obtained for a wide range of coloration levels, and these are subsequently used to model the resulting coloration of electrochromic multilayer systems. However, the interface between the dense and porous films affects the coloration

  16. Electrodeposition-Based Fabrication and Characteristics of Tungsten Trioxide Thin Film

    Directory of Open Access Journals (Sweden)

    Li Lin

    2016-01-01

    Full Text Available In this study, tungsten trioxide (WO3 thin films were electrodeposited on indium tin oxide (ITO glass to form WO3-coated glass. The electrodeposition (ED time (tED and ED current (IED were varied to control the film thickness and morphology. Furthermore, the crystallization of the thin films was controlled by annealing them at 250°C, 500°C, and 700°C. The results showed that the thickness of the WO3 thin films increased with tED and IED. The as-deposited thin films and those annealed at 250°C were amorphous, whereas the WO3 thin films annealed at 500 and 700°C were in the anorthic phase. Moreover, the amorphous WO3-coated glass exhibited high transmittance in visible light and low transmittance in near-infrared light, whereas the anorthic WO3-coated glass had high transmittance in near-infrared light. An empirical formula for determining the thickness of WO3 thin films was derived through multiple regressions of the ED process parameters.

  17. Effect of arc current on droplet ejection from tungsten-based electrode in multiphase AC arc

    Science.gov (United States)

    Hashizume, Taro; Tanaka, Manabu; Watanabe, Takayuki

    2017-05-01

    The dynamic behavior of droplet ejection from a tungsten electrode was successfully visualized using a high-speed camera and an appropriate band-pass filter. The effect of arc current on droplet ejection was investigated to understand the electrode erosion mechanism in the multiphase AC arc. The rate of erosion by droplet ejection increased with increasing current. This result was examined on the basis of the time variation in forces on a pending droplet at the electrode tip during the AC cycle. The relationship among electromagnetic force, surface tension, and ion pressure on the molten tip during the cathodic period is crucial for controling droplet ejection. The molten tip becomes hemispherical forming the pending droplet with an increase in the instantaneous value of arc current during the AC cycle. The pending droplet detaches from the electrode surface when electromagnetic force becomes the dominant force. Consequently, a higher rate of erosion by droplet ejection with a higher arc current resulted from a stronger electromagnetic force.

  18. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.

    2013-04-01

    Tungsten disulfide (WS2) is a layered transition metal dichalcogenide with a reported band gap of 1.8 eV in bulk and 1.32-1.4 eV in its thin film form. 2D atomic layers of metal dichalcogenides have shown changes in conductivity with applied electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace and then its transistor action with back gated device with room temperature field effect mobility of 0.1003 cm2/V-s using the Schottky barrier contact model. We also show the semiconducting behavior of this WS2 thin film which is more promising than thermally unstable organic materials for thin film transistor application. Our direct growth method on silicon oxide also holds interesting opportunities for macro-electronics applications. © 2013 IEEE.

  19. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  20. Factors affecting the thermal shock resistance of several hafnia based composites containing graphite or tungsten. M.S. Thesis

    Science.gov (United States)

    Lineback, L. D.

    1974-01-01

    The thermal shock resistance of hafnia based composites containing graphite powder or tungsten fibers was investigated in terms of material properties which include thermal expansion, thermal conductivity, compressive fracture stress, modulus of elasticity, and phase stability in terms of the processing parameters of hot pressing pressure and/or density, degree of stabilization of the hafnia, and composition. All other parameters were held constant or assumed constant. The thermal shock resistance was directly proportional to the compressive fracture stress to modulus of elasticity ratio and was not affected appreciably by the small thermal expansion or thermal conductivity changes. This ratio was found to vary strongly with the composition and density such that the composites containing graphite had relatively poor thermal shock resistance, while the composites containing tungsten had superior thermal shock resistance.

  1. X-ray microscopy using reflection targets based on SEM with tungsten filament

    Science.gov (United States)

    Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong

    2016-10-01

    X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.

  2. Specular reflection based sensing surface deformation of gas tungsten arc weld pool

    Institute of Scientific and Technical Information of China (English)

    Zhang Shiliang; Gao Jinqiang; Wu Chuansong; Zhang Yuming

    2007-01-01

    A sensing system is developed to measure the weld pool boundary and pool surface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light interference, and specular reflection from the pool surface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for real-time monitoring the pool surface depression and weld penetration.

  3. Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells.

    Science.gov (United States)

    Jeong, Inyoung; Jo, Changshin; Anthonysamy, Arockiam; Kim, Jung-Min; Kang, Eunae; Hwang, Jongkook; Ramasamy, Easwaramoorthi; Rhee, Shi-Woo; Kim, Jin Kon; Ha, Kyoung-Su; Jun, Ki-Won; Lee, Jinwoo

    2013-02-01

    A disulfide/thiolate (T(2)/T(-)) redox-couple electrolyte, which is a promising iodine-free electrolyte owing to its transparent and noncorrosive properties, requires alternative counter-electrode materials because conventional Pt shows poor catalytic activity in such an electrolyte. Herein, ordered mesoporous tungsten suboxide (m-WO(3-x)), synthesized by using KIT-6 silica as a hard template followed by a partial reduction, is used as a catalyst for a counter electrode in T(2)/T(-)-electrolyte-based dye-sensitized solar cells (DSCs). The mesoporous tungsten suboxide, which possesses interconnected pores of 4 and 20 nm, provides a large surface area and efficient electrolyte penetration into the m-WO(3-x) pores. In addition to the advantages conferred by the mesoporous structure, partial reduction of tungsten oxide creates oxygen vacancies that can function as active catalytic sites, which causes a high electrical conductivity because of intervalence charge transfer between the W(5+) and W(6+) ions. m-WO(3-x) shows a superior photovoltaic performance (79 % improvement in the power conversion efficiency) over Pt in the T(2)/T(-) electrolyte. The superior catalytic activity of m-WO(3-x) is investigated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization curve analysis.

  4. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    Science.gov (United States)

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-01-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation. PMID:27775086

  5. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    Science.gov (United States)

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-10-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation.

  6. LOW TEMPERATURE THERMAL DEBINDING BEHAVIOR OF WAX-BASED MULTI-COMPONENT BINDER FOR TUNGSTEN HEAVY ALLOY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To control the defects in thermal debinding stage, low temperature thermal debinding behavior of wax in the multi-component binder for tungsten heavy alloy was studied. The wax burnout temperature is below 250 ℃, at which the defects mainly occur. The debinding rate is controlled by the diffusion of wax in the polymer to the inner surface of pores and then to the external environment. The experiment proved the amount of removed wax as an exponential function of time, the reciprocal sample thickness and temperature coeffcient.

  7. Laminated electrochromic windows based on nickel oxide, tungsten oxide, and gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Passerini, S.; Scrosati, B.; Hermann, V. (Univ. di Roma (Italy). Dipt. di Chimica); Holmblad, C.; Bartlett, T. (Medtronic Promeon, Minneapolis, MN (United States))

    1994-04-01

    The characteristic and the performance of solid-state, laminated electrochromic windows using tungsten oxide as the principal electrochromic electrode and nonstoichiometric nickel oxide as the counterelectrode separated by selected gel electrolytes, are presented and discussed. These advanced-design, electro-optical devices show a very promising behavior in terms of light modulation and cyclability.

  8. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Roberts, Alexander; Ding, Fei

    2016-01-01

    for the fabricated MIM resonator. Excellent thermal stability of the absorber is demonstrated at high operating temperatures (800 °C). The experimental broadband absorption spectra show good agreement with simulations. The resonator with 12 nm top tungsten and 100 nm alumina spacer film shows absorbance above 95...

  9. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Science.gov (United States)

    Tsechanski, A.; Bielajew, A. F.; Archambault, J. P.; Mainegra-Hing, E.

    2016-01-01

    A new "one-stage" approach for production of 99Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of 99Mo via the photoneutron reaction 100Mo(γ,n)99Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r0) W target, for target thickness z > 1.84r0, where r0 is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r0) for target thickness case: z ⩾ 2.0r0. It is shown for the one-stage approach with thicknesses of (1.84-2.0)r0, that the 99Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r0) in the traditional two-stage approach (W converter and separate 99Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the 99Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity for the one-stage approach of three enriched 100Mo-targets of a 2 cm diameter and

  10. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  11. Gas tungsten arc welding of ZrB2–SiC based ultra high temperature ceramic composites

    OpenAIRE

    R.V. Krishnarao; G. Madhusudhan Reddy

    2015-01-01

    The difficulty in fabricating the large size or complex shape limits the application of ZrB2–SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of (ZrB2–SiC–B4C–YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding (GTAW...

  12. Fabrication of tuning-fork based AFM and STM tungsten probe

    KAUST Repository

    Al-Falih, Hisham

    2011-12-01

    We compare the sharpness of tungsten probe tips produced by the single-step and two-step dynamic electrochemical etching processes. A small radius of curvature (RoC) of 25 nm or less was routinely obtained when the two-step electrochemical etching (TEE) process was adopted, while the smallest achievable RoC was ∼10 nm, rendering it suitable for atomic force microscopy (AFM) or scanning tunneling microscopy (STM) applications. © 2011 IEEE.

  13. Redox-controlled interconversion between trigonal prismatic and octahedral geometries in a monodithiolene tetracarbonyl complex of tungsten.

    Science.gov (United States)

    Yan, Yong; Chandrasekaran, Perumalreddy; Mague, Joel T; DeBeer, Serena; Sproules, Stephen; Donahue, James P

    2012-01-02

    ](-) are both diagnostic of dithiolene ligand-based sulfur radical, indicating that one-electron reduction of 1 involves two-electron reduction of tungsten and one-electron oxidation of dithiolene ligand.

  14. Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai'i

    Science.gov (United States)

    Gaillard, N.; Chang, Y.; Kaneshiro, J.; Deangelis, A.; Miller, E. L.

    2010-08-01

    For more than a decade, the Hawaii Natural Energy Institute has conducted research on photoelectrochemical (PEC) technologies and achieved major milestones, including the fabrication of high-performance photoactive thin film materials and the development of innovative device integrations (hybrid-photo-electrode). In this paper, we focus our discussion on tungsten oxide-based materials, one of our two principal topics of research in this field. After a description of pure WO3 physical, chemical and energetic properties we present our latest results on tungsten oxide PEC properties improvement. In our general approach, each component of the PEC electrode is addressed, from the absorber (bulk) to the surface energetics (near-surface) and catalysis (surface). Recently, progresses have been made on surface treatment for catalytic purposes as well as on PEC materials integration. In the case of catalytic treatment, our studies show that reactive sputtering technique is suitable to form high quality RuO2 thin films and nanoparticles. Tests conducted on RuO2 thin films pointed out an oxygen evolution reaction potential as low as 0.2 V. When used as an anode in 2- electrode configuration, RuO2 thin films lead to a photocurrent onset potential reduction as low as 500 mV for p-type PEC materials (CGSe2 and a-SiC, so far tested) when compared to platinum. In the case of RuO2 nanoparticles, a photocurrent density increase of approx. 20% was observed on treated tungsten oxide films. Finally, we present a new integration scheme to increase photocurrent density using highly textured substrates (HTS). In our approach, HTS were obtained by anisotropic etching of [100] silicon substrates in KOH solution. Initial results indicated a very good coverage of WO3 onto the silicon pyramids and a photocurrent doubling is observed when compared to WO3 deposited on flat silicon substrates.

  15. Controlling the hydrogenolysis of silica-supported tungsten pentamethyl leads to a class of highly electron deficient partially alkylated metal hydrides

    KAUST Repository

    Maity, Niladri

    2015-11-30

    The well-defined single-site silica-supported tungsten complex [([triple bond, length as m-dash]Si–O–)W(Me)5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at −78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [([triple bond, length as m-dash]Si–O–)WH3(Me)2], as the predominant species at −78 °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between −78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [([triple bond, length as m-dash]Si–O–)WH3([double bond, length as m-dash]CH2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.

  16. Green supply chain model for tungsten industry based on SCOR%基于SCOR的钨产业绿色供应链模型研究

    Institute of Scientific and Technical Information of China (English)

    彭频; 熊英

    2015-01-01

    我国是世界上钨资源储量、产销量、贸易量大国,实施绿色战略有利于解决钨产业发展过程中的环境影响和资源效率问题。文中在分析钨产业供应链基础上,从绿色供应链运作的原理出发,引入供应链运作参考(Supply Chain Operational Reference,SCOR)模型,构建了基于SCOR的钨产业绿色供应链模型,阐述了模型的构成要素以及各要素间的关系,以期为钨产业的可持续发展提供新的思考方向。%China leads the world in the quantity of tungsten reserves, productions and trade. Green strategy is helpful to solve the environmental and resource of tungsten industry. On the basis of the analysis of the tungsten industry supply chain and the theory of green supply chain operation , this paper establishes green supply chain model of tungsten industry based on SCOR (Supply Chain Operational Reference)model by expounding the components and the relationships among the elements of the model in order to provide new thinking pattern for the sustainable development of Tungsten industry.

  17. Development and characterization of nickel based tungsten carbide laser cladded coatings

    Science.gov (United States)

    Rombouts, Marleen; Persoons, Rosita; Geerinckx, Eric; Kemps, Raymond; Mertens, Myrjam; Hendrix, Willy; Chen, Hong

    Laser cladded coatings consisting of various types of tungsten carbides embedded in a NiCrBSiCFe matrix are characterized. At optimal process parameters crack-free coatings with a thickness of 0.85-1 mm, excellent bonding with the substrate, carbide concentrations up to 60 wt% and a hardness in the range of 40-55 HRC are obtained. During laser cladding the carbides have partly dissolved in the matrix as indicated by the presence of dispersed carbides in the matrix and by a carbide phase growing into the matrix along the edges of the particles. The wear coefficient during sliding contact decreases logarithmically with increasing carbide concentration.

  18. Photons transport through ultra-high molecular weight polyethylene based composite containing tungsten and boron carbide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.M. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kuznetsov, S.A. [Russian State Technological University “MATI”, Moscow 121552 (Russian Federation); Volkov, A.E.; Terekhin, P.N.; Dmitriev, S.V. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Tcherdyntsev, V.V.; Gorshenkov, M.V. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Boykov, A.A., E-mail: kink03@gmail.com [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation)

    2014-02-15

    Highlights: • The developed method for predicting X-ray properties of the polymer. • Higher content of the fillers results in an increase of mechanical properties. • X-ray defensive properties of the samples were investigated experimentally. -- Abstract: Polymers are a base for creating of composite materials with high mechanical and chemical properties. Using the heavy metals as filler in these composites can give them X-ray protective properties. These materials have high deactivation rates and can be used to create Personal Protective Equipment (PPE) used in aggressive environments. It was proposed a model for calculation of X-ray protection properties of the polymer-based nanocomposite materials with ultra-high molecular weight polyethylene (UHMWPE) matrix, filled with tungsten and boron carbide particles. X-ray protective properties were calculated in a wide range of filler content using the developed model. Results of calculations allow selecting most effective compounds of X-ray protective UHMWPE based composites.

  19. High performance field-effect transistor based on multilayer tungsten disulfide.

    Science.gov (United States)

    Liu, Xue; Hu, Jin; Yue, Chunlei; Della Fera, Nicholas; Ling, Yun; Mao, Zhiqiang; Wei, Jiang

    2014-10-28

    Semiconducting two-dimensional transition metal chalcogenide crystals have been regarded as the promising candidate for the future generation of transistor in modern electronics. However, how to fabricate those crystals into practical devices with acceptable performance still remains as a challenge. Employing tungsten disulfide multilayer thin crystals, we demonstrate that using gold as the only contact metal and choosing appropriate thickness of the crystal, high performance transistor with on/off ratio of 10(8) and mobility up to 234 cm(2) V(-1) s(-1) at room temperature can be realized in a simple device structure. Furthermore, low temperature study revealed that the high performance of our device is caused by the minimized Schottky barrier at the contact and the existence of a shallow impurity level around 80 meV right below the conduction band edge. From the analysis on temperature dependence of field-effect mobility, we conclude that strongly suppressed phonon scattering and relatively low charge impurity density are the key factors leading to the high mobility of our tungsten disulfide devices.

  20. Does speciation matter for tungsten ecotoxicology?

    Science.gov (United States)

    Strigul, Nikolay

    2010-09-01

    Tungsten is a widely used transition metal that has not been thoroughly investigated with regards to its ecotoxicological effects. Tungsten anions polymerize in environmental systems as well as under physiological conditions in living organisms. These polymerization/condensation reactions result in the development of several types of stable polyoxoanions. Certain chemical properties (in particular redox and acidic properties) differentiate these polyanions from monotungstates. However, our current state of knowledge on tungsten toxicology, biological and environmental effects is based entirely on experiments where monotungstates were used and assumed by the authors to be the form of tungsten that was present and that produced the observed effect. Recent discoveries indicate that tungsten speciation may be important to ecotoxicology. New results obtained by different research groups demonstrate that polytungstates develop and persist in environmental systems, and that polyoxotungstates are much more toxic than monotungstates. This paper reviews the available toxicological information from the standpoint of tungsten speciation and identifies knowledge gaps and pertinent future research directions.

  1. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Dana, E-mail: dana.kuehnel@ufz.de [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Scheffler, Katja [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Wellner, Peggy [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Meissner, Tobias; Potthoff, Annegret [Fraunhofer-Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden (Germany); Busch, Wibke [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Springer, Armin [Centre for Translational Bone, Cartilage and Soft Tissue Research, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); ETH Zuerich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zuerich (Switzerland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Assessment of toxic potential of tungsten carbide-based nanoparticles. Black-Right-Pointing-Pointer Evaluation of ROS and micronuclei induction of three hard metal nanomaterials. Black-Right-Pointing-Pointer Dependency of observed toxic effects on the materials physical-chemical properties. Black-Right-Pointing-Pointer Differences in several particle properties seem to modulate the biological response. - Abstract: Tungsten carbide (WC) and cobalt (Co) are constituents of hard metals and are used for the production of extremely hard tools. Previous studies have identified greater cytotoxic potential of WC-based nanoparticles if particles contained Co. The aim of this study was to investigate whether the formation of reactive oxygen species (ROS) and micronuclei would help explain the impact on cultured mammalian cells by three different tungsten-based nanoparticles (WC{sub S}, WC{sub L}, WC{sub L}-Co (S: small; L: large)). The selection of particles allowed us to study the influence of particle properties, e.g. surface area, and the presence of Co on the toxicological results. WC{sub S} and WC{sub L}/WC{sub L}-Co differed in their crystalline structure and surface area, whereas WC{sub S}/WC{sub L} and WC{sub L}-Co differed in their cobalt content. WC{sub L} and WC{sub L}-Co showed neither a genotoxic potential nor ROS induction. Contrary to that, WC{sub S} nanoparticles induced the formation of both ROS and micronuclei. CoCl{sub 2} was tested in relevant concentrations and induced no ROS formation, but increased the rate of micronuclei at concentrations exceeding those present in WC{sub L}-Co. In conclusion, ROS and micronuclei formation could not be associated with the presence of Co in the WC-based particles. The contrasting responses elicited by WC{sub S} vs. WC{sub L} appear to be due to large differences in crystalline structure.

  2. Femtosecond fiber laser additive manufacturing of tungsten

    Science.gov (United States)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  3. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene

    KAUST Repository

    Lin, Yu-Chuan

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green\\'s function (NEGF).

  4. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    Science.gov (United States)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  5. Synthesis of a base-stabilized silanone-coordinated complex by oxygenation of a (silyl)(silylene)tungsten complex.

    Science.gov (United States)

    Muraoka, Takako; Abe, Keisuke; Haga, Youhei; Nakamura, Tomoko; Ueno, Keiji

    2011-10-05

    Base-stabilized silanone complex Cp*(OC)(2)W(SiMe(3)){O═SiMes(2)(DMAP)} (2) was synthesized by the reaction of (silyl)(silylene)tungsten complex Cp*(OC)(2)W(SiMe(3))(═SiMes(2)) (1) with 1 equiv of pyridine-N-oxide (PNO) in the presence of 4-(dimethylamino)pyridine (DMAP). Further oxygenation of 2 with 3 equiv of PNO at 80 °C resulted in the formation of a W-O-Si-O-Si framework to give disiloxanoxy complex Cp*(O)(2)W{OSiMes(2)(OSiMe(3))} (3). Complex 3 was also obtained by the direct reaction of complex 1 with 4 equiv of PNO at 80 °C.

  6. 湖南魏家隐伏型钨-萤石矿床控矿因素及成矿规律分析%Ore controlling factors and metallogenic regularity of concealed tungsten-fluorite deposits in Weijia of Hunan

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    魏家钨矿区位于南岭成矿带中段,为2010年国土资源大调查中新发现的矿产地。通过近年的工程控制,在钨矿体内新发现了萤石矿。本文在对矿床地质特征进行了进一步研究基础上,对矿床的控矿因素及成矿规律进行了总结分析,认为本矿区矿床类型为矽卡岩型钨、萤石矿床,矿体的空间展布主要受矿区内隐伏型层间破碎带和层间破碎带内充填的花岗斑岩脉共同控制。%Weijia tungsten mining area,a newly discovered mineral site in"The Grand Survey of Land and Re-sources of 2010",is located in the middle part of Nanling metallogenic belt.In recent years,fluorite ores were discovered in tungsten orebodies by ore-controlling projects.Based on further study on geological char-acteristics of the deposits,this paper summarizes and analyzes the ore-controlling factors and the metallogen-ic regularity of the deposits,and it shows that the deposits in this area are skarn-type tungsten-fluorite de-posits and the spatial distribution of the orebodies are primarily controlled by concealed interlayer fracture zone and granite porphyry veins filled with in the interlayer fracture zone.

  7. Tribological performance evaluation of tungsten carbide-based cermets and development of a fracture mechanics wear model

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, R.B. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Conway, J.C. Jr. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Amateau, M.F. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Brezler, R.A. III [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.

    1996-12-15

    Tungsten carbide tools may exhibit sudden brittle fracture at high stresses such as are encountered in shear and slitter knives. This has limited the use of tungsten carbide tools to certain applications in spite of their high hardness and wear resistance. The objective of this investigation is to evaluate the tribological performance of selected cermets and develop a fracture mechanics wear model. Six compositions of WC-Co materials (Co ranging from 4 to 30% by weight) with or without TiC, NbC, TaC, or Mo{sub 2}C were selected for relating wear modes of these tool materials to pertinent mechanical properties such as fracture toughness and hardness. The influence of mechanical properties such as Young`s modulus, hardness, fracture toughness, modulus of rupture, and Weibull modulus on wear rates and wear modes of the selected materials is presented and discussed. The major mechanisms of wear in WC-Co materials are discussed as they apply to the development of suitable relationships between wear and mechanical properties. The wear process is by the transfer of steel from the ring to the cemented carbide block specimens, initiation of mode I cracks normal to the mating surface, propagation of mode II cracks parallel to the wear surfaces and the subsequent separation of platelets with adhered WC and Co particles through adhesive forces with the steel ring. The wear rates of the cermets do not show a consistent relationship with mode I or mode II fracture toughness, but a general trend of decreasing wear rate with hardness is seen. This suggests that the tribological performance of these cermets depends on certain specific functions of pertinent parameters including fracture toughness, hardness, applied load, coefficient of friction and microstructural characteristics. A fracture mechanics-based wear model has been developed to relate the steady state wear rate (W{sub ss}) to hardness, mode II fracture toughness, coefficient of friction, and applied load. (orig./MM)

  8. The Newly Released Export Quota for Tungsten Products

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>China’s Ministry of Commerce recently announced the second lot of export quota for tungsten products in 2005. Based on the new quota, the second lot for Ammonium Paratung-state (APT) and Ammonium Metatungstate (AMT) will be 1,232 tons. The second lot for tungsten trioxide and blue tungsten oxide will be 1,480 tons and the second lot for tungsten powder and its products will be 428 tons.

  9. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Science.gov (United States)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  10. Properties of Hydrogen Sulfide Sensors Based on Thin Films of Tin Dioxide and Tungsten Trioxide

    Science.gov (United States)

    Sevastianov, E. Yu.; Maksimova, N. K.; Chernikov, E. V.; Sergeichenko, N. V.; Rudov, F. V.

    2016-12-01

    The effect of hydrogen sulfide in the concentration range of 0-100 ppm on the characteristics of thin films of tin dioxide and tungsten trioxide obtained by the methods of magnetron deposition and modified with gold in the bulk and on the surface is studied. The impurities of antimony and nickel have been additionally introduced into the SnO2 bulk. An optimal operating temperature of sensors 350°C was determined, at which there is a satisfactory correlation between the values of the response to H2S and the response time. Degradation of the sensor characteristics is investigated in the long-term ( 0.5-1.5 years) tests at operating temperature and periodic exposure to hydrogen sulfide, as well as after conservation of samples in the laboratory air. It is shown that for the fabrication of H2S sensors, the most promising are thin nanocrystalline Au/WO3:Au films characterized by a linear concentration dependence of the response and high stability of parameters during exploitation.

  11. Penetration control by weld pool resonance during gas tungsten arc welding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents penetration control by weld pool resonance which occurs when the natural frequency of weld pool is equal to the frequency of sine wave current while the weld pool is excited into oscillation by superimposing sine wave current with definite frequency or regular fiequency on DC current, and experiments carried out on detecting resonance signals during both stationary and travelling arc welding with variant frequency pulse current, and concludes with ex perimental results that penetration control can be realized by weld pool resonance when welding speed is lower than 80mm/min, and this control method is applicable to welding thin (0.5 ~ 3.0 mm) plates of carbon steel, low alloy steel, high strength steel and superhigh strength steel, and suitable for alternating polarity welding of stainless steel, titanium alloy steel and aluminum alloy.

  12. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Chiori [Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kawano, Takuto [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2014-11-07

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σ increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  13. Photodeposition of platinum nanoparticles on well-defined Tungsten oxide: controlling oxidation state, particle size and geometrical distribution

    NARCIS (Netherlands)

    Wenderich, Kasper

    2016-01-01

    In this thesis, structure-directed photodeposition of the cocatalyst platinum (Pt) on monoclinic tungsten oxide (WO3) nanoplates is described, both considering fundamental aspects, as well as usefulness for applications in photocatalytic propane oxidation. Before such studies are described, the conc

  14. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  15. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip

    Science.gov (United States)

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-01

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  16. Two-color coherent control of femtosecond above-threshold photoemission from a tungsten nanotip

    CERN Document Server

    Förster, Michael; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-01-01

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a visibility of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  17. The Erosion and Erosion Products of Tungsten and Carbon Based Materials Bombarded by High Energy Pulse Electron Beam

    Institute of Scientific and Technical Information of China (English)

    LIUXiang; N.Yoshida; N.Noda; ZHANGFu; XUZengyu; LIUYong

    2001-01-01

    High Z and low Z materials are both the candidate plasma facing materials (PFM), up to now, the typical representative of high Z materials is tungsten, and the representatives of low Z materials are carbon materials (such as graphite, C/C composite) and beryllium. Most of these materials have been used as PFM limiters and diverter armor tiles of tokamak machines, tungsten, molybdenum and C/C composite are always used as high heat flux components.

  18. Gas tungsten arc welding of ZrB2–SiC based ultra high temperature ceramic composites

    Directory of Open Access Journals (Sweden)

    R.V. Krishnarao

    2015-09-01

    Full Text Available The difficulty in fabricating the large size or complex shape limits the application of ZrB2–SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of (ZrB2–SiC–B4C–YAG composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding (GTAW was performed without employing preheating, post controlled cooling and extraneous protective gas shield to join hot pressed ZrB2–SiC (ZS, and pressureless sintered ZrB2–SiC–B4C–YAG (ZSBY composites to themselves. The fusion welding resulted in cracking and non-uniform joining without any filler material. The weld interfaces of the composites were very clean and coherent. The Vickers micro-hardness across the weld interface was found to increase due to the increase in the volume % of both SiC and B4C in the filler material. The shear strength of the weld was about 50% of the flextural strength of the parent composite.

  19. Polarization-based perturbations to thermopower and electronic conductivity in highly conductive tungsten bronze structured (Sr,Ba)Nb2O6: Relaxors vs normal ferroelectrics

    Science.gov (United States)

    Bock, Jonathan A.; Trolier-McKinstry, Susan; Mahan, Gerald D.; Randall, Clive A.

    2014-09-01

    Electrical conductivity, thermopower, and lattice strain were investigated in the tetragonal tungsten bronze structured (Srx,Ba1-x)Nb2O6-δ system for 0.7>x>0.4 with large values of δ. These materials show attractive thermoelectric characteristics, especially in single-crystal form. Here, the Sr/Ba ratio was changed in order to vary the material between a normal ferroelectric with long-range polarization to relaxor behavior with short-range order and dynamic polarization. The influence of this on the electrical conduction mechanisms was then investigated. The temperature dependence of both the thermopower and differential activation energy for conduction suggests that the electronic conduction is controlled by an impurity band with a mobility edge separating localized and delocalized states. Conduction is controlled via hopping at low temperatures, and as temperature rises electrons are activated above the mobility edge, resulting in a large increase in electrical conductivity. For relaxor ferroelectric-based compositions, when dynamic short-range order polarization is present in the system, trends in the differential activation energy and thermopower show deviations from this conduction mechanism. The results are consistent with the polarization acting as a source of disorder that affects the location of the mobility edge and, therefore, the activation energy for conduction.

  20. PENGGUNAAN SEPPAKS ALUMINA SEBAGAI ALAT UJI KUALITAS SISTEM GEL GENERATOR TUNGSTEN-188/RENIUM-188 (The Use of Alumina SepPaks As A Quality Control Tool for The Tungsten-188/Rhenium-188 Gel Generators System

    Directory of Open Access Journals (Sweden)

    Duyeh Setiawan

    2012-03-01

    Full Text Available ABSTRAK Metode uji kualitas dengan menggunakan SepPaks alumina telah dikembangkan untuk menentukan tingkat pelepasan 188W dari sistem gel generator 188W/188Re. Pendeteksian intensitas rendah dari 188W dengan kehadiran intensitas lebih tinggi dari 188Re (Eg = 155 keV, 15 %, maka teknik pencacahan cara konvensional tidak memungkinkan, karena 188W mengemisikan foton gamma dengan intensitas yang sangat rendah pada Eg = 227 keV (0,22 % dan Eg = 290 keV (0,40 %. Oleh karena itu, untuk mengetahui pelepasan dan menghitung tingkat 188W dalam ketepatan waktu (real time tanpa harus menunggu beberapa hari untuk meluruh dari 188Re anak, maka penggunaan SepPaks alumina secara “tandem” dengan gel generator tungsten-188/renium-188 merupakan teknik yang efektif untuk menjerat 188W yang lolos. Teknik ini ditunjukkan oleh elusi sistem gel generator 188W/188Re titanium tungstat, kemudian eluat dilewatkan melalui SepPaks alumina yang diikuti oleh pencucian dengan NaCl 0,9 % pH 5. Hasil elusi diperoleh yield 188Re maksimum sebesar 65 %, mempunyai kemurnian radionuklida 97 % dan radiokimia sebesar 95 %. Penentuan penangkapan 188W ditunjukkan oleh adanya spektrum gamma 290 keV dalam SepPaks alumina dapat dideteksi secara jelas. Berdasarkan hasil yang diperoleh tersebut dapat ditunjukkan bahwa penggunaan SepPaks alumina sangat efektif sebagai alat uji kualitas dalam menilai kinerja sistem gel generator 188W/188Re untuk memproduksi radionuklida renium-188.   ABSTRACT A quality control method using an alumina SepPaks has been developed to determine the breakthrough levels of 188W from 188W/188Re gel generator systems.  Detection of low levels of 188W in the presence of high levels of 188Re (155 keV, 15 % by tradisional counting techniques is not possible, because the 188W emits gamma photons of only very low intensity at 227 keV (0.22 % and 290 keV (0.40 %.  In order to remove and quantitate levels of 188W in “ real time “ without having to wait several days

  1. Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application

    Institute of Scientific and Technical Information of China (English)

    秦玉香; 刘长雨; 柳杨

    2015-01-01

    Novel three-dimensional (3D) hierarchical structure and roughly oriented one-dimensional (1D) nanowire of WO3 are selectively prepared on alumina substrate by an induced hydrothermal growth method. Each hierarchical structure is constructed hydrothermally through bilateral inductive growth of WO3 nanowire arrays from a nanosheet preformed on the substrate. Only roughly oriented 1D WO3 nanowire can be obtained from a spherical induction layer. The analyses show that as-prepared 1D nanowire and 3D hierarchical structures exhibit monoclinic and hexagonal phases of WO3, re-spectively. The gas-sensing properties of the nanowires and hierarchical structure of WO3, which include the variations of their resistances and response times when exposed to NO2, are investigated at temperatures ranging from room tempera-ture (20 ◦C) to 250 ◦C over 0.015 ppm–5 ppm NO2. The hierarchical WO3 behaves as a p-type semiconductor at room temperature, and shows p-to-n response characteristic reversal with the increase of temperature. Meanwhile, unlike the 1D nanowire, the hierarchical WO3 exhibits excellent response characteristic and very good reversibility and selectivity to NO2 gas at room temperature due to its unique microstructure. Especially, it is found that the hierarchical WO3-based sensor is capable of detecting NO2 at a ppb level with ultrashort response time shorter than 5 s, indicating the potential of this material in developing high sensitive gas sensor with low power consumption.

