WorldWideScience

Sample records for controlled spintronics device

  1. Metallic spintronic devices

    CERN Document Server

    Wang, Xiaobin

    2014-01-01

    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  2. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal

    2017-01-09

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  3. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal; Fariborzi, Hossein

    2017-01-01

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  4. Oxide materials for spintronic device applications

    Science.gov (United States)

    Prestgard, Megan Campbell

    Spintronic devices are currently being researched as next-generation alternatives to traditional electronics. Electronics, which utilize the charge-carrying capabilities of electrons to store information, are fundamentally limited not only by size constraints, but also by limits on current flow and degradation, due to electro-migration. Spintronics devices are able to overcome these limitations, as their information storage is in the spin of electrons, rather than their charge. By using spin rather than charge, these current-limiting shortcomings can be easily overcome. However, for spintronic devices to be fully implemented into the current technology industry, their capabilities must be improved. Spintronic device operation relies on the movement and manipulation of spin-polarized electrons, in which there are three main processes that must be optimized in order to maximize device efficiencies. These spin-related processes are: the injection of spin-polarized electrons, the transport and manipulation of these carriers, and the detection of spin-polarized currents. In order to enhance the rate of spin-polarized injection, research has been focused on the use of alternative methods to enhance injection beyond that of a simple ferromagnetic metal/semiconductor injector interface. These alternatives include the use of oxide-based tunnel barriers and the modification of semiconductors and insulators for their use as ferromagnetic injector materials. The transport of spin-polarized carriers is heavily reliant on the optimization of materials' properties in order to enhance the carrier mobility and to quench spin-orbit coupling (SOC). However, a certain degree of SOC is necessary in order to allow for the electric-field, gate-controlled manipulation of spin currents. Spin detection can be performed via both optical and electrical techniques. Using electrical methods relies on the conversion between spin and charge currents via SOC and is often the preferred method for

  5. Future perspectives for spintronic devices

    International Nuclear Information System (INIS)

    Hirohata, Atsufumi; Takanashi, Koki

    2014-01-01

    Spintronics is one of the emerging research fields in nanotechnology and has been growing very rapidly. Studies of spintronics were started after the discovery of giant magnetoresistance in 1988, which utilized spin-polarized electron transport across a non-magnetic metallic layer. Within 10 years, this discovery had been implemented into hard disk drives, the most common storage media, followed by recognition through the award of the Nobel Prize for Physics 19 years later. We have never experienced such fast development in any scientific field. Spintronics research is now moving into second-generation spin dynamics and beyond. In this review, we first examine the historical advances in spintronics together with the background physics, and then describe major device applications. (topical review)

  6. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  7. CMOS-compatible spintronic devices: a review

    Science.gov (United States)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  8. Spintronics from materials to devices

    CERN Document Server

    Felser, Claudia

    2013-01-01

    Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made

  9. PREFACE International Symposium on Spintronic Devices and Commercialization 2010

    Science.gov (United States)

    Du, You-wei; Judy, Jack; Qian, Zhenghong; Wang, Jianping

    2011-01-01

    SSDC logo Preface The International Symposium on Spintronic Devices and Commercialization (ISSDC' 2010) was held in Beijing, China, from 21 to 24 October 2010. The aim of the symposium was to provide an opportunity for international experts, academics, researchers, practitioners and students working in the areas of spintronic theories, spintronic materials, and spintronic devices to exchange information on the R&D and commercialization of spintronic materials and devices. New developments, concepts, future research trends and potential commercialization areas were also discussed. The topics covered by ISSDC' 2010 were: Fundmental Spintronic Theories/Experiments Spin polarization, spin-dependent scattering, spin relaxation, spin manipulation and optimization, as well as other related characterizations and applications, etc. Spintronic Materials Giant magnetoresistance materials, magnetic tunnel junction materials, magnetic semiconductor materials, molecular spintronic materials. Spintronic Devices Sensors, isolators, spin logic devices and magnetic random access memories (MRAMs), microwave devices, spin diodes, spin transistor, spin filters and detectors, spin optoelectronic devices, spin quantum devices, single chip computer, spin molecule and single electron devices. Other Magnetic Materials Soft magnetic materials, hard magnetic materials, magneto-optical materials, magnetostriction materials. Applications of Spintronic Devices Magnetic position/angle/velocity/rotation velocity sensors, magnetic encoders, magnetic compasses, bio-medical magnetic devices and other applications. Future Research Trends and the Commercialization of Spintronic Devices Approximately 85 scientists from almost 10 countries participated in the conference. The conference featured 6 keynote lectures, 8 invited lectures, 12 contributed lectures and about 30 posters. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference

  10. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  11. Fiscal 2000 pioneering research on the spintronic device basic technology; 2000 nendo spintronic soshi kiban gijutsu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Researchers specializing in technologies of magnetism or semiconductor were drafted from the industrial, official, and academic circles, who conducted hearings, patent investigations, overseas surveys, and the like, concerning spintronics. Collected in this report are the outline of the research and development of spintronic device technology, its current state and tasks and its importance from social and economic viewpoints, and the strategy that Japan should follow in the research and development of the technology. Important spintronic device technologies now attracting attention are mentioned below. The nonvolatile magnetic memory device MRAM (magnetic random access memory) is supposed to be the device which will enjoy practical application first among like devices. It is expected that the spin conduction device will lead to novel functions when the possibilities of the spin-dependent electric conduction phenomenon are further pursued. It is hoped that the spin optical device will be used as a light isolator, light spin logic device, field induced variable wavelength laser device, spin laser device, high-speed light switch, and so forth. It is necessary to watch the development of a spin-aided quantum computer which is still at the stage of basic study. (NEDO)

  12. Spintronic materials and devices based on antiferromagnetic metals

    OpenAIRE

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring i...

  13. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  14. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    Science.gov (United States)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  15. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  16. Spintronic materials and devices based on antiferromagnetic metals

    Directory of Open Access Journals (Sweden)

    Y.Y. Wang

    2017-04-01

    Full Text Available In this paper, we review our recent experimental developments on antiferromagnet (AFM spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring is realized by adopting ionic liquid. In addition, promising spin-orbit effects in AFM as well as spin transfer via AFM spin waves reported by different groups have also been reviewed, indicating that the AFM can serve as an efficient spin current source. To explore the crucial role of AFM acting as efficient generators, transmitters, and detectors of spin currents is an emerging topic in the field of magnetism today. AFM metals are now ready to join the rapidly developing fields of basic and applied spintronics, enriching this area of solid-state physics and microelectronics.

  17. Bipolar spintronics: from spin injection to spin-controlled logic

    International Nuclear Information System (INIS)

    Zutic, Igor; Fabian, Jaroslav; Erwin, Steven C

    2007-01-01

    An impressive success of spintronic applications has been typically realized in metal-based structures which utilize magnetoresistive effects for substantial improvements in the performance of computer hard drives and magnetic random access memories. Correspondingly, the theoretical understanding of spin-polarized transport is usually limited to a metallic regime in a linear response, which, while providing a good description for data storage and magnetic memory devices, is not sufficient for signal processing and digital logic. In contrast, much less is known about possible applications of semiconductor-based spintronics and spin-polarized transport in related structures which could utilize strong intrinsic nonlinearities in current-voltage characteristics to implement spin-based logic. Here we discuss the challenges for realizing a particular class of structures in semiconductor spintronics: our proposal for bipolar spintronic devices in which carriers of both polarities (electrons and holes) contribute to spin-charge coupling. We formulate the theoretical framework for bipolar spin-polarized transport, and describe several novel effects in two- and three-terminal structures which arise from the interplay between nonequilibrium spin and equilibrium magnetization

  18. Nanostructured graphene for spintronics

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Power, Stephen; Jauho, Antti-Pekka

    2017-01-01

    Zigzag edges of the honeycomb structure of graphene exhibit magnetic polarization, making them attractive as building blocks for spintronic devices. Here, we show that devices with zigzag-edged triangular antidots perform essential spintronic functionalities, such as spatial spin splitting or spin...