  2. Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jelle, Bjoern Petter; Hagen, Georg [Department of Electrochemistry, Norwegian University of Science and Technology NTNU, N-7034 Trondheim (Norway)

    1999-07-15

    In our laboratory various electrochromic windows (ECWs) have been investigated using mainly tungsten oxide (WO{sub 3}), polyaniline (PANI) and prussian blue (PB) as electrochromic materials in combination with poly(2-acrylamido-2-methyl-propane-sulphonic acid) (PAMPS) as a solid proton-conducting electrolyte. The ECWs have been characterized by AC-impedance, linear sweep voltammetry and spectroelectrochemical studies in the 290-3300 nm spectral region. The ECWs have the following general multilayered structure: Glass/ITO/EC1/IC/EC2/ITO/Glass, where ITO=indium oxide doped with tin, IC=ionic conductor, EC1 is either PANI or PANI including PB, and EC2 is WO{sub 3}. The best of these ECWs has been able to regulate up to 56% (typical 50%) of the transmission of the total solar energy in the 290-3300 nm spectral range. The combination of the two electrochromic materials PANI and PB has been shown to be mutually beneficial in such a way that the coloration of the window is enhanced by the addition of a layer of PB onto PANI, while the adhesion of PB is improved by the presence of PANI. The energy consumption of the ECW is about 0.01 Wh/m{sup 2} for one complete cycle (-1.8 V/1.2 V). The switching time for 90% colouring/bleaching is typically 10-30 s. A PANI/PB//WO{sub 3} window has been operated for about 50 days (=3700 complete cycles) without substantial loss of transmission regulation, though with an increase in switching time (10 min.). Spectra from individual layers in the ECWs have been recorded by making holes in one or two of the electrochromic layers. In this way (the hole method), it has been possible to study the transmission regulation properties for each electrochromic material separately in complete solid state windows. In addition, spectra for complete windows have been simulated by adding contributions from individual electrochromic layers

  3. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-10-01

    The influence of composition on the tensile and creep strength of [001] oriented nickel-base superalloy single crystals at temperatures near 1000 °C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247.* For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta plus W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of γ' volume fraction, γ-γ' lattice mismatch, and solid solution hardening.

  4. Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate

    Science.gov (United States)

    Khedir, Khedir R.; Kannarpady, Ganesh K.; Ishihara, Hidetaka; Woo, Justin; Ryerson, Charles; Biris, Alexandru S.

    2010-09-01

    Morphologically novel tungsten nanorods (WNRs) with the co-existence of two crystalline phases, α-W (thermodynamically stable) and β-W, were fabricated by glancing angle RF magnetron sputtering technique under various Ar pressures and flow rates. For these nanorods, a significant variation in their morphology and surface roughness was observed. These structures could be useful in a wide range of applications such as field emission, robust superhydrophobic coatings, energy, and medicine.

  5. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    Science.gov (United States)

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress.

  6. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol.

    Science.gov (United States)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet

    2015-12-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO3) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO3NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1M phosphate buffer solution (PBS) at pH7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0×10(-9)-2.0×10(-7)M. The detection limit (LOD) was 5.54×10(-11)M (based on 3Sb/m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use.

  7. Dynamic tensile deformation behavior of Zr-based amorphous alloy matrix composites reinforced with tungsten or tantalum fibers

    Science.gov (United States)

    Lee, Hyungsoo; Kim, Gyeong Su; Jeon, Changwoo; Sohn, Seok Su; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Hyoung Seop; Lee, Sunghak

    2016-07-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten (W) or tantalum (Ta) continuous fibers were fabricated by liquid pressing process. Their dynamic tensile properties were investigated in relation with microstructures and deformation mechanisms by using a split Hopkinson tension bar. The dynamic tensile test results indicated that the maximum strength of the W-fiber-reinforced composite (757 MPa) was much lower than the quasi-statically measured strength, whereas the Ta-fiber-reinforced composite showed very high maximum strength (2129 MPa). In the W-fiber-reinforced composite, the fracture abruptly occurred in perpendicular to the tensile direction because W fibers did not play a role in blocking cracks propagated from the amorphous matrix, thereby resulting in abrupt fracture within elastic range and consequent low tensile strength. The very high dynamic tensile strength of the Ta-fiber-reinforced composite could be explained by the presence of ductile Ta fibers in terms of mechanisms such as (1) interrupted propagation of cracks initiated in the amorphous matrix, (2) formation of lots of cracks in the amorphous matrix, and (3) sharing of loads and severe deformation (necking) of Ta fibers in cracked regions.

  8. The Effects of Carbide Characteristics on the Performance of Tungsten Carbide-Based Composite Overlays, Deposited by Plasma-Transferred Arc Welding

    Science.gov (United States)

    Fisher, G.; Wolfe, T.; Meszaros, K.

    2013-06-01

    In Alberta, there are huge quantities of ore processed to remove bitumen from oil sands deposits. The scale of production generates very aggressive tribocorrosive conditions during the mining, extraction, and upgrading processes. It is common to apply tungsten carbide-based composite overlays to improve the reliability and extend service lives of equipment and components. The performance of the applied overlays is largely dependent on the selection of the carbide type and the wear environment. This paper will evaluate overlays containing macrocrystalline, angular eutectic, and spherical eutectic tungsten carbides and discuss the performance of the overlays with a focus on carbide properties and the interactions between the service conditions and the composite material. This discussion will demonstrate how effective selection of protective materials can improve the reliability of oil sands equipment.

  9. Peculiarities of formation of phase composition, porous structure, and catalytic properties of tungsten oxide-based macroporous materials fabricated by sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Papynov, Evgeniy Konstantinovich, E-mail: Papynov@mail.ru [Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok 690022 (Russian Federation); Far Eastern Federal University, School of Natural Sciences, Suhanova, 8, Vladivostok 690091 (Russian Federation); Mayorov, Vitaliy Yurevich, E-mail: 024205@inbox.ru [Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok 690022 (Russian Federation); Palamarchuk, Marina Sergeevna, E-mail: 02.06.1984@mail.ru [Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok 690022 (Russian Federation); Avramenko, Valentin Aleksandrovich, E-mail: avramenko1@yandex.ru [Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok 690022 (Russian Federation); Far Eastern Federal University, School of Natural Sciences, Suhanova, 8, Vladivostok 690091 (Russian Federation)

    2014-02-15

    The method of template sol–gel synthesis of tungsten oxide-based macroporous materials using ‘core–shell’ latex particles as colloid templates is described. The chemical composition and structural characteristics of the synthesized macroporous oxide systems have been investigated. The peculiarities of formation of material phase composition and macroporous structure under different template thermal destruction conditions have been revealed. An optimal method of a targeted synthesis of the crystalline tungsten(VI) oxide having a defect-free macroporous structure (average pore size 160 nm) and efficient catalytic properties under organic liquid phase oxidation conditions has been suggested. The prospects of the fabricated material application as catalysts of hydrothermal oxidation of radionuclide organic complexes at radioactive waste decontamination have been demonstrated. - Highlights: • Macroporous tungsten oxides were fabricated via sol–gel process. • The correlation between synthesis conditions and composition was determined. • Influence of synthesis conditions on porous structure has been explained. • The effects of template thermodestruction have been set up. • High potential of such materials for catalysis applications has been shown.

  10. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  11. Low-temperature NO2-sensing properties and morphology-controllable solvothermal synthesis of tungsten oxide nanosheets/nanorods

    Science.gov (United States)

    Wang, Zishuai; Hu, Ming; Wei, Yulong; Liu, Junfeng; Qin, Yuxiang

    2016-01-01

    Tungsten oxide (WO3) nanocrystals with various nanomorphologies were synthesized by solvothermal method using tungsten hexachloride (WCl6) as a raw material and pure ethylene glycol (EG) or water-EG as reaction solvent, and the NO2-sensing properties of the WO3 nanocrystals were studied. The morphology and crystal structure were investigated by field emission scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The NO2 gas sensing properties of WO3 nanocrystals were investigated at different temperatures ranging from room temperature (∼25 °C) to 250 °C over NO2 concentration ranging from 0.1 to 3 ppm. The results indicate that the morphology and crystal phase of the WO3 nanocrystals depended on the water content in water-EG mixed solvent. With the increase of water content, the crystalline phase transformed from hexagonal to monoclinic. At the operating temperature below 55 °C, the sensor synthesized in EG solvent showed an abnormal p-type conductive behavior. It is found that all the sensors exhibit high sensor responses and rapid response characteristics to different concentrations of NO2, and their highest sensor responses are achieved at 100 or 50 °C.

  12. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2015-12-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO{sub 3}) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO{sub 3}NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1 M phosphate buffer solution (PBS) at pH 7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0 × 10{sup −9}–2.0 × 10{sup −7} M. The detection limit (LOD) was 5.54 × 10{sup −11} M (based on 3 S{sub b}/m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use. - Highlights: • A voltammetric nanosensor was prepared using nanoparticles of WO{sub 3} and CNTs. • A selective quantification of paracetamol was carried out in the presence of AA. • A linear plot was obtained for current responses versus concentrations over the range from 1.0 × 10{sup −9} to 2.0 × 10{sup −7} M. • A detection limit of 554 pM was obtained for paracetamol using the proposed nanosensor. • An accurate quantification makes the proposed nanosensor of great interest for public health.

  13. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  14. Laser-induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation

    Science.gov (United States)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-09-01

    Laser-induced breakdown spectroscopy (LIBS) was successfully used in on-line control of selective removal of cobalt from tungsten carbide hardmetal by pulsed UV laser surface ablation. The dependence of LIBS on number of laser shots was investigated at different laser fluences. The optimal laser fluence of 2.5 J/cm 2 suited for selective removal of cobalt from surface layer of hardmetal was confirmed. The result sample was also subject to different post-examinations to evaluate the feasibility of the application of LIBS in this laser ablation process. It was demonstrated that, monitoring of the emission intensity of cobalt lines could be used as a control parameter for selective removal of cobalt from surface layer of hardmetal by pulsed UV laser. The on-line implementation of the spectroscopic technique LIBS to the surface-ablation process provided important information about the optimal-ablation parameters.

  15. Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution

    Science.gov (United States)

    Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-05-01

    The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.

  16. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  17. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air...... of oxidation time. The coating had completely oxidized during the 300 h oxidation time. GDOES measurements showed that the tungsten was located in an inner zone in the coating/substrate interface. The outer layer of the coating did not contain any tungsten after oxidation but consisted mainly of cobalt...

  18. CVD钨沉积层组织控制%Control the Microstructure of Tungsten Layer Fabricated by Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    马捷; 张永志; 魏建忠; 蒙丽娟

    2011-01-01

    The microstructure of tungsten layer fabricated by chemical vapor deposition was changed by supplying the reactive gas WF6 and H2 discontinuously. The effect of the technics principle of chemical vapor deposition on the tungsten layer's microstructure and properties had been analyzed. And the condition of stress on the surface and crack on the fracture surface had been discussed. The results show that the microstructure of Tungsten layer is changed from layered columnar grains to equiaxed grains with the decreasing of cyclical deposition time. And the surface appearances are spherical grains, which are no longer tending to grow in a single direction, meanwhile the deposits are of high purity and high density. The stress on the surface is reduced and the direction of the propagating cracks has been changed. The expansion of the crack can be effectively blocked.%以WF6和H2为反应气体,采用间断供应反应气体方法改变CVD钨沉积层显微组织形貌.研究了间断沉积工艺参数对沉积层显微组织及性能的影响,讨论了间断沉积层的表面应力状态及断口裂纹扩展情况.结果表明:采用间断化学气相沉积法钨层的显微组织随周期沉积时间的缩短,柱状晶晶粒长度尺寸变小,形态逐渐接近等轴晶;沉积层表面形貌呈圆球状,沉积层生长界面不再趋向于单一方向;钨层保持了连续CVD钨的高纯度、高密度特性.且采用间断供应反应气体沉积方法显著降低了钨制品表面的残余应力,使裂纹扩展方向发生改变,有效阻碍了裂纹的深入扩展.

  19. Research on Laser Cladded Nickel Based Nanometer Tungsten Carbide Composite Coating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; DAI Jian-qiang; WANG Hui-ping; YAN Min-jie; XI Wen-long; ZOU Chang-gu; GE Da-fang

    2004-01-01

    CO2 laser is adopted on the surface of austenitic stainless steel (1Cr18Ni9) to clad nickel based nanometer WC/Co composite coating. SEM, EDAX, XRD, AFM and Scratch Testers are adopted to conduct analysis and research on the microstructure, composition, phase and bonding strength of the coating. Results indicate that the microstructure of coating is metallurgically bonded with stainless steel base, eliminating porosities and cracks. The coating has a considerable quantity of nanometer particles visible with a granularity ≤ 100nm under a nanoscope atomic microscope. The bonding strength of the laser cladded coating is remarkably improved respectively compared with conventional hot-sprayed coating and spray welding. The nanometer effect of nanometer WC/Co introduced into the coating plays an important role in the laser cladding processes.

  20. Research on Laser Cladded Nickel Based Nanometer Tungsten Carbide Composite Coating

    Institute of Scientific and Technical Information of China (English)

    ZHANGGuang-jun; DAIJian-qiang; WANGHui-ping; YANMin-jie; XIWen-long; ZOUChang-gu; GEDa-fang

    2004-01-01

    CO2 laser is adopted on the surface of austenitic stainless steel (1Cr18Ni9) to clad nickel based nanometer WC/Co composite coating. SEM, EDAX, XRD, AFM and Scratch Testers are adopted to conduct analysis and research on the microstructure, composition, phase and bonding strength of the coating. Results indicate that the microstructure of coating is metallurgically bonded with stainless steel base, eliminating porosities and cracks. The coating has a considerable quantity of nanometer particles visible with a granularity ≤100nm under a nanoscope atomic microscope. The bonding strength of the laser cladded coating is remarkably improved respectively compared with conventional hot-sprayed coating and spray welding. The nanometer effect of nanometer WC/Co introduced into the coating plays an important role in the laser cladding processes.

  1. First principles interatomic potential for tungsten based on Gaussian process regression

    OpenAIRE

    Szlachta, Wojciech Jerzy

    2014-01-01

    An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP)...

  2. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  3. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Science.gov (United States)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  4. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications.

    Science.gov (United States)

    Delachat, F; Le Drogoff, B; Constancias, C; Delprat, S; Gautier, E; Chaker, M; Margot, J

    2016-01-15

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  5. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  6. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  7. Fabrication of a tantalum-clad tungsten target for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.T., E-mail: atnelson@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); O' Toole, J.A.; Valicenti, R.A. [Accelerator Operations and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maloy, S.A. [Civilian Nuclear Program Office, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-12-15

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 Degree-Sign C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta{sub 2}O{sub 5} surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO{sub 2}, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  8. Fabrication of a tantalum-clad tungsten target for LANSCE

    Science.gov (United States)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  9. Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten

    Science.gov (United States)

    Martin, Morgana

    2008-10-01

    The research involved performing controlled impact experiments on BMG composites consisting of amorphous Zr57Nb5Cu 15:4Ni12:6Al10 (LM106 or Vitreloy106) with crystalline tungsten reinforcement particles. Monolithic LM106 was also examined to aid in the understanding of the composite. The mechanical behavior of the composite was investigated over a range of strain rates (10-3 s -1 to 106 s-1), stress states (compression, compression-shear, tension), and temperatures (RT to 600°C) to determine the dependence of mechanical properties and deformation and failure modes (i.e., homogeneous deformation vs. inhomogeneous shear banding) on these parameters. Mechanical testing in the quasi-static to intermediate strain-rate regimes was performed using an Instron, Drop Weight Tower, and Split Hopkinson Pressure Bar, respectively. High-strain-rate mechanical properties of the BMG-matrix composite and monolithic BMG were investigated using dynamic compression (reverse Taylor) and dynamic tension (spall) impact experiments performed using a gas gun instrumented with velocity interferometry and high-speed digital photography. These experiments provided information about dynamic strength and deformation modes, and allowed for validation of constitutive models via comparison of experimental and simulated transient deformation profiles and free surface velocity traces. Hugoniot equation of state measurements were performed on the monolithic BMG to investigate the high pressure phase stability of the glass and the possible implications of a high pressure phase transformation on mechanical properties. Specimens were recovered for post-impact microstructural and thermal analysis to gain information about the mechanisms of dynamic deformation and fracture, and to examine for possible shock-induced phase transformations of the amorphous phase. For the composite, mechanical testing revealed positive strain-rate sensitivity of its yield stress and negative strain-rate sensitivity of its

  10. MECHANICAL PROPERTIES OF WROUGHT TUNGSTEN

    Science.gov (United States)

    Mechanical properties of wrought tungsten vol. II. Creep rupture test data from 1500 to 5000 F, and tensile test data from room temperature to 5000 F at various strain rates for tungsten sheet material.

  11. Ontology Based Access Control

    Directory of Open Access Journals (Sweden)

    Özgü CAN

    2010-02-01

    Full Text Available As computer technologies become pervasive, the need for access control mechanisms grow. The purpose of an access control is to limit the operations that a computer system user can perform. Thus, access control ensures to prevent an activity which can lead to a security breach. For the success of Semantic Web, that allows machines to share and reuse the information by using formal semantics for machines to communicate with other machines, access control mechanisms are needed. Access control mechanism indicates certain constraints which must be achieved by the user before performing an operation to provide a secure Semantic Web. In this work, unlike traditional access control mechanisms, an "Ontology Based Access Control" mechanism has been developed by using Semantic Web based policies. In this mechanism, ontologies are used to model the access control knowledge and domain knowledge is used to create policy ontologies.

  12. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    Science.gov (United States)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  13. Extraction Factor Of Tungsten Sources From Tungsten Scraps By Zinc Decomposition Process

    National Research Council Canada - National Science Library

    J.-H. Pee; G.H. Kim; H.Y. Lee; Y.J. Kim

    2015-01-01

    Decomposition promoting factors and extraction process of tungsten carbide and tungstic acid powders in the zinc decomposition process of tungsten scraps which are composed mostly of tungsten carbide...

  14. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  15. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous.

    Science.gov (United States)

    Tan, Yang; Guo, Zhinan; Ma, Linan; Zhang, Han; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-02-01

    Owing to their unique properties, graphene-like two dimensional semiconducting materials, including Tungsten Disulfide (WS2) and Black Phosphorous (BP), have attracted increasing interest from basic research to practical applications. Herein, we demonstrated the ultrafast nonlinear saturable absorption response of WS2 and BP films in the waveguide structure. Through fabricating WS2 and BP films by evaporating the solutions on glass wafers. Saturable absorber films were attached onto the end-facet of the waveguide, which therefore constitutes a resonant cavity for the waveguide laser. Under a pump laser at 810 nm, we could obtain a stable Q-switched operation in the waveguide structure. This work indicated the significant potential of WS2 and BP for the ultrafast waveguide laser.

  16. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    Science.gov (United States)

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  17. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    Directory of Open Access Journals (Sweden)

    Shih-Han Wang

    2015-03-01

    Full Text Available The parts-per-billion-level nitric oxide (NO gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3 film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases.

  18. Modelling self trapping and trap mutation in tungsten using DFT and Molecular Dynamics with an empirical potential based on DFT

    Energy Technology Data Exchange (ETDEWEB)

    Boisse, J. [Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, F-59655 Villeneuve d’Ascq (France); Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, LEMTA, UMR 7563, Université de Lorraine, F-54504 Vandoeuvre-lès-Nancy (France); Domain, C. [Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, F-59655 Villeneuve d’Ascq (France); EDF-R and D, Département MMC, Les Renardières, F-77250 Moret sur Loing (France); Becquart, C.S., E-mail: Charlotte.becquart@univ-lille1.fr [Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, F-59655 Villeneuve d’Ascq (France)

    2014-12-15

    Density Functional Theory calculations and Molecular Dynamics with a recently developed potential for W–He were used to evaluate the thermal stability of helium–vacancy clusters (nHe.mv) as well as pure interstitial helium clusters in tungsten. The stability of such objects results from a competitive process between thermal emission of vacancies, self interstitial atoms (SIAs) and helium, depending on the helium-to-vacancy ratio in mixed clusters or helium number in pure interstitial helium clusters. We investigated in particular the thermodynamics and kinetics of self trapping and trap mutation, i.e. the emission of one SIA along with the creation of one vacancy from a vacancy–helium or pure helium object.

  19. A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite.

    Science.gov (United States)

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-03-24

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu(2+)/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu(2+)/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases.

  20. Laser vision based adaptive fill control system for TIG welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser vision sensing. The system hardware consists of a modular development kit (MDK) as the real-time image capturing system, a computer as the controller, a D/A conversion card as the interface of controlled variable output, and a DC TIG welding system as the controlled device. The system software is developed and the developed feature extraction algorithm and control strategy are of good accuracy and robustness. Experimental results show that the system can implement adaptive fill of melting metal with high stability, reliability and accuracy. The groove is filled well and the quality of the weld formation satisfies the relevant industry criteria.

  1. Tungsten diffusion in olivine

    Science.gov (United States)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  2. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  3. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  4. 面向等离子体钨基材料的增韧研究最新进展%Recent progress on toughening of tungsten-based materials as plasma facing materials

    Institute of Scientific and Technical Information of China (English)

    何培; 姚伟志; 吕建明; 张向东

    2016-01-01

    Pure tungsten and tungsten-based materials are promising candidates as plasma facing materials in fu-sion application due to their high melting point,good thermal conductivity,low vapor pressure,low sputter rates and low radioactivity.However,the intrinsic brittleness is considered as the main restricting factor for tungsten-based materials and draws the maj or focus of the international fusion materials community.This paper reviews recent progress of three main strategies on toughening of tungsten-based materials:alloying,dispersion strengthening and composite.Presently only Rehnium addition is known to improve tungsten fracture properties by alloying.Proper mechanical working/treatment decreases ductile-brittle transition temperature of dispersion strengthened tungsten alloys.The ductile-brittle transition temperature of tungsten foil laminates by brazing is decreased to 150 ℃.%钨及钨基材料由于其高熔点、高热导率、低蒸气压、低溅射产额及低辐照放射性等优异性能,成为具有广阔应用前景的面向等离子体材料.然而,钨基材料的本征脆性成为其作为聚变材料的主要限制因素,也成为国际聚变材料界的研究热点.本文综述了通过合金化、弥散强化以及复合材料等3种途径来增加钨基材料韧性的最新研究进展.目前合金元素中只有铼的添加能够显著改善钨的韧性;单一弥散强化方式难以有效提高钨的韧性,适当的热机械加工能够明显降低钨基材料的韧脆转变温度;通过钨箔钎焊制备出的钨层压结构复合材料的韧脆转变温度降低到了150℃.

  5. Electro-deposition metallic tungsten coatings in a Na{sub 2}WO{sub 4}-WO{sub 3} melt on copper based alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H., E-mail: dreamerhong77@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Y.C.; Liu, Q.Z.; Li, X.L.; Jiang, F. [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The tungsten coating (>1 mm) was obtained by electro-deposition method in molten salt. Black-Right-Pointing-Pointer Different thickness tungsten coatings were obtained by using different durations. Black-Right-Pointing-Pointer Good performance of coating was obtained when pulse parameters were modulated. - Abstract: The tungsten coating was prepared by electro-deposition technique on copper alloy substrate in a Na{sub 2}WO{sub 4}-WO{sub 3} melt. The coating's surface and cross-section morphologies as well as its impurities were investigated by XPS, SEM and line analysis. Various plating durations were investigated in order to obtain an optimal coating's thickness. The results demonstrated that the electro-deposited coating was compact, voidless, crackless and free from impurities. The tungsten coating's maximum Vickers hardness was measured to be 520 HV. The tungsten coating's minimum oxygen content was determined to be 0.018 wt%. Its maximum thickness was measured to be 1043.67 {mu}m when the duration of electrolysis was set to 100 h. The result of this study has demonstrated the feasibility of having thicker tungsten coatings on copper alloy substrates. These electrodeposited tungsten coatings can be potentially implemented as reliable armour for the medium heat flux plasma facing component (PFC).

  6. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.

    Science.gov (United States)

    Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong

    2017-09-06

    A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO3·H2O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm(2) C(-1)). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm(2)) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.

  7. Electrode potentials of tungsten in fused alkali chlorides

    Science.gov (United States)

    Ivanov, A. B.; Volkovich, V. A.; Poskryakov, D. A.; Vasin, B. D.; Griffiths, T. R.

    2016-09-01

    Anodic dissolution of tungsten was studied at 823-1173 K in the melts based on NaCl-CsCl, NaCl-KCl-CsCl and LiCl-KCl-CsCl eutectic mixtures. The process results in the formation of W(IV) ions. Prolonged contact with silica results in oxidation W(IV) ions and decreasing tungsten concentration in the electrolyte due to formation of volatile higher oxidation state chloro- and oxychloro-species. Tungsten electrode potentials were measured in NaCl-CsCl and NaCl-KCl-CsCl based melts using potentiometry.

  8. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  9. Mineral resource of the month: tungsten

    Science.gov (United States)

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  10. Mechanics of tungsten blistering II: Analytical treatment and fracture mechanical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2015-10-15

    Since a decade the blistering of pure tungsten under hydrogen implantation has been one of the major research topics in relation to the plasma–wall interaction of tungsten-armored first wall. Overall blistering may reduce the erosion lifetime of the wall. Mature blisters grown by high internal pressure are likely to burst leading to exfoliation of the surface. Therefore, the control and suppression of blistering is an important concern for sustainable operation of the tungsten-armored plasma-facing components. In this context, a quantitative assessment of the mechanical conditions for blister bulging and growth is an important concern. In this article a theoretical framework is presented to describe the bulging deformation of tungsten blisters and to estimate the mechanical driving force of blister growth. The validity of the analytical formulations based on the theory of elastic plates is evaluated with the help of finite element analysis. Plastic strains and J-integral values at the blister boundary edge are assessed by means of numerical simulation. Extensive parametric studies were performed for a range of blister geometry (cap aspect ratio), gas pressure, yield stress and hardening rate. The characteristic features of the blistering mechanics are discussed and the cracking energy is quantitatively estimated for the various combinations of parameters.

  11. Mechanics of tungsten blistering II: Analytical treatment and fracture mechanical assessment

    Science.gov (United States)

    Li, Muyuan; You, Jeong-Ha

    2015-10-01

    Since a decade the blistering of pure tungsten under hydrogen implantation has been one of the major research topics in relation to the plasma-wall interaction of tungsten-armored first wall. Overall blistering may reduce the erosion lifetime of the wall. Mature blisters grown by high internal pressure are likely to burst leading to exfoliation of the surface. Therefore, the control and suppression of blistering is an important concern for sustainable operation of the tungsten-armored plasma-facing components. In this context, a quantitative assessment of the mechanical conditions for blister bulging and growth is an important concern. In this article a theoretical framework is presented to describe the bulging deformation of tungsten blisters and to estimate the mechanical driving force of blister growth. The validity of the analytical formulations based on the theory of elastic plates is evaluated with the help of finite element analysis. Plastic strains and J-integral values at the blister boundary edge are assessed by means of numerical simulation. Extensive parametric studies were performed for a range of blister geometry (cap aspect ratio), gas pressure, yield stress and hardening rate. The characteristic features of the blistering mechanics are discussed and the cracking energy is quantitatively estimated for the various combinations of parameters.

  12. Deuterium blistering in tungsten and tungsten vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Kameel; Yuan, Yue; Cheng, Long; Wang, Jun [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhou, Zhang-Jian [School of Materials Science and Engineering, University of Science and Technology Beijing (USTB), Beijing 100083 (China); De Temmerman, Gregory [FOM Institute for Plasma Physics, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon, CS90 046, 13067 St Paul Lez Durance Cedex (France); Lu, Guang-Hong, E-mail: lgh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2016-06-15

    In order to evaluate D blistering behavior in W based plasma facing materials, rolled W and different grades of W-V targets were exposed to high flux of 1.2 × 10{sup 24} m{sup −2} s{sup −1}, low energy (38 eV) D plasma at two different surface temperatures. The blistering behavior was investigated by means of scanning electron microscopy, accompanied by electron back-scattering diffraction. Highest numbers of blisters were observed on the surface of rolled tungsten. The addition of V precursor to W suppressed D blister formation. In the case of W-V alloys, comparatively submicron V-containing materials have shown high tendency but small size blisters formation than micron V-containing samples. A high density of blisters was observed near the (111) plane on the surface of both V-containing alloys. Nano-sized blisters were also observed on V enriched surface.

  13. Preparation of tungsten oxide

    Science.gov (United States)

    Bulian, Christopher J.; Dye, Robert C.; Son, Steven F.; Jorgensen, Betty S.; Perry, W. Lee

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  14. Hydrodynamic Analysis to Process of Hydrostatic Extrusion for Tungsten Alloy

    Institute of Scientific and Technical Information of China (English)

    Fuchi WANG; Zhaohui ZHANG; Shukui LI

    2001-01-01

    The hydrodynamic analysis to the process of the hydrostatic extrusion for tungsten alloy is carried through the hydrodynamic lubrication theory and Reynolds equation in this paper. The critical velocity equation when the hydrodynamic lubrication conditions appear between the surfaces of the work- piece and the die is obtained, and the relationship between the critical velocity and the extrusion parameters is discussed, which build the theoretical bases to the application of the hydrostatic extrusion for tungsten alloy.

  15. Influence of alloying and testing conditions on mechanical properties and deformation behavior of 〈100〉 tungsten-based single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Skotnicova, Katerina, E-mail: Katerina.Skotnicova@vsb.cz [VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, Department of Regional Materials Science and Technology Centre, Avenue 17 Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Kirillova, Valentina M.; Ermishkin, Vjacheslav A. [Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninski Prospect 49, 119991 Moscow (Russian Federation); Cegan, Tomas; Jurica, Jan; Kraus, Martin [VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, Department of Regional Materials Science and Technology Centre, Avenue 17 Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Burkhanov, Gennadij S. [Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninski Prospect 49, 119991 Moscow (Russian Federation)

    2015-06-11

    The results of the pressure testing of mechanical properties of single crystals of pure tungsten and low-alloyed alloys W–2Re and W–1Re–1Mo (wt%) with a crystallographic orientation 〈100〉 which were prepared by plasma-arc melting are summarized. The effect of alloying and the deformation rate on these properties have also been investigated and the fracture surfaces of the individual single crystals have been evaluated with the aid of the photometric method. The differences in the deformation behavior of pure tungsten and W–Re and W–1Mo–Re alloys were observed, which relate to the particularities of rhenium and molybdenum action in the tungsten solid solution. It can be seen from the observed results that tungsten alloying with low rhenium and molybdenum contents decreased all mechanical properties when applying the deformation rate of 0.2 mm/min. The biggest decrease was observed for the offset yield strength value. When testing with the deformation rate of 2 mm/min, the strength limit of the W–2Re alloy increased to 2013 MPa, while R{sub pt0.2} decreased by 33% in comparison with the pure tungsten single crystal. However, the ε{sub r} value remained at the same level ∼30%. In the W–1Re–1Mo single crystal, the R{sub pt0.2} and R{sub mt} values decreased, while ε{sub r} increased slightly.