  19. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    Science.gov (United States)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  20. Spintronics with multiferroics

    Science.gov (United States)

    Béa, H.; Gajek, M.; Bibes, M.; Barthélémy, A.

    2008-10-01

    In this paper, we review the recent research on the functionalization of multiferroics for spintronics applications. We focus more particularly on antiferromagnetic and ferroelectric BiFeO3 and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO3 allows the observation of a large tunnel magnetoresistance with Co and (La,Sr)MnO3 ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelectric properties have been exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to electrically control magnetization and possibly the logic state of spintronics devices. We also discuss recent results concerning the use of ferromagnetic and ferroelectric (La,Bi)MnO3 as an active tunnel barrier in magnetic tunnel junctions with Au and (La,Sr)MnO3 electrodes. A four-resistance-state device has been obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelectric behavior of the (La,Bi)MnO3 ultrathin film. These results show that the additional degree of freedom provided by the ferroelectric polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.

  1. Spintronics with multiferroics

    International Nuclear Information System (INIS)

    Bea, H; Gajek, M; Bibes, M; Barthelemy, A

    2008-01-01

    In this paper, we review the recent research on the functionalization of multiferroics for spintronics applications. We focus more particularly on antiferromagnetic and ferroelectric BiFeO 3 and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO 3 allows the observation of a large tunnel magnetoresistance with Co and (La,Sr)MnO 3 ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelectric properties have been exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to electrically control magnetization and possibly the logic state of spintronics devices. We also discuss recent results concerning the use of ferromagnetic and ferroelectric (La,Bi)MnO 3 as an active tunnel barrier in magnetic tunnel junctions with Au and (La,Sr)MnO 3 electrodes. A four-resistance-state device has been obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelectric behavior of the (La,Bi)MnO 3 ultrathin film. These results show that the additional degree of freedom provided by the ferroelectric polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.

  2. Spintronics with multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Bea, H; Gajek, M; Bibes, M; Barthelemy, A [Unite Mixte de Physique CNRS/Thales, Route departementale 128, F-91767 Palaiseau (France); Universite Paris-Sud, 91405 Orsay (France)], E-mail: agnes.barthelemy@thalesgroup.com

    2008-10-29

    In this paper, we review the recent research on the functionalization of multiferroics for spintronics applications. We focus more particularly on antiferromagnetic and ferroelectric BiFeO{sub 3} and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO{sub 3} allows the observation of a large tunnel magnetoresistance with Co and (La,Sr)MnO{sub 3} ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelectric properties have been exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to electrically control magnetization and possibly the logic state of spintronics devices. We also discuss recent results concerning the use of ferromagnetic and ferroelectric (La,Bi)MnO{sub 3} as an active tunnel barrier in magnetic tunnel junctions with Au and (La,Sr)MnO{sub 3} electrodes. A four-resistance-state device has been obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelectric behavior of the (La,Bi)MnO{sub 3} ultrathin film. These results show that the additional degree of freedom provided by the ferroelectric polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.

  3. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    Science.gov (United States)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  4. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    Science.gov (United States)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could

  5. Spintronics-based computing

    CERN Document Server

    Prenat, Guillaume

    2015-01-01

    This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic, which is widely considered a promising candidate to replace conventional, pure CMOS-based logic. It will cover aspects from device to system-level, including magnetic memory cells, device modeling, hybrid circuit structure, design methodology, CAD tools, and technological integration methods. This book is accessible to a variety of readers and little or no background in magnetism and spin electronics are required to understand its content.  The multidisciplinary team of expert authors from circuits, devices, computer architecture, CAD and system design reveal to readers the potential of spintronics nanodevices to reduce power consumption, improve reliability and enable new functionality.  .

  6. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.

    2017-05-30

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  7. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.; Sinova, J.; Manchon, Aurelien; Marti, X.; Wunderlich, J.; Felser, C.

    2017-01-01

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  8. Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity

    International Nuclear Information System (INIS)

    Kang, S.H.; Lee, K.

    2013-01-01

    A spintronic integrated circuit (IC) is made of a combination of a semiconductor IC and a dense array of nanometer-scale magnetic tunnel junctions. This emerging field is of growing scientific and engineering interest, owing to its potential to bring disruptive device innovation to the world of electronics. This technology is currently being pursued not only for scalable non-volatile spin-transfer-torque magnetoresistive random access memory, but also for various forms of non-volatile logic (Spin-Logic). This paper reviews recent advances in spintronic IC. Key discoveries and breakthroughs in materials and devices are highlighted in light of the broader perspective of their application in low-energy mobile computing and connectivity systems, which have emerged as leading drivers for the prevailing electronics ecosystem

  9. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  10. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    Science.gov (United States)

    Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek

    2018-04-01

    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

  11. Fabrication of tunnel junction-based molecular electronics and spintronics devices

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2012-01-01

    Tunnel junction-based molecular devices (TJMDs) are highly promising for realizing futuristic electronics and spintronics devices for advanced logic and memory operations. Under this approach, ∼2.5 nm molecular device elements bridge across the ∼2-nm thick insulator of a tunnel junction along the exposed side edge(s). This paper details the efforts and insights for producing a variety of TJMDs by resolving multiple device fabrication and characterization issues. This study specifically discusses (i) compatibility between tunnel junction test bed and molecular solutions, (ii) optimization of the exposed side edge profile and insulator thickness for enhancing the probability of molecular bridging, (iii) effect of fabrication process-induced mechanical stresses, and (iv) minimizing electrical bias-induced instability after the device fabrication. This research will benefit other researchers interested in producing TJMDs efficiently. TJMD approach offers an open platform to test virtually any combination of magnetic and nonmagnetic electrodes, and promising molecules such as single molecular magnets, porphyrin, DNA, and molecular complexes.

  12. Handbook of spintronics

    CERN Document Server

    Awschalom, David; Nitta, Junsaku

    2016-01-01

    This large reference work addresses a broad range of topics covering various aspects of spintronics science and technology, ranging from fundamental physics through materials properties and processing to established and emerging device technology and applications.  It comprises a collection of chapters from a large international team of leading researchers across academia and industry, providing readers with an up-to-date and comprehensive review of this dynamic field of research.   The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including the theory of giant magnetoresistance and an introduction to spin quantum computing.  Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrid materials including Heusler compounds, magnetic semiconductors, molecular spintronic materials, carbon nanotubes and graphene.  A separate section describes the various methods used in the char...

  13. Optimization of Materials and Interfaces for Spintronic Devices

    Science.gov (United States)

    Clark, Billy

    In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.

  14. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  15. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  16. The role of ion-implantation in the realization of spintronic devices in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Rafi, E-mail: kalish@si-sun1.technion.ac.il [Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2012-02-01

    The application of single photons emitted by specific quantum systems is promising for quantum computers, cryptography and for other future nano-applications. These heavily rely on ion implantation both for selective single ion implantations as well as for the introduction of controlled damage with specific properties. Of particular promise is the negatively charged nitrogen-vacancy (NV{sup -}) defect center in diamond. This center has many desirable luminescence properties required for spintronic devices operational at room temperature, including a long relaxation time of the color center, emission of photons in the visible and the fact that it is produced in diamond, a material with outstanding mechanical and optical properties. This center is usually realized by nitrogen and/or vacancy producing ion implantations into diamond which, following annealing, leads to the formation of the desired NV{sup -} center. The single photons emitted by the decay of this center have to be transported to allow their exploitation. This can be best done by realizing very thin wave guides in single crystal diamond with/or without nano-scale cavities in the same diamond in which NV centers are produced. For this, advantage is taken of the unique property of heavily ion-damaged diamond to be converted, following annealing, to etchable graphite. Thus a free standing submicron thick diamond membrane containing the NV center can be obtained. If desirable, specific photonic crystal structures can be realized in them by the use of FIB. The various ion-implantation schemes used to produce NV centers in diamond, free standing diamond membranes, and photonic crystal structures in them are reviewed. The scientific problems and the technological challenges that have to be solved before actual practical realization of diamond based spintronic devices can be produced are discussed.

  17. Spintronics Based on Topological Insulators

    Science.gov (United States)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  18. Organic spintronics

    International Nuclear Information System (INIS)

    Naber, W J M; Faez, S; Wiel, W G van der

    2007-01-01

    We review the emerging field of organic spintronics, where organic materials are applied as a medium to transport and control spin-polarized signals. The contacts for injecting and detecting spins are formed by ferromagnetic metals, oxides, or inorganic semiconductors. First, the basic concepts of spintronics and organic electronics are addressed, and phenomena which are in particular relevant for organic spintronics are highlighted. Experiments using different organic materials, including carbon nanotubes, organic thin films, self-assembled monolayers and single molecules are then reviewed. Observed magnetoresistance points toward successful spin injection and detection, but spurious magnetoresistance effects can easily be confused with spin accumulation. A few studies report long spin relaxation times and lengths, which forms a promising basis for further research. We conclude with discussing outstanding questions and problems. (topical review)

  19. Organic-based magnon spintronics

    Science.gov (United States)

    Liu, Haoliang; Zhang, Chuang; Malissa, Hans; Groesbeck, Matthew; Kavand, Marzieh; McLaughlin, Ryan; Jamali, Shirin; Hao, Jingjun; Sun, Dali; Davidson, Royce A.; Wojcik, Leonard; Miller, Joel S.; Boehme, Christoph; Vardeny, Z. Valy

    2018-03-01

    Magnonics concepts utilize spin-wave quanta (magnons) for information transmission, processing and storage. To convert information carried by magnons into an electric signal promises compatibility of magnonic devices with conventional electronic devices, that is, magnon spintronics1. Magnons in inorganic materials have been studied widely with respect to their generation2,3, transport4,5 and detection6. In contrast, resonant spin waves in the room-temperature organic-based ferrimagnet vanadium tetracyanoethylene (V(TCNE)x (x ≈ 2)), were detected only recently7. Herein we report room-temperature coherent magnon generation, transport and detection in films and devices based on V(TCNE)x using three different techniques, which include broadband ferromagnetic resonance (FMR), Brillouin light scattering (BLS) and spin pumping into a Pt adjacent layer. V(TCNE)x can be grown as neat films on a large variety of substrates, and it exhibits extremely low Gilbert damping comparable to that in yttrium iron garnet. Our studies establish an alternative use for organic-based magnets, which, because of their synthetic versatility, may substantially enrich the field of magnon spintronics.

  20. Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO{sub 3} (B = Ti, Hf, Zr, Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Camilo, A. [Department of Physics, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@uepg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-11-15

    First-principles calculations were performed in the framework of Density Functional Theory (DFT) within hybrid functional (B3LYP) to study the electronic structure and magnetic properties of new ilmenite FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) materials. In particular, the magnetic exchange interaction between Fe{sup 2+} layers is dependent on the interlayer distance and it can be controlled by ionic radius of B-site cation. Thus, Fe(Ti, Si, Ge)O{sub 3} are antiferromagnetic materials, while Fe(Zr, Hf, Sn)O{sub 3} are ferromagnetic. We also argue that antiferromagnetic materials and FeZrO{sub 3} are convectional semiconductors, whereas FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior, making them promising candidates for spintronic devices. - Highlights: • We study electronic structure and magnetism of new FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) ilmenite materials. • We found that magnetic ordering of Fe-based ilmenite materials can be controlled by size of B-site cation. • Fe(Ti, Zr, Si, Ge)O{sub 3} are convectional semiconductors. • FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior with potential application for spintronic devices.

  1. Perspective: Ultrafast magnetism and THz spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Walowski, Jakob; Münzenberg, Markus [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2016-10-14

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  2. Perspective: Ultrafast magnetism and THz spintronics

    International Nuclear Information System (INIS)

    Walowski, Jakob; Münzenberg, Markus

    2016-01-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  3. Advances in graphene spintronics

    Science.gov (United States)

    van Wees, Bart

    I will give an overview of the status of graphene spintronics, from both scientific as technological perspectives. In the introduction I will show that (single) layer graphene is the ideal host for electronic spins, allowing spin transport by diffusion over distances exceeding 20 micrometers at room temperature. I will show how by the use of carrier drift, induced by charge currents, effective spin relaxation lengths of 90 micrometer can be obtained in graphene encapsulated between boron-nitride layers. This also allows the controlled flow and guiding of spin currents, opening new avenues for spin logic devices based on lateral architectures. By preparing graphene on top of a ferromagnetic insulator (yttrium iron garnet (YIG)) we have shown that we can induce an exchange interaction in the graphene, thus effectively making the graphene magnetic. This allows for new ways to induce and control spin precession for new applications. Finally I will show how, by using two-layer BN tunnel barriers, spins can be injected from a ferromagnet into graphene with a spin polarization which can be tuned continuously from -80% to 40%, using a bias range from -0.3V to 0.3V across the barrier. These unique record values of the spin polarization are not yet understood, but they highlight the potential of Van der Waals stacking of graphene and related 2D materials for spintronics.

  4. Spintronics

    International Nuclear Information System (INIS)

    Grundler, Dirk

    2003-01-01

    Devices that exploit the spin of the electron promise to revolutionize microelectronics once polarized electrons can be injected efficiently into semiconductors at room temperature. Later this year physicists will be celebrating the centenary of Paul Dirac's birth. One of the most influential scientists of the 20th century, Dirac combined quantum mechanics and special relativity to explain the strange magnetic or 'spin' properties of the electron. What Dirac could not have foreseen, however, is how the spin of the electron could change the field of microelectronics. Indeed, the spin of the electron has attracted renewed interest recently because it promises a wide variety of new devices that combine logic, storage and sensor applications. Moreover, these 'Spintronics' devices might lead to quantum computers and quantum communication based on electronic solid-state devices, thus changing the perspective of information technology in the 21st century. Since the 1970s conventional electronic microprocessors have operated by shuttling packets of electronic charge along ever-smaller semiconductor channels. Although this trend will continue for the next few years, experts predict that silicon technology is beginning to approach fundamental limits. By 2008, for example, the width of the 'gate electrodes' in a silicon microprocessor will be just 45 nano metres across, which will place severe demands on the materials and manufacturing techniques used in the semiconductor industry. Indeed, the cost of implementing a new production line for such devices is predicted to reach $33bn. Although successors to silicon technology have been discussed, most of them rely on a complete set of new materials, new handling and processing techniques, and altered circuit design, among other developments. These new technologies include single-electron transistors and molecular-electronic devices based on organic materials or carbon nanotubes (see Carbon nanotubes roll on Physics World June

  5. Large resistance change on magnetic tunnel junction based molecular spintronics devices

    Science.gov (United States)

    Tyagi, Pawan; Friebe, Edward

    2018-05-01

    Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.

  6. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  7. Molecular spintronics using single-molecule magnets

    Science.gov (United States)

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  8. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  9. Giant magnetoresistance in lateral metallic nanostructures for spintronic applications.

    Science.gov (United States)

    Zahnd, G; Vila, L; Pham, V T; Marty, A; Beigné, C; Vergnaud, C; Attané, J P

    2017-08-25

    In this letter, we discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. Using CoFe-based all-metallic LSVs, we show that giant magnetoresistance variations of more than 10% can be obtained, competitive with the current-perpendicular-to-plane giant magnetoresistance. We then focus on the interest of being able to tailor freely the geometries. On the one hand, by tailoring the non-magnetic parts, we show that it is possible to enhance the spin signal of giant magnetoresistance structures. On the other hand, we show that tailoring the geometry of lateral structures allows creating a multilevel memory with high spin signals, by controlling the coercivity and shape anisotropy of the magnetic parts. Furthermore, we study a new device in which the magnetization direction of a nanodisk can be detected. We thus show that the ability to control the magnetic properties can be used to take advantage of all the spin degrees of freedom, which are usually occulted in current-perpendicular-to-plane devices. This flexibility of lateral structures relatively to current-perpendicular-to-plane structures is thus found to offer a new playground for the development of spintronic applications.

  10. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  11. Spintronics

    Indian Academy of Sciences (India)

    we will deal in an elementary fashion with the principles of spintronics. Introduction. Spintronics is the branch of science dealing with the ac- tive manipulation of spin degrees of freedom in solid state materials. .... polarized material can be done in many ways. The sim- plest way is to apply a transient magnetic field to a para-.