  16. Toxicologic evaluation of tungsten: 28-day inhalation study of tungsten blue oxide in rats.

    Science.gov (United States)

    Rajendran, Narayanan; Hu, Shu-Chieh; Sullivan, Dennis; Muzzio, Miguel; Detrisac, Carol J; Venezia, Carmen

    2012-12-01

    The toxicity and toxicokinetics of tungsten blue oxide (TBO) were examined. TBO is an intermediate in the production of tungsten powder, and has shown the potential to cause cellular damage in in vitro studies. However, in vivo evidence seems to indicate a lack of adverse effects. The present study was undertaken to address the dearth of longer-term inhalation toxicity studies of tungsten oxides by investigating the biological responses induced by TBO when administered via nose-only inhalation to rats at levels of 0.08, 0.325, and 0.65 mg TBO/L of air for 6 h/day for 28 consecutive days, followed by a 14-day recovery period. Inhaled TBO was absorbed systemically and blood levels of tungsten increased as inhaled concentration increased. Among the tissues analyzed for tungsten levels, lung, femur and kidney showed increased levels, with lung at least an order of magnitude greater than kidney or femur. By exposure day 14, tungsten concentration in tissues had reached steady-state. Increased lung weight was noted for both terminal and recovery animals and was attributed to deposition of TBO in the lungs, inducing a macrophage influx. Microscopic evaluation of tissues revealed a dose-related increase in alveolar pigmented macrophages, alveolar foreign material and individual alveolar foamy macrophages in lung. After a recovery period there was a slight reduction in the incidence and severity of histopathological findings. Based on the absence of other adverse effects, the increased lung weights and the microscopic findings were interpreted as nonadverse response to exposure and were not considered a specific reaction to TBO.

  17. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.

    Science.gov (United States)

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2015-09-23

    The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control.

  18. 49 CFR 173.338 - Tungsten hexafluoride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service. [ 74 FR 16143, Apr. 9,...

  19. Photocatalysis and photoelectrochemical properties of tungsten trioxide nanostructured films.

    Science.gov (United States)

    Lai, Chin Wei

    2014-01-01

    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.

  20. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC-design met......Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  1. Deposition and Coating Properties on CVD Tungsten

    Institute of Scientific and Technical Information of China (English)

    DU Ji-hong; LI Zheng-xiang; LIU Gao-jian; ZHOU Hui-Huang; CHUN liang

    2004-01-01

    Surface characterization and microstructure studies are performed on chemical vapor deposited (CVD) tungsten coating. There is about 2 μm thickness diffusion layer of tungsten in the molybdenum substrate. The thermal shock test shows tungsten coating has good adhesion with molybdenum substrate, but the elements of oxygen and carbon in the tungsten coating have the bad affection to the adhesion. The result of high-temperature diffusion experiment is the diffusion rate from molybdenum substrate to tungsten coating is faster.

  2. RECOVERY OF URANIUM FROM TUNGSTEN

    Science.gov (United States)

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  3. Tungsten resources of Brazil

    Science.gov (United States)

    White, Max Gregg

    1974-01-01

    Brazilian tungsten production, 85 percent of which is exported, comes almost entirely from scheelite-bearing tactites in northeast Brazil, and has reached an annual rate of about 2,000 metric tons (2,200 short tons) of scheelite concentrate with 70 percent WO3. Scheelite ore reserves, located principally in the State of Rio Grande do Norte, are estimated to be as high as 8,300,000 tons (9,100,000 short tons) containing 0.7 percent WO3. Minor deposits (or those about which only minimal information is available) of wolframite, with which some cassiterite is associated, are located in Sao Paulo, Santa Catarina, and Rio Grande do Sul. Both the scheelite and the wolframite deposits are considered . to be late Precambrian A (620 to 900 m.y.) or early Cambrian in age.

  4. Tungsten Toxicity in Plants

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S.; Panteris, Emmanuel; Eleftheriou, Eleftherios P.

    2012-01-01

    Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined. PMID:27137642

  5. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  6. Tungsten chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kiichi; Takeda, Nobuo.

    1993-07-13

    A tungsten chemical vapor deposition method is described, comprising: a first step of selectively growing a first thin tungsten film of a predetermined thickness in a desired region on the surface of a silicon substrate by reduction of a WF[sub 6] gas introduced into an atmosphere of a predetermined temperature containing said silicon substrate; and a second step of selectively growing a second tungsten film of a predetermined thickness on said first thin tungsten film by reduction of said WF[sub 6] with a silane gas further introduced into said atmosphere, wherein the surface state of said substrate is monitored by a pyrometer and the switching from said first step to said second step is performed when the emissivity of infrared light from the substrate surfaces reaches a predetermined value.

  7. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    Science.gov (United States)

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity.

  8. Utilization-Based Congestion Control

    OpenAIRE

    Satoshi Utsumi; Salahuddin Muhammad Salim Zabir

    2012-01-01

    Traditional connection oriented protocols like TCP NewReno perform poorly over wireless links. Theproblem lies in their design assumptions based on loss based congestion control. Various modificationsto loss based congestion control schemes have so far been proposed to overcome the issue. In addition,the comparatively newer family of delay based congestion control mechanisms like Caia-Hamilton Delay(CHD), offer effective solutions for wireless link loss. All these approaches aim at improving ...

  9. Unfalsified control based on the ? controller parameterisation

    Science.gov (United States)

    Sánchez-Peña, R. S.; Colmegna, P.; Bianchi, F.

    2015-11-01

    This paper presents an implementation of the unfalsified control (UC) method using the Riccati-based parameterisation of ? controllers. The method provides an infinite controller set to (un)falsify the real-time data streams seeking for the best performance. Different sets may be designed to increase the degrees of freedom of the set of controller candidates to perform UC. In general, a set of m central controllers could be designed, each one seeking different objectives and all with their own parameterisation as a function of a stable and bounded transfer matrix. For example, one controller parameterisation could be designed to solve the robust stability of a model set which covers the physical system, therefore guaranteeing feasibility. The implementation requires the online optimisation of either quadratic fractional or quadratic problems, depending on the selection of the cost function. A multi-input, multi-output (MIMO) time-varying model of a permanent magnet synchronous generator illustrates the use of this technique.

  10. Global Tungsten Demand and Supply Forecast

    Science.gov (United States)

    Dvořáček, Jaroslav; Sousedíková, Radmila; Vrátný, Tomáš; Jureková, Zdenka

    2017-03-01

    An estimate of the world tungsten demand and supply until 2018 has been made. The figures were obtained by extrapolating from past trends of tungsten production from1905, and its demand from 1964. In addition, estimate suggestions of major production and investment companies were taken into account with regard to implementations of new projects for mining of tungsten or possible termination of its standing extraction. It can be assumed that tungsten supply will match demand by 2018. This suggestion is conditioned by successful implementation of new tungsten extraction projects, and full application of tungsten recycling methods.

  11. China’s Tungsten Resources Supply and Demand Situation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>China’s production of tungsten products mainly includes tungsten ore concentrates and a series of intermediate tungsten products such as ferro-tungsten, tungstic acid, sodium tungstate, calcium tungstate, tungsten trioxide, tungsten blue oxide, ammonium paratungstate, ammonium metatungstate, tungsten powder etc. During the period between 1949-1997, China produced 1.85 million tons of tungsten ore concentrates, in which 873,000 tons were exported with US$3.1 billion in value.

  12. Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

    Directory of Open Access Journals (Sweden)

    J. Riesch

    2016-12-01

    Full Text Available The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

  13. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  14. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite.

    Science.gov (United States)

    Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui

    2015-12-23

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.

  15. The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-10-01

    The influence of composition on the microstructure of single crystal nickel-base superalloys was investigated. Co was replaced by Ni, and Ta was replaced by either Ni or W, according to a matrix of compositions based on MAR-M247. Substitution of Ni for Co caused an increase in γ' solvus temperature, an increase in γ-γ' lattice mismatch, and the precipitation of W-rich phases in the alloys with high refractory metal levels. Substitution of Ni for Ta caused large decreases in γ' solvus temperature, γ' volume fraction, and γ-γ' lattice mismatch, whereas substitution of W for Ta resulted in smaller decreases in these features. For the alloys with γ' particles that remained coherent, substitution of Ni for Co caused an increase in γ' coarsening rate. The two alloys with the largest magnitude of lattice mismatch possessed γ' particles which lost coherency during unstressed aging and exhibited anomalously low coarsening rates. Creep exposure at 1000 °C resulted in the formation of γ' lamellae oriented perpendicular to the applied stress axis in all alloys.

  16. Influences of Hydraulic Fracturing on Fluid Flow and Mineralization at the Vein-Type Tungsten Deposits in Southern China

    Directory of Open Access Journals (Sweden)

    Xiangchong Liu

    2017-01-01

    Full Text Available Wolframite is the main ore mineral at the vein-type tungsten deposits in the Nanling Range, which is a world-class tungsten province. It is disputed how wolframite is precipitated at these deposits and no one has yet studied the links of the mechanical processes to fluid flow and mineralization. Finite element-based numerical experiments are used to investigate the influences of a hydraulic fracturing process on fluid flow and solubility of CO2 and quartz. The fluids are aqueous NaCl solutions and fluid pressure is the only variable controlling solubility of CO2 and quartz in the numerical experiments. Significant fluctuations of fluid pressure and high-velocity hydrothermal pulse are found once rock is fractured by high-pressure fluids. The fluid pressure drop induced by hydraulic fracturing could cause a 9% decrease of quartz solubility. This amount of quartz deposition may not cause a significant decrease in rock permeability. The fluid pressure decrease after hydraulic fracturing also reduces solubility of CO2 by 36% and increases pH. Because an increase in pH would cause a major decrease in solubility of tungsten, the fluid pressure drop accompanying a hydraulic fracturing process facilitates wolframite precipitation. Our numerical experiments provide insight into the mechanisms precipitating wolframite at the tungsten deposits in the Nanling Range as well as other metals whose solubility is strongly dependent on pH.

  17. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    Science.gov (United States)

    Girish Kumar, S.; Koteswara Rao, K. S. R.

    2015-11-01

    Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  18. Demonstration of Shear Localization in Ultrafine Grained Tungsten Alloys via Powder Metallurgy Processing Route

    Science.gov (United States)

    2012-09-01

    Hardness Vickers microhardness tests were performed to determine the hardness of the material. Indents were analyzed to determine basic information...shear banding observed in depleted uranium. Microhardness testing indicated that the boron containing sample had a higher propensity to shear...18 cm3) tungsten based alloy tested in the as-sintered state. 15. SUBJECT TERMS tungsten, shear localization, kinetic energy penetrator, depleted

  19. Thermal shock behaviour of tungsten after high flux H-plasma loading

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.

    2013-01-01

    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices

  20. Enhancing the photoelectrochemical water splitting characteristics of titanium and tungsten oxide based materials via doping and sensitization

    Science.gov (United States)

    Gakhar, Ruchi

    To better utilize solar energy for clean energy production, efforts are needed to overcome the natural diurnal variation and the diffuse nature of sunlight. Photoelectrochemical (PEC) hydrogen generation by water splitting is a promising approach to harvest solar energy. Hydrogen gas is a clean and high energy capacity fuel. However, the solar-to-hydrogen conversion efficiency is determined mainly by the properties of the materials employed as photoanodes. Improving the power-conversion efficiency of PEC water splitting requires the design of inexpensive and efficient photoanodes that have strong visible light absorption, fast charge separation, and lower charge recombination rate. In the present study, PEC characteristics of various semiconducting photoelectrodes such as TiO2, WO3 and CuWO4 were investigated. Due to the inherent wide gap, such metal oxides absorb only ultraviolet radiation. Since ultraviolet radiation only composes of 4% of the sun's spectrum, the wide band gap results in lower charge collection and efficiency. Thusto improve optical absorption and charge separation, it is necessary to modify the band gap with low band gap materials.The two approaches followed for modification of band gap are doping and sensitization. Here, TiO2 and WO3 based photoanodes were sensitized with ternary quatum dots, while doping was the primary method utilized to investigate the modification of the band gap of CuWO4. The first part of this dissertation reports the synthesis of ternary quantum dot - sensitized titania nanotube array photoelectrodes. Ternary quantum dots with varying band gaps and composition (MnCdSe, ZnCdSe and CdSSe) were tethered to the surface of TiO2 nanotubes using succcessive ionic layer adsorption and reaction (SILAR) technique. The stoichiometry of ternary quantum dots was estimated to beMn0.095Cd0.95Se, Zn0.16Cd0.84Se and CdS0.54Se0.46. The effect of varying number of sensitization cycles and annealing temperature on optical and

  1. SU-E-T-412: Evaluation of Tungsten-Based Functional Paper for Attenuation Device in Intraoperative Radiotherapy for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kamomae, T; Monzen, H; Okudaira, K; Miyake, Y; Oguchi, H; Komori, M; Kawamura, M; Itoh, Y; Kikumori, T; Naganawa, S [Nagoya University Graduate School of Medicine, Nagoya, Aichi (Japan)

    2015-06-15

    Purpose: Intraoperative radiotherapy (IORT) with an electron beam is one of the accelerated partial breast irradiation methods that have recently been used in early-stage breast cancer. A protective acrylic resin-copper disk is inserted between the breast tissue and the pectoralis muscle to minimize the dose received by the posterior structures. However, a problem with this protective disk is that the surgical incision must be larger than the field size because the disk is manufactured from stiff and unyielding materials. The purpose of this study was to assess the applicability of a new tungsten-based functional paper (TFP) as an alternative to the existing protective disk in IORT. Methods: The newly introduced TFP (Toppan Printing Co., Ltd., Tokyo, JP) is anticipated to become a useful device that is lead-free, light, flexible, and easily processed. The radiation shielding performance of TFP was verified by experimental measurements and Monte Carlo (MC) simulations using PHITS code. The doses transmitted through the protective disk or TFP were measured on a Mobetron mobile accelerator. The same geometries were then reproduced, and the dose distributions were simulated by the MC method. Results: The percentages of transmitted dose relative to the absence of the existing protective disk were lower than 2% in both the measurements and MC simulations. In the experimental measurements, the percentages of transmitted dose for a 9 MeV electron beam were 48.1, 2.3, and 0.6% with TFP thicknesses of 1.9, 3.7, and 7.4 mm, respectively. The percentages for a 12 MeV were 76.0, 49.3, 20.0, and 5.5% with TFP thicknesses of 1.9, 3.7, 7.4, and 14.8 mm, respectively. The results of the MC simulation showed a slight dose increase at the incident surface of the TFP caused by backscattered radiation. Conclusion: The results indicate that a small-incision procedure may be possible by the use of TFP.

  2. The tungsten metallome of Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M.; Pinkse, M.; Bol, E.; Krijgen, G.; Wolterbeek, H.; Verhaert, P.D.E.M.; Hagedoorn, P.L.; Hagen, W.R.

    2009-01-01

    The tungsten metallome of the hyperthermophilic archaeon Pyrococcus furiosus has been investigated using electroanalytical metal analysis and native–native 2D-PAGE with the radioactive tungsten isotope W-187 (t1/2 = 23.9 h). P. furiosus cells have an intracellular tungsten concentration of 29 mM, of

  3. The tungsten metallome of Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M.; Pinkse, M.W.H.; Bol, E.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.; Hagedoorn, P.L.; Hagen, W.R.

    2009-01-01

    The tungsten metallome of the hyperthermophilic archaeon Pyrococcus furiosus has been investigated using electroanalytical metal analysis and native-native 2D-PAGE with the radioactive tungsten isotope W-187 (t(1/2) = 23.9 h). P. furiosus cells have an intracellular tungsten concentration of 29 mu M

  4. Tungsten:Balance between Demand and Supply

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In 2011,the tungsten market remained basically consistent with macro economic trends. In the first half of 2011, under the backdrop of upward economic situation,tungsten export and domestic consumption grew significantly and tungsten enterprises achieved remarkable economic benefits. However, as European debt crisis deepened in the second half of 2011, the global economic growth slowed down and

  5. Tungsten:Value Regression Is Inevitable Trend

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>China boasts rich reserve of tungsten resources,which accounts for about 65% of proved global tungsten mineral resource reserve,ranking top in the world.Judging from global production in the past five years,China’s tungsten production also far outstrips those of other countries,about

  6. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Bioaccumulation of Tungsten in Plants Natural Sources • Trees & shrubs in Rocky Mountain region, USA • Siberian pine, willows, mosses & lichen in tungsten...Transitional metal ion binding • Peptidase activity • DNA & protein binding BUILDING STRONG® Geochemistry: • Aging of tungsten in soil results in

  7. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  8. Vacuum arc melting of tungsten-hafnium-carbon alloy

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.

    1974-01-01

    The vacuum arc casting of tungsten alloys, which contain carbon as an alloy addition, require special melting procedures in order to produce melts of consistent controlled levels of alloy content. A melting procedure will be described in which elemental components of a tungsten 0.35% HfC alloy are assembled to form an electrode for ac vacuum arc melting to produce 3-in.-diam ingots. Melting procedures and analytical chemistry are discussed and compared with data for ingots produced by other techniques.

  9. Temperature and distortion transients in gas tungsten-arc weldments

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates.

  10. Application of tungsten-based catalytic materials to direct alcohol fuel cell production%钨基催化材料在直接醇类燃料电池中的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘喜慧; 周阳; 梁福永; 曲慧男; 温和瑞

    2015-01-01

    直接醇类燃料电池(DAFC)具有能量密度高、携带方便以及环境友好等优点。电极催化剂是改善DAFC性能的关键材料,目前DAFC催化剂要解决的关键问题是提高催化剂的电催化活性、抗CO等中间产物毒化能力以及降低催化剂成本,文中综述了2种钨基催化材料的制备、性能表征及其在DAFC中的应用研究进展,指出了目前钨基复合催化剂需要重点研究的基础问题。%Direct alcohol fuel cell (DAFC) has the advantages of high energy density , convenient packaging and environment friendliness. The key problem of anode catalyst for DAFC is how to improve the catalytic activity of anodic oxidation, and enhance the ability of resistance to CO poisoning and lower the price of catalyst. This paper reviews the synthesis , electric catalytic properties and applications in DAFC of two kinds of tungsten-based catalysts. The existing basic problems of tungsten-based composite catalysts are proposed.

  11. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    G Mavromanolakis

    2007-12-01

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 layers and depth of 7.2 0 at normal incidence, having in total 3024 channels of 1 cm2, was tested recently with - beam. We describe the prototype and discuss some preliminary testbeam results on its performance with respect to position resolution, response inhomogeneity and transverse containment.

  12. Field-emission spectroscopy of beryllium atoms adsorbed on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, J.J.; Grzesiak, W.; Krajniak, J. (Politechnika Wroclawska (Poland))

    1981-01-01

    Field emission energy distributions (FEED) have been measured for the beryllium-tungsten (023) adsorption system over the 78-450 K temperature range. A temperature dependence of the normalized half-width, ..delta../d, of FEED peaks changed significantly due to beryllium adsorption; and the curve, ..delta../d vs p, for the Be/W adsorption system was identical in character to the calculated curve based on the free electron model in contrast to the curve for the clean tungsten surface. In the last part of this paper Gadzuk's theory of the resonance-tunneling effect is applied to the beryllium atom on tungsten. Experimental and theoretical curves of the enhancement factor as a function of energy have been discussed.

  13. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  14. [Murine peritoneal neutrophil activation upon tungsten nanoparticles exposure in vivo].

    Science.gov (United States)

    Martinova, E A; Baranov, V I

    2014-01-01

    Two examples of tungsten carbide nanoparticles (d = 15 nm, 50 nm) and tungsten carbide nanoparticles with 8% cobalt (d = 50 nm) have been found to induce the neutrophil activation 3 h and 36 h after intraperitoneal administration in the doses 0.005; 0.025; 0.05; 0.25; 0.5; 1; 2.5 and 5 microgram per 1 gram body weight to FVB mice. Neutrophil activation was calculated based on the CD11b and S100 antigen expression. Effect of nanoparticles is bimodal for all tested examples.

  15. Dislocation mechanism of deuterium retention in tungsten under plasma implantation.

    Science.gov (United States)

    Dubinko, V I; Grigorev, P; Bakaev, A; Terentyev, D; van Oost, G; Gao, F; Van Neck, D; Zhurkin, E E

    2014-10-01

    We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented.

  16. Process Of Bonding Copper And Tungsten

    Science.gov (United States)

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  17. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  18. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  19. Thermal response of nanostructured tungsten

    NARCIS (Netherlands)

    Kajita, Shin; De Temmerman, G.; Morgan, Thomas; van Eden, Stein; de Kruif, Thijs; Ohno, Noriyasu

    2014-01-01

    The thermal response of nanostructured tungsten, which was fabricated in the linear divertor simulator NAGDIS-II, was investigated using pulsed plasma in the MAGNUM-PSI device and by using high powered laser pulses. The temperature evolution in response to the pulses was measured with an infrared fa

  20. Mineral of the month: tungsten

    Science.gov (United States)

    Shedd, Kim B.

    2006-01-01

    Tungsten has the highest melting point of all metals, one of the highest densities and, when combined with carbon, is almost as hard as diamond. These and other properties make it useful in a wide variety of important commercial, industrial and military applications.

  1. Tungsten biochemistry of Pyrococcus furiosus

    NARCIS (Netherlands)

    Bevers, L.E.

    2008-01-01

    Tungsten is the heaviest element that exhibits biological activity (atomic number 74), when it is present in an enzyme. It is taken up by cells in the form of tungstate, and it is subsequently processed into an organic cofactor referred to as tungstopterin, which is found as active center in several

  2. Particle melting, flattening, and stacking behaviors in induction plasma deposition of tungsten

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Particle melting, flattening, and stacking behaviors during induction plasma deposition of refractory tungsten were studied for land-based turbine engine application. Scanning electron microscopy was used to observe the morphology of particles and splats as well as to examine the microstructure of tungsten deposit. Three kinds of pores were found in the deposit, i.e., large pores with d > 10 μm, medium pores in the range of 1~10μm, and small pores with d < 1 μm. Both optimized plasma spray condition and use of spherical powder with a narrow particle size distribution are important in the elimination of large and medium pores and have significant influences on the formation of dense tungsten deposit. Highly dense tungsten deposit was obtained through complete melting, sufficiently flattening, and regularly stacking of tungsten particles.

  3. Process control using reliability based control charts

    Directory of Open Access Journals (Sweden)

    J.K. Jacob

    2008-12-01

    Full Text Available Purpose: The paper presents the method to monitor the mean time between failures (MTBF and detect anychange in intensity parameter. Here, a control chart procedure is presented for process reliability monitoring.Control chart based on different distributions are also considered and were used in decision making. Results anddiscussions are presented based on the case study at different industries.Design/methodology/approach: The failure occurrence process can be modeled by different distributions likehomogeneous Poisson process, Weibull model etc. In each case the aim is to monitor the mean time betweenfailure (MTBF and detect any change in intensity parameter. When the process can be described by a Poissonprocess the time between failures will be exponential and can be used for reliability monitoring.Findings: In this paper, a new procedure based on the monitoring of time to observe r failures is also proposedand it can be more appropriate for reliability monitoring.Practical implications: This procedure is useful and more sensitive when compared with the λ-chart although itwill wait until r failures for a decision. These charts can be regarded as powerful tools for reliability monitoring.λr gives more accurate results than λ-chart.Originality/value: Adopting these measures to system of equipments can increase the reliability and availabilityof the system results in economic gain. A homogeneous Poisson process is usually used to model the failureoccurrence process with certain intensity.

  4. Measurements of temperature of the tungsten hexa-ethoxide pyrolysis flame using IR camera

    CSIR Research Space (South Africa)

    Mudau, AE

    2010-09-01

    Full Text Available In laser pyrolysis, temperature measurement and control plays a vital role during the development of nanoparticles. Authors present the results of temperature measurements using infrared camera on a tungsten hexa-ethoxide pyrolysis flame used...

  5. Ore-controlling Factors and a Metallogenic Model for the Xianglushan Tungsten-Ore Field in Northern Jiangxi Province%赣北香炉山钨矿田矿床控制因素及成矿模式

    Institute of Scientific and Technical Information of China (English)

    陈波; 周贤旭

    2012-01-01

    The Xianglushan tungsten-ore field is part of the Jiuling-Zhanggongshan W-Sn metallogenic belt in northern Jiangxi Province. Combining the ore field exploration in recent years, this paper researches the ore-controlling factors on the basis of geological background of this ore field. The result shows that the impure limestone combination in the Upper Sinian and Cambrian strata is closely related to mineralization in the area. Folds are the major controlling structures in the ore field. Faults and interlayer fracture zones control the ore body position. The Yanshanian magmatic activities provided ore -forming material sources and played an important role in the process of ore fluid migration and deposition. The main ore bodies, hosted in the pyroxene -biotite metamorphic belt, are related to greisenization alteration. This article establishes a metallogenetic model for the Xainghushan tungsten ore field. It may have important guiding significance for the prediction of ore deposit and resources prospecting and exploitation. It can be also used as a reference in searching for similar deposits in the southern margin of the Yangtze Plate.%香炉山矿田是赣北九岭—鄣公山钨锡成矿带的组成部分。本文结合近年来矿田的勘查找矿成果,在分析矿田地质背景的基础上,研究了矿床的控矿因素。认为该区震旦系上统和寒武系地层中的不纯灰岩类组合与成矿关系密切,控制矿田的主体构造是褶皱;断裂及层间破碎带控制矿体的定位,燕山期岩浆活动不仅提供成矿物质来源;同时在矿液的运移和淀积过程中发挥了重要作用,主要矿体均赋存在透辉石—黑云母变质带并与云英岩化等蚀变有关,在此基础上建立了成矿模式。对矿田下步的矿床预测和勘查开发具有重要的指导意义。同时,对扬子板块南缘相似类别矿床的找矿工作起着一定的借鉴作用。

  6. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  7. Controlling fundamentals in high-energy high-rate pulsed power materials processing of powdered tungsten, titanium aluminides, and copper-graphite composites. Final technical report, 1 Jun 87-31 Aug 90

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Bourell, D.L.; Eliezer, Z.; Weldon, W.F.

    1990-10-01

    This study was conducted to determine the controlling fundamentals in the high-energy high-rate (1 MJ in 1s) processing of metal powders. This processing utilizes a large electrical current pulse to heat a pressurized powder mass. The current pulse was provided by a homopolar generator. Simple short cylindrical shapes were consolidated so as to minimize tooling costs. Powders were subjected to current densities of 5 kA/cm2 to 25 kA/cm2 under applied pressures ranging from 70 MPa to 500 MPa. Disks with diameters of 25 mm to 70 mm, and thicknesses of 1 mm to 10 mm were consolidated. Densities of 75% to 99% of theoretical values were obtained in powder consolidates of tungsten, titanium aluminides, copper-graphite, and other metal-ceramic composites. Extensive microstructural characterization was performed to follow the changes occuring in the shape and microstructure of the various powders. The processing science has at its foundation the control of the duration of elevated temperature exposure during powder consolidation.

  8. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  9. Fuzzy logic based robotic controller

    Science.gov (United States)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  10. Laser cleaning of tungsten ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aniruddha, E-mail: nontee65@rediffmail.com [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur, Maharashtra, 401504 (India); Sonar, V.R.; Das, D.K.; Bhatt, R.B.; Behere, P.G.; Afzal, Mohd.; Kumar, Arun [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur, Maharashtra, 401504 (India); Nilaya, J.P.; Biswas, D.J. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, 400085 (India)

    2014-07-01

    Removal of a thin oxide layer from a tungsten ribbon was achieved using the fundamental, second and third harmonic radiation from a Q- switched Nd-YAG laser. It was found that beyond the threshold, oxide removal was achieved at all wavelengths for a wide range of fluence values. The removal mechanism of the oxide layer was found to be critically dependent on both wavelength and fluence of the incident radiation and has been identified as ejection or sublimation. The un-cleaned and cleaned surfaces were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of Neodymium atoms.

  11. Synthesis of nanosized tungsten powder

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Nanosized tungsten powder was synthesized by means of different methods and under different conditions with nanosized WO3 powder. The powder and the intermediate products were characterized using XRD, SEM, TEM, BET (Brunauer Emmett Teller Procedure) and SAXS (X-ray diffracto-spectrometer/Kratky small angle scattering goniometer). The results show that nanosized WO3 can be completely reduced to WO2 at 600℃ after 40 min, and WO2 can be reduced to W at 700℃ after 90 min, moreover, the mean size of W particles is less than 40 nm. Furthermore, the process of WO3→WO2→W excelled that of WO3→W in getting stable nanosized tungsten powder with less grain size.

  12. Preparation of tungsten disulfide motor oil and its tribological characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Through using mineral oil and synthetic oil to deploy the semisynthesis base oil, modifying the surfaces of ultrafine tungsten disulfide grains by surface chemical embellishment and adsorption embellishment to make them suspended steadily in the base oil as solid lubricating additive, and adding some function additives, the tungsten disulfide motor oil was prepared. The tribological characteristics of this kind motor oil and the well-known motor oils in our country and overseas were studied. The results show that the oil film strength of this kind of motor oil is respectively 1.06 and 1.38 times of that of shell helix ultra motor oil and great wall motor oil, and its sintering load is 1.75 and 2.33 times of that of them, and when tested under 392 N, 1 450 r/min and 30 min, the friction coefficients of friction pairs lubricated by the tungsten disulfide motor oil decrease with the increase of time, meanwhile, the diameter of worn spot is small, and the surface of worn spot is smooth, and no obvious furrows appear. The experiments indicate that the tungsten disulfide motor oil has the better antiwear, antifriction and extreme pressure properties than the well-known motor oils.

  13. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  14. Sintering Characteristics of Iron and Cobalt Doped Silver-tungsten Metal-matrix Composites

    Directory of Open Access Journals (Sweden)

    Mahir Es-saheb

    2014-05-01

    Full Text Available Silver-Tungsten composites are known as electrical contact materials used in circuit breakers and industrial relays. The performance of the contact during their service life depends upon high strength and anti-weld properties of these materials. Despite their promising industrial applications, the literature dealing with their production route is still limited. Therefore, a comprehensive study exploring the structure related properties with great emphasis on the sintering process of these materials is carried out. Therefore, in this study, the successful production of a homogeneous composite powder with controlled tungsten particle size using co-precipitation and two stage reduction techniques is followed by the compaction and sintering processes. Thus, high density compacts are produced from Fe and Co doped silver-tungsten powder using powder metallurgy technique. Various environments and sintering conditions, including N2 atmosphere and temperatures up to 1000°C, to obtain successful compacts from both doped and un-doped powders, are investigated. The morphologies and the microstructures of the sintered compacts obtained under the different sintering conditions are characterized and assessed using Scanning Electron Microscopy (SEM. Results display excellent agreement with the published studies and no evidence was found for the activated sintering of silver-tungsten by Fe additions. Also, the homogeneity of silver-tungsten in compacts is completely lost in the Fe-doped powders. However, Co additions help to facilitate the sintering between silver and tungsten whilst retaining a high homogeneity between the silver and tungsten in the sintered product.

  15. Fine grain tungsten produced with nanoscale powder

    Institute of Scientific and Technical Information of China (English)

    Tao Lin; Fang Zhao; Liying Zhang; Chengyi Wu; Zhimeng Guo

    2005-01-01

    Nanoscale tungsten powder was prepared by reducing nanoscale tungsten trioxide in hydrogen to WO2.90 and further to W powder. After compacted with a rubber die, the nanoscale tungsten powder was sintered in a high-temperature dilatometer to investigate its shrinkage process. The results show that the compact of the nanoscale tungsten powder starts to shrink at 1050℃ and ends at 1500℃. The shrinkage rate reaches the maximum value at 1210℃. The relative density of sintered samples is 96.4%, and its grain size is about 5.8 μm.

  16. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  17. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  18. Recent Progress in Processing of Tungsten Heavy Alloys

    Directory of Open Access Journals (Sweden)

    Y. Şahin

    2014-01-01

    Full Text Available Tungsten heavy alloys (WHAs belong to a group of two-phase composites, based on W-Ni-Cu and W-Ni-Fe alloys. Due to their combinations of high density, strength, and ductility, WHAs are used as radiation shields, vibration dampers, kinetic energy penetrators and heavy-duty electrical contacts. This paper presents recent progresses in processing, microstructure, and mechanical properties of WHAs. Various processing techniques for the fabrication of WHAs such as conventional powder metallurgy (PM, advent of powder injection molding (PIM, high-energy ball milling (MA, microwave sintering (MW, and spark-plasma sintering (SPS are reviewed for alloys. This review reveals that key factors affecting the performance of WHAs are the microstructural factors such as tungsten and matrix composition, chemistry, shape, size and distributions of tungsten particles in matrix, and interface-bonding strength between the tungsten particle and matrix in addition to processing factors. SPS approach has a better performance than those of others, followed by extrusion process. Moreover, deformation behaviors of WHA penetrator and depleted uranium (DU Ti alloy impacting at normal incidence both rigid and thick mild steel target are studied and modelled as elastic thermoviscoplastic. Height of the mushroomed region is smaller for α=0.3 and it forms sooner in each penetrator as compared to that for α=0.2.

  19. Thermal Neutron Capture onto the Stable Tungsten Isotopes

    Directory of Open Access Journals (Sweden)

    Nichols A.

    2012-02-01

    Full Text Available Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.

  20. Optimizing pulsed current gas tungsten arc welding parameters of AA6061 aluminium alloy using Hooke and Jeeves algorithm

    Institute of Scientific and Technical Information of China (English)

    S. BABU; T. SENTHIL KUMAR; V. BALASUBRAMANIAN

    2008-01-01

    Though the preferred welding process to weld aluminium alloy is frequently constant current gas tungsten arc welding (CCGTAW), it resulted in grain coarsening at the fusion zone and heat affected zone(HAZ). Hence, pulsed current gas tungsten arc welding(PCGTAW) was performed, to yield finer fusion zone grains, which leads to higher strength of AA6061 (Al-Mg-Si) aluminium alloy joints. In order to determine the most influential control factors which will yield minimum fusion zone grain size and maximum tensile strength of the joints, the traditional Hooke and Jeeves pattern search method was used. The experiments were carried out based on central composite design with 31 runs and an algorithm was developed to optimize the fusion zone grain size and the tensile strength of pulsed current gas tungsten arc welded AA6061 aluminium aUoy joints. The results indicate that the peak current (Ip) and base current (IB) are the most significant parameters, to decide the fusion zone grain size and the tensile strength of the AA6061 aluminum alloy joints.

  1. Information extraction from FN plots of tungsten microemitters

    Energy Technology Data Exchange (ETDEWEB)

    Mussa, Khalil O. [Department of Physics, Mu' tah University, Al-Karak (Jordan); Mousa, Marwan S., E-mail: mmousa@mutah.edu.jo [Department of Physics, Mu' tah University, Al-Karak (Jordan); Fischer, Andreas, E-mail: andreas.fischer@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, Chemnitz (Germany)

    2013-09-15

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10{sup −8}mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  2. POLICY China’s Ministry of Commerce Set the Rules for Antimony and Tungsten Export in 2005

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China’s ministry of commerce recently re-leased the rules and application procedures forthe export of antimony and tungsten productsin 2005 by the domestic producers.Based on the rules set by the ministry,China’santimony and tungsten producers providingtheir products for export must be those enter-prises authorized by the related State authori-ties.

  3. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Science.gov (United States)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  4. X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Zhang Hong; Cheng Xin-Lu

    2013-01-01

    Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER),so the determination and modeling of spectra of tungsten plasma,especially the spectra at high temperature were intensely focused on recently.In this work,using the atomic structure code of Cowan,a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed.Based on this model,the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated.The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63% and 1.26%,respectively.The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work.

  5. Some features of sintering of tungsten powders

    Directory of Open Access Journals (Sweden)

    Andreiev Igor Viktorovich

    2016-01-01

    Full Text Available A method of activating the sintering process for tungsten powders using a closed reaction space and hydrogen, steam-saturated water was observed. This sintering process is allowed to activate super coarse-grained (1000μm tungsten powder sat relatively low temperatures (1000-1200°C.

  6. Structures and transitions in tungsten grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhu, Q. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marian, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  7. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys.

    Science.gov (United States)

    Schuster, B E; Roszell, L E; Murr, L E; Ramirez, D A; Demaree, J D; Klotz, B R; Rosencrance, A B; Dennis, W E; Bao, W; Perkins, E J; Dillman, J F; Bannon, D I

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up-regulated and those involved with muscle development and differentiation significantly down-regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin-dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas.

  8. Tribological properties of sputtered tungsten and tungsten nitride thin films

    Institute of Scientific and Technical Information of China (English)

    Wong; K.M.; ShenY.G.; Wong; P.L.

    2001-01-01

    The surface roughness, hardness and tribological properties of tungsten (W) and tung-sten nitride (WNx) thin films prepared by dc magnetron sputtering and reactive magnetron sputter-ing in Ar-N2 gas mixtures have been studied using atomic force microscopy (AFM), nanoindenta-tion measurements and ball-on-disc wear testing. A pronounced surface roughness was observedonly for films under compressive strains. The surface was flat under tension but rough under com-pression. Similar hardness with value about 20 GPa were observed in the W and WNx (x=0.3)films. This is thought to be due to the fact the grains are restricted to a very small size in the coat-ings. The higher coefficients of friction (0.4 for W and 0.9 for WN0.3) suggest that WN0.3 is not theoptimum phase. Finally, discussions are made with tribological test results.

  9. Structural and electrical properties in tungsten/tungsten oxide multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cacucci, Arnaud [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 9 Avenue Alain Savary, BP47870, F-21078 DIJON Cedex (France); Potin, Valérie, E-mail: valerie.potin@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 9 Avenue Alain Savary, BP47870, F-21078 DIJON Cedex (France); Imhoff, Luc [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 9 Avenue Alain Savary, BP47870, F-21078 DIJON Cedex (France); Martin, Nicolas [Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche-Comté, ENSMM, UTBM, 32 Avenue de l' observatoire, F-25044, BESANCON Cedex (France)

    2014-02-28

    Tungsten and tungsten oxide periodic nanometric multilayers have been deposited by DC reactive sputtering using the reactive gas pulsing process. Different pulsing periods have been used for each deposition to produce metal-oxide periodic alternations ranging from 3.3 to 71.5 nm. The morphology, crystallinity and chemical composition of these films have been investigated by transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. The produced multilayers exhibited an amorphous structure and the composition stability of WO{sub 3} sub-layers has been pointed out. Moreover, electrical properties have also been studied by the van der Pauw technique. It revealed a clear stability of resistivity versus temperature for almost all samples and an influence of the multilayered structure on the resistivity behavior. - Highlights: • W/WO{sub 3} multilayers with nanometric periods are produced by gas pulsing. • Multilayers are mainly amorphous and the oxide sub-layers composed of WO{sub 3}. • Crystallized inclusions of β-W and β-W{sub 3}O phases in metallic sub-layers • Metallic-like behavior with low temperature coefficient of resistance.

  10. Seed growth of tungsten diselenide nanotubes from tungsten oxides.

    Science.gov (United States)

    Kim, Hyun; Yun, Seok Joon; Park, Jin Cheol; Park, Min Ho; Park, Ji-Hoon; Kim, Ki Kang; Lee, Young Hee

    2015-05-13

    We report growth of tungsten diselenide (WSe2) nanotubes by chemical vapor deposition with a two-zone furnace. WO3 nanowires were first grown by annealing tungsten thin films under argon ambient. WSe2 nanotubes were then grown at the tips of WO3 nanowires through selenization via two steps: (i) formation of tubular WSe2 structures on the outside of WO3 nanowires, resulting in core (WO3)-shell (WSe2) and (ii) growth of WSe2 nanotubes at the tips of WO3 nanowires. The observed seed growth is markedly different from existing substitutional growth of WSe2 nanotubes, where oxygen atoms are replaced by selenium atoms in WO3 nanowires to form WSe2 nanotubes. Another advantage of our growth is that WSe2 film was grown by simply supplying hydrogen gas, where the native oxides were reduced to thin film instead of forming oxide nanowires. Our findings will contribute to engineer other transition metal dichacogenide growth such as MoS2, WS2, and MoSe2.

  11. 新型钨基面向等离子体材料的研究进展%Development of New Tungsten-based Materials as Plasma Facing Materials

    Institute of Scientific and Technical Information of China (English)

    朱玲旭; 郭双全; 张宇; 葛昌纯

    2011-01-01

    The pure tungsten used in plasma facing materials for fusion reactors has disadvantage of difficult machining, high ductile-brittle transition temperature and low recrystallization temperature, etc. Tungsten-base material is a kind of broad application prospect of plasma facing materials, extensive research overseas and domestic. The preparation of new W-base plasma facing materials of the recent research progress is reviewed, using oxide dispersion strengthening, carbide particle dispersion enhanced, alloying enhance W-base materials and W-base composite reinforcement method. The corresponding enhancement method allows certain aspects of W-base materials performance improved, such as the flexural strength, hardness and fracture toughness, and good corrosion resistance and resistance to impact ductility, but in the thermal load, w-base materials will still fails, the relevant materials need to continue be studied about the craft and the properties.%纯钨应用于聚变堆中面向等离子体材料具有难加工、高的韧脆转变温度、低的再结晶温度等缺点,而钨基材料是一类具有广阔应用前景的面向等离子体材料,受到国内外的广泛研究.综述了采用氧化物颗粒弥散强化、碳化物颗粒弥散增强、合金化增强钨基材料和钨基复合材料等强化手段制备新型钨基面向等离子体材料的近年研究进展.采用相应的增强方法可使得钨基材料某些方面的性能得到提高,如显著提高抗弯强度、硬度和断裂韧性,具有较好的抗腐蚀性、延展性和抗冲击力等优点,但是在承受大的工作热负荷时,钨基材料仍会失效,尚需要继续进行相关材料的工艺、性能研究.

  12. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, B.E. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Roszell, L.E. [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States); Murr, L.E.; Ramirez, D.A. [Department of Metallurgical and Materials Engineering, University of Texas, El Paso, TX 79968 (United States); Demaree, J.D. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Klotz, B.R. [Dynamic Science Inc., Aberdeen Proving Ground, MD 21005‐5609 (United States); Rosencrance, A.B.; Dennis, W.E. [U.S. Army Center for Environmental Health Research, Department of Chemistry, Ft. Detrick, MD 21702‐5010 (United States); Bao, W. [SAS Institute, Inc. SAS Campus Drive, Cary, NC 27513 (United States); Perkins, E.J. [U.S. Army Engineer Research and Development Center, 3909 Hall Ferry Road, Vicksburg MS 39180 (United States); Dillman, J.F. [U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010‐5400 (United States); Bannon, D.I., E-mail: desmond.bannon@us.army.mil [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States)

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  13. Determination of cobalt, nickel, iron, niobium, tantalum, vanadium and chrome in tungsten-based hard alloy by microwave digestion-inductively coupled plasma atomic emission spectrometry%微波消解-电感耦合等离子体原子发射光谱法测定钨基硬质合金中钴镍铁铌钽钒铬

    Institute of Scientific and Technical Information of China (English)

    成勇; 彭慧仙; 袁金红; 胡金荣

    2013-01-01

    以硝酸和磷酸(V(HNO3)∶V(H3PO4)=5∶1)作为消解试剂,采取高压密闭微波加热方法对钨钴或钨镍类钨基硬质合金样品进行消解,消解液用水定容后直接以电感耦合等离子体原子发射光谱法(ICP-AES)测定0.005%~10% Co、Ni和0.005%~1% Fe、Nb、Ta、V、Cr、Mo的含量.考察了消解试剂中的硝酸和磷酸量对试样消解的影响以及微波控制参数等最佳消解条件,建立了微波消解-无机试剂络合基体钨的样品消解方法,从而避免了因钨酸沉淀析出而导致部分待测元素损失和使用有机络合剂对光谱测定的干扰影响.实验结果表明:采用以5 min升温至130℃并保持5 min,再以5 min升温至190℃并保持15 min的消解程序,样品的消解效果较好.试验通过优选元素分析谱线,基体匹配和同步背景校正法消除了高钨基体的影响和光谱干扰,确保了方法的可靠性.背景等效浓度值从5 μg/L (Nb)至18 μg/L(Fc),元素检出限从4 μg/L (Nb)至13 μg/L (Fe).方法用于钨基硬质合金样品中上述合金或杂质元素的测定,RSD<3%,加标回收率在97%~104%之间,测定结果与国家标准方法检测结果对照一致.%The tungsten-based hard alloy samples (such as tungsten-cobalt and tungsten-nickel) were digested by high pressure closed microwave heating method using nitric acid-phosphoric acid (V(HNO3) : V(H3PO4)=5 :1) as digestion reagent. After dilution with water, the content of Co, Ni (0.005%-10%), Fe, Nb, Ta, V, Cr and Mo (0. 005%-l%) in digestion solution was directly determined by microwave digestion-inductively coupled plasma atomic emission spectrometry (ICP-AES). The effect of nitric acid and phosphoric acid concentration on sample digestion was investigated. The optimal digestion conditions such as microwave control parameters were studied. The sample digestion method by microwave digestion was established. The matrix tungsten was complexed with inorganic reagents

  14. Laser deposition of Inconel 625/tungsten carbide composite coatings by powder and wire feedstock

    OpenAIRE

    Abioye, Taiwo E.

    2014-01-01

    There is an increasing global demand to extend the life span of down-hole drilling tools in order to improve operation effectiveness and efficiency of oil and gas production. Laser cladding of tungsten carbide/Ni-based alloy metal matrix composite (MMC) coatings is currently being utilised for this purpose. However, the effect of tungsten carbide dissolution on the corrosion performance of the MMC coatings has not been completely understood. In this work, a study was carried out in which lase...

  15. Bluetooth Based Android Controlled Robot

    Directory of Open Access Journals (Sweden)

    Rowjatul Zannat Eshita

    2016-06-01

    Full Text Available The project aims in designing a Robot that can be operated using Android Apps. The controlling of the Robot is done wirelessly through Android smart phone using the Bluetooth module feature present in it. Here in the project the Android smart phone is used as a remote control for operating the Robot. Android is a software stack for mobile devices that includes an operating system, middleware and key applications. Android boasts a healthy array of connectivity options, including Wi-Fi, Bluetooth, and wireless data over a cellular connection (for example, GPRS, EDGE (Enhanced Data rates for GSM Evolution, and 3G. Android provides access to a wide range of useful libraries and tools that can be used to build rich applications. Bluetooth is an open standard specification for a radio frequency (RF-based, short-range connectivity technology that promises to change the face of computing and wireless communication. It is designed to be an inexpensive, wireless networking system for all classes of portable devices, such as laptops, PDAs (personal digital assistants, and mobile phones. The controlling device of the whole system is a Microcontroller. Bluetooth module, DC motors are interfaced to the Microcontroller. The data received by the Bluetooth module from Android smart phone is fed as input to the controller. The controller acts accordingly on the DC motors of the Robot. The robot in the project can be made to move in all the four directions using the Android phone. The direction of the robot is indicated using LED indicators of the Robot system. In achieving the task the controller is loaded with a program written using Embedded ‘C’ language.

  16. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  17. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  18. Fracture behaviour of polycrystalline tungsten

    Science.gov (United States)

    Gaganidze, Ermile; Rupp, Daniel; Aktaa, Jarir

    2014-03-01

    Fracture behaviour of round blank polycrystalline tungsten was studied by means of three point bending Fracture-Mechanical (FM) tests at temperatures between RT and 1000 °C and under high vacuum. To study the influence of the anisotropic microstructure on the fracture toughness (FT) and ductile-to-brittle transition (DBT) the specimens were extracted in three different, i.e. longitudinal, radial and circumferential orientations. The FM tests yielded distinctive fracture behaviour for each specimen orientation. The crack propagation was predominantly intergranular for longitudinal orientation up to 600 °C, whereas transgranular cleavage was observed at low test temperatures for radial and circumferentially oriented specimens. At intermediate test temperatures the change of the fracture mode took place for radial and circumferential orientations. Above 800 °C all three specimen types showed large ductile deformation without noticeable crack advancement. For longitudinal specimens the influence of the loading rate on the FT and DBT was studied in the loading rate range between 0.06 and 18 MPa m1/2/s. Though an increase of the FT was observed for the lowest loading rate, no resolvable dependence of the DBT on the loading rate was found partly due to loss of FT validity. A Master Curve approach is proposed to describe FT vs. test temperature data on polycrystalline tungsten. Fracture safe design space was identified by analysis compiled FT data.

  19. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-11-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m{sup 2} were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m{sup 2} for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  20. Tungsten/Platinum Hybrid Nanowire Growth via Field Emission Using Nanorobotic Manipulation

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2011-01-01

    Full Text Available This paper reports tungsten-platinum hybrid nanowire growth via field emission, based on nanorobotic manipulation within a field emission scanning electron microscope (FESEM. A multiwalled carbon nanotube (MWCNT was used as the emitter, and a tungsten probe was used as the anode at the counterposition, by way of nanomanipulation. By independently employing trimethylcyclopentadienyl platinum (CpPtMe3 and tungsten hexacarbonyl (W(CO6 as precursors, the platinum nanowire grew on the tip of the MWCNT emitter. Tungsten nanowires then grew on the tip of the platinum nanowire. The hybrid nanowire length wascontrolled by nanomanipulation. Their purity was evaluated using energy-dispersive X-ray spectroscopy (EDS. Thus, it is possible to fabricate various metallic hybrid nanowires by changing the precursor materials. Hybrid nanowires have various applications in nanoelectronics, nanosensor devices, and nanomechanical systems.

  1. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  2. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  3. The effect of crystal orientation on the behavior of a polycrystalline tungsten surface under focused Ga{sup +} ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Ran Guang, E-mail: gran@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Wu Shenghua [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Liu Xiang; Wu Jihong [Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Li, Ning [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Zu Xiaotao [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang Lumin, E-mail: lmwang@umich.edu [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We in situ investigated the microstructure evolution during FIB bombardment. Black-Right-Pointing-Pointer The irradiation behaviors depended significantly on the crystal orientation. Black-Right-Pointing-Pointer Tungsten grain with (0 0 1) crystal orientation showed good irradiation resistance. - Abstract: The effect of crystal orientation on the behavior of a tungsten surface under a 30 keV focused Ga{sup +} ion beam with different bombardment angles has been investigated by in situ scanning electron microscopy and electron backscatter diffraction. Results indicate that the grains of tungsten with various orientations behave quite differently. Grains with a (0 0 1) direction parallel to the ion beam always maintain a much smoother surface morphology with less mass removal after ion bombardment, indicating a lower sputtering yield. The orientation dependence of surface sputtering of tungsten can be used to guide the fabrication of tungsten-based first wall component in a nuclear fusion reactor.

  4. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  5. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    Directory of Open Access Journals (Sweden)

    J. Neira

    1998-07-01

    Full Text Available The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 10-µl injections of solutions (prepared in 0.2% v/v HNO3 using autosampler and manual sample introduction, and also by long term operation.

  6. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method.

    Science.gov (United States)

    Oh, Gyujin; Jeon, Jia; Lee, Kyoung Su; Kim, Eun Kyu

    2016-05-01

    We have studied the work function modification of tungsten-doped indium oxides (IWOs) through the co-sputtering of indium oxide (In2O3) and indium tungsten oxide (In2O3 80 wt% + WO3 20 wt%) via a radio frequency (RF) magnetron sputtering system. By controlling the elemental deposition of IWOs, the resultant work functions varied from 4.37 eV to 4.1 eV. The IWO thin films showed excellent properties for application as transparent conducting oxide materials in the region of 0 to 2.43 at.% of tungsten versus the total metal content. The carrier concentration of n-type IWO thin films varied from 8.39 x 10(19) cm(-3) to 8.58 x 10(21) cm(-3), while the resistivity varied from 3.15 x 10(-4) Ωcm to 2.26 x 10(-3) Ωcm. The largest measured optical band gap was 3.82 eV determined at 2.43 at.% of tungsten atoms relative to the total amount of metal atoms, while the smallest optical band gap was 3.6 eV at 4.78 at.% of tungsten. IWO films containing more than 2.43 at.% of tungsten atoms relative to the total number of metal atoms revealed an average transmittance of over 80% within the visible light region.

  7. Software based controls module development

    Energy Technology Data Exchange (ETDEWEB)

    Graves, v.b.; kelley, g; welch, j.c.

    1999-12-10

    A project was initiated at the Oak Ridge Y-12 Plant to implement software geometric error compensation within a PC-based machine tool controller from Manufacturing Data Systems, Inc. This project may be the first in which this type of compensation system was implemented in a commercially available machine tool controller totally in software. Previous implementations typically required using an external computer and hardware to interface through the position feedback loop of the controller because direct access to the controller software was not available. The test-bed machine for this project was a 2-axis Excello 921 T-base lathe. A mathematical error model of the lathe was created using homogeneous transformation matrices to relate the positions of the machine's slides to each other and to a world reference system. Equations describing the effects of the geometric errors were derived from the model. A software architecture was developed to support geometric error compensation for machine tools with up to 3 linear axes. Rotary axes were not supported in this implementation, but the developed architecture would not preclude their support in the future. Specific implementations will be dependent upon the configuration of the machine tool. A laser measuring system from Automated Precision, Inc. was used to characterize the lathe's geometric errors as functions of axis position and direction of motion. Multiple data files generated by the laser system were combined into a single Error File that was read at system startup and used by the compensation system to provide real-time position adjustments to the axis servos. A Renishaw Ballbar was used to evaluate the compensation system. Static positioning tests were conducted in an attempt to observe improved positioning accuracy with the compensation system enabled. These tests gave inconsistent results due to the lathe's inability to position the tool repeatably. The development of the architecture and

  8. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    due to {sup 179}Ta with a half-life of 1.82 yr and thus require prolonged storage for activity cooling. The H*(10) near the patient side of the tungsten block is about 100 {mu}Sv/h and is 27 times higher at the upstream side of the block. This would lead to an accumulated dose for therapists in a year that may exceed occupational maximum permissible dose (50 mSv/yr). The value of H*(10) at the upstream surface of the tungsten block is about 220 times higher than that of the brass. Conclusions: MLC is an efficient way for beam shaping and overall cost reduction device in proton therapy. However, based on this study, tungsten seems to be not an optimal material for MLC in proton beam therapy. Usage of tungsten MLC in clinic may create unnecessary risks associated with the secondary neutrons and induced radioactivity for patients and staff depending on the patient load. A careful selection of material for manufacturing of an optimal MLC for proton therapy is thus desired.

  9. SMS BASED REMOTE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Reecha Ranjan Singh , Sangeeta Agrawal , Saurabh Kapoor ,S. Sharma

    2011-08-01

    Full Text Available A modern world contains varieties of electronic equipment and systems like: TV, security system, Hi-fi equipment, central heating systems, fire alarm systems, security alarm systems, lighting systems, SET Top Box, AC (Air Conditioner etc., we need to handle, ON/OFF or monitor these electrical devices remotely or to communicate with these but, if you are not at the home or that place and you want to communicate with these device. So the new technology for handled these devices remotely and for communication to required the GSM, mobile technology, SMS (short message service and some hardware resources. SMS based remote control for home appliances is beneficial for the human generation, because mobile is most recently used technology nowadays.

  10. Fuzzy cascade control based on control's history for superheated temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Guangjun; LI Gang; SHEN Shuguang

    2007-01-01

    To address the characteristics of the large delay and uncertainty of superheated temperature,a new cascade control system is presented based on control's history.Based on the analysis of the control objects' dynamic characteristics,historical control information (substituting for the deviation change rate) is used as the basis for decision-making of the fuzzy control.Therefore,the changing trend of the controlled variable can be accurately reflected.Furthermore,a proportional component is introduced,the advantages of PID and fuzzy controllers are integrated,and the structure weaknesses of conventional fuzzy controllers are overcome.Simulation shows that this control method can effectively reduce the adverse impact of the delay on control effects and,therefore,exhibit strong adaptability by comparing the superheated temperature control system by this controller with PID and conventional fuzzy controllers.

  11. Dielectronic recombination of tungsten ions

    Science.gov (United States)

    Li, Bowen; O'Sullivan, Gerry; Dong, Chenzhong; Chen, Ximeng

    2016-08-01

    Ab initio calculations of dielectronic recombination rate coefficients of Ne-, Pd- and Ag-like tungsten have been performed. Energy levels, radiative transition probabilities and autoionization rates were calculated using the Flexible Atomic Code. The contributions from different channels to the total rate coefficients are discussed. The present calculated rate coefficients are compared with other calculations where available. Excellent agreement has been found for Ne-like W while a large discrepancy was found for Pd-like W, which implies that more ab initio calculations and experimental measurements are badly needed. Further calculations demonstrated that the influence of configuration interaction is small while nonresonant radiative stabilizing (NRS) contribution to doubly excited non-autoionizing states are vital. The data obtained are expected to be useful for modeling plasmas for fusion applications, especially for the ITER community, which makes experimental verification even more essential.

  12. The electron affinity of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, A.O.; Andersson, P.; Klason, P.; Hanstorp, D. [Department of Physics, University of Gothenburg (Sweden); Diehl, C. [Institut fur Physik, Johannes Gutenberg-Universitat, Mainz (Germany); Present Address: Max-Planck-Institut fur Kernphysik, Heidelberg (Germany); Forstner, O. [Faculty of Physics, University of Vienna, Wien (Austria)

    2010-11-15

    The electron affinity of tungsten has been measured using laser photodetachment threshold spectroscopy in a collinear geometry. The electron affinity was determined to 6583.6(6) cm{sup -1} by observing the onset of the process when W{sup -} ions in the 5d{sup 5}6s{sup 2} {sup 6}S{sub 5/2} ground state are photo-detached producing neutral W atoms in the 5d{sup 4}6s{sup 2} {sup 5}D{sub 0} ground state. The measured value is in agreement with previous measurements and improves the accuracy by almost two orders of magnitude. Further, a photodetachment signal below the ground state photodetachment threshold was found, which indicates the existence of a bound excited state in W{sup -}. (authors)

  13. Viscosity of liquid undercooled tungsten

    Science.gov (United States)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2005-05-01

    Knowledge of the viscosity and its temperature dependence is essential to improve metallurgical processes as well as to validate theoretical and empirical models of liquid metals. However, data for metals with melting points above 2504K could not be determined yet due to contamination and containment problems. Here we report the viscosity of tungsten, the highest melting point metal (3695K), measured by a levitation technique. Over the 3350-3700-K temperature range, which includes the undercooled region by 345K, the viscosity data could be fitted as η(T )=0.108exp[1.28×105/(RT)](mPas). At the melting point, the datum agrees with the proposed theoretical and empirical models of liquid metals but presents atypical temperature dependence, suggesting a basic change in the mechanism of momentum transfer.

  14. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    Science.gov (United States)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  15. Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil

    Energy Technology Data Exchange (ETDEWEB)

    Ghasempour, Fariba [Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University, P.O. Box 147789-3855, Tehran (Iran, Islamic Republic of); Azimirad, Rouhollah [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Amini, Abbas [School of Computing, Engineering and Mathematics, University of Western Sydney, Kingswood, NSW 2751 (Australia); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2015-05-30

    Highlights: • Synthesis of tungsten oxide nano/micro-structures on W foils using KOH as a catalyst. • Strong antibacterial activity of tungsten oxide nanorods under visible light irradiation. • Decrease in photoinactivation of bacteria on tungsten oxide nano/micro-rods doped by potassium. - Abstract: Antibacterial activity of tungsten oxide nanorods/microrods were studied against Escherichia coli bacteria under visible light irradiation and in dark. A two-step annealing process at temperatures up to 390 °C and 400–800 °C was applied to synthesize the tungsten oxide nanorods/microrods on tungsten foils using KOH as a catalyst. Annealing the foils at 400 °C in the presence of catalyst resulted in formation of tungsten oxide nanorods (with diameters of 50–90 nm and crystalline phase of WO{sub 3}) on surface of tungsten foils. By increasing the annealing temperature up to 800 °C, tungsten oxide microrods with K{sub 2}W{sub 6}O{sub 19} crystalline phase were formed on the foils. The WO{sub 3} nanorods showed a strong antibacterial property under visible light irradiation, corresponding to >92% bacterial inactivation within 24 h irradiation at room temperature, while the K{sub 2}W{sub 6}O{sub 19} microrods formed at 800 °C could inactivate only ∼45% of the bacteria at the same conditions.

  16. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    Science.gov (United States)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2016-10-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V (vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  17. Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.

  18. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Science.gov (United States)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential's best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  19. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    Directory of Open Access Journals (Sweden)

    Siyuan Feng Chen

    2015-10-01

    Full Text Available We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability.

  20. Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations

    Science.gov (United States)

    Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios

    2017-08-01

    We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.

  1. Control of Unknown Chaotic Systems Based on Neural Predictive Control

    Institute of Scientific and Technical Information of China (English)

    LIDong-Mei; WANGZheng-Ou

    2003-01-01

    We introduce the predictive control into the control of chaotic system and propose a neural network control algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is much higher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of the control system and prove the convergence property of the neural controller. The theoretic derivation and simulations demonstrate the effectiveness of the algorithm.

  2. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  3. Thermal stability of warm-rolled tungsten

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel

    Pure tungsten is considered as armor material for the most critical parts of fusion reactors (thedivertor and the blanket first wall), mainly due to its high melting point (3422 °C). This is becauseboth the divertor and the first wall have to withstand high temperatures during service which...... and recrystallization occur in tungsten, and quantifying the kinetics and microstructuralaspects of these restoration processes. Two warm-rolled tungsten plates are annealed attemperatures between 1100 °C and 1350 °C, under vacuum conditions or argon atmosphere. Theeffects of annealing on the microstructure...... on these activation energies) to lower annealingtemperatures allows predicting the lifespan of these tungsten plates under fusion reactor conditions.A much longer lifetime at normal operating temperatures was found for the plate W67 (e.g. at least1 million years at 800 °C) as compared to the plate W90 (e.g 71 years...