  12. "Magnon Spintronics"

    Science.gov (United States)

    Yu, Haiming; Xiao, Jiang; Pirro, Philipp

    2018-03-01

    We are proud to present a collection of 12 cutting-edge research articles on the emerging field "magnon spintronics" investigating the properties of spin waves or magnons towards their potential applications in low-power-consumption information technologies. Magnons (quasiparticles of spin waves) are collective excitations of magnetizations in a magnetic system. The concept for such excitations was first introduced 1930 by Felix Bloch [1] who described ferromagnetism in a lattice. The field of magnon spintronics [2] or magnonics [3] aims at utilizing magnons to realize information processing and storage. The propagation of spin waves is free of charge transport, hence a successful realization of magnonic devices can innately avoid Joule heating induced energy loss in nowadays micro- or nano-electronic devices. Magnonics has made many progresses in recent years, including the demonstration of magnonic logic devices [4]. Towards the aim to generate magnonic devices, it is an essential step to find materials suitable for conveying spin waves. One outstanding candidate is a ferromagnetic insulator yttrium iron garnet (YIG). It offers an out standing low damping which allows the propagation of spin waves over relatively long distances. Experiments on such a thin YIG film with an out-of-plane magnetization have been performed by Chen et al. [5]. They excited so called forward volume mode spin waves and determined the propagating spin wave properties, such as the group velocities. Lohman et al. [6] has successfully imaged the propagating spin waves using time-resolved MOKE microscopy and show agreement with micromagnetic modellings. For very long time, YIG is the most ideal material for spin waves thanks to its ultra-low damping. However, it remains a major challenge integrate YIG on to Silicon substrate. Magnetic Heusler alloys on the other hand, can be easily grown on Si substrate and also shows reasonably good damping properties, which allow spin waves to propagate

  13. ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS

    KAUST Repository

    Monteblanco, Elmer

    2017-03-14

    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  14. ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS

    KAUST Repository

    Monteblanco, Elmer; Ortiz Pauyac, Christian; Savero, Williams; RojasSanchez, J. Carlos; Schuhl, A.

    2017-01-01

    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  15. Spintronic logic design methodology based on spin Hall effect–driven magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Kang, Wang; Zhang, Youguang; Zhao, Weisheng; Wang, Zhaohao; Klein, Jacques-Olivier; Lv, Weifeng

    2016-01-01

    Conventional complementary metal-oxide-semiconductor (CMOS) technology is now approaching its physical scaling limits to enable Moore’s law to continue. Spintronic devices, as one of the potential alternatives, show great promise to replace CMOS technology for next-generation low-power integrated circuits in nanoscale technology nodes. Until now, spintronic memory has been successfully commercialized. However spintronic logic still faces many critical challenges (e.g. direct cascading capability and small operation gain) before it can be practically applied. In this paper, we propose a standard complimentary spintronic logic (CSL) design methodology to form a CMOS-like logic design paradigm. Using the spin Hall effect (SHE)-driven magnetic tunnel junction (MTJ) device as an example, we demonstrate CSL implementation, functionality and performance. This logic family provides a unified design methodology for spintronic logic circuits and partly solves the challenges of direct cascading capability and small operation gain in the previously proposed spintronic logic designs. By solving a modified Landau–Lifshitz–Gilbert equation, the magnetization dynamics in the free layer of the MTJ is theoretically described and a compact electrical model is developed. With this electrical model, numerical simulations have been performed to evaluate the functionality and performance of the proposed CSL design. Simulation results demonstrate that the proposed CSL design paradigm is rather promising for low-power logic computing. (paper)

  16. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal

    2017-10-25

    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  17. Spintronics and thermoelectrics in exfoliated and epitaxial graphene

    NARCIS (Netherlands)

    van den Berg, Jan Jasper

    2016-01-01

    This thesis is about two subjects: graphene spintronics and graphene thermoelectrics. Spintronics is about the creation and manipulation of spin currents. These are electrical currents in which we can control the spin orientation (up or down) of the conduction electrons. The second subject,

  18. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles [Department of Physics, Boise State University, Boise, Idaho 83725 (United States); Padture, Nitin P. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  19. Semiconductors put spin in spintronics

    International Nuclear Information System (INIS)

    Weiss, Dieter

    2000-01-01

    Electrons and holes, which carry the current in semiconductor devices, are quantum-mechanical objects characterized by a set of quantum numbers - the band index, the wave-vector (which is closely related to the electron or hole velocity) and spin. The spin, however, is one of the strangest properties of particles. In simple terms, we can think of the spin as an internal rotation of the electron, but it has no classical counterpart. The spin is connected to a quantized magnetic moment and hence acts as a microscopic magnet. Thus the electron spin can adopt one of two directions (''up'' or ''down'') in a magnetic field. The spin plays no role in conventional electronics and the current in any semiconductor device is made up of a mixture of electrons with randomly oriented spins. However, a new range of electronic devices that transport the spin of the electrons, in addition to their charge, is being developed. But the biggest obstacle to making practical ''spin electronic'' or ''spintronic'' devices so far has been finding a way of injecting spin-polarized electrons or holes into the semiconductor and then detecting them. Recently a team of physicists from the University of Wuerzburg in Germany, and also a collaboration of researchers from Tohoku University in Japan and the University of California at Santa Barbara, have found a way round these problems using either semi-magnetic or ferromagnetic semiconductors as ''spin aligners'' (R Fiederling et al. 1999 Nature 402 787; Y Ohno et al. 1999 Nature 402 790). In this article the author presents the latest breakthrough in spintronics research. (UK)

  20. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  1. Spintronics: The molecular way

    Science.gov (United States)

    Cornia, Andrea; Seneor, Pierre

    2017-05-01

    Molecular spintronics is an interdisciplinary field at the interface between organic spintronics, molecular magnetism, molecular electronics and quantum computing, which is advancing fast and promises large technological payoffs.

  2. Damping constant measurement and inverse giant magnetoresistance in spintronic devices with Fe4N

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2017-12-01

    Full Text Available Fe4N is one of the attractive materials for spintronic devices due to its large spin asymmetric conductance and negative spin polarization at the Fermi level. We have successfully deposited Fe4N thin film with (001 out-of-plane orientation using a DC facing-target-sputtering system. A Fe(001/Ag(001 composite buffer layer is selected to improve the (001 orientation of the Fe4N thin film. The N2 partial pressure during sputtering is optimized to promote the formation of Fe4N phase. Moreover, we have measured the ferromagnetic resonance (FMR of the (001 oriented Fe4N thin film using coplanar waveguides and microwave excitation. The resonant fields are tested under different microwave excitation frequencies, and the experimental results match well with the Kittel formula. The Gilbert damping constant of Fe4N is determined to be α = 0.021±0.02. We have also fabricated and characterized the current-perpendicular-to-plane (CPP giant magnetoresistance (GMR device with Fe4N/Ag/Fe sandwich. Inverse giant magnetoresistance is observed in the CPP GMR device, which suggests that the spin polarization of Fe4N and Fe4N/Ag interface is negative.

  3. Superconducting spin switch based on superconductor-ferromagnet nanostructures for spintronics

    International Nuclear Information System (INIS)

    Kehrle, Jan; Mueller, Claus; Obermeier, Guenter; Schreck, Matthias; Gsell, Stefan; Horn, Siegfried; Tidecks, Reinhard; Zdravkov, Vladimir; Morari, Roman; Sidorencko, Anatoli; Prepelitsa, Andrei; Antropov, Evgenii; Socrovisciiuc, Alexei; Nold, Eberhard; Tagirov, Lenar

    2011-01-01

    Very rapid developing area, spintronics, needs new devices, based on new physical principles. One of such devices - a superconducting spin-switch, consists of ferromagnetic and superconducting layers, and is based on a new phenomenon - reentrant superconductivity. The tuning of the superconducting and ferromagnetic layers thickness is investigated to optimize superconducting spin-switch effect for Nb/Cu 41 Ni 59 based nanoscale layered systems.

  4. Recent Advance in Organic Spintronics and Magnetic Field Effect

    Science.gov (United States)

    Valy Vardeny, Z.

    2013-03-01

    In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109 ; NSF Grant # DMR-1104495 and MSF-MRSEC program DMR-1121252 [2,3].

  5. Integration of spintronic interface for nanomagnetic arrays

    Directory of Open Access Journals (Sweden)

    Andrew Lyle

    2011-12-01

    Full Text Available An experimental demonstration utilizing a spintronic input/output (I/O interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors.

  6. Nanomagnetism and spintronics

    CERN Document Server

    Shinjo, Teruya

    2014-01-01

    The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomeno

  7. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    International Nuclear Information System (INIS)

    Huong Giang, D.T.; Thuc, V.N.; Duc, N.H.

    2012-01-01

    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni 80 Fe 20 /Cu/Fe 50 Co 50 /IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: ► Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. ► Magnetization, magnetoresistance changes under electric field across piezoelectric. ► Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. ► This advance shows great implications for low-power electronics and spintronics.

  8. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.

    2018-02-15

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  9. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.; Manchon, Aurelien; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  10. Graphene-based spintronic components

    OpenAIRE

    Zeng, Minggang; Shen, Lei; Su, Haibin; Zhou, Miao; Zhang, Chun; Feng, Yuanping

    2010-01-01

    A major challenge of spintronics is in generating, controlling and detecting spin-polarized current. Manipulation of spin-polarized current, in particular, is difficult. We demonstrate here, based on calculated transport properties of graphene nanoribbons, that nearly +-100% spin-polarized current can be generated in zigzag graphene nanoribbons (ZGNRs) and tuned by a source-drain voltage in the bipolar spin diode, in addition to magnetic configurations of the electrodes. This unusual transpor...

  11. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    Science.gov (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  12. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    International Nuclear Information System (INIS)

    Tyagi, Pawan; Friebe, Edward; Baker, Collin

    2015-01-01

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes’ susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond ∼90 °C. The NiFe surfaces, aged for several months or heated for several minutes below ∼90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies

  13. Multi-parameter optimization of a nanomagnetic system for spintronic applications

    International Nuclear Information System (INIS)

    Morales Meza, Mishel; Zubieta Rico, Pablo F.; Horley, Paul P.; Sukhov, Alexander; Vieira, Vítor R.

    2014-01-01

    Magnetic properties of nano-particles feature many interesting physical phenomena that are essentially important for the creation of a new generation of spin-electronic devices. The magnetic stability of the nano-particles can be improved by formation of ordered particle arrays, which should be optimized over several parameters. Here we report successful optimization regarding inter-particle distance and applied field frequency allowing to obtain about three-times reduction of coercivity of a particle array compared to that of a single particle, which opens new perspectives for development of new spintronic devices

  14. Multi-parameter optimization of a nanomagnetic system for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Morales Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Zubieta Rico, Pablo F. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230 Querétaro (Mexico); Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Vieira, Vítor R. [Centro de Física das Interacções Fundamentais (CFIF), Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-11-15

    Magnetic properties of nano-particles feature many interesting physical phenomena that are essentially important for the creation of a new generation of spin-electronic devices. The magnetic stability of the nano-particles can be improved by formation of ordered particle arrays, which should be optimized over several parameters. Here we report successful optimization regarding inter-particle distance and applied field frequency allowing to obtain about three-times reduction of coercivity of a particle array compared to that of a single particle, which opens new perspectives for development of new spintronic devices.

  15. Perspectives of antiferromagnetic spintronics

    Science.gov (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  16. Perspectives of antiferromagnetic spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  17. Neuromorphic computing with nanoscale spintronic oscillators.

    Science.gov (United States)

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  18. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices

    Science.gov (United States)

    Rana, Bivas; Otani, YoshiChika

    2018-01-01

    Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.

  19. Antiferromagnetic spintronics

    Science.gov (United States)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  20. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  1. A review on organic spintronic materials and devices: I. Magnetic field effect on organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-06-01

    Full Text Available Organic spintronics is an emerging and potential platform for future electronics and display due to the intriguing properties of organic semiconductors (OSCs. For the past decade, studies have focused on three types of organic spintronic phenomena: (i magnetic field effect (MFE in organic light emitting diodes (OLEDs, where spin mixing between singlet and triplet polaron pairs (PP can be influenced by an external magnetic field leading to organic magnetoresistive effect (OMAR; (ii magnetoresistance (MR in organic spin valves (OSVs, where spin injection, transport, manipulation, and detection have been demonstrated; and (iii magnetoelectroluminescence (MEL bipolar OSVs or spin-OLEDs, where spin polarized electrons and holes are simultaneously injected into the OSC layer, leading to the dependence of electroluminescence intensity on relative magnetization of the electrodes. In this first of two review papers, we present major experimental results on OMAR studies and current understanding of OMAR using several spin dependent processes in organic semiconductors. During the discussion, we highlight some of the outstanding challenges in this promising research field. Finally, we provide an outlook on the future of organic spintronics.

  2. Special Heusler compounds for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Balke, B.

    2007-07-01

    This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co{sub 2}Mn{sub 1-x}Fe{sub x}Si with the Fe concentration ranging from x=0 to 1 are reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co{sub 2}Mn{sub 1-x}Fe{sub x}Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co{sub 2}FeAl{sub 1-x}Si{sub x} with varying Si concentration are reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x=0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors is reported. It is shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers

  3. The importance of Fe interface states for ferromagnet-semiconductor based spintronic devices

    Science.gov (United States)

    Chantis, Athanasios

    2009-03-01

    I present our recent theoretical studies of the bias-controlled spin injection, detection sensitivity and tunneling anisotropic magnetoresistance in ferromagnetic-semiconductor tunnel junctions. Using first-principles electron transport methods we have shown that Fe 3d minority-spin surface (interface) states are responsible for at least two important effects for spin electronics. First, they can produce a sizable Tunneling Anisotropic Magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, Tunneling Magnetoresistance junctions with a single ferromagnetic electrode that can function at room temperatures. Second, in Fe/GaAs(001) magnetic tunnel junctions they produce a strong dependence of the tunneling current spin-polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is found. This explains the observed sign reversal of spin-polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistcance through vertical Fe/GaAs/Fe trilayers. We also present a theoretical description of electrical spin-detection at a ferromagnet/semiconductor interface. We show that the sensitivity of the spin detector has strong bias dependence which, in the general case, is dramatically different from that of the tunneling current spin-polarization. We show that in realistic ferromagnet/semiconductor junctions this bias dependence can originate from two distinct physical mechanisms: 1) the bias dependence of tunneling current spin-polarization, which is of microscopic origin and depends on the specific properties of the interface, and 2) the macroscopic electron spin transport properties in the semiconductor. Our numerical results show that the magnitude of the voltage signal

  4. LSMO - growing opportunities by PLD and applications in spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M; Caricato, A P; Maruccio, G; Martino, M, E-mail: maura.cesaria@le.infn.it [Physics Department, University of Salento, Via Arnesano, 73100, Lecce (Italy)

    2011-04-01

    Ferromagnetic materials exhibiting at room temperature combination of good conductivity, magnetic and opto-electronic properties are needed for the development of functional spin-devices. Mixed-valence LSMO is an optimal source of fully spin-polarized carriers and shows a rich physics of magnetic phases and transport mechanisms. Many factors, such as growth temperature, oxygen stoichiometry, temperature-dependent oxygen desorption rate, structural matching between the growing film and substrate, film thickness, and defects, influence the LSMO properties. Stabilization of ferromagnetic and conductive behaviours is linked to structural order. Therefore a growth approach allowing congruent deposition of complex materials under controlled, reproducible and tunable conditions is strongly needed. In this respect pulsed laser deposition reveals a well-suited choice. This review aims to give an overview on LSMO thin film properties, deposition and applications, especially in the emerging organic spintronics.