  4. Agent-Based Cooperative Control

    Science.gov (United States)

    2005-12-01

    IEEE Transactions on Automatic Control , vol. 45, issue 12, Dec, 2000, pp. 2253-2270. [15] A. M. Bloch, Dong Eui Chang, N. E. Leonard, J. E...Marsden, “Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping,” IEEE Transactions on Automatic Control , vol. 46...a new approach to constructive nonlinear control,” IEEE Transactions on Automatic Control , Volume 49, Issue 7, July

  5. 自生成钨基高密度合金中间层的钨/钢真空扩散连接%Diffusion Bonding Tungsten to Steel in Vacuum with Tungsten Heavy Alloy Interlayer Formed on Tungsten Surface

    Institute of Scientific and Technical Information of China (English)

    杨宗辉; 沈以赴; 李晓泉

    2013-01-01

    采用90W-6Mn-4Ni(质量分数)混合粉末/镍箔复合中间层,在加压5 MPa、连接温度1 100℃、保温10 min、30 min、60 min及120 min的工艺条件下,对纯钨(W)和0Cr13钢进行真空扩散连接.利用扫描电镜、能谱仪和电子万能试验机等手段研究接头的微观组织、成分分布、力学性能及断口特征.结果表明,连接接头均由钨母材/钨基高密度合金层/镍/钢母材组成.接头中的钨基高密度合金层由90W-6Mn-4Ni混合粉末液相烧结生成,其富Mn-Ni黏结相和钨颗粒相冶金结合且分布均匀,保温时间对该层的组织形态无明显影响.钨基高密度合金层与钨母材以加压钎焊机制实现了良好结合.接头抗剪强度为202~217 MPa时,断裂均发生在连接界面两侧的钨母材和钨基高密度合金层中,前者断口为典型的解理脆断,后者断口为钨颗粒相的W-W界面分离断裂及黏结相的韧性断裂.%Bonding between tungsten and 0Crl3 steel using a 90W-6Mn-4Ni (mass fraction) powder mixtures/Ni multi-interiayer, was carried out in vacuum at 1 100 ℃ for 10 min, 30 min, 60 min, 120 min with 5 MPa. The microstructures, composition distribution and fracture characteristics of the joints are studied by scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and their mechanical properties are tested by shear experiments. The results show that the joints comprised tungsten/tungsten heavy alloy layer/Ni/0Crl3 steel. Among them, the tungsten heavy alloy layer is formed through liquid phase sintering of 90W-6Mn-4Ni mixed powder. Holding time has no significant effect on the microstructure of tungsten heavy alloy layer, which composes of metallurgical bonded and evenly distributed MnNi-rich phase and tungsten phase. Good bonding between tungsten matrix and tungsten heavy alloy layer is realized based on press brazing mechanism. The shear strength of joints is from 202 MPa to 217 MPa. All fractures occur in bonding zone of

  6. Advances of orbital gas tungsten arc welding for Brazilian space applications – experimental setup

    Directory of Open Access Journals (Sweden)

    José A. Orlowski de Garcia

    2010-08-01

    Full Text Available The present work describes details of the several steps of the technology involved for the orbital Gas Tungsten Arc Welding (GTAW process of pure commercially titanium tubes. These pieces will be used to connect the several components of the propulsion system of the China-Brazilian Satellite CBERS, and is part of the Brazilian aerospace industry development. The implantation involved the steps of environment control; cut and facing of the base metal; cleaning procedures; piece alignment; choice of the type, geometry and installation of the tungsten electrode; system for the pressure of the purge gas; manual tack welding; choice of the welding parameters; and, finally, the qualification of welding procedures. Three distinct welding programs were studied, using pulsed current with increasing speed, continuous current and pulsed current with decreasing amperage levels. The results showed that the high quality criteria required to the aerospace segment is such that usual welding operations must be carefully designed and executed. The three welding developed programs generated welds free of defects and with adequate morphology, allowing to select the condition that better fits the Brazilian aerospace segment, and to be implanted in the welding of the CBERS Satellite Propulsion System.

  7. Extraction Factor Of Pure Ammonium Paratungstate From Tungsten Scraps

    Directory of Open Access Journals (Sweden)

    Pee J.-H.

    2015-06-01

    Full Text Available Typical oxidation process of tungsten scraps was modified by the rotary kiln with oxygen burner to increase the oxidation rate of tungsten scraps. Also to accelerate the solubility of solid oxidized products, the hydrothermal reflux method was adapted. By heating tungsten scraps in rotary kiln with oxygen burner at around 900° for 2hrs, the scraps was oxidized completely. Then oxidized products (WO3 and CoWO4 was fully dissolved in the solution of NaOH by hydrothermal reflux method at 150° for 2hrs. The dissolution rate of oxidized products was increased with increasing the reaction temperature and concentration of NaOH. And then CaWO4 and H2WO4 could be generated from the aqueous sodium tungstate solution. Ammonium paratungstate (APT also could be produced from tungstic acid using by aqueous ammonium solution. The morphologies (cubic and plate types of APT was controlled by the stirring process of purified solution of ammonium paratungstate.

  8. Effects of distance between tungsten wire and glass substrate on particle size and photochromic characteristic of tungsten oxide prepared by electric current heating method

    Energy Technology Data Exchange (ETDEWEB)

    Hagizawa, T; Honma, T; Kuroki, Y; Okamoto, T; Takata, M, E-mail: takata@vos.nagaokaut.ac.jp [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2011-10-29

    Tungsten oxide films consisting of particles were prepared on the substrates placed at various distances from the tungsten wires heated by electric current. The shapes of the particles were sphere in an area on the substrate just above the wire while octahedral shape was found in other area. For the spherical particles, with increasing the distance, the mean particle diameter increased, reached its maximum value and gradually decreased. The particles in each area showed the photochromism especially in near-infrared region. The spherical particles with the smallest size exhibited a significant photochromic effect which could be controlled by changing the distance between the wire and the substrate.

  9. Microprocessor-Based Valved Controller

    Science.gov (United States)

    Norman, Arnold M., Jr.

    1987-01-01

    New controller simpler, more precise, and lighter than predecessors. Mass-flow controller compensates for changing supply pressure and temperature such as occurs when gas-supply tank becomes depleted. By periodically updating calculation of mass-flow rate, controller determines correct new position for valve and keeps mass-flow rate nearly constant.

  10. Many-body central force potentials for tungsten

    Science.gov (United States)

    Bonny, G.; Terentyev, D.; Bakaev, A.; Grigorev, P.; Van Neck, D.

    2014-07-01

    Tungsten and tungsten-based alloys are the primary candidate materials for plasma facing components in fusion reactors. The exposure to high-energy radiation, however, severely degrades the performance and lifetime limits of the in-vessel components. In an effort to better understand the mechanisms driving the materials' degradation at the atomic level, large-scale atomistic simulations are performed to complement experimental investigations. At the core of such simulations lies the interatomic potential, on which all subsequent results hinge. In this work we review 19 central force many-body potentials and benchmark their performance against experiments and density functional theory (DFT) calculations. As basic features we consider the relative lattice stability, elastic constants and point-defect properties. In addition, we also investigate extended lattice defects, namely: free surfaces, symmetric tilt grain boundaries, the 1/2{1 1 0} and 1/2 {1 1 2} stacking fault energy profiles and the 1/2 screw dislocation core. We also provide the Peierls stress for the 1/2 edge and screw dislocations as well as the glide path of the latter at zero Kelvin. The presented results serve as an initial guide and reference list for both the modelling of atomically-driven phenomena in bcc tungsten, and the further development of its potentials.

  11. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; /UCLA; Soha, Aria; /Fermilab; Heppelmann, Steven; /Penn State U.; Gagliardi, Carl; /Texas A-M

    2011-11-16

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics

  12. Extraction Factor Of Tungsten Sources From Tungsten Scraps By Zinc Decomposition Process

    Directory of Open Access Journals (Sweden)

    Pee J.-H.

    2015-06-01

    Full Text Available Decomposition promoting factors and extraction process of tungsten carbide and tungstic acid powders in the zinc decomposition process of tungsten scraps which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility was suppressed by the enclosed graphite crucible and zinc volatilization pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP (Zinc Decomposition Process. Decomposition reaction was done for 2hours at 650°, which 100% decomposed the tungsten scraps that were over 30 mm thick. Decomposed scraps were pulverized under 75μm and were composed of tungsten carbide and cobalt identified by the XRD (X-ray Diffraction. To produce the WC(Tungsten Carbide powder directly from decomposed scraps, pulverized powders were reacted with hydrochloric acid to remove the cobalt binder. Also to produce the tungstic acid, pulverized powders were reacted with aqua regia to remove the cobalt binder and oxidize the tungsten carbide. Tungsten carbide and tungstic acid powders were identified by XRD and chemical composition analysis.

  13. Electronic Transitions of Tungsten Monosulfide

    Science.gov (United States)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated

  14. Control of Unknown Chaotic Systems Based on Neural Predictive Control

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Mei; WANG Zheng-Ou

    2003-01-01

    We introduce the predictive control into the control of chaotic system and propose a neural networkcontrol algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknownchaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is muchhigher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of thecontrol system and prove the convergence property of the neural controller. The theoretic derivation and simulationsdemonstrate the effectiveness of the algorithm.

  15. Study on Properties of Tungsten Carbide in Nickel-based Self-lfuxing Alloy Coating in Couple Technique%两种工艺下碳化钨在镍基自熔合金涂层中的性能研究

    Institute of Scientific and Technical Information of China (English)

    王旭; 胡宇; 高峰; 马尧; 张清华; 杜倩

    2016-01-01

    In this paper, the morphologies of two mixed Nickel-base tungsten carbide coatings were studied, under the spray process of laser claddingand flame spray respectively. The decomposition and diffusion mechanism of tungsten carbide were discussed. It showed that tungsten carbide was easier to precipitate by laser cladding andη phase was found which led to the decrease of the final coating hardness.%本文研究了激光熔覆和火焰喷焊的工艺条件下,两种混合型镍基碳化钨涂层中碳化钨的组织形貌变化,分析碳化钨分解和扩散机理。结果表明:激光熔覆工艺更容易促进碳化钨溶解,并在周围析出η相,从而导致涂层硬度低于火焰喷焊工艺。

  16. WS{sub 2} nanotube formation by sulphurization: Effect of precursor tungsten film thickness and stress

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Sheung Mei; Wong, Hon Fai; Wong, Wang Cheung; Tan, Choon Kiat; Choi, Sin Yuk; Mak, Chee Leung; Li, Gui Jun [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Dong, Qing Chen [MOE Key Laboratory for Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024 (China); Leung, Chi Wah, E-mail: dennis.leung@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2016-09-15

    Transition metal dichalcogenides can exhibit as 2-dimensional layers, 1-dimensional nanotubes or 0-dimensional quantum dot structures. In general, dichalcogenide nanotubes are grown under stringent conditions, using high growth temperatures with tedious processes. Here, we report the controlled formation of tungsten disulphide (WS{sub 2}) nanostructures by manipulating the precursor film thickness, followed by a direct sulphurization process. WS{sub 2} nanotubes were formed by ultra-thin tungsten precursor films, while particle-like WS{sub 2} were obtained from thicker tungsten films under identical sulphurization conditions. To elucidate the origin of WS{sub 2} nanostructure formation, micron-sized tungsten film tracks were prepared, and such patterned films were found to suppress the growth of WS{sub 2} nanotubes. We attribute the suppression of nanotube formation to the relieving of film stress in patterned precursor films. - Highlights: • WS{sub 2} were obtained by sulphurization of sputtered tungsten films on Si substrates. • Resultant WS{sub 2} nanostructure morphology was dependent on precursor film thickness. • Patterning into micro-size W tracks suppressed the formation of nanotubes. • Stress relaxation was attributed as controlling factor for WS{sub 2} structure formation.

  17. Audit-based compliance control

    NARCIS (Netherlands)

    Cederquist, J.G.; Corin, R.; Dekker, M.A.C.; Etalle, S.; Hartog, J.I. den; Lenzini, G.

    2007-01-01

    In this paper we introduce a new framework for controlling compliance to discretionary access control policies [Cederquist et al. in Proceedings of the International Workshop on Policies for Distributed Systems and Networks (POLICY), 2005; Corin et al. in Proceedings of the IFIP Workshop on Formal A

  18. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  20. A Lyapunov theory based UPFC controller for power flow control

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, Ali; Kazemi, Ahad; Hajatipour, Majid; Jadid, Shahram [Center of Excellence for Power Systems Automation and Operation, Iran University of Science and Technology, Tehran (Iran)

    2009-09-15

    Unified power flow controller (UPFC) is the most comprehensive multivariable device among the FACTS controllers. Capability of power flow control is the most important responsibility of UPFC. According to high importance of power flow control in transmission lines, the proper controller should be robust against uncertainty and disturbance and also have suitable settling time. For this purpose, a new controller is designed based on the Lyapunov theory and its stability is also evaluated. The Main goal of this paper is to design a controller which enables a power system to track reference signals precisely and to be robust in the presence of uncertainty of system parameters and disturbances. The performance of the proposed controller is simulated on a two bus test system and compared with a conventional PI controller. The simulation results show the power and accuracy of the proposed controller. (author)

  1. Bluetooth Based Android Controlled Robot

    National Research Council Canada - National Science Library

    Rowjatul Zannat Eshita; Tanwy Barua; Arzon Barua; Anik Mahamood Dip

    2016-01-01

    The project aims in designing a Robot that can be operated using Android Apps. The controlling of the Robot is done wirelessly through Android smart phone using the Bluetooth module feature present...

  2. Electrocatalytic Activity of Tungsten Trioxide Micro-spheres, Tungsten Carbide Microspheres and Multi-walled Carbon Nanotube-tungsten Carbide Composites

    Institute of Scientific and Technical Information of China (English)

    LU Hongzhi; YAN Taining

    2009-01-01

    Tungsten trioxide micropheres were prepared by spray pyrolysis, and tungsten carbidemicrospheres were produced by spray pyrolysis-low temperature reduction and carbonization technology.Multi-walled carbon nanotube-tungsten carbide composites were prepared by the continuous reductionand carbonization process using multi-walled carbon nanotubes (MWCNTs) and WO_3 precursor by mo-lecular level mixing and calcination. The morphology and structure of the samples were characterized byscanning electron microscope and transmission electron microscope. Furthermore, the crystal phase was identified by X-ray diffraction. The electrocatalytic activity of the sample was analyzed by means of me-thanol oxidation. Tungsten carbide microspheres were catalytic active for methanol oxidation reaction.Nevertheless tungsten trioxide microspheres and multi-walled carbon nanotube-tungsten carbide compos-ites were not catalytic active for methanol oxidation reaction. These results indicate that tungsten carbide micropheres are promising catalyst for methanol oxidation.

  3. Adaptive fuzzy controllers based on variable universe

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    1999-01-01

    Adaptive fuzzy controllers by means of variable universe are proposed based on interpolation forms of fuzzy control. First, monotonicity of control rules is defined, and it is proved that the monotonicity of interpolation functions of fuzzy control is equivalent to the monotonicity of control rules. This means that there is not any contradiction among the control rules under the condition for the control rules being monotonic. Then structure of the contraction-expansion factor is discussed. At last, three models of adaptive fuzzy control based on variable universe are given which are adaptive fuzzy control model with potential heredity, adaptive fuzzy control model with obvious heredity and adaptive fuzzy control model with successively obvious heredity.

  4. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  5. Scandia doped tungsten matrix for impregnated cathode

    Institute of Scientific and Technical Information of China (English)

    WANG Jinshu; WANG Yanchun; LIU Wei; LI Hongyi; ZHOU Meiling

    2008-01-01

    As a matrix for Sc-type impregnated cathode,scandia doped tungsten with a uniform ldistribution of SC2O3 was obtained by powder metallurgy combined with the liquid-solid doping method.The microstructure and composition of the powder and the anti-ion bombardment behavior of scandium in the matrix were studied by means of SEM,EDS,XRD,and in-situ AES methods.Tungsten powder covered with scandium oxide,an ideal scandium oxide-doped tungsten powder for the preparation of Sc-type impregnated cathode,was obtained using the liquid-solid doping method.Compared with the matrix prepared with the mechanically mixed powder of tungsten and scandium oxide,SC2O3-W matrix prepared with this kind of powder had smaller grain size and uniform distribution of scandium.Sc on the surface of Sc2O3 doped tungsten mauix had good high temperature stability and good anti-ion bombardment capability.

  6. Ultrasonic drawing of tungsten wire for incandescent lamps production.

    Science.gov (United States)

    Mordyuk, B N; Mordyuk, V S; Buryak, V V

    2004-04-01

    An influence of ultrasonic treatment (drawing) on structure, high temperature durability, evaporation and creep behaviours of tungsten single crystal and wires were investigated. A relation of tungsten wires properties with dislocation distribution was determined.

  7. Electroanalytical determination of tungsten and molybdenum in proteins.

    Science.gov (United States)

    Hagedoorn, P L; van't Slot, P; van Leeuwen, H P; Hagen, W R

    2001-10-01

    Recent crystal structure determinations accelerated the progress in the biochemistry of tungsten-containing enzymes. In order to characterize these enzymes, a sensitive determination of this metal in protein-containing samples is necessary. An electroanalytical tungsten determination has successfully been adapted to determine the tungsten and molybdenum content in enzymes. The tungsten and molybdenum content can be measured simultaneously from 1 to 10 microg of purified protein with little or no sample handling. More crude protein samples require precipitation of interfering surface active material with 10% perchloric acid. This method affords the isolation of novel molybdenum- and tungsten-containing proteins via molybdenum and tungsten monitoring of column fractions, without using radioactive isotopes. A screening of soluble proteins from Pyrococcus furiosus for tungsten, using anion-exchange column chromatography to separate the proteins, has been performed. The three known tungsten-containing enzymes from P. furiosus were recovered with this screening.

  8. 用于环戊烯氧化合成戊二醛反应的钨基催化剂的表征%Characterization of Tungsten-Based Catalyst Used for Selective Oxidation of cyclopentene to glutaraldehyde

    Institute of Scientific and Technical Information of China (English)

    朱志庆; 卞炜

    2008-01-01

    Tungsten-containing hexagonal mesoporous silica (W-HMS) supported tungsten oxide catalysts (WOx/W-HMS) was prepared for the selective oxidation of cyclopentene with aqueous hydrogen peroxide to glutaraldehyde. X-ray diffraction (XRD) results indicated that the crystal form of the active phase (tungsten oxide) of the WOx/W-HMS catalysts was dependent on the W loading and calcination temperature. X-ray photoelectron spec-troscopy (XPS) analysis revealed that the dispersed tungsten oxides on the surface of W-HMS support consisted of a mixture of W(V) and W(VI). It was found that a high content of amorphous W species in (5+) oxidation state resulted in the high catalytic activity. When the W loading was up to 12% (by mass) or the catalyst precursor was treated at temperature of 623 K, the catalytic activity decreased due to the presence of WO3 crystallites and the oxidation of W(V) to W(VI) on the catalyst surface. Furthermore, NH3-temperature-programmed-desorption (NH3-TPD) analysis showed that the effects of W loading and calcination temperature on the acidity of the catalysts were related to the catalytic activity. A high selectivity of 80.2% for glutaraldehyde with a complete conversion of cyclopentene was obtained over 8%WOx/W-HMS catalyst calcined at 573 K after 14 h of reaction.

  9. Adaptive Fuzzy Knowledge Based Controller for Autonomous Robot Motion Control

    Directory of Open Access Journals (Sweden)

    Mbaitiga Zacharie

    2010-01-01

    Full Text Available Problem statement: Research into robot motion control offers research opportunities that will change scientists and engineers for year to come. Autonomous robots are increasingly evident in many aspects of industry and everyday life and a robust robot motion control can be used for homeland security and many consumer applications. This study discussed the adaptive fuzzy knowledge based controller for robot motion control in indoor and outdoor environment. Approach: The proposed method consisted of two components: the process monitor that detects changes in the process characteristics and the adaptation mechanism that used information passed to it by the process monitor to update the controller parameters. Results: Experimental evaluation had been done in both indoor and outdoor environment where the robot communicates with the base station through its Wireless fidelity antenna and the performance monitor used a set of five performance criteria to access the fuzzy knowledge based controller. Conclusion: The proposed method had been found to be robust.

  10. Gesture & Speech Based Appliance Control

    Directory of Open Access Journals (Sweden)

    Dr. Sayleegharge,

    2014-01-01

    Full Text Available This document explores the use of speech & gestures to control home appliances. Aiming at the aging population of the world and relieving them from their dependencies. The two approaches used to sail through the target are the MFCC approach for speech processing and the Identification of Characteristic Point Algorithm for gesture recognition. A barrier preventing wide adoption is that this audience can find controlling assistive technology difficult, as they are less dexterous and computer literate. Our results hope to provide a more natural and intuitive interface to help bridge the gap between technology and elderly users.

  11. Process for the recovery of tungsten in a pure form from tungsten-containing materials

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, M.; Moscovici, A.

    1986-12-16

    A process is described for the recovery of tungsten from tungsten-containing materials which comprises the steps of (i) admixing the tungsten-containing material with a melt at a temperature of between 680/sup 0/C and 750/sup 0/C. The melt consists of a salt selected from the group consisting of sodium nitrate, sodium nitrite and mixtures thereof in a substantially stoichiometrical amount to the tungsten constituent of the tungsten-containing material. This is done to disintegrate the tungsten-containing material and to form sodium tungstate, cooling the melt, and leaching the cooled melt with water to obtain an aqueous solution of sodium tungstate; (ii) admixing a solution of calcium chloride with the aqueous solution of sodium tungstate at a temperature of between 40/sup 0/C and 95/sup 0/C to form a calcium tungstate precipitate and separating the calcium tungstate; (iii) admixing the calcium tungstate with a preheated concentrated hydrochloric acid solution to form a tungstic acid precipitate and a CaCl/sub 2/ solution having a concentration of between 80 g/l and 180 g/l free HCl and separating the tungstic acid precipitate and obtaining tungstic acid which is substantially free of calcium ions, and (iv) calcining the tungstic acid to convert it to tungstic oxide and reducing the tungstic oxide to form metallic tungsten.

  12. Brushless DC Motor Speed Control Based on Emotional Intelligent Controller

    Directory of Open Access Journals (Sweden)

    Gholamreza ArabMarkadeh

    2014-03-01

    Full Text Available This paper presents an emotional controller for brushless DC motor (BLDC drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC. The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. In this work, a novel and simple implementation of BLDC motor drive system is achieved by using the intelligent controller, which controls the motor speed accurately. This emotional intelligent controller has simple structure with high auto learning feature. Simulation results show that both accurate steady state and fast transient speed responses can be achieved in wide range of speed from 20 to 300 [rpm]. Moreover, to evaluate this emotional controller, the performance of the proposed control scheme is compared with both Fuzzy Logic (FL and PID controllers, in different conditions. This indicates proper operating in comparison to the FLC and PID controllers. And also shows excellent promise for industrial scale utilization.

  13. The use of multiple probe molecules for the study of the acid-base properties of aluminium hydroxyfluoride having the hexagonal tungsten bronze structure: FTIR and [36Cl] radiotracer studies.

    Science.gov (United States)

    Dambournet, Damien; Leclerc, Hervé; Vimont, Alexandre; Lavalley, Jean-Claude; Nickkho-Amiry, Mahmood; Daturi, Marco; Winfield, John M

    2009-03-07

    The combination of several probe molecules has enabled the construction of a detailed picture of the surface of aluminium hydroxyl fluoride, AlF(2.6)(OH)(0.4), which has the hexagonal tungsten bronze (HTB) structure. Using pyridine as a probe leads to features at 1628 cm(-1), ascribed to very strong Lewis acid sites, and at 1620-1623 cm(-1), which is the result of several different types of Lewis sites. This heterogeneity is indicated also from CO adsorption at 100 K; the presence of five different types of Lewis site is deduced and is suggested to arise from the hydroxylated environment. Brønsted acid sites of medium strength are indicated by adsorption of lutidine and CO. Adsorption of lutidine occurs at OH groups, which are exposed at the surface and CO reveals that these OH groups have a single environment that can be correlated with their specific location inside the bulk, assuming that the surface OH group may reflect the bulk OH periodicity. A correlation between the data obtained from CO and pyridine molecules has been established using co-adsorption experiments, which also highlight the inductive effect produced by pyridine. Adsorption of the strong Brønsted acid, anhydrous hydrogen chloride, detected by monitoring the beta(-) emission of [(36)Cl]-HCl at the surface, indicates that surface hydroxyl groups can behave also as a Brønsted base and that H(2)O-HCl interactions, either within the hexagonal channels or at the surface are possible. Finally, the formation of strongly bound H(36)Cl as a result of the room temperature dehydrochlorination of [(36)Cl]-labelled tert-butyl chloride provides additional evidence that HTB-AlF(2.6)(OH)(0.4) can behave as a Lewis acid.

  14. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  15. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-12-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  16. Element 74, the Wolfram Versus Tungsten Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  17. Raman scattering from rapid thermally annealed tungsten silicide

    Science.gov (United States)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  18. 40 CFR 721.10168 - Cesium tungsten oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  19. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  20. Barrel wear reduction in rail guns: the effects of known and controlled rail spacing on low voltage electrical contact and the hard chrome plating of copper-tungsten rail and pure copper rails

    OpenAIRE

    McNeal, Cedric J.

    2003-01-01

    Approved for public release, distribution is unlimited 100 m/s). Low voltage electrical contact was not maintained for some experimental shots and non-parallel rails were the suspected cause. In this thesis, we used a non-contact capacitive sensor to determine rail spacing to within 2/kAcm10mael, so that the rails will be parallel within small tolerances. Several rails were used in these experiments: 75-25 copper-tungsten, chromium-plated 75-25 Cu-W, and chromium-plated pure copper rails. ...

  1. Conical tungsten stamps for the replication of pore arrays in anodic aluminium oxide films.

    Science.gov (United States)

    LeClere, D J; Thompson, G E; Derby, B

    2009-06-17

    A tungsten master stamp has been generated by applying a novel procedure that includes two-step anodizing, followed by sequential anodizing and pore widening to develop nominally funnelled pores. These conical-shaped pores were filled with tungsten by sputter coating to manufacture a master stamp. Under a pressure of 65 MPa, the master stamp successfully embossed the surface of annealed and electropolished aluminium. The embossed surface was then used to control the position of pores created by anodizing under the conditions used to produce the original pore array.

  2. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    Science.gov (United States)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    2016-10-01

    Nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms surrounded by a low-density fast expanding plasma corona. An integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. These data were previously unavailable for tungsten atoms. An extremely high melting temperature and significant premelt electronic emission make these measurements particularly complicated for this refractory metal. Most attempts to vaporize tungsten wire by electrical current pulse result in the disintegration of the sample into macro- and microfragments. However, application of a very fast-rising current, ˜1 kA /ns , can vaporize a thin 10-15 μm-diameter tungsten wire and generate a calibrated gas-plasma cylinder. Adding a dielectric coating to the wire leads to increased energy deposition to the wire core and a reduction of the surrounding plasma corona. Employing the integrated-phase technique on a fast-exploding coated tungsten wire, we find that the dynamic dipole polarizability of tungsten atoms at a wavelength of 532 nm equals 15 ±1.3 Å3 .

  3. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  4. Thermal shock behaviour of tungsten after high flux H-plasma loading

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.

    2013-11-01

    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices tungsten tiles were exposed to high flux hydrogen-plasma in the linear plasma generator Pilot-PSI and the high heat flux ion beam test facility MARION. Subsequently, the cyclic transient heat load tests were done in the electron beam facility JUDITH 1. The induced damages after these combined tests were examined by microscopically means, profilometry and metallography. The comparison of the obtained results and damage characteristics with those obtained after thermal shock loading show that the preloading of tungsten targets with high flux hydrogen-plasma has significant influence on the thermal shock behaviour of tungsten in terms of crack distance, width, and depth as well as cracked area. Furthermore the plasma parameters, in particular pulse duration and sample temperature during loading, have strong impact on the damage pattern after thermal shock loading.

  5. Genotoxic changes to rodent cells exposed in vitro to tungsten, nickel, cobalt and iron.

    Science.gov (United States)

    Bardack, Stephanie; Dalgard, Clifton L; Kalinich, John F; Kasper, Christine E

    2014-03-10

    Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  6. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    Science.gov (United States)

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-04

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  7. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    Science.gov (United States)

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH4)2SO4-H2O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions.

  8. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed b

  9. Budgeting-Based Organization of Internal Control

    Science.gov (United States)

    Rogulenko, Tatiana; Ponomareva, Svetlana; Bodiaco, Anna; Mironenko, Valentina; Zelenov, Vladimir

    2016-01-01

    The article suggests methodical approaches to the budgeting-based organization of internal control, determines the tasks and subtasks of control that consist in the construction of an efficient system for the making, implementation, control, and analysis of managerial decisions. The organization of responsibility centers by means of implementing…

  10. Tungsten carbide laser alloying of a low alloyed steel

    Science.gov (United States)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  11. Electron impact ionization of tungsten ions in a statistical model

    Science.gov (United States)

    Demura, A. V.; Kadomtsev, M. B.; Lisitsa, V. S.; Shurygin, V. A.

    2015-01-01

    The statistical model for calculations of the electron impact ionization cross sections of multielectron ions is developed for the first time. The model is based on the idea of collective excitations of atomic electrons with the local plasma frequency, while the Thomas-Fermi model is used for atomic electrons density distribution. The electron impact ionization cross sections and related ionization rates of tungsten ions from W+ up to W63+ are calculated and then compared with the vast collection of modern experimental and modeling results. The reasonable correspondence between experimental and theoretical data demonstrates the universal nature of statistical approach to the description of atomic processes in multielectron systems.

  12. Evaluation of stable tungsten isotopes in the resolved resonance region

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available In the last decade benchmark experiments and simulations, together with newly obtained neutron cross section data, have pointed out deficiencies in evaluated data files of W isotopes. The role of W as a fundamental structural material in different nuclear applications fully justifies a new evaluation of 182, 183, 184, 186W neutron resonance parameters. In this regard transmission and capture cross section measurements on natural and enriched tungsten samples were performed at the GELINA facility of the EC-JRC-IRMM. A resonance parameter file used as input in the resonance shape analysis was prepared based on the available literature and adjusted in first instance to transmission data.

  13. Fuzzy Based composition Control of Distillation Column

    Directory of Open Access Journals (Sweden)

    Guru.R

    2013-04-01

    Full Text Available This paper proposed a control scheme based on fuzzy logic for a methanol - water system of bubble cap distillation column. Fuzzy rule base and Inference System of fuzzy (FIS is planned to regulatethe reflux ratio (manipulated variable to obtain the preferred product composition (methanol for a distillation column. Comparisons are made with conventional controller and the results confirmed the potentials of the proposed strategy of fuzzy control.

  14. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  15. Luminescent Tungsten(VI) Complexes: Photophysics and Applicability to Organic Light-Emitting Diodes and Photocatalysis.

    Science.gov (United States)

    Yeung, Kwan-Ting; To, Wai-Pong; Sun, Chenyue; Cheng, Gang; Ma, Chensheng; Tong, Glenna So Ming; Yang, Chen; Che, Chi-Ming

    2017-01-02

    The synthesis, excited-state dynamics, and applications of two series of air-stable luminescent tungsten(VI) complexes are described. These tungsten(VI) complexes show phosphorescence in the solid state and in solutions with emission quantum yields up to 22 % in thin film (5 % in mCP) at room temperature. Complex 2 c, containing a 5,7-diphenyl-8-hydroxyquinolinate ligand, displays prompt fluorescence (blue-green) and phosphorescence (red) of comparable intensity, which could be used for ratiometric luminescent sensing. Solution-processed organic light-emitting diodes (OLEDs) based on 1 d showed a stable yellow emission with an external quantum efficiency (EQE) and luminance up to 4.79 % and 1400 cd m(-2) respectively. These tungsten(VI) complexes were also applied in light-induced aerobic oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Migration of tungsten dust in tokamaks: role of dust–wall collisions

    NARCIS (Netherlands)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; I. Bykov,; H. Bergsåker,; Litnovsky, A.; N. den Harder,; Lazzaro, E.

    2013-01-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust–plasma interaction processes, also encompasses major mechanical aspects of dust–surface collisions. The use of analytical expressions

  17. Lysozyme-mediated biomineralization of titanium-tungsten oxide hybrid nanoparticles with high photocatalytic activity.