  5. Spintronic microfluidic platform for biomedical and environmental applications

    Science.gov (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  6. Spin-chemistry concepts for spintronics scientists

    Directory of Open Access Journals (Sweden)

    Konstantin L. Ivanov

    2017-07-01

    Full Text Available Spin chemistry and spintronics developed independently and with different terminology. Until now, the interaction between the two fields has been very limited. In this review, we compile the two “languages” in an effort to enhance communication. We expect that knowledge of spin chemistry will accelerate progress in spintronics.

  7. Antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg

    2016-01-01

    Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016

  8. From Spintronics to CFD/ContractForDifferences

    Science.gov (United States)

    Maksoed, W. H.

    2015-11-01

    Involve the CFD/Computational Fluid Dynamics & HCCI/Homogeneous Charge Compression Ignition - Marcine Frackowiak, dissertation, 2009, for CFD/Contract For Differences accompanied by ``One Man's Crusade to Exonerate Hydrogen for Hindenburg Disaster'' of Addison BAIN, APS News, v. 9, n.7 (July 2000) concludes ``ignition of the blaze'' are responsible to those May, 1937 Accidents. Spintronics their selves include active control & manipulation of spin degree of freedom ever denotes: the nano-obelisk of scanning electron microscopy of galliumnitride/GaN nanostructures-Yong-Hon Cho et al.:``Novel Photonic Device using core-shell nanostructures'', SPIE-newsroom,10.1117/2.1201503.005864. Herewith commercial activated carbon/C can be imaged directly using abberation-corrected transmission electron microscopy[PJF Harris et al.: ``Imaging the Atomic Structures of activated C'', J. Phys. Condens. Matt, 20 (2008) in fig b & c- images networks of hexagonal rings can be clearly be seen depicts equal etchings of 340 px Akhenaten, Nefertiti & their childrens. Incredible acknowledgments to Minister of Education & Culture RI 1998-1999 HE. Mr. Prof. Ir. WIRANTO ARISMUNANDAR, MSME.

  9. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    International Nuclear Information System (INIS)

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian

    2014-01-01

    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials

  10. Materials for spintronic: Room temperature ferromagnetism in Zn-Mn-O interfaces

    International Nuclear Information System (INIS)

    Quesada, A.; Garcia, M.A.; Crespo, P.; Hernando, A.

    2006-01-01

    In this paper we study the room temperature ferromagnetism reported on Mn-doped ZnO and ascribed to spin polarization of conduction electrons. We experimentally show that the ferromagnetic behaviour is associated to the coexistence of Mn 3+ and Mn +4 in MnO 2 grains where diffusion of Zn promotes the Mn 4+→ Mn 3+ reduction. Potential uses of this material in spintronic devices are analysed

  11. Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics

    Science.gov (United States)

    Wang, Xuefeng

    Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. The crystal growth strategy demonstrated in this work

  12. Flexible spintronic devices on Kapton

    DEFF Research Database (Denmark)

    Bedoya-Pinto, Amilcar; Donolato, Marco; Gobbi, Marco

    2014-01-01

    Magnetic tunnel junctions and nano-sized domain-wall conduits have been fabricated on the flexible substrate Kapton. Despite the delicate nature of tunneling barriers and zig-zag shaped nanowires, the devices show an outstanding integrity and robustness upon mechanical bending. High values of ben...

  13. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  14. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin

    2011-02-19

    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  15. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin; Arif, Suneela K.; Ahmad, Iftikhar; Maqbool, Muhammad; Ahmad, Roshan; Goumri-Said, Souraya; Prisbrey, Keith A.

    2011-01-01

    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  16. Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Varun, E-mail: varun@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Jaiswal, Neeraj K. [Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur 482005 (India)

    2017-02-28

    Highlights: • Asymmetric hydrogen termination of Zigzag Germanene Nanoribbons (ZGeNR) is presented with their plausible spintronic device application. • It is revealed that asymmetric terminations are energetically more favourable compared to symmetric terminations. • The magnetic moment analysis depicts that asymmetric ZGeNR have a magnetic ground state with a preferred ferromagnetic (FM) coupling. • Presented doped asymmetric ZGeNR exhibits a half-metallic character which makes them qualify for spin-filtering device. - Abstract: First-principles investigations have been performed to explore the spin based electronic and transport properties of asymmetrically H-terminated zigzag germanene nanoribbons (2H−H ZGeNR). Investigations reveal a significant formation energy difference (ΔE{sub F} = E{sub F(2H-H)} − E{sub F(H-H)} ∼ −0.49 eV), highlighting more energetic stability for asymmetric edge termination compared to symmetric edge termination, irrespective of the ribbon width. Further, magnetic moment analysis and total energy calculations were performed to unveil that these structures have a magnetic ground state with preferred ferromagnetic (FM) coupling. The calculated E-k structures project a unique bipolar semiconducting behaviour for 2H−H ZGeNR which is contrast to H-terminated ZGeNR. Half-metallic transformation has also been revealed via suitable p-type or n-type doping for these structures. Finally, transport calculations were performed to highlight the selective contributions of spin-down (spin-up) electrons in the I–V characteristics of the doped 2H−H ZGeNR, suggesting their vitality for spintronic device applications.

  17. Electric control of antiferromagnets

    OpenAIRE

    Fina, I.; Marti, X.

    2016-01-01

    In the past five years, most of the paradigmatic concepts employed in spintronics have been replicated substituting ferromagnets by antiferromagnets in critical parts of the devices. The numerous research efforts directed to manipulate and probe the magnetic moments in antiferromagnets have been gradually established a new and independent field known as antiferromagnetic spintronics. In this paper, we focus on the electrical control and detection of antiferromagnetic moments at a constant tem...

  18. Ferromagnetism in doped or undoped spintronics nanomaterials

    Science.gov (United States)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  19. Spintronics of antiferromagnetic systems

    International Nuclear Information System (INIS)

    Gomonaj, E.V.; Loktev, V.M.

    2014-01-01

    Spintronics of antiferromagnetics is a new field that has developed in a fascinating research topic in physics of magnetism. Antiferromagnetics, like ferromagnetic materials experience the influence of spin-polarized current, even though they show no macroscopic magnetization. The mechanism of this phenomenon is related to spin-dependent interaction between free and localized electrons-sd-exchange. Due to the peculiarities of antiferromagnetic materials (complicated magnetic structure, essential role of the exchange interactions, lack of macroscopic magnetization) spintronics of antiferromagnets appeals to new theoretical and experimental approaches. The purpose of this review is to systemize and summarize the recent progress in this field. We start with a short introduction into the structure and dynamics of antiferromagnets and proceed with discussion of different microscopic and phenomenological theories for description of current-induced phenomena in ferro-/antiferromagnetic heterostructures. We also consider the problems of the reverse influence of antiferromagnetic ordering on current, and effectiveness of the fully antiferromagnetic spin valve. In addition, we shortly review and interpret the available experimental results.

  20. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    Energy Technology Data Exchange (ETDEWEB)

    Tomasello, R. [Department of Computer Science, Modeling, Electronics and System Science, University of Calabria, Rende (CS) (Italy); Carpentieri, M., E-mail: m.carpentieri@poliba.it [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy)

    2013-12-16

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.

  1. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    International Nuclear Information System (INIS)

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2013-01-01

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed

  2. Simulation of a spintronic transistor: A study of its performance

    International Nuclear Information System (INIS)

    Pela, R.R.; Teles, L.K.

    2009-01-01

    We study theoretically the magnetic bipolar transistor, and compare its performance with common bipolar transistor. We present not only the simulation results for the characteristic curves, but also other relevant parameters related with its performance, such as: the current amplification factor, the open-loop gain, the hybrid parameters and the cutoff frequency. We noted that the spin-charge coupling introduces new phenomena that enrich the functionality characteristics of the magnetic bipolar transistor. Among other things, it has an adjustable band structure, which may be modified during the device operation; it exhibits the already known spin-voltaic effect. On the other hand, we observed that it is necessary a large g-factor to analyze the influence of the field B over the transistor. Nevertheless, we consider the magnetic bipolar transistor as a promising device for spintronic applications

  3. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.

    2008-01-01

    Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on Ga......As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...... are controlled by uniaxial magnetic anisotropy. The dynamic response of the sample shows a heavily damped precessional response to the applied field pulses. In the Heusler alloy system of Co-2 MnGa on GaAs, we found that the magnetic moment was reduced for thicknesses down to 10 nm, which may account...

  4. Prospect for antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Jungwirth, Tomáš

    2015-01-01

    Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  5. Concepts of antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo

    2017-01-01

    Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016

  6. Preparation and characterization of highly L21-ordered full-Heusler alloy Co2FeAl0.5Si0.5 thin films for spintronics device applications

    International Nuclear Information System (INIS)

    Wang Wenhong; Sukegawa, Hiroaki; Shan Rong; Furubayashi, Takao; Inomata, Koichiro

    2008-01-01

    We report the investigation of structure and magnetic properties of full-Heusler alloy Co 2 FeAl 0.5 Si 0.5 (CFAS) thin films grown on MgO-buffered MgO (001) substrates through magnetron sputtering. It was found that single-crystal CFAS thin films with high degree of L2 1 ordering and sufficiently flat surface could be obtained after postdeposition annealing. All the films show a distinct uniaxial magnetic anisotropy with the easy axis of magnetization along the in-plane [110] direction. These results indicate that the use of the MgO buffer for CFAS is a promising approach for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications

  7. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng; Xia, Chuan; Zhu, Zhiyong; Wen, Yan; Zhang, Qiang; Alshareef, Husam N.; Zhang, Xixiang

    2016-01-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin

  8. Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures

    KAUST Repository

    Velazquez-Rizo, Martin

    2017-07-01

    In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed magnet (Bhowmik et al., 2014). The possibility of setting the magnetization to both stable magnetization states in a controlled manner using a similar concept remains unknown, but the proposed structure poses to be a solution to this difficulty. The second cell proposed takes advantage of the multiple stable magnetic states that exist in ferromagnets with configurational anisotropy and also uses spin torques to manipulate its magnetization. It utilizes a square-shaped ferromagnet whose stable magnetization has preferred directions along the diagonals of the square, giving four stable magnetic states allowing to use the structure as a multi-bit memory cell. Both devices use spin currents generated in heavy metals by the Spin Hall effect present in these materials. Among the advantages of the structures proposed are their inherent non-volatility and the fact that there is no need for applying external magnetic fields during their operation, which drastically improves the energy efficiency of the devices. Computational simulations using the Object Oriented Micromagnetic Framework (OOMMF) software package were performed to study the dynamics of the magnetization process in both structures and predict their behavior. Besides, we fabricated a 4-terminal memory cell with configurational anisotropy similar to the device proposed, and found four stable resistive states on the structure, proving the feasibility of this technology for implementation of high-density, non-volatile memory cells.

  9. Flexible spin-orbit torque devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, OukJae; You, Long; Jang, Jaewon; Subramanian, Vivek [Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720 (United States); Salahuddin, Sayeef [Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-21

    We report on state-of-the-art spintronic devices synthesized and fabricated directly on a flexible organic substrate. Large perpendicular magnetic anisotropy was achieved in ultrathin ferromagnetic heterostructures of Pt/Co/MgO sputtered on a non-rigid plastic substrate at room temperature. Subsequently, a full magnetic reversal of the Co was observed by exploiting the spin orbit coupling in Pt that leads to a spin accumulation at the Pt/Co interface when an in-plane current is applied. Quasi-static measurements show the potential for operating these devices at nano-second speeds. Importantly, the behavior of the devices remained unchanged under varying bending conditions (up to a bending radius of ≈ ±20–30 mm). Furthermore, the devices showed robust operation even after application of 10{sup 6} successive pulses, which is likely sufficient for many flexible applications. Thus, this work demonstrates the potential for integrating high performance spintronic devices on flexible substrates, which could lead to many applications ranging from flexible non-volatile magnetic memory to local magnetic resonance imaging.

  10. Flexible spin-orbit torque devices

    International Nuclear Information System (INIS)

    Lee, OukJae; You, Long; Jang, Jaewon; Subramanian, Vivek; Salahuddin, Sayeef

    2015-01-01

    We report on state-of-the-art spintronic devices synthesized and fabricated directly on a flexible organic substrate. Large perpendicular magnetic anisotropy was achieved in ultrathin ferromagnetic heterostructures of Pt/Co/MgO sputtered on a non-rigid plastic substrate at room temperature. Subsequently, a full magnetic reversal of the Co was observed by exploiting the spin orbit coupling in Pt that leads to a spin accumulation at the Pt/Co interface when an in-plane current is applied. Quasi-static measurements show the potential for operating these devices at nano-second speeds. Importantly, the behavior of the devices remained unchanged under varying bending conditions (up to a bending radius of ≈ ±20–30 mm). Furthermore, the devices showed robust operation even after application of 10 6 successive pulses, which is likely sufficient for many flexible applications. Thus, this work demonstrates the potential for integrating high performance spintronic devices on flexible substrates, which could lead to many applications ranging from flexible non-volatile magnetic memory to local magnetic resonance imaging

  11. On the path toward organic spintronics

    NARCIS (Netherlands)

    Moodera, J.S.; Koopmans, B.; Oppeneer, P.M.

    2014-01-01

    Organic materials provide a unique platform for exploiting the spin of the electron—a field dubbed organic spintronics. Originally, this was mostly motivated by the notion that because of weak spin-orbit coupling, due to the small mass elements in organics and small hyperfine field coupling, organic

  12. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  13. Control and manipulation of antiferromagnetic skyrmions in racetrack

    Science.gov (United States)

    Xia, Haiyan; Jin, Chendong; Song, Chengkun; Wang, Jinshuai; Wang, Jianbo; Liu, Qingfang

    2017-12-01

    Controllable manipulations of magnetic skyrmions are essential for next-generation spintronic devices. Here, the duplication and merging of skyrmions, as well as logical AND and OR functions, are designed in antiferromagnetic (AFM) materials with a cusp or smooth Y-junction structures. The operational time are in the dozens of picoseconds, enabling ultrafast information processing. A key factor for the successful operation is the relatively complex Y-junction structures, where domain walls propagate through in a controlled manner, without significant risks of pinning, vanishing or unwanted depinning of existing domain walls, as well as the nucleation of new domain walls. The motions of a multi-bit, namely the motion of an AFM skyrmion-chain in racetrack, are also investigated. Those micromagnetic simulations may contribute to future AFM skyrmion-based spintronic devices, such as nanotrack memory, logic gates and other information processes.

  14. Nanospintronics: when spintronics meets single electron physics

    International Nuclear Information System (INIS)

    Seneor, Pierre; Bernand-Mantel, Anne; Petroff, Frederic

    2007-01-01

    As spintronics goes nano, new phenomena are predicted resulting from the interplay between spin dependent transport and single electron physics. The long term goal of manipulating spins one by one would open a promising path to quantum computing. Towards this end, there is an ever-growing effort to connect spin tanks (i.e. ferromagnetic leads) to smaller and smaller objects in order to study spintronics in reduced dimensions. As the dimensions are reduced, spin dependent transport is predicted to interplay with quantum and/or single electron charging effects. We review experiments and theories on the interplay between Coulomb blockade and spin properties (namely magneto-Coulomb effects) in structures where a single nano-object is connected to ferromagnetic leads. We then discuss briefly future directions in the emerging field of nanospintronics towards quantum dots, carbon nanotubes and single molecule magnets

  15. Comment on The Rise of Semiconductor Spintronics

    OpenAIRE

    Korenev, Vladimir L.

    2009-01-01

    I argue that most of the key experiments that have born semiconductor spintronics were done and published earlier than the papers cited in the Nature Physics, 4 S20 (2008) milestone article (http://www.nature.com/milestones/spin, milestone 23).

  16. Process control device

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kobayashi, Hiroshi.