    Science.gov (United States)

    Kim, Jung Kyu; Jang, Ji-ryang; Choi, Noori; Hong, Dahyun; Nam, Chang-Hoon; Yoo, Pil J; Park, Jong Hyeok; Choe, Woo-Seok

    2014-10-21

    Titanium-tungsten oxide composites with greatly enhanced photocatalytic activity were synthesized by lysozyme-mediated biomineralization. It was shown for the first time that simple control of the onset of biomineralization could enable fine tuning of the composition and crystallinity of the composites to determine their photocatalytic performance.

  18. Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Gretskaya, I. Yu; Grunin, A. V.; Dyachenko, M. Yu; Puntakov, N. A.; Sadovskiy, Ya A.

    2016-09-01

    Tungsten layers with iron impurity were deposited on tungsten substrates modeling re-deposited layers in a fusion device. The samples were tested by thermocycling and hydrogen ion beam tests. Thermocycling revealed globule formation on the surface. The size of the globules depended on iron impurity content in the coating deposited. Pore formation was observed which in some cases lead to exfoliation of the coatings. Hydrogen ion irradiation lead to formation of blisters on the coating and finally its exfoliation.

  19. Interface behavior of tungsten coating on stainless steel by electro spark deposition

    Directory of Open Access Journals (Sweden)

    Wang Yuangang

    2015-01-01

    Full Text Available A new method of electro spark deposition method was put forward, which was based on the theory of electro spark deposition by changing the polarity in the liquid. Tungsten coating layers was produced on surface of Stainless Steel by electro spark deposition. The micro hardness, microstructure, chemical composition and phases of the coating layer were examined by means of hardness test, scanning electron microscopy (SEM and energy dispersive spectrometer (EDS analysis. The results showed that there was tungsten coating in the surface, which was discontinuous. Microhardness of the coating layer was about 3 times more than that of the substrate. The combination between coating layer and substrate was metallurgical bond.

  20. Factors affecting miniature Izod impact strength of tungsten-fiber-metal-matrix

    Science.gov (United States)

    Winsa, E. A.; Petrasek, D. W.

    1973-01-01

    The miniature Izod and Charpy impact strengths of copper, copper-nickel, and nickel-base superalloy uniaxially reinforced with continuous tungsten fibers were studied. In most cases, impact strength was increased by increasing fiber or matrix toughness, decreasing fibermatrix reaction, increasing test temperature, hot working, or heat treating. Notch sensitivity was reduced by increasing fiber content or matrix toughness. An equation relating impact strength to fiber and matrix properties and fiber content was developed. Program results imply that tungsten alloy-fiber/superalloy matrix composites can be made with adequate impact resistance for turbine blade or vane applications.

  1. Depth profile analysis of various titanium based coatings on steel and tungsten carbide using laser ablation inductively coupled plasma--"time of flight" mass spectrometry.

    Science.gov (United States)

    Bleiner, D; Plotnikov, A; Vogt, C; Wetzig, K; Günther, D

    2000-01-01

    A homogenized 193 nm ArF* laser ablation system coupled to an inductively coupled plasma-"Time of Flight"-mass spectrometer (LA-ICP-TOFMS) was tested for depth profiling analysis on different single-layer Ti based coatings on steel and W carbides. Laser parameters, such as repetition rate, pulse energy and spatial resolution were tested to allow optimum depth related calibration curves. The ablation process using a laser repetition rate of 3 Hz, 120 microm crater diameter, and 100 mJ output energy, leads to linear calibration curves independent of the drill time or peak area used for calibrating the thickness of the layer. The best depth resolution obtained (without beam splitter) was 0.20 microm per laser shot. The time resolution of the ICP-TOFMS of 102 ms integration time per isotope was sufficient for the determination of the drill time of the laser through the coatings into the matrix with better than 2.6% RSD (about 7 microm coating thickness, n = 7). Variation of the volume of the ablation cell was not influencing the depth resolution, which suggests that the depth resolution is governed by the ablation process. However, the application on the Ti(N,C) based single layer shows the potential of LA-ICP-TOFMS as a complementary technique for fast depth determinations on various coatings in the low to medium microm region.

  2. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  3. A Study of Scandia Doped Tungsten Nano-Powders

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3% Sc2O3 and 3% Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.

  4. Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil

    Science.gov (United States)

    Ghasempour, Fariba; Azimirad, Rouhollah; Amini, Abbas; Akhavan, Omid

    2015-05-01

    Antibacterial activity of tungsten oxide nanorods/microrods were studied against Escherichia coli bacteria under visible light irradiation and in dark. A two-step annealing process at temperatures up to 390 °C and 400-800 °C was applied to synthesize the tungsten oxide nanorods/microrods on tungsten foils using KOH as a catalyst. Annealing the foils at 400 °C in the presence of catalyst resulted in formation of tungsten oxide nanorods (with diameters of 50-90 nm and crystalline phase of WO3) on surface of tungsten foils. By increasing the annealing temperature up to 800 °C, tungsten oxide microrods with K2W6O19 crystalline phase were formed on the foils. The WO3 nanorods showed a strong antibacterial property under visible light irradiation, corresponding to >92% bacterial inactivation within 24 h irradiation at room temperature, while the K2W6O19 microrods formed at 800 °C could inactivate only ∼45% of the bacteria at the same conditions.

  5. Deuterium implantation into tungsten at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Johannes [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, James-Franck-Str. 1, D-85748 Garching (Germany); Schwarz-Selinger, Thomas; Balden, Martin; Schmid, Klaus [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To study the interaction of hydrogen isotopes with tungsten many experiments are conducted in linear plasma devices, which provide high enough hydrogen fluxes to supersaturate the tungsten sample and create defects such as blister. Here an alternative approach is presented. Instead of achieving a high deuterium concentration via high flux exposure, the sample temperature is reduced and the implantation energy of deuterium into tungsten is increased. The lower temperature associated with a reduction in diffusivity as well as the deeper implantation of deuterium lead to an increase of deuterium concentration within the implantation zone. Deuterium is stepwise implanted into polycrystalline tungsten up to a fluence of 1 x 10{sup 22} D/m{sup 2} with an energy of 3.0 keV/D at a sample temperature of 134 K. The retained deuterium is measured in-situ by nuclear reaction analysis. For low fluence approximately 100 % of the implanted deuterium is retained, while for higher fluence the retention saturates. Close to the surface deuterium concentrations up to 64 % are reached. This leads to massive grain orientation dependent blistering with blister sizes between 100-1000 nm at depths between 30-150 nm. Besides the characterization of the blisters their influence on deuterium transport is studied.

  6. OPAL Example Segment of Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  7. Gas tungsten arc welder with electrode grinder

    Science.gov (United States)

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  8. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 2.64E11 protons @ 440 GeV are impinging on the target.

  9. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    HiRadMat facility of CERN/SPS

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 1.7E11 protons @ 440 GeV are impinging on the target.

  10. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 1.85E11 protons @ 440 GeV are impinging on the target.

  11. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 2E11 protons @ 440 GeV are impinging on the target.

  12. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 1.3E11 protons @ 440 GeV are impinging on the target.

  13. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity...

  14. Tungsten-based nanomaterials (WO{sub 3} & Bi{sub 2}WO{sub 6}): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Girish Kumar, S., E-mail: girichem@yahoo.co.in; Koteswara Rao, K.S.R., E-mail: raoksrk@gmail.com

    2015-11-15

    Graphical abstract: - Highlights: • Photocatalytic applications of WO{sub 3} and Bi{sub 2}WO{sub 6} based nanomaterial are reviewed. • Modifications to improve their performance are highlighted. • Charge carrier generation–separation–recombination is discussed. • Challenges and future prospects in this area are addressed. - Abstract: Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO{sub 2} based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO{sub 3} (2.4–2.8 eV) and Bi{sub 2}WO{sub 6} (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO{sub 3} CB and Bi{sub 2}WO{sub 6} VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu{sup 2+} ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  15. Linearizing Control of Induction Motor Based on Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.

  16. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  17. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  18. Smith Predictor Based Robust Rapid Tracking Controller

    Institute of Scientific and Technical Information of China (English)

    LIU Hongbin; HU Dejin

    2006-01-01

    Precise model is hard to get in real application, a Smith predictor based robust rapid tracking controller for inaccurate model is proposed. Zero phase error feedforward controller which increases system closed-loop dynamics and disturbance observer based Smith feedback control which diminishes model hysteresis and improves stability are integrated. This method is applied in the noncircular machining with piezoelectric ceramic driver. The simulation and experiment show that the performance robustness and stability are well balanced in bandwidth about 200 Hz. The controller can decrease system hysteresis and get good tracking performance for predefined square-wave input signal.

  19. Experiments and analysis of thin tungsten slice and W/Cu brazing for primary collimator scraper in CSNS/RCS

    Science.gov (United States)

    Zou, YiQing; Kang, Ling; Yu, JieBing; Qu, HuaMin; He, ZheXi

    2014-04-01

    According to the requirements for the beam collimation system of the rapid cycling synchrotron (RCS) of China Spallation Neutron Source (CSNS), the main structure of a scraper of primary collimator is made by W/Cu brazing, in which the thickness of tungsten slice is 0.17 mm. In order to get the best mechanical properties, the brazing temperature is suggested to be controlled under the recrystallization temperature of tungsten, while the recrystallization temperature is affected directly by the thickness of tungsten. Because of little research and application on the brazing of thin tungsten slice of 0.17 mm and copper, tensile tests are done to get the mechanical properties of tungsten slices which experience different brazing temperatures. In keeping the inner relationships between the mechanical properties and temperature, another experiment is done by using SEM to scan the microstructures including the size and distribution of crystals. Finally we determine the recrystallization temperature of tungsten slice of 0.17 mm, and get the best parameters of W/Cu brazing for scrapers of primary collimator in CSNS/RCS.

  20. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  1. ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM

    Directory of Open Access Journals (Sweden)

    A.PURNA CHANDRA RAO

    2010-11-01

    Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.

  2. Microstructure and properties of liquid-phase sintered tungsten heavy alloys by using ultra-fine tungsten powders

    Institute of Scientific and Technical Information of China (English)

    于洋; 王尔德

    2004-01-01

    The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size of 3 μm) were investigated respectively. Commercial tungsten powders (original tungsten powders) were mechanically milled in a high-energy attritor mill for 35 h. Ultra-fine tungsten powders and commercial Ni, Fe powders were consolidated into green compacts by using CIP method and liquid-phase sintering at 1 465 ℃ for 30 min in the dissociated ammonia atmosphere. Liquid-phase sintered tungsten heavy alloys using ultra-fine tungsten powders exhibit full densification (above 99% in relative density) and higher strength and elongation compared with conventional liquidphase sintered alloys using original tungsten powders due to lower sintering temperature at 1 465 ℃ and short sintering time. The mechanical properties of sintered tungsten heavy alloy are found to be mainly dependent on the particles size of raw tungsten powders and liquid-phase sintering temperature.

  3. Helium segregation on surfaces of plasma-exposed tungsten.

    Science.gov (United States)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D; Wirth, Brian D

    2016-02-17

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  4. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  5. Control of acrobot based on Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    赖旭芝; 吴敏; 佘锦华

    2004-01-01

    Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an acrobot to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from upswing to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.

  6. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  7. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  8. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  9. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  10. Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity

    Energy Technology Data Exchange (ETDEWEB)

    Vartuli, J.C.; Santiesteban, J.G.; Traverso, P.; Cardona-Martinez, N.; Chang, C.D.; Stevenson, S.A.

    1999-10-01

    Ammonia adsorption microcalorimetry was conducted on various solid acid tungsten/zirconia catalysts prepared by different techniques. The calorimetric data were compared to catalytic test results using n-pentane isomerization as a measure of acid activity. The results show that (1) the co-precipitation method of making the tungsten/zirconia catalyst produces a greater number of acidic sites than impregnating tungsten on hydrous zirconia, resulting in a more active catalyst, and (2) the addition of small amounts of iron to the tungsten/zirconia catalyst increases the acid site strength as determined by ammonia adsorption and improves the paraffin isomerization activity. The calorimetry data indicate that the acid site strength of the tungsten/zirconia materials is similar to or slightly higher than that found in zeolites or sulfated zirconia and is comparable to sulfuric acid. However, the paraffin isomerization activity results suggest that the acid sites of the tungsten/zirconia catalyst should be about four orders of magnitude more active than that of zeolite {beta} on the basis of turnover frequency. Their experimental results indicate a lack of correlation between the heat of ammonia adsorption with catalytic activity. Comparisons of catalytic activity between materials based entirely on acid strength may not be valid, and kinetic probes would be more appropriate.

  11. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

    NARCIS (Netherlands)

    Rea, K. E.; Viswanathan, V.; Kruize, A.; De Hosson, J. Th. M.; O'Dell, S.; McKechnie, T.; Rajagopalan, S.; Vaidyanathan, R.; Seal, S.; O’Dell, S.

    2008-01-01

    Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured then no-mechanical components. Spray drying of powder feedstock appears to have a significant effect on

  12. Tungsten carbide promoted Pd and Pd–Co electrocatalysts for formic acid electrooxidation

    DEFF Research Database (Denmark)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium–cobalt (Pd–Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid...

  13. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Implementation of PLC Based Elevator Control System

    Directory of Open Access Journals (Sweden)

    Sandar Htay

    2014-03-01

    Full Text Available This paper describes programmable logic controller based elevator control system. An elevator is one of the important aspects in electronics control module in automotive application. Nowadays, Myanmar is a developing country and there is enormous increase in high-rise building in Myanmar. This paper mainly focuses on using programmable logic controller to control the circuit and building the elevator model. Hall Effect sensor is used for the elevator position. DC Motor is used to control the up and down movement of the elevator car. Push buttons are used to call the elevator car. The elevator position is described by using the display unit. In this paper, Auto Station Software ladder logic program is used for four floors control system

  15. Vector Control Based on SVPWM for ACIM

    Directory of Open Access Journals (Sweden)

    Zhu Jun

    2013-05-01

    Full Text Available To solve the large torque ripple and current harmonics, low DC bus voltage problems, a new control strategy is proposed for AC induction motor by using space vector pulse width modulation, so that the static and dynamic performance are improved. The system simulation experiment mode was established based on SVPWM to verify the effectiveness of the system control mode. It is showed that it can reduce the current ripple and torque ripple, improve the utilization of DC bus voltage. It means that the control strategy based SVPWM can improve dynamic and static performance effectively for the ACIM servo system.

  16. Tungsten based electrocatalyst for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Joel B. [OSRAM SYLVANIA Inc., Global Tungsten and Powders R and D, Hawes Street, Towanda, PA 18848 (United States); Materials Science and Engineering, SUNY Binghamton, Binghamton, NY 13902 (United States); Smith, Sean P.E. [OSRAM SYLVANIA Inc., Global Tungsten and Powders R and D, Hawes Street, Towanda, PA 18848 (United States); Whittingham, M. Stanley [Materials Science and Engineering, SUNY Binghamton, Binghamton, NY 13902 (United States); Abruna, Hector D. [Cornell University, Department of Chemistry and Chemical Biology, Ithaca, NY 14653 (United States)

    2007-08-15

    A barrier to the widespread use of fuel cells is their reliance on expensive and scarce platinum and other precious metal catalysts. We present a catalyst for hydrogen oxidation, prepared electrochemically from high-purity aqueous tungstate salt precursors. The 24-electron reduction of ammonium metatungstate ((NH{sub 4}){sub 6}[H{sub 2}W{sub 12}O{sub 40}]) yields a material with electrocatalytic activity towards the oxidation of hydrogen in acid electrolyte which approaches 25% that of platinum. Moreover, the tungstate catalyst is unusually tolerant to CO and H{sub 2}S contaminants in the fuel stream. (author)

  17. Model based control charts in stage 1 quality control

    NARCIS (Netherlands)

    A.J. Koning (Alex)

    1999-01-01

    textabstractIn this paper a general method of constructing control charts for preliminary analysis of individual observations is presented, which is based on recursive score residuals. A simulation study shows that certain implementations of these charts are highly effective in detecting assignable

  18. Version Control in Project-Based Learning

    Science.gov (United States)

    Milentijevic, Ivan; Ciric, Vladimir; Vojinovic, Oliver

    2008-01-01

    This paper deals with the development of a generalized model for version control systems application as a support in a range of project-based learning methods. The model is given as UML sequence diagram and described in detail. The proposed model encompasses a wide range of different project-based learning approaches by assigning a supervisory…

  19. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  20. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys

    Science.gov (United States)

    Liu, Xiang; Lian, Youyun; Chen, Lei; Chen, Zhenkui; Chen, Jiming; Duan, Xuru; Fan, Jinlian; Song, Jiupeng

    2015-08-01

    Transient heat loads, such as plasma disruptions and ELMs, could induce plastic deformations, cracking, melting, even fatigue cracks and creep of tungsten (W) surface. A high purity W, CVD-W coating, TiC dispersion strengthened and K doped tungsten alloys were tested in a 60 kW electron-beam facility by simulating the transient load events under different base temperatures. It was found that CVD-W, W-TiC and W-K alloys have higher crack thresholds than high purity W, meanwhile CVD-W is more sensitive to the crack disappearing at elevated base temperatures. On the other hand, repetitive pulse loading like ELMs can induce serious network cracks even the power density was quite lower than the crack threshold determined by a single shot. The ABAQUS code was used to simulate the crack behaviors of ITER grade pure W by a single shot and a FE-SAFE code was adopted to estimate the fatigue life under ELMs-like loads. A good agreement with experiment results was found.

  1. Development of Arduino based wireless control system

    Science.gov (United States)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  2. Ultrasonic ranking of toughness of tungsten carbide

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  3. FIPA agent based network distributed control system

    CERN Document Server

    Gyurjyan, V; Heyes, G; Jastrzembski, E; Timmer, C; Wolin, E

    2003-01-01

    A control system with the capabilities to combine heteregeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  4. FIPA agent based network distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  5. Cluster-based control of nonlinear dynamics

    CERN Document Server

    Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek

    2016-01-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...

  6. High temperature fatigue behavior of tungsten copper composites

    Science.gov (United States)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  7. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  8. Epitaxial growth of tungsten nanoparticles on alumina and spinel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Suarez, T; Lopez-Esteban, S; Pecharroman, C; Esteban-Cubillo, A; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz 3, 28049, Cantoblanco, Madrid (Spain); Diaz, L A; Torrecillas, R [Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones CientIficas (CSIC), C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias (Spain); Gremillard, L [Universite de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510, 20 avenue Albert Einstein, Villeurbanne F-69621 (France)], E-mail: jsmoya@icmm.csic.es

    2008-05-28

    Isolated tungsten nanoparticles ({alpha}-W and {beta}-W phase) were synthesized and epitaxially grown on alumina and spinel particle surfaces with an average tungsten size of {<=}20 nm for a low tungsten content (of {<=}1.5 vol%). Using tungsten (VI) ethoxide alcoholic solutions, tungsten trioxide hydrated precursors were attached to a ceramic grains surface as a nanoparticle coating. High-resolution transmission electron microscopy (HRTEM) micrographs showed epitaxial interfaces between alumina, spinel and metallic tungsten. This epitaxial growth is assumed to be due to the effect of water vapour on the sublimation of ortho-tungstic acid during the reduction process in a hydrogen atmosphere. The planes involved in the epitaxy were found to be (22-bar 0){sub Al2O3} parallel (121){sub W} and (311){sub MgAl2O4} parallel (110){sub W}.

  9. Induction plasma spheroidization of tungsten and molybdenum powders

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The melting, evaporation and oxidation behaviors as well as the solidification phenomena of tungsten and molybdenum in induction plasma were studied. Scanning electron microscopy was used to examine the morphology and the cross section of plasma-processed powders. X-ray diffraction was used to analyze the oxides formed on the particle surface of these two metals. The influence of spray chamber pressure on the spheroidization and oxidation phenomena was discussed. The results show that fewer Mo particles than W particles are spheroidized at the same powder feed rate under the same plasma spray condition although molybdenum has a lower melting point. A small fraction of tungsten is evaporized and condensed either on the surface of tungsten particles nearby or on the wall of spray chamber. Tungsten oxides were found in tungsten powder processed under soft vacuum condition. Extremely large grains form inside some spheroidized particles of tungsten powder.

  10. Tungsten Speciation in Firing Range Soils

    Science.gov (United States)

    2011-01-01

    thus are composed of single minerals. Iron minerals used in fitting included ferrihydrite, hematite , goethite, biotite, hornblende, and pyrite, which...tungstate adsorbing on ferrihy- drite. Ferrihydrite was selected for these tests as earlier X-ray microprobe studies indicated that this was the primary ...Camp Edwards soil profile 31T as a function of depth. The spectra all indicate that the primary coordination sphere of tungsten is dominated by

  11. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  12. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Science.gov (United States)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  13. The WEST project: Current status of the ITER-like tungsten divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-10-15

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues.

  14. The microstructure of chromium-tungsten steels

    Science.gov (United States)

    Klueh, R. L.; Maziasz, P. J.

    1989-03-01

    Chromium-tungsten steels are being developed to replace the Cr-Mo steels for fusion-reactor applications. Eight experimental steels were produced and examined by optical and electron microscopy. Chromium concentrations of 2.25, 5, 9 and 12 pct were used. Steels with these chromium compositions and with 2 pct W and 0.25 pct V were produced. To determine the effect of tungsten and vanadium, three other 2.25Cr steels were produced as follows: an alloy with 2 pct W and 0 pct V and alloys with 0 and 1 pct W and 0.25 pct V. A 9Cr steel containing 2 pct W, 0.25 pct V, and 0.07 pct Ta also was studied. For all alloys, carbon was maintained at 0.1 pct. Two pct tungsten was required in the 2.25Cr steels to produce 100 pct bainite (no polygonal ferrite). The 5Cr and 9Cr steels were 100 pct martensite, but the 12Cr steel contained about 25 pct delta-ferrite. Precipitate morphology and precipitate types varied, depending on the chromium content. For the 2.25Cr steels, M3C and M7C3 were the primary precipitates; for the 9Cr and 12Cr steels, M23C6 was the primary precipitate. The 5Cr steel contained M7C3 and M23C6. All of the steels with vanadium also contained MC.

  15. Defect and electrical properties of nanocrystalline tungsten trioxide

    Institute of Scientific and Technical Information of China (English)

    Yang Xin-Sheng; Wang Yu; Dong Liang; Qi Li-Zhen; Zhang Feng

    2004-01-01

    Nanocrystalline tungsten trioxide particles were prepared by a wet-chemical method. Transmission electron microscope (TEM) analysis shows that the average grain size is about 15nm. The oxygen deficiency of nanometre-sized sample is higher than that of ordinary tungsten trioxide. The electric conductivity increases because of high oxygen deficiency. Ironic relaxation polarization and crystallographic shear (CS) planes theory were used to explain the unusual dielectric characteristic of nanocrystalline tungsten trioxide.

  16. Powder Processing of Amorphous Tungsten-bearing Alloys and Composites

    Science.gov (United States)

    2015-03-01

    8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-14-73 Powder Processing of Amorphous Tungsten ...Technology, Boise State University, Army Research Laboratory Project Title: Powder Processing of Amorphous Tungsten -bearing Alloys and Composites...strength, we made them better suited to study the mechanical alloying of tungsten -transition metal couples in which interdiffusion during mechanical

  17. The Tungsten Demand and Supply Situation in Recent Years

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Tungsten is an important and valuable resource listed by the State as a kind of special minerals under the State protection. By the end of 2005, China had 310 tungsten mining areas with the total tungsten deposit amounting to 5.69 million tons. Among the total deposit, wolframite accounts for approximately 20.8 per cent and scheelite accounts for about 70 per cent with

  18. Model Based Adaptive Piecewise Linear Controller for Complicated Control Systems

    Directory of Open Access Journals (Sweden)

    Tain-Sou Tsay

    2014-01-01

    Full Text Available A model based adaptive piecewise linear control scheme for industry processes with specifications on peak overshoots and rise times is proposed. It is a gain stabilized control technique. Large gain is used for large tracking error to get fast response. Small gain is used between large and small tracking error for good performance. Large gain is used again for small tracking error to cope with large disturbance. Parameters of the three-segment piecewise linear controller are found by an automatic regulating time series which is function of output characteristics of the plant and reference model. The time series will be converged to steady values after the time response of the considered system matching that of the reference model. The proposed control scheme is applied to four numerical examples which have been compensated by PID controllers. Parameters of PID controllers are found by optimization method. It gives an almost command independent response and gives significant improvements for response time and performance.

  19. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  20. Flocculation control study based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A study on flocculation control based on fractal theory was carried out. Optimization test of chemical coagulant dosage confirmed that the fractal dimension could reflect the flocculation degree and settling characteristics of aggregates and the good correlation with the turbidity of settled effluent. So that the fractal dimension can be used as the major parameter for flocculation system control and achieve self-acting adjustment of chemical coagulant dosage. The fractal dimension flocculation control system was used for further study carried out on the effects of various flocculation parameters, among which are the dependency relationship among aggregates fractal dimension, chemical coagulant dosage, and turbidity of settled effluent under the conditions of variable water quality and quantity. And basic experimental data were obtained for establishing the chemical coagulant dosage control model mainly based on aggregates fractal dimension.

  1. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  2. Preparation of tungsten carbide nanoparticles by ion implantation and electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S. [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yamaki, T., E-mail: yamaki.tetsuya@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yamamoto, S.; Hakoda, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawaguchi, K. [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Kobayashi, T. [RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan); Suzuki, A.; Terai, T. [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-11-01

    Glassy carbon (GC) substrates were implanted with 100 keV tungsten ions at retained fluences of 4 × 10{sup 16} and 6 × 10{sup 16} ions/cm{sup 2} and surface-etched electrochemically in order to prepare tungsten-carbide (WC) nanoparticles on their topmost layers. The calculated current efficiency for the electrochemical etching was nearly the same for the two samples implanted at different fluences, suggesting the controllability of the etched depth using the consumed electric charge. The etching front reached the buried tungsten-implanted layer and increased the tungsten concentration at the surface. No oxidation of WC was observed, even under anodic potential application during electrochemical etching. The voltammogram response of the topmost nanoparticle layer was too small to be observed, probably due to the limited activity of the WC itself and the remaining low concentration. It was demonstrated that this technique could, in principle, be applied to various types of nanoparticle catalysts implanted in GC substrates.

  3. Optimization-based controller design for rotorcraft

    Science.gov (United States)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  4. Polarization control based interference microwave photonic filters

    Science.gov (United States)

    Madziar, Krzysztof; Galwas, Bogdan

    2016-12-01

    In this paper we present a concept of multi-line Microwave Photonic Filter (MPF) based on polarization beam splitting and polarization control in each line. Coefficients of investigated filter are determined by attenuation of its lines and that on the other hand can be manipulated by change of the polarization in the fiber. Presented results involve scattering parameters (S21) measurements of optical path over polarization control unit rotation, scattering parameters (S21) characteristics of investigated filter and transmission optimization capabilities.

  5. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    Science.gov (United States)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  6. Microcrystalline hexagonal tungsten bronze. 2. Dehydration dynamics.

    Science.gov (United States)

    Luca, Vittorio; Griffith, Christopher S; Hanna, John V

    2009-07-06

    Low-temperature (25-600 degrees C) thermal transformations have been studied for hydrothermally prepared, microcrystalline hexagonal tungsten bronze (HTB) phases A(x)WO(3+x/2).zH(2)O as a function of temperature, where A is an exchangeable cation (in this case Na(+) or Cs(+)) located in hexagonal structural tunnels. Thermal treatment of the as-prepared sodium- and cesium-exchanged phases in air were monitored using a conventional laboratory-based X-ray diffractometer, while thermal transformations in vacuum were studied using synchrotron X-ray and neutron diffraction. Concurrent thermogravimetric, diffuse reflectance infrared (DRIFT), and (23)Na and (133)Cs magic angle spinning (MAS) NMR spectroscopic studies have also been undertaken. For the cesium variant, cell volume contraction occurred from room temperature to about 350 degrees C, the regime in which water was "squeezed" out of tunnel sites. This was followed by a lattice expansion in the 350-600 degrees C temperature range. Over the entire temperature range, a net thermal contraction was observed, and this was the result of an anisotropic change in the cell dimensions which included a shortening of the A-O2 bond length. These changes explain why Cs(+) ions are locked into tunnel positions at temperatures as low as 400 degrees C, subsequently inducing a significant reduction in Cs(+) extractability under low pH (nitric acid) conditions. The changing Cs(+) speciation as detected by (133)Cs MAS NMR showed a condensation from multiple Cs sites, presumably associated with differing modes of Cs(+) hydration in the tunnels, to a single Cs(+) environment upon thermal transformation and water removal. While similar lattice contraction was observed for the as-prepared sodium variant, the smaller radius of Na(+) caused it to be relatively easily removed with acid in comparison to the Cs(+) variant. From (23)Na MAS NMR studies of the parent material, complex Na(+) speciation was observed with dehydrated and various

  7. Developing stereo image based robot control system

    Science.gov (United States)

    Suprijadi, Pambudi, I. R.; Woran, M.; Naa, C. F.; Srigutomo, W.

    2015-04-01

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  8. Logic and logic-based control

    Institute of Scientific and Technical Information of China (English)

    Hongsheng QI; Daizhan CHENG

    2008-01-01

    This paper gives a matrix expression of logic. Under the matrix expression, a general description of the logical operators is proposed. Using the semi-tensor product of matrices, the proofs of logical equivalences, implications, etc., can be simplified a lot. Certain general properties are revealed. Then, based on matrix expression, the logical operators are extended to multi-valued logic, which provides a foundation for fuzzy logical inference. Finally, we propose a new type of logic, called mix-valued logic, and a new design technique, called logic-based fuzzy control. They provide a numerically computable framework for the application of fuzzy logic for the control of fuzzy systems.

  9. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  10. Model Based Control of Reefer Container Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær

    This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together with the Da......This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together...

  11. Microcontroller-based Feedback Control Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2014-06-01

    Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.

  12. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  13. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  14. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  15. Catalytic acceleration of graphitisation of amorphous carbon during synthesis of tungsten carbide from tungsten and excess amorphous carbon in a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shohoji, N. [Inst. Nacional de Engenharia e Tecnologia Industrial, Lisbon (Portugal); Guerra Rosa, L.; Cruz Fernandes, J. [Instituto Superior Tecnico, Departamento de Engenharia de Materiais, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Martinez, D.; Rodriguez, J. [Plataforma Solar de Almeria, Centro Europeo de Ensayos de Energia Solar, Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, P.O. Box 22, 04200, Tabernas (Spain)

    1999-03-25

    Amorphous carbon is one of the allotropes of carbon possessing carbon activity a(C) higher than that of graphite (standard state with a(C) = 1). Amorphous carbon is in a metastable state but, under normal circumstances, it takes several hours to be graphitised to an extent detectable by X-ray diffraction even at temperature higher than 1500 C. In the present work, we report the accelerated graphitisation of amorphous carbon induced apparently by the catalytic action of tungsten (W) or tungsten carbide (WC) during synthesis of WC started from W and active carbon in solar furnace under controlled atmosphere (Ar or N{sub 2}). This degree of graphitisation of amorphous carbon did not proceed by the similar reaction undertaken in the traditional laboratory furnace under the comparable conditions. (orig.) 14 refs.

  16. Deuterium blistering in tungsten and tungsten vanadium alloys

    NARCIS (Netherlands)

    Arshad, K.; Yuan, Y.; Cheng, L.; Wang, J.; Zhou, Z. J.; De Temmerman, G.; Lu, G. H.

    2016-01-01

    In order to evaluate D blistering behavior in W based plasma facing materials, rolled W and different grades of W-V targets were exposed to high flux of 1.2 × 1024 m−2 s−1, low energy (38 eV) D plasma at two different surface temperatures. The blistering behavior was investigated by means of scannin

  17. Direct Hydrothermal Precipitation of Pyrochlore-Type Tungsten Trioxide Hemihydrate from Alkaline Sodium Tungstate Solution

    Science.gov (United States)

    Li, Xiaobin; Li, Jianpu; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui

    2012-04-01

    Pyrochlore-type tungsten trioxide hemihydrate (WO3·0.5H2O) powder with the average particle size of 0.5 μm was prepared successfully from the weak alkaline sodium tungstate solution by using organic substances of sucrose or cisbutenedioic acid as the acidification agent. The influences of solution pH and acidification agents on the precipitation process were investigated. The results showed that organic acidification agents such as sucrose and cisbutenedioic acid could improve the precipitation of pyrochlore WO3·0.5H2O greatly from sodium tungstate solution compared with the traditional acidification agent of hydrochloric acid. In addition, the pH value of the hydrothermal system played a critical role in the precipitation process of WO3·0.5H2O, and WO3·0.5H2O precipitation mainly occured in the pH range of 7.0 to 8.5. The precipitation rate of tungsten species in the sodium tungstate solution could reach up to 98 pct under the optimized hydrothermal conditions. This article proposed also the hydrothermal precipitation mechanism of WO3·0.5H2O from the weak alkaline sodium tungstate solution. The novel method reported in this study has a great potential to improve the efficiency of advanced tungsten trioxide-based functional material preparation, as well as for the pollution-reducing and energy-saving tungsten extractive metallurgy.

  18. Characterisation of laser-produced tungsten plasma using optical spectroscopy method

    Science.gov (United States)

    Kubkowska, M.; Gasior, P.; Rosinski, M.; Wolowski, J.; Sadowski, M. J.; Malinowski, K.; Skladnik-Sadowska, E.

    2009-08-01

    This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.

  19. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Science.gov (United States)

    Latif, Kesemen; Kaan, Çalışkan N.; Emrah, Konokman H.; Nuri, Durlu

    2015-09-01

    Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe) at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  20. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  1. Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.G.; Zhou, W.H.; Huang, L.F. [Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Z., E-mail: zzeng@theory.issp.ac.cn [Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ju, X. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-12-15

    A cluster dynamics model based on rate theory has been developed to study the accumulation and diffusion processes of helium in tungsten under synergistic effects of helium implantation and neutron irradiation. By including self-interstitial atoms, vacancies and helium atoms as well as their clusters and further using more reliable parameters, the evolution of different types of defects with time and depth is investigated. The calculated results are comparable with experiments. The cases of helium plasma corresponding to the first wall and to the divertor are taken into account. The accumulation and diffusion behaviors of helium in tungsten are illustrated by the time and depth dependence of helium concentration in tungsten with or without the neutron irradiation, the contribution of different types of helium clusters/complexes to helium concentration and the depth profiles of different mobile defects and helium-vacancy complexes. It is concluded that the competition of trapping and diffusion effects dominates the behavior of helium atoms in tungsten for these two typical cases. Understanding these mechanisms is important for estimating damages to the plasma-facing materials.

  2. Lorentz Force Based Satellite Attitude Control

    Science.gov (United States)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  3. Model based control of refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Larsen, L.F.

    2005-11-15

    The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers a variety of different types of controls, that incorporates mathematical models. In this thesis the main subject therefore has been restricted to deal with system optimizing control. The optimizing control is divided into two layers, where the system oriented top layers deals with set-point optimizing control and the lower layer deals with dynamical optimizing control in the subsystems. The thesis has two main contributions, i.e. a novel approach for set-point optimization and a novel approach for desynchronization based on dynamical optimization. The focus in the development of the proposed set-point optimizing control has been on deriving a simple and general method, that with ease can be applied on various compositions of the same class of systems, such as refrigeration systems. The method is based on a set of parameter depended static equations describing the considered process. By adapting the parameters to the given process, predict the steady state and computing a steady state gradient of the cost function, the process can be driven continuously towards zero gradient, i.e. the optimum (if the cost function is convex). The method furthermore deals with system constrains by introducing barrier functions, hereby the best possible performance taking the given constrains in to account can be obtained, e.g. under extreme operational conditions. The proposed method has been applied on a test refrigeration system, placed at Aalborg University, for minimization of the energy consumption. Here it was proved that by using general static parameter depended system equations it was possible drive the set-points close to the optimum and thus reduce the power consumption with up to 20%. In the dynamical optimizing layer the idea is to optimize the operation of the subsystem or the groupings of subsystems, that limits the obtainable system performance. In systems

  4. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is sep

  5. Role-based access control in retrospect

    NARCIS (Netherlands)

    Franqueira, Virginia N.L.; Wieringa, Roel

    2012-01-01

    Role-Based Access Control (RBAC) has been a success in terms of the amount of research that went into it, its uptake in international standards, and its adoption by major software vendors. Yet, RBAC remains complex to implement in user organizations. In this paper we review the state of the art of R

  6. Atom-Role-Based Access Control Model

    Science.gov (United States)

    Cai, Weihong; Huang, Richeng; Hou, Xiaoli; Wei, Gang; Xiao, Shui; Chen, Yindong

    Role-based access control (RBAC) model has been widely recognized as an efficient access control model and becomes a hot research topic of information security at present. However, in the large-scale enterprise application environments, the traditional RBAC model based on the role hierarchy has the following deficiencies: Firstly, it is unable to reflect the role relationships in complicated cases effectively, which does not accord with practical applications. Secondly, the senior role unconditionally inherits all permissions of the junior role, thus if a user is under the supervisor role, he may accumulate all permissions, and this easily causes the abuse of permission and violates the least privilege principle, which is one of the main security principles. To deal with these problems, we, after analyzing permission types and role relationships, proposed the concept of atom role and built an atom-role-based access control model, called ATRBAC, by dividing the permission set of each regular role based on inheritance path relationships. Through the application-specific analysis, this model can well meet the access control requirements.

  7. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  8. Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Rao, C.V.S.; Raole, Prakash M.; Vala, Sudhirsinh; Jakhar, Shrichand; Basu, T.K.; Abhangi, Mitul; Makwana, Rajinikant J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2012-04-15

    Graphical abstract: The specular FIR reflectivity of the W{sub 1}, W{sub 2}, W{sub 3} and W{sub 4} mirrors before and after 8 keV Hydrogen ion beam irradiation. Highlights: Black-Right-Pointing-Pointer Mirror like W thin films were obtained via PLD. Black-Right-Pointing-Pointer The maximum thickness of the Tungsten thin film was {approx}324 nm. Black-Right-Pointing-Pointer Effect of H-ion beam irradiation on the quality of PLD W mirror is reported. Black-Right-Pointing-Pointer Post exposure reflectivity of Tungsten thin films was hardly changed by 2%. - Abstract: The optical quality of the First Mirrors (FMs) of a fusion device (burning plasma experiments, ITER) deteriorates due to the erosion by charge exchange neutrals, re-deposition of the eroded material and the lattice damage by the bombardment of the high energetic particles. This degradation of the optical quality of the plasma facing components in such a harsh environment is a serious concern for the reliability of the spectroscopic based optical diagnostics using FM of a fusion device. In this paper, the effect of 8 keV Hydrogen ion beam irradiation onto the FIR reflectivity of Tungsten thin film mirror is presented. The Tungsten thin films were prepared via Pulsed Laser Deposition (PLD) technique. The Tungsten mirrors were subjected to X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for characterization. The specular reflectivities of the Tungsten mirrors before and after exposure to ion beam were recorded with Fourier Transform of Infra-Red (FTIR) technique. The ion penetration depth and straggle into Tungsten thin film and stainless steel (SS) substrate were estimated by Transport of Ions in Matter (TIRM) simulation code. The changes in post exposure IR reflectivity were interpreted in terms of these parameters.

  9. Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings

    NARCIS (Netherlands)

    Strondl, C.; Carvalho, N.M.; Hosson, J.Th.M. De; Kolk, G.J. van der

    2003-01-01

    A series of tungsten-containing diamond-like carbon (Me-DLC) coatings have been produced by unbalanced magnetron sputtering using a Hauzer HTC-1000 production PVD system. Sputtering from WC targets has been used to form W-C:H coatings. The metal to carbon ratio has been varied to study changes in th

  10. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  11. Network-based production quality control

    Science.gov (United States)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  12. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature. Peri

  13. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  14. High-strength tungsten alloy with improved ductility

    Science.gov (United States)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  15. Tungsten and other refractory metals for VLSI applications II

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.

    1987-01-01

    This book presents papers on tungsten and other refractory metals for VLSI applications. Topics include the following: Selectivity loss and nucleation on insulators, fundamental reaction and growth studies, chemical vapor deposition of tungsten, chemical vapor deposition of molybdenum, reactive ion etching of refractory metal films; and properties of refractory metals deposited by sputtering.

  16. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  17. Calibration and Temperature Profile of a Tungsten Filament Lamp

    Science.gov (United States)

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  18. Microstructure and tensile properties of tungsten at elevated temperatures

    Science.gov (United States)

    Shen, Tielong; Dai, Yong; Lee, Yongjoong

    2016-01-01

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250-300 °C for the HR tungsten and about 350 °C for the HF tungsten.

  19. Dynamic Mechanical Properties and Fracture Characteristics of Tungsten Fiber Reinforced Cu-Based Composites%钨丝增强铜基复合材料的动态力学性能及断裂特性

    Institute of Scientific and Technical Information of China (English)

    吴哲; 武高辉; 康鹏超; 修子扬

    2011-01-01

    Tungsten fiber reinforced Cus2Al10Fe4Ni4 composites were prepared by a melt infiltrating casting method. Dynamic compression behavior and fracture characteristics were investigated by Split Hopkinson Pressure Bar (SHPB) and scanning electron microscopy (SEM). The results show that the interface between tungsten fibers and the matrix alloy is compact, and it exhibits high strength under dynamic compression. The composites create some plastic deformation and cracks under dynamic compression at strain rate of 2000 s-1. The dynamic compressive strength of the composites is 2500 Mpa under dynamic compression at strain rate of 3000 s-1, and the failure modes of the composites include splitting and buckling of tungsten fiber and abruption of the matrix alloy. Meantime, the fracture surface creates lots of melting bands, which change the fracture mode of the composites and accelerate its failure.%通过渗流铸造的方法制备出Wf/Cu82Al10Fe4Ni4复合材料,采用分离式霍普金森压杆(SHPB)和扫描电镜(SEM)研究其动态压缩行为及断裂特性.结果表明:复合材料界面结合紧密,受冲击时体现出良好的界面结合强度;在应变率为2000 s-1下动态压缩材料发生部分塑性变形,局部表面出现裂纹;在应变率为3000 s-1下动态压缩材料的动态压缩强度达到2500MPa,材料内部出现钨丝劈裂、钨丝弯曲断裂以及基体合金断裂3种破坏模式.同时,在材料的断裂面上出现大量熔化带,分析认为熔化是随着应变率的提高而出现的,它改变了复合材料的断裂方式,加速了Wf/Cu82Al10Fe4Ni4复合材料的整体失效.

  20. Tungsten diselenide Q-switched erbium-doped fiber laser

    Science.gov (United States)

    Chen, Bohua; Zhang, Xiaoyan; Guo, Chaoshi; Wu, Kan; Chen, Jianping; Wang, Jun

    2016-08-01

    We report a tungsten diselenide (WSe2) polyvinyl alcohol (PVA)-based, saturable absorber and related experiment results of a Q-switched fiber laser. WSe2-PVA film is synthesized by liquid phase exfoliation method, and its saturable absorption is measured via a nonlinear transmission experiment. The result shows that WSe2-PVA saturable absorber has a modulation depth of 3.5%, which means it has potential for generating an ultrafast pulse laser. We apply this absorber into a ring-cavity erbium-doped fiber laser and obtain Q-switched pulses under appropriate pump power. Our work demonstrates the reliable nonlinear optical characteristics of WSe2 and the feasibility for this two-dimensional material to be applied in the field of nonlinear optics.

  1. Effect of tungsten doping on catalytic properties of niobium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Franciane P.; Nogueira, Andre E. [Departamento de Quimica, Universidade Federal de Lavras, Lavras-MG (Brazil); Patricio, Patricia S.O., E-mail: patriciapatricio@cefetmg.br [Centro Federal de Educacao Tecnologica, CEFET, Belo Horizonte, MG (Brazil); Oliveira, Luiz C.A. [Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-04-15

    A novel material based on niobia (Nb{sub 2}O{sub 5}) was synthesized to oxidize an organic compound in aqueous medium in the presence of H{sub 2}O{sub 2} after chemical modifications. Niobia was modified by doping with tungsten and also treating with H{sub 2}O{sub 2} in order to maximize the oxidative properties of this oxide. The analysis of the products from methylene blue dye oxidation with electro spray ionization mass spectrometry (ESI-MS) showed that the dye was successively oxidized to different intermediate compounds. The successive hydroxylation during this oxidation strongly suggests that highly reactive hydroxyl radicals are generated involving H{sub 2}O{sub 2} on the W-doped niobia grain surface. These results strongly suggest that the H{sub 2}O{sub 2} can regenerate in situ the peroxo group remaining active the system. (author)

  2. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  3. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  4. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  5. Double phase conjugation in tungsten bronze crystals.

    Science.gov (United States)

    Sharp, E J; Clark Iii, W W; Miller, M J; Wood, G L; Monson, B; Salamo, G J; Neurgaonkar, R R

    1990-02-20

    In this paper we report a new method for double phase conjugation particularly suited to the tungsten bronze crystal strontium barium niobate. It has also been observed to produce conjugate waves in BaTiO(3) and BSKNN. This new arrangement is called the bridge conjugator because the two beams enter opposing [100] crystal faces and fan together to form a bridge without reflection off a crystal face. Our measurements indicate that the bridge conjugator is competitive with previously reported double phase conjugate mirrors in reflectivity, response time, ease of alignment, and fidelity.

  6. Electrical properties of complex tungsten bronze ceramics

    Science.gov (United States)

    Padhee, R.; Das, Piyush R.

    2014-09-01

    This paper highlights the electrical properties of two new complex tungsten bronze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Pr2W2Ti4Nb4O30) which were prepared by high temperature mixed oxide method. Variation of impedance parameters with temperature (27-500 °C) and frequency (1 kHz to 5 MHz) shows the grain and grain boundary effects in the samples. The variation of dielectric parameters with frequency is also studied. The ac conductivity variation with temperature clearly exhibits that the materials have thermally activated transport properties of Arrhenius type.

  7. Plasma spray forming of tungsten coatings on copper electrodes

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-liang(蒋显亮); F.Gitzhofer; M.I.Boulos

    2004-01-01

    Both direct current dc plasma and radio frequency induction plasma were used to deposit tungsten coatings on copper electrodes. Fine tungsten powder with mean particle size of 5μm and coarse tungsten powder with particle size in the range from 45 μm to 75 μm were used as plasma spray feedstock. It is found that dc plasma is only applicable to spray the fine tungsten powder and induction plasma can be used to spray both the coarse powder and the fine powder. The tungsten coating deposited by the induction plasma spraying of the coarse powder is extremely dense. Such a coating with an interlocking structure and an integral interface with the copper substrate demonstrates high cohesion strength and adhesion strength.

  8. Tungsten recycling in the United States in 2000

    Science.gov (United States)

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  9. FGMOS Based Voltage-Controlled Grounded Resistor

    Directory of Open Access Journals (Sweden)

    R. Pandey

    2010-09-01

    Full Text Available This paper proposes a new floating gate MOSFET (FGMOS based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR are simplicity, low total harmonic distortion (THD, and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW.

  10. Robust motion control of oscillatory-base manipulators h∞-control and sliding-mode-control-based approaches

    CERN Document Server

    Toda, Masayoshi

    2016-01-01

    This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals, and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection. Researche...

  11. Memory-based parallel data output controller

    Science.gov (United States)

    Stattel, R. J.; Niswander, J. K. (Inventor)

    1984-01-01

    A memory-based parallel data output controller employs associative memories and memory mapping to decommutate multiple channels of telemetry data. The output controller contains a random access memory (RAM) which has at least as many address locations as there are channels. A word counter addresses the RAM which provides as it outputs an encoded peripheral device number and a MSB/LSB-first flag. The encoded device number and a bit counter address a second RAM which contains START and STOP flags to pick out the required bits from the specified word number. The LSB/MSB, START and STOP flags, along with the serial input digital data go to a control block which selectively fills a shift register used to drive the parallel data output bus.

  12. FPGA based Smart Wireless MIMO Control System

    Science.gov (United States)

    Usman Ali, Syed M.; Hussain, Sajid; Akber Siddiqui, Ali; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-12-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input & Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively.

  13. Robust Controller Synthesis Based on Circle Criterion

    Science.gov (United States)

    Fuwa, Katsuhiko; Kato, Hiroyuki; Kando, Hisashi

    It is well-known that stability margins (gain and phase margins) are important quantitative indicators for evaluating stability in feedback control system synthesis. However, when we use conventional techniques based on such stability margins, it may be difficult to suppress the vibration from high-order modes of mechanical system. This paper proposes the robust controller synthesis which achieves both the conventional stability margins and the second phase margin which is a quantitative indicator for suppressing the vibration. The basic idea is to synthesize controller such that the Nyquist locus of open-loop transfer function encircles the immediate outer side of the circle which is specified by the conventional stability margins and the second phase margin. This is formulated as modified H∞ mixed sensitivity problem with the weighting constants which are decided by the center and radius of the circle.

  14. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    of the supermarket refrigeration systems therefore greatly relies on a human operator to detect and accommodate failures, and to optimize system performance under varying operational condition. Today these functions are maintained by monitoring centres located all over the world. Initiated by the growing need...... for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing.......e. by degrading the performance. The method has been successfully applied on a test frigeration system for minimization of the power consumption; the hereby gained experimental results will be presented. The present control structure in a supermarket refrigeration system is distributed, which means...

  15. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  16. Access Control Based on Trail Inference

    Directory of Open Access Journals (Sweden)

    ALBARELO, P. C.

    2015-06-01

    Full Text Available Professionals are constantly seeking qualification and consequently increasing their knowledge in their area of expertise. Thus, it is interesting to develop a computer system that knows its users and their work history. Using this information, even in the case of professional role change, the system could allow the renewed authorization for activities, based on previously authorized use. This article proposes a model for user access control that is embedded in a context-aware environment. The model applies the concept of trails to manage access control, recording activities usage in contexts and applying this history as a criterion to grant new accesses. Despite the fact that previous related research works consider contexts, none of them uses the concept of trails. Hence, the main contribution of this work is the use of a new access control criterion, namely, the history of previous accesses (trails. A prototype was implemented and applied in an evaluation based on scenarios. The results demonstrate the feasibility of the proposal, allowing for access control systems to use an alternative way to support access rights.

  17. Brazing development and interfacial metallurgy study of tungsten and copper joints with eutectic gold copper brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Easton, David, E-mail: david.easton@strath.ac.uk [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Zhang, Yuxuan; Wood, James; Galloway, Alexander; Robbie, Mikael Olsson [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Hardie, Christopher [Culham Centre for Fusion Energy CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A eutectic gold–copper brazing alloy has been successfully used to produce a highly wetted brazed joint between tungsten and copper. • Relevant materials for fusion applications. • Mechanical testing of W–AuCu–Cu soon to be performed. - Abstract: Current proposals for the divertor component of a thermonuclear fusion reactor include tungsten and copper as potentially suitable materials. This paper presents the procedures developed for the successful brazing of tungsten to oxygen free high conductivity (OFHC) copper using a fusion appropriate gold based brazing alloy, Orobraze 890 (Au80Cu20). The objectives were to develop preparation techniques and brazing procedures in order to produce a repeatable, defect free butt joint for tungsten to copper. Multiple brazing methods were utilised and brazing parameters altered to achieve the best joint possible. Successful and unsuccessful brazed specimens were sectioned and analysed using optical and scanning electron microscopy, EDX analysis and ultrasonic evaluation. It has been determined that brazing with Au80Cu20 has the potential to be a suitable joining method for a tungsten to copper joint.

  18. Spectrofluorometric determination and chemical speciation of trace concentrations of tungsten species in water using the ion pairing reagent procaine hydrochloride.

    Science.gov (United States)

    El-Shahawi, M S; Al Khateeb, L A

    2012-01-15

    A highly selective and low cost extractive spectrofluorimetric method was developed for determination of trace concentrations of tungsten (VI) in water. The method was based upon solvent extraction of the developed ion associate [(PQH(+))(2)·WO(4)(2-)] of the fluorescent ion-pairing reagent [2-(diethylamino)ethyl 4 aminobenzoate] hydrochloride namely procaine hydrochloride, PQH(+)·Cl(-) and tungstate (WO(4)(2-)) in aqueous solution of pH 6-7 followed by measuring the resulting fluorescence enhancement in n-hexane at λ(ex/em)=270/320nm. The fluorescence intensity of PQH(+)·Cl(-) increased linearly on increasing tungstate concentration in the range 25-250μgL(-1). The limits of detection (LOD) and quantification (LOQ) of tungsten (VI) were found 7.51 and 24.75μgL(-1), respectively. Chemical composition of the developed ion associate and the molar absorptivity at 270nm were found to be [(PQH(+))(2)·WO(4)(2-)] and 2.7×10(4)Lmol(-1)cm(-1), respectively. Other oxidation states (III, IV, V) of tungsten species could also be determined after oxidation with H(2)O(2) in aqueous solution to tungsten (VI). The method was applied for analysis of tungsten in certified reference material (IAEA Soil-7) and wastewater samples. The results were compared successfully (>95%) with the data of inductively coupled plasma-mass spectrometry (ICP-MS).

  19. Microstructural characterization and field emission properties of tungsten oxide and titanium-oxide-doped tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chia-Hsiang [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Su, Cherng-Yuh, E-mail: cysu@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Lin, Yan-Fu [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China)

    2015-03-01

    Tungsten oxide and titanium-oxide-doped tungsten oxide nanowires were synthesized by using the DC magnetron sputtering and infrared furnace annealing processes. Scanning election microscopy (SEM) and transmission electron microscopy (TEM) were utilized to evaluate the topography and sizes. X-ray diffraction (XRD), grazing incidence X-ray diffraction (GI-XRD), and high-resolution transmission electron microscopy (HRTEM) were used to analyze the composition and structure. From the results of HRTEM, it was discovered that the prepared nanowires have a monoclinic single-crystal phase of W{sub 18}O{sub 49} with lattice growth along the (010) lattice plane, and the lattice spacing is 0.378 nm, which agrees with XRD and GI-XRD results. The prepared tungsten oxide and titanium-oxide-doped tungsten oxide nanowires have turn-on voltage of 3.06 V/μm and 1.46 V/μm respectively. They also possess superior field enhancement factors of 5103 and 10667 respectively. Their behavior thus follows the Fowler-Nordheim expression for tunneling. - Highlights: • A simple method to prepare tungsten oxide nanowires by annealing tungsten film. • High aspect ratio of the 1D titanium-oxide-doped tungsten oxide nanowires. • High field enhancement factor of titanium-oxide-doped tungsten oxide nanowires.

  20. Tissue Distribution of Tungsten in Mice Following Oral Exposure to Sodium Tungstate

    Science.gov (United States)

    2010-08-31

    1mL) solution under a pressure and temperature controlled microwave digestion system (MarsXpress, CEM Inc, Mathews, North Carolina, USA), and then... nickel and cobalt). These findings confirmed most of what has been published on tungsten tissue distribution; they also showed that the brain is...other organ or either of the other two metals that were analyzed ( nickel and cobalt). These findings confirmed most of what has been published on

  1. Modelling of Magnetron Sputtering of Tungsten Oxide with Reactive Gas Pulsing

    OpenAIRE

    2007-01-01

    Reactive sputtering is one of the most commonly employed processes for the deposition of thin films. However, the range of applications is limited by inherent instabilities, which necessitates the use of a complex feedback control of reactive gas (RG) partial pressure. Recently pulsing of the RG has been suggested as a possible alternative. In this report, the concept of periodically switching the RG flow between two different values is applied to the deposition of tungsten oxide. The trends ...

  2. Correlations between structure, composition and electrical properties of tungsten/tungsten oxide periodic multilayers sputter deposited by gas pulsing

    Science.gov (United States)

    Potin, Valérie; Cacucci, Arnaud; Martin, Nicolas

    2017-01-01

    W/WOx multilayered thin films have been deposited by DC reactive sputtering using the reactive gas pulsing process. It is implemented to produce regular alternations of metal-oxide compounds at the nanometric scale. Structure and growth have been investigated by high resolution transmission electron microscopy, scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and electron energy loss spectroscopy. Regularity of tungsten-based alternations, quality of interfaces as well as oxygen presence through the multilayered structure have been determined and linked to the growth conditions. Chemical information was obtained from the energy dispersive X-ray spectroscopy and low-loss electron energy loss spectroscopy. As they can be related to the chemical composition of the periodic layers, the position and the broadening of the bulk plasmon peak were studied. For the smallest periods (structural and chemical parameters and electrical properties in periodic multilayers.

  3. Access control mechanism of wireless gateway based on open flow

    Science.gov (United States)

    Peng, Rong; Ding, Lei

    2017-08-01

    In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.

  4. Control allocation and management of redundant control effectors based on bases sequenced optimal method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For an advanced aircraft, the amount of its effectors is much more than that for a traditional one, the functions of effectors are more complex and the coupling between each other is more severe. Based on the current control allocation research, this paper puts forward the concept and framework of the control allocation and management system for aircrafts with redundancy con-trol effectors. A new optimal control allocation method, bases sequenced optimal (BSO) method, is then presented. By analyz-ing the physical meaning of the allocation process of BSO method, four types of management strategies are adopted by the system, which act on the control allocation process under different flight conditions, mission requirements and effectors work-ing conditions. Simulation results show that functions of the control allocation system are extended and the system adaptability to flight status, mission requirements and effector failure conditions is improved.

  5. Phase Transformations upon Doping in Tungsten Trioxide

    Science.gov (United States)

    Wang, Wennie; Janotti, Anderson; van de Walle, Chris G.

    Tungsten trioxide (WO3) is an emerging semiconductor material, with a growing number of applications in Li-ion batteries, photocatalysis, gas sensors and electrochromic devices. As an electrochromic material, WO3 turns from transparent to blue upon doping with monovalent species. Due to it having an empty A-site in the ABO3 perovskite structure, high doping concentrations are possible through intercalation. Tungsten trioxide has been experimentally shown to transform from the ground-state monoclinic symmetry to cubic symmetry with increasing monovalent doping. We use first-principles calculations to understand this transformation. Our calculations show that the addition of electrons to the conduction band is a primary driver of the phase transformation. We quantify the energetics and structural aspects of this transformation using density functional theory, allowing us to elucidate the mechanism. Comparison with experiment, role of the dopant species, and implications of structural changes for device applications will be discussed. This work is supported by the DOE and NSF GRFP.

  6. Concentration dependent hydrogen diffusion in tungsten

    Science.gov (United States)

    Ahlgren, T.; Bukonte, L.

    2016-10-01

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔVm ≈ 0.488 Å3, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected.

  7. Tungsten sulfide nanoflakes. Synthesis by electrospinning and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Feng, Wen-Lin [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing (China).

    2017-07-01

    Tungsten sulfide (WS{sub 2}) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS{sub 2} (Ag-WS{sub 2}) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS{sub 2} has a graphene-like structure with P{sub 63/mmc} space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS{sub 2} and Ag-WS{sub 2} nanomaterials. The sensing responses of WS{sub 2} and Ag-WS{sub 2} on the ammonia (NH{sub 3}), ethanol (C{sub 2}H{sub 5}OH), and acetone (C{sub 3}H{sub 6}O) were investigated at about 220 C. The results indicate that gas sensor based on WS{sub 2} and Ag-WS{sub 2} nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS{sub 2} and Ag-WS{sub 2} gas sensors is surface control via charge transfer.

  8. Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties

    Science.gov (United States)

    Wang, Ke; Feng, Wen-Lin; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao

    2017-04-01

    Tungsten sulfide (WS2) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS2 (Ag-WS2) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS2 has a graphene-like structure with P63/mmc space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS2 and Ag-WS2 nanomaterials. The sensing responses of WS2 and Ag-WS2 on the ammonia (NH3), ethanol (C2H5OH), and acetone (C3H6O) were investigated at about 220°C. The results indicate that gas sensor based on WS2 and Ag-WS2 nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS2 and Ag-WS2 gas sensors is surface control via charge transfer.

  9. PI controller based model reference adaptive control for nonlinear ...

    African Journals Online (AJOL)

    user

    which can deal effectively for real-time online computer control. The NN of the ..... applications such as machine tools, industrial robot control, position control, and other engineering practices. .... Transactions on Mechatronics, vol.1, no.2, pp.

  10. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  11. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO_2敏感性能与机理%Room temperature NO2-sensing properties and mechanism of the sensors based on tungsten oxide nanowires/single-wall carbon nanotubes composites

    Institute of Scientific and Technical Information of China (English)

    秦玉香; 王飞; 沈万江; 胡明

    2012-01-01

    One-dimensional tungsten oxide nanowires are synthesized by the solvothermal method. The sensors based on tungsten oxide nanowires/single-wall carbon nanotubes (SWNTs) composites are fabricated by introducing SWNT, and their NO2 sensing properties are evaluated at room temperature. X-ray diffraction and field emission scanning electron microscope characterizations indicate that the as-synthesized nanowires are monoclinic WlsO49, and SWNTs are embedded within the nanowire matrix in the prepared tungsten oxide nanowires/SWNT composites. The tungsten oxide nanowires/SWNT composites-based sensors show high sensitivity, good selectivity and super fast response to NO2 gas at room temperature. The NO2 sensing properties of the sensors increase with the decrease of SWNT content. The sensing mechanism of the composites-based sensor is discussed and it is thought that the introduction of SWNT induces the formation of a large number of p-n hetero junctions and cross-linked diffusion channels in the structure of the composites, which are responsible for the good NO2 sensing properties at room temperature.%利用溶剂热法合成了一维的氧化钨纳米线,通过掺入适量单壁碳纳米管(SWNT)制备了基于氧化钨纳米线-SWNT复合结构的室温气敏元件并评价了其对NO_2气体的室温敏感性能.利用X射线与扫描电子显微镜表征了材料的微结构,结果表明,合成的氧化钨纳米线具有单斜的W_(18)O_(49)结构,复合材料中SWNT被包埋在氧化钨纳米线中间.气敏性能测试结果表明,氧化钨纳米线-SWNT复合结构气敏元件在室温下对NO_2气体表现出了高的灵敏度和超快的响应特性;较低的SWNT掺入量对获得好的气敏性能有利.分析了基于复合结构材料气敏元件的可能的气敏机理,认为元件良好的室温敏感性能与SWNT掺入在复合结构材料中引入大量的贯穿气孔和p-n异质结有关.

  12. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D.; Frey, R.; /Oregon U.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; /SLAC; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  13. Agents-based distributed processes control systems

    Directory of Open Access Journals (Sweden)

    Adrian Gligor

    2011-12-01

    Full Text Available Large industrial distributed systems have revealed a remarkable development in recent years. We may note an increase of their structural and functional complexity, at the same time with those on requirements side. These are some reasons why there are involvednumerous researches, energy and resources to solve problems related to these types of systems. The paper addresses the issue of industrial distributed systems with special attention being given to the distributed industrial processes control systems. A solution for a distributed process control system based on mobile intelligent agents is presented.The main objective of the proposed system is to provide an optimal solution in terms of costs, maintenance, reliability and flexibility. The paper focuses on requirements, architecture, functionality and advantages brought by the proposed solution.

  14. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  15. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  16. Indoor biology pollution control based on system-based humidity priority control strategy

    Institute of Scientific and Technical Information of China (English)

    刘亚昱; 谢慧; 石博强

    2009-01-01

    Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.

  17. Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology

    Science.gov (United States)

    Kostin, D. V.; Parkhomenko, A. V.; Amosov, A. P.; Samboruk, A. R.; Chemashkin, A. V.

    2016-11-01

    The article presents the results of the research and development of technology and formulation of the feedstock from domestic metal powders and polymers to fabricate complexshaped components from heavy alloy of VNZh 7-3 brand (90 wt. % tungsten - 7% nickel - 3% iron) by Metal Injection Molding (MIM technology). The metal part of the feedstock is composed of powders of tungsten, nickel and iron, and the polymer part is composed of polyformaldehyde with the addition of low-density polyethylene and beeswax. The modes of mixing the components and the influence of the composition of the feedstock on the melt flow rate and the homogeneity of the feedstock were investigated. The optimal formulation of the feedstock was determined. Microstructure, density and hardness of control samples fabricated by MIM technology from the developed feedstock, correspond to, and in some respects are superior to the samples of VNZh 7-3 alloy fabricated by technology of traditional powder metallurgy.

  18. Tungsten carbide promoted Pd and Pd-Co electrocatalysts for formic acid electrooxidation

    Science.gov (United States)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf; Huang, Yunjie; Cleemann, Lars N.; Bjerrum, Niels J.; Xing, Wei

    2012-12-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium-cobalt (Pd-Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid oxidation. Alloying of Pd with Co further improves the electrocatalytic activity and stability of the WC supported catalysts, attributable to a synergistic effect of the carbide support and PdCo alloy nanoparticles.

  19. Simultaneous determination of trace niobium, tantalum and tungsten in ferrous and non-ferrous alloys.

    Science.gov (United States)

    Vassilaros, G L; Byrnes, C J

    1976-03-01

    A method is presented for the determination of niobium, tantalum and tungsten in steel and non-ferrous alloys, based on hydrolysis with sulphurous acid followed by X-ray fluorescence measurements. The limit of determination is about 0.002% and the standard deviation is 0.002 at the 0.05% level. Results below 0.01% by this method are only semiquantitative.

  20. Development of an inductively coupled plasma mass spectrometry method for quantification of extracted tungsten from glass prefilled syringes used as a primary packaging for pharmaceutical and therapeutic protein products.

    Science.gov (United States)

    Fujimori, Kiyoshi; Lee, Hans; Phillips, Joseph; Nashed-Samuel, Yasser

    2013-01-01

    /MS was acceptable based on extraction efficiency and method performance. Elemental tungsten is a known leachable from glass prefilled syringe used as a ready-to-inject drug device in the pharmaceutical industry. Tungsten is a residual artifact from the manufacturing process of the syringe. The leachable tungsten level is of a concern, as it can affect the quality of the filled drug product. To understand possible leachable quantity of tungsten from the prefilled syringe, a tungsten extraction conditions and quantification method were developed. Double extraction of the syringe with 0.5% ammonium hydroxide (pH 11), heat (75 °C), and sonication was able to efficiently extract 90% of the total tungsten from syringe. An inductively coupled plasma mass spectrometry method was qualified to selectively, accurately, and precisely quantify the extracted tungsten. The developed extraction and quantification method was acceptable in determining possible leachable tungsten from prefilled syringes.

  1. COMPUTER NUMERICAL SIMULATION OF MECHANICAL PROPERTIES OF TUNGSTEN HEAVY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A microstructure model of tungsten heavy alloys has been developed. On the basis of the model and several assumptions, the macro-mechanical properties of 90 W heavy alloy under quasi-static tensile deformation and the effects of microstructural parameters (mechanical properties of the matrix phase and tungsten content) on them have been analyzed by computer numerical simulation. The mechanical properties of the alloy have been found to be dependent on the mechanical parameters of the matrix phase. As the elastic modulus and yield strength of the matrix phase increase, the tensile strength of the alloy increases, while the elongation decreases. If the mechanical parameters except the tensile strength of the matrix phase are constant, both the tensile strength and the elongation of the alloy increase linearly with the increase of tensile strength of the matrix phase. The properties of the alloy are very sensitive to the hardening modulus of the matrix phase. As the hardening modulus increases, both the tensile strength and the elongation of the alloy exponentially decrease. The elongation of the alloys monotonically decreases with the increase of tungsten content, while the decrease of tensile strength is not monotonic. When the tungsten content < 85 %, the strength of tungsten heavy alloys increases with the increase of tungsten content, while decreases when the tungsten content >85 %. The maximum of tensile strength of the alloys appears at the tungsten content of 85 %. The results showed that the binder phase with a higher strength and a lower hardening modulus is advantageous to obtaining an optimum combination of mechanical properties of tungsten heavy alloys.

  2. Compatibility of ITER scenarios with full tungsten wall in ASDEX Upgrade

    Science.gov (United States)

    Gruber, O.; Sips, A. C. C.; Dux, R.; Eich, T.; Fuchs, J. C.; Herrmann, A.; Kallenbach, A.; Maggi, C. F.; Neu, R.; Pütterich, T.; Schweinzer, J.; Stober, J.; ASDEX Upgrade Team

    2009-11-01

    The transition of ASDEX Upgrade (AUG) from a graphite device to a full tungsten device is demonstrated with a reduction by an order of magnitude in both the carbon deposition and deuterium retention. The tungsten source is dominated by sputtering from intrinsic light impurities, and the tungsten influxes from the outboard limiters are the main source for the plasma. In H-mode discharges, central heating (neutral beams, ECRH) is used to increase turbulent outward transport avoiding tungsten accumulation. ICRH can only be used after boronization as its application otherwise results in large W influxes due to light impurities accelerated by electrical fields at the ICRH antennas. ELMs are important in reducing the inward transport of tungsten in the H-mode edge barrier and are controlled by gas puffing. Even without boronization, stationary, ITER baseline H-modes (confinement enhancement factor from ITER 98(y, 2) scaling H98 ~ 1, normalized beta βN ~ 2), with W concentrations below 3 × 10-5 were routinely achieved up to 1.2 MA plasma current. The compatibility of high performance improved H-modes with unboronized W wall was demonstrated, achieving H98 = 1.1 and βN up to 2.6 at modest triangularities δ cooled by N2 seeding. N2 seeding does not only protect the divertor tiles but also considerably improves the performance of improved H-mode discharges. The energy confinement increased to H98-factors of 1.25 (βN ~ 2.7) and thereby exceeded the best values in a carbon-dominated AUG machine under similar conditions. Recent investigations show that this improvement is due to higher temperatures rather than to peaking of the electron density profile. Further ITER discharge scenario tests include the demonstration of ECRF assisted low voltage plasma start-up and current rise to q95 = 3 at toroidal electric fields below 0.3 V m-1, to achieve a ITER compatible range of plasma internal inductance of 0.71-0.97. The results reported here strongly support tungsten as a first

  3. NAK80模具钢表面激光熔覆Ni基碳化钨合金涂层的组织和性能%Microstructure and Properties of Laser Cladding Ni-based Tungsten Carbide Alloy Coating on NAK80 Mold Steel

    Institute of Scientific and Technical Information of China (English)

    程虎; 方志刚; 赵先锐; 戴晟; 高玉新

    2011-01-01

    The Ni-based tungsten carbide alloy coating was fabricated on NAK80 mold steel by laser cladding technology. The characteristic of microstructure, micro-hardness and the formation mechanics were examined. The resuits show that the metallurgical bonding is good between the cladding coating and the steel substrate, the microstructure of laser cladding coating is composed of fir-tree crystal Cr23C6, un-melted tungsten carbide granular crystal, y-Ni solid solution and NiCr, CrB2. The micro-hardness of laser cladding coating is considerably higher than the substrate, so the wear-resisting property of mold surface is improved to some extent.%采用激光熔覆技术,在NAK80模具钢表面制备了Ni基碳化钨合金涂层.研究了激光熔覆涂层的组织结构特点及形成规律,测试分析了其显微硬度的分布特征.结果表明:涂层与基体之间呈良好冶金结合,熔覆层组织主要由树枝晶CrC、未熔碳化钨颗粒相、γ-Ni固溶体及少量分布于固溶体中的NiCr和CrB相组成;涂层的硬度远高于NAK80模具钢基体,从一定程度上改善了模具表面的耐磨性能.

  4. Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament

    OpenAIRE

    2008-01-01

    Thin film of tungsten oxide (WO3) has been studied extensively as an electrochromic material and has numerous applications in electrochromic devices, smart windows, gas sensors and optical windows. In order to explore the possibility of using it in electrochromic devices, thorough study the optical properties of the WO3 is an important step. The WO3 layers have been grown by hot-filament metal oxide deposition technique under atmospheric pressure and an oxygen atmosphere. By FTIR and Raman sc...

  5. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  6. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  7. The preparation, characterisation and catalytic activity of tungsten bronzes

    OpenAIRE

    Stevenson, Sheena

    1987-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The structure and catalytic aspects of tungsten bronzes have been considered. A series of potassium tungsten bronzes, KxW03, 0.05 =< x =< 0.8, and the corresponding series of sodium tungsten bronzes, NaxW03, 0.05 =< x =< 0.8 were prepared by a thermal method. The thermal stability of the prepared samples was studied in the presence of both an oxidising and a reducing gas. The number and...

  8. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  9. Tungsten Export Price Raised Due to Customs Tax Regulations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Affected by the export tax rise, China’s tungsten export price rose by about 40 per cent in the first 10 months of 2006. The average price of Ammonium Paratungstate (APT) was US$23,000/MT, up by 43.5 per cent year-on-year, and that of ferro-tungsten, blue tungsten oxide as well as yellow oxide also increased by 32.4 per cent to US$24,000/MT, 27.4 per cent to US$25,000/MT and 42.6 per cent to US$26,000/MT respectively.

  10. Low-Temperature Strengths and Ductility of Various Tungsten Sheets

    Directory of Open Access Journals (Sweden)

    Yutaka Hiraoka

    2011-01-01

    Full Text Available We used three kinds of tungsten sheets in this study. First, we examined microstructure such as grain size distribution using an optical microscope. Secondly, we carried out three-point bend tests at temperatures between about 290 and 500 K. Then, we examined fracture surface of a failed specimen using a scanning electron microscope. Lastly, by analyzing all these results, we evaluated apparent intergranular and transgranular fracture strengths and discussed strengths and ductility of tungsten. Additionally, we compared mechanical properties of tungsten with those of molybdenum.

  11. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K

    Science.gov (United States)

    Hee, Man Yun

    1988-01-01

    The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

  12. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys

    Science.gov (United States)

    Hasegawa, Akira; Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei

    2016-04-01

    Data on the microstructural development of tungsten (W) and tungsten rhenium (Re) alloys were obtained after neutron irradiation at 400-800 °C in the Japan Materials Testing Reactor (JMTR), the experimental fast test reactor Joyo, and the High Flux Isotope Reactor (HFIR) for irradiation damage levels in the range of 0.09-1.54 displacement per atom (dpa). Microstructural observations showed that a small amount of Re (3-5%) in W-Re alloys is effective in suppressing void formation. In W-Re alloys with Re concentrations greater than 10%, acicular precipitates are the primary structural defects. In the HFIR-irradiated specimen, in which a large amount of Re was expected to be produced by the nuclear transmutation of W to Re because of the reactor's high thermal neutron flux, voids were not observed even in pure W. The synergistic effects of displacement damage and solid transmutation elements on microstructural development are discussed, and the microstructural development of tungsten materials utilized in fusion reactors is predicted.

  13. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    CERN Document Server

    Ingham, B; Chong, S V; Tallon, J L

    2005-01-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming `tungsten bronzes'. Similar optical effects are observed upon removing oxygen from WO_3, although the electronic properties are slightly different. Here we present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. Next, this was extended to a study of fractional doping in the Na_xWO_3 system (0 < x < 1). A linear variation in cell parameter, and a systematic change in the po...

  14. PIC BASED SOLAR CHARGING CONTROLLER FOR BATTERY

    Directory of Open Access Journals (Sweden)

    Mrs Jaya N. Ingole

    2012-02-01

    Full Text Available Solar resource is unlimited the government is trying to implement the use of Solar panels as an energy source in rural and sub urban areas for lighting the street lights, but the battery used to store the power gets affected due to overcharge & discharges. This paper presents the use of PIC16F72 based solar charger controller for controlling the overcharging and discharging of a solar cell. It works by continuously optimizing the interface between the solar array and battery. First, the variable supply is fixed at 12.8V dc—the voltage of a fully charged battery— and linked to the battery point of the circuit. Cut Off of battery from load voltage is 10.8 volt. A PIC16F72 for small size and inbuilt analog inputs is used to determine voltage level of battery and solar panel..It also describes how the disadvantages of analog circuit are overcome by this controller. The flow chart is also provided.

  15. Digital Signal Controller Based Digital Control of Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    Anjana Elizabeth Thomas

    2013-07-01

    Full Text Available This paper presents the digital control of a brushless dc (BLDC motor using TMS320F2812 DSP controller and an EPROM. The real-time control of electrical motors is an application area that is not usually the domain of Digital Signal Processors. The TMS320F2812 has got dedicated modules for digital motor control. Control algorithms used for the control has been in TMS320F2812 DSP controller. The output of the driver is 6 independent PWM pulses that have to be given to the corresponding gates of the six MOSFETs power switches used in the three-phase bridge driving circuit whose output is given to the stator of the Brushless DC Motor. The commutation technique used in this work is the trapezoidal commutation owing to its excellent speed and current control and it has been implemented using an EPROM

  16. Stability analysis of generalized predictive control based on Kleinman's controllers

    Institute of Scientific and Technical Information of China (English)

    DING Baocang; XI Yugeng

    2004-01-01

    With Kleinman's controller, its extended form and Riccati iteration as analyzing tools, the stability of GPC under various parameter cases is discussed. The overall closed-loop stability conclusions of GPC in equivalence with Kleinman's controller are obtained, which cover some existing results and provide the theoretical foundation for stable design of predictive control.

  17. Laser irradiation of carbon-tungsten materials

    Science.gov (United States)

    Marcu, A.; Avotina, L.; Marin, A.; Lungu, C. P.; Grigorescu, C. E. A.; Demitri, N.; Ursescu, D.; Porosnicu, C.; Osiceanu, P.; Kizane, G.; Grigoriu, C.

    2014-09-01

    Carbon-tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp2-sp3 transitions with the number of laser pulses just for nanometric layer thicknesses.

  18. Magneto photoluminescence measurements of tungsten disulphide monolayers

    Science.gov (United States)

    Kuhnert, Jan; Rahimi-Iman, Arash; Heimbrodt, Wolfram

    2017-03-01

    Layered transition-metal dichalcogenides have attracted great interest in the last few years. Thinned down to the monolayer limit they change from an indirect band structure to a direct band gap in the visible region. Due to the monolayer thickness the inversion symmetry of the crystal is broken and spin and valley are coupled to each other. The degeneracy between the two equivalent valleys, K and K‧, respectively, can be lifted by applying an external magnetic field. Here, we present photoluminescence measurements of CVD-grown tungsten disulphide (WS2) monolayers at temperatures of 2 K. By applying magnetic fields up to 7 T in Faraday geometry, a splitting of the photoluminescence peaks can be observed. The magnetic field dependence of the A-exciton, the trion and three bound exciton states is discussed and the corresponding g-factors are determined.

  19. Tungsten-doped thin film materials

    Science.gov (United States)

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  20. Temperature dependent polarization of the thermal radiation emitted by thin, hot tungsten wires

    CERN Document Server

    Borghesani, A F; Ruoso, G

    2013-01-01

    We report measurements of the temperature $T $ dependence of the linear polarization $ $ of the thermal radiation emitted by thin, incandescent tungsten wires. We investigate an interval ranging from a little above room temperature up to melting, $T_m= 3695\\,$K. These are the first measurements in such wide a range. We found that $ $ decreases with increasing temperature. We obtained a satisfactory agreement with the theoretical predictions based on the Kirchhoff's law by using a Drude-type formula for the optical properties of tungsten. This formula was tested and its parameters were assessed as valid for $T\\leq 2400 \\,$K and for wavelengths in the range from visible up to $\\lambda\\approx 2.6\\,\\mu$m. We have extended the range of validity of this formula for $T$ up to $T_m$ and for $\\lambda$ up to $\\approx 12\\,\\mu$m.

  1. Reduction of tensile residual stresses during the drawing process of tungsten wires

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Ripoll, Manel, E-mail: manel.rodriguez@ctd.uni-lj.si [Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstrasse 11, 79108 Freiburg (Germany); Weygand, Sabine M. [University of Applied Sciences Karlsruhe, Department of Mechanical Engineering and Mechatronics, Moltkestrasse 30, 76133 Karlsruhe (Germany); Riedel, Hermann [Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstrasse 11, 79108 Freiburg (Germany)

    2010-05-25

    Tungsten wires are commonly used in the lighting industry as filaments for lamps. During the drawing process, the inhomogeneous deformation imparted by the drawing die causes tensile residual stresses at the wire surface in circumferential direction. These stresses have a detrimental effect for the wire because they are responsible for driving longitudinal cracks, known as splits. This work proposes two methods for reducing the residual stresses during wire drawing, namely applying an advanced die geometry and performing an inexpensive post-drawing treatment based on targeted bending operations. These two methods are analyzed with finite element simulations using material parameters obtained by mechanical tests on tungsten wires at different temperatures as input data. The computed results predict a substantial reduction of the circumferential residual stresses, thus reducing the risk of splitting.

  2. Estimation of the lifetime of small helium bubbles near tungsten surfaces - A methodological study

    Science.gov (United States)

    Cui, Jiechao; Wu, Zhangwen; Hou, Qing

    2016-09-01

    Under low energy and high flux/fluence irradiation of helium (He) atoms, the formation and bursting of He bubbles on tungsten (W) surfaces play important roles in the morphological evolution of component surfaces in fusion reactors. Microscopically, the bursting of He bubbles is a stochastic process, and He bubbles have statistically average lifetimes. In the present paper, a molecular dynamics-based method was developed to extract, for the first time, the lifetime of He bubbles near tungsten surfaces. It was found that He bubble bursting can be treated as an activated event. Its frequency or, equivalently, the average lifetime of bubbles follows the Arrhenius equation. For a given bubble size, the activation energy exhibits a good linear dependence with the depth, and the pre-exponential factor obeys the Meyer-Neldle rule. These results are useful for establishing a model in multi-scale simulations of the morphological evolution of component surfaces in fusion reactors.

  3. Effects of surface orientation on lifetime of near-surface nanoscale He bubble in tungsten

    Science.gov (United States)

    Cui, Jiechao; Fu, Baoqin; Wu, Zhangwen; Hou, Qing

    2017-02-01

    In multiscale modeling of the morphological evolution of plasma facing materials in nuclear fusion reactors, the knowledge of the timescales of the involved physical processes is important. In the present study, a new method based on molecular dynamics simulations was developed to extract the lifetime of helium bubbles near tungsten surfaces. It was found that the lifetime of a helium bubble can be described by the Arrhenius equation. However, the lifetime of a helium bubble depends on the thickness of tungsten film above the helium bubble in the substrate and the bubble size. The influence of surface orientations on the lifetime of helium bubbles was also observed, and the performance of helium bubbles on the (1 1 1) surface is very different from on the (0 0 1) and (0 1 1) surfaces. The role of the helium bubble lifetime in other simulation techniques, such as in kinetic Monte Carlo methods and rate theory, is discussed.

  4. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Dudarev, S.L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gonzalez de Vicente, S.M. [EFDA-Close Support Unit, Garching (Germany); Aktaa, J. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Armstrong, D.E.J. [Department of Materials, University of Oxford (United Kingdom); Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue, de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Basuki, W.W. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Battabyal, M. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Becquart, C.S. [Unite Materiaux et Transformations, UMR 8207, 59655 Villeneuve d' Ascq (France); Blagoeva, D. [NRG, Nuclear Research and consultancy Group, Petten (Netherlands); Boldyryeva, H. [Institute of Plasma Physics, Za Slovankou 3, 18200 Praha (Czech Republic); and others

    2013-01-15

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  5. Effects of surface orientation on lifetime of near-surface nanoscale He bubble in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiechao; Fu, Baoqin; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2017-02-15

    In multiscale modeling of the morphological evolution of plasma facing materials in nuclear fusion reactors, the knowledge of the timescales of the involved physical processes is important. In the present study, a new method based on molecular dynamics simulations was developed to extract the lifetime of helium bubbles near tungsten surfaces. It was found that the lifetime of a helium bubble can be described by the Arrhenius equation. However, the lifetime of a helium bubble depends on the thickness of tungsten film above the helium bubble in the substrate and the bubble size. The influence of surface orientations on the lifetime of helium bubbles was also observed, and the performance of helium bubbles on the (1 1 1) surface is very different from on the (0 0 1) and (0 1 1) surfaces. The role of the helium bubble lifetime in other simulation techniques, such as in kinetic Monte Carlo methods and rate theory, is discussed.

  6. Xiamen Tungsten Co.,Ltd Verified the Largest Tungsten Mine Worldwide with a Potential Value Topping 300 Billion Yuan

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>On June 5,the Ministry of Land and Resources announced that,in Dahutang area of Wuning County,Jiujiang City.Jiangxi Province,a tungsten mine with a reserve of 1.06 million tonnes has been prospected;it is the largest tungsten mine in the world today.One of the investors of this prospecting activity is Xiamen Tungsten Co.,Ltd,a public listed company from Fujian Province.According to data of The Ministry of Land and Resources,

  7. Enhanced toughness and stable crack propagation in a novel tungsten fibre-reinforced tungsten composite produced by chemical vapour infiltration

    Science.gov (United States)

    Riesch, J.; Höschen, T.; Linsmeier, Ch; Wurster, S.; You, J.-H.

    2014-04-01

    Tungsten is a promising candidate for the plasma-facing components of a future fusion reactor, but its use is strongly restricted by its inherent brittleness. An innovative concept to overcome this problem is tungsten fibre-reinforced tungsten composite. In this paper we present the first mechanical test of such a composite material using a sample containing multiple fibres. The in situ fracture experiment was performed in a scanning electron microscope for close observation of the propagating crack. Stable crack propagation accompanied with rising load bearing capacity is observed. The fracture toughness is estimated using the test results and the surface observation.

  8. Simulation-based Testing of Control Software

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Ozgur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutaro, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanyal, Jibonananda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olama, Mohammed M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-10

    It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulator can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.

  9. 中国钨矿成矿规律概要%Outline of Metallogeny of Tungsten Deposits in China

    Institute of Scientific and Technical Information of China (English)

    盛继福; 陈郑辉; 刘丽君; 应立娟; 黄凡; 王登红; 王家欢; 曾乐

    2015-01-01

    Tungsten mineral resources are abundant with relatively complete types of deposits,including the larger tungsten reservers of skarn-type and quartz vein-type,and the most important wolframite-quartz vein type in terms of exploitation and utilization.The skarn-type tungsten deposits centralize in central Nanling region such as south Hunan Province,while quartz vein-type tungsten depostis are concentrated in South China.The most important metallogenic age of tungsten is Mesozoic,while the metallogenic tectonic setting is featured by intra continental environment after orogeny with severe tectonic movements,deep-seated faults and frequent magmatic activities,especially Mesozoic granitoids closely to tungsten-tin mineralization.Besides,22 metallogenic series of ore deposits significantly related with tungsten have been defined,based on statistics precise information system of 1199 tungsten mining areas and thorough summary of metallogenic regularity.On the studies of metallogenic regularity of tungsten deposits,the skarn-type (or greisen type),quartz vein-type and massif-type of tungsten deposits are thought to be key prediction types,65 tungsten-forming belts and 22 key ore concentration areas displayed in the distribution map of tungsten-forming belts are devided in China.Generally,the whole work provides theoretical basis for the potential evaluation.%我国钨矿资源丰富,钨矿类型比较齐全。占有钨矿资源储量较大比重的主要是矽卡岩型和石英脉型,但从开采和利用的角度来说,最为重要的是石英脉型的黑钨矿矿床。矽卡岩型钨矿集中分布在南岭中段湘南、东秦岭等矿集区,石英脉型则主要集中在华南地区的闽西、赣南、粤北、湘南等地;成矿时代以中生代最为重要;成矿大地构造背景以造山运动之后的陆内环境为主但构造变动剧烈,深大断裂纵横交错,岩浆活动频繁,与钨锡成矿作用密切相关的中生代花岗岩类至

  10. Observer-based Satellite Attitude Control and Simulation Researches

    Institute of Scientific and Technical Information of China (English)

    王子才; 马克茂

    2002-01-01

    Observer design method is applied to the realization of satellite attitude control law baaed on simplified control model. Exact mathematical model of the satellite attitude control system is also constructed, together with the observer-based control law, to conduct simulation research. The simulation results justify the effectiveness andfeasibility of the observer-based control method.

  11. Reliable Diameter Control of Carbon Nanotube Nanobundles Using Withdrawal Velocity

    Science.gov (United States)

    Shin, Jung Hwal; Kim, Kanghyun; An, Taechang; Choi, WooSeok; Lim, Geunbae

    2016-09-01

    Carbon nanotube (CNT) nanobundles are widely used in nanoscale imaging, fabrication, and electrochemical and biological sensing. The diameter of CNT nanobundles should be controlled precisely, because it is an important factor in determining electrode performance. Here, we fabricated CNT nanobundles on tungsten tips using dielectrophoresis (DEP) force and controlled their diameters by varying the withdrawal velocity of the tungsten tips. Withdrawal velocity pulling away from the liquid-air interface could be an important, reliable parameter to control the diameter of CNT nanobundles. The withdrawal velocity was controlled automatically and precisely with a one-dimensional motorized stage. The effect of the withdrawal velocity on the diameter of CNT nanobundles was analyzed theoretically and compared with the experimental results. Based on the attachment efficiency, the withdrawal velocity is inversely proportional to the diameter of the CNT nanobundles; this has been demonstrated experimentally. Control of the withdrawal velocity will play an important role in fabricating CNT nanobundles using DEP phenomena.

  12. Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices

    Science.gov (United States)

    Wojcik, Pawel Jerzy; Santos, Lidia; Pereira, Luis; Martins, Rodrigo; Fortunato, Elvira

    2015-01-01

    This paper focuses on the engineering procedures governing the synthesis of tungsten oxide nanocrystals and the formulation of printable dispersions for electrochromic applications. By that means, we aim to stress the relevancy of a proper design strategy that results in improved physicochemical properties of nanoparticle loaded inks. In the present study inkjet printable nanostructured tungsten oxide particles were successfully synthesized via hydrothermal processes using pure or acidified aqueous sol-gel precursors. Based on the proposed scheme, the structure and morphology of the nanoparticles were tailored to ensure the desired printability and electrochromic performance. The developed nanomaterials with specified structures effectively improved the electrochemical response of printed films, resulting in 2.5 times higher optical modulation and 2 times faster coloration time when compared with pure amorphous films.This paper focuses on the engineering procedures governing the synthesis of tungsten oxide nanocrystals and the formulation of printable dispersions for electrochromic applications. By that means, we aim to stress the relevancy of a proper design strategy that results in improved physicochemical properties of nanoparticle loaded inks. In the present study inkjet printable nanostructured tungsten oxide particles were successfully synthesized via hydrothermal processes using pure or acidified aqueous sol-gel precursors. Based on the proposed scheme, the structure and morphology of the nanoparticles were tailored to ensure the desired printability and electrochromic performance. The developed nanomaterials with specified structures effectively improved the electrochemical response of printed films, resulting in 2.5 times higher optical modulation and 2 times faster coloration time when compared with pure amorphous films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05765a

  13. Underwater explosive welding of thin tungsten foils and copper

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, P., E-mail: manikandan_exp@yahoo.com [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Lee, J.O.; Mizumachi, K. [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Mori, A. [Department of Mechanical Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082 (Japan); Raghukandan, K. [Department of Manufacturing Engineering, Annamalai University, Annamalainagar, Cuddalore District, Tamilnadu 608 002 (India); Hokamoto, K. [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2011-11-15

    Highlights: > Underwater explosive welding was used to clad tungsten and copper. > The preset inclination was varied and the microstructure was observed. > Microstructure reveals a clear wavy interface for higher preset inclination. > High pressure and high strain rate leads to plastic flow of tungsten. - Abstract: This study demonstrates the ability to clad pure tungsten foils on copper plate using underwater shock waves generated by the detonation of explosive. Microstructural characterization revealed that a higher preset inclination results in wavy morphology. Weld formed at lower inclination exhibit a planar interfacial layer comprising fine grained particles of both components. The plastic flow of tungsten is ascribed to the synergistic influence of high pressure and high strain rate at the collision point.

  14. Advances in Thermionic Cathode of Tungsten and Molybdenum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several kinds of tungsten thermonic cathodes have been introduced. As a promising alternative for thoriated tungsten, rare earth doped molybdenum cathode has been studied. Compared with the traditional thoriated tungsten, La-Mo cathode has higher emission current density at lower temperature, but it has poor emission stability. In order to improve the emission stability, systematical study on the emission mechanism of La-Mo cathode has been carried out. The life of La-Mo cathode has been improved and has achieved 1400 h, which exceeds the minimum life for practical uses (1000 h). As another alternative for thoriated tungsten cathode, Y-Mo cathode has shown better performance. The thermionic emission capability of Y-Mo cathode is between that of La-Mo cathode and Th-W cathode.

  15. Preparation and catalytic properties of tungsten oxides with different morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Bi Yunfei, E-mail: beiyf2003@yahoo.com.cn [Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing (China); Li Dadong; Nie Hong [Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing (China)

    2010-09-01

    Tungsten oxides with different morphologies including platelet-like sheets, nanobelts, and nanoparticles have been successfully prepared by changing the ions in the synthetic solution. Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared analysis and N{sub 2} adsorption were employed to reveal the morphological evolution, and results show that the morphological evolution can be attributed to the alteration of coordination environment of tungstenic cations contained in the synthetic solution. Furthermore, these products have been applied into hydrodesulfurization measurement to investigate the relationship between the morphologies of tungsten oxides and their catalytic properties. It is concluded that the catalysts originating from nanobelt-like tungsten oxides have highest catalytic activity and excellent selectivity due to their scrolled character and strong metallic edges.

  16. Calibration and temperature profile of a tungsten filament lamp

    Energy Technology Data Exchange (ETDEWEB)

    De Izarra, Charles [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans, CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 Bourges Cedex (France); Gitton, Jean-Michel, E-mail: Charles.De_Izarra@univ-orleans.f [College Littre, 10 rue Littre, Bourges (France)

    2010-07-15

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament lamp (lamp used in automotive lighting) and then tested on a standard tungsten ribbon lamp. The calibration procedure developed was checked by determining the calibration point of the tungsten ribbon lamp with an accuracy of 2%. In addition, for low current intensity, it was observed that the temperature of the filament was not uniform; an explanation is proposed by considering a simple heat transfer model.

  17. TIG (Tungsten Inert Gas) welding; Le soudage TIG

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  18. Tungsten-nickel-cobalt alloy and method of producing same

    Science.gov (United States)

    Dickinson, James M.; Riley, Robert E.

    1977-03-15

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.

  19. INDUCTION PLASMA REACTIVE DEPOSITION OF TUNGSTENCARBIDE FROM TUNGSTEN METAL POWDER

    Institute of Scientific and Technical Information of China (English)

    X.L. Jiang; M.I. Boulos

    2001-01-01

    Experimental results are reported on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.``

  20. Optimal Control of Switched Systems based on Bezier Control Points

    Directory of Open Access Journals (Sweden)

    FatemeGhomanjani

    2012-06-01

    Full Text Available This paper presents a new approach for solving optimal control problems for switched systems. We focus on problems in which a pre-specified sequence of active subsystems is given. For such problems, we need to seek both the optimal switching instants and the optimal continuous inputs. A Bezier control points method is applied for solving an optimal control problem which is supervised by a switched dynamic system. Two steps of approximation exist here. First, the time interval is divided into k sub-intervals. Second, the trajectory and control functions are approximatedby Bezier curves in each subinterval. Bezier curves have been considered as piecewise polynomials of degree n, then they will be determined by n+1 control points on any subinterval. The optimal control problem is there by converted into a nonlinear programming problem (NLP, which can be solved by known algorithms. However in this paper the MATLAB optimization routine FMINCON is used for solving resulting NLP.