    1994-01-01

    A process control device comprises a memory device for memorizing a plant operation target, a plant state or a state of equipments related with each other as control data, a read-only memory device for storing programs, a plant instrumentation control device or other process control devices, an input/output device for performing input/output with an operator, and a processing device which conducts processing in accordance with the program and sends a control demand or a display demand to the input/output device. The program reads out control data relative to a predetermined operation target, compares and verify them with actual values to read out control data to be a practice premise condition which is further to be a practice premise condition if necessary, thereby automatically controlling the plant or requiring or displaying input. Practice presuming conditions for the operation target can be examined succesively in accordance with the program without constituting complicated logical figures and AND/OR graphs. (N.H.)

  17. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    Science.gov (United States)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  18. The first radical-based spintronic memristors: Towards resistive RAMs made of organic magnets

    Science.gov (United States)

    Goss, Karin; Krist, Florian; Seyfferle, Simon; Hoefel, Udo; Paretzki, Alexa; Dressel, Martin; Bogani, Lapo; Institut Fuer Anorganische Chemie, University of Stuttgart Collaboration; 1. Physikalisches Institut, University of Stuttgart Team

    2014-03-01

    Using molecules as building blocks for electronic devices offers ample possibilities for new device functionalities due to a chemical tunability much higher than that of standard inorganic materials, and at the same time offers a decrease in the size of the electronic component down to the single-molecule level. Purely organic molecules containing no metallic centers such as organic radicals can serve as an electronic component with magnetic properties due to the unpaired electron in the radical state. Here we present memristive logic units based on organic radicals of the nitronyl-nitroxide kind. Integrating these purely molecular units as a spin coated layer into crossbar arrays, electrically induced unipolar resistive switching is observed with a change in resistance of up to 100%. We introduce a model based on filamentary reorganization of molecules of different oxidation state revealing the importance of the molecular nature for the switching properties. The major role of the oxidation state of these paramagnetic molecules introduces a magnetic field dependence to the device functionality, which goes along with magnetoresistive charactistics observed for the material. These are the first steps towards a spintronic implementation of organic radicals in electronic devices.

  19. Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices.

    Science.gov (United States)

    Huang, Qi-Kun; Yan, Yi; Zhang, Kun; Li, Huan-Huan; Kang, Shishou; Tian, Yu-Feng

    2016-11-23

    Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation.

  20. Single atom spintronics

    International Nuclear Information System (INIS)

    Sullivan, M. R.; Armstrong, J. N.; Hua, S. Z.; Chopra, H. D.

    2005-01-01

    Full text: Single atom spintronics (SASS) represents the ultimate physical limit in device miniaturization. SASS is characterized by ballistic electron transport, and is a fertile ground for exploring new phenomena. In addition to the 'stationary' (field independent) scattering centers that have a small and fixed contribution to total transmission probability of electron waves, domain walls constitute an additional and enhanced source of scattering in these magnetic quantum point contacts (QPCs), the latter being both field and spin-dependent. Through the measurement of complete hysteresis loops as a function of quantized conductance, we present definitive evidence of enhanced backscattering of electron waves by atomically sharp domain walls in QPCs formed between microfabricated thin films [1]. Since domain walls move in a magnetic field, the magnitude of spin-dependent scattering changes as the QPC is cycled along its hysteresis loop. For example, as shown in the inset in Fig. 1, from zero towards saturation in a given field direction, the resistance varies as the wall is being swept away, whereas the resistance is constant upon returning from saturation towards zero, since in this segment of the hysteresis loop no domain wall is present across the contact. The observed spin-valve like behavior is realized by control over wall width and shape anisotropy. This behavior also unmistakably sets itself apart from any mechanical artifacts; additionally, measurements made on single atom contacts provide an artifact-free environment [2]. Intuitively, it is simpler to organize the observed BMR data according to all possible transitions between different conductance plateaus, as shown by the dotted line in Fig. 1; the solid circles show experimental data for Co, which follows the predicted scheme. Requisite elements for the observation of the effect will be discussed in detail along with a review of state of research in this field. Practically, the challenge lies in making

  1. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    Directory of Open Access Journals (Sweden)

    Hanuman Singh

    2018-05-01

    Full Text Available In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3 multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  2. Predistortion control device and method, assembly including a predistortion control device

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.

    2003-01-01

    A predistortion control device (1). The device has a first predistortion control input connectable to a power amplifier output (21); a second predistortion control input (11) connectable to a signal contact of a predistortion device; and a predistortion control output (12) connectable to a control

  3. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  4. Control rod position control device

    International Nuclear Information System (INIS)

    Ubukata, Shinji.

    1997-01-01

    The present invention provides a control rod position control device which stores data such as of position signals and driving control rod instruction before and after occurrence of abnormality in control for the control rod position for controlling reactor power and utilized the data effectively for investigating the cause of abnormality. Namely, a plurality of individual control devices have an operation mismatching detection circuit for outputting signals when difference is caused between a driving instruction given to the control rod position control device and the control rod driving means and signals from a detection means for detecting an actual moving amount. A general control device collectively controls the individual control devices. In addition, there is also disposed a position storing circuit for storing position signals at least before and after the occurrence of the control rod operation mismatching. With such procedures, the cause of the abnormality can be determined based on the position signals before and after the occurrence of control rod mismatching operation stored in the position storing circuit. Accordingly, the abnormality cause can be determined to conduct restoration in an early stage. (I.S.)

  5. Spin-dependent transport and functional design in organic ferromagnetic devices

    Directory of Open Access Journals (Sweden)

    Guichao Hu

    2017-09-01

    Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.

  6. Quest for high-Curie temperature MnxGe1-x diluted magnetic semiconductors for room-temperature spintronics applications

    Science.gov (United States)

    Nie, Tianxiao; Tang, Jianshi; Wang, Kang L.

    2015-09-01

    In this paper, we report the non-equilibrium growth of various Mn-doped Ge dilute magnetic semiconductor nanostructures using molecular-beam epitaxy, including quantum dots, nanodisks and nanowires. Their detailed structural and magnetic properties are characterized. By comparing the results with those in MnxGe1-x thin films, it is affirmed that the use of nanostructures helps eliminate crystalline defects and meanwhile enhance the carrier-mediate ferromagnetism from substantial quantum confinements. Our systematic studies provide a promising platform to build nonvolatile spinFET and other novel spintronic devices based upon dilute magnetic semiconductor nanostructures.

  7. Group IV all-semiconductor spintronics. Materials aspects and optical spin selection rules

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Narayan

    2012-04-03

    In the scope of the present thesis various aspects for the realization of spintronic applications based on group IV semiconductors are discussed. This work comprises a refined material characterization of the magnetic semiconductor GeMn. We furthermore present efforts to utilize this material as spin injector for a Si-based optical spintronic device. Applying transmission electron microscopy and atom probe tomography, we are able to resolve a vertical anisotropy in the self-assembly, leading to the stacking of well-defined clusters in the growth direction. Three-dimensional atom distribution maps confirm that clusters are built from a nonstoichiometric GeMn alloy and exhibit a high-Mn-concentration core with a decreasing Mn concentration toward a shell. An amorphous nature of the cluster cores as well as the crystallinity of the shells, coherent with the surrounding Ge lattice, are revealed in scanning transmission electron microscopy. We localize a strain field surrounding each GeMn cluster by scanning transmission electron microscopy. The importance of strain to the stacking phenomenon of the clusters becomes clear in studies of Ge/GeMn superlattice structures, where a vertical spatial correlation of clusters over 30 nm-thick Ge spacer layers is observed. We present evidence that electrical transport properties of the p-type GeMn thin films fabricated on high-resistivity Ge substrates are severely influenced by parallel conduction through the substrate. It is shown that substrate conduction persists also for wellconducting degenerate p-type reference thin films, giving rise to an effective two-layer conduction scheme. GeMn thin films fabricated on these substrates exhibit only a negligible magnetoresistance effect. Before integrating GeMn in an optical spintronic device, some key aspects important for an understanding of the optical injection and detection of carrier spins in Si and Si-based heterostructures are clarified in the second part of this thesis. In

  8. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    International Nuclear Information System (INIS)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies

  9. Spin-Valve Effect in a Ni-C60-Ni Device

    National Research Council Canada - National Science Library

    He, Haiying; Pandey, Ravindra; Karna, Shashi P

    2006-01-01

    .... The magnitude of the junction magnetoresistance (JMR) is found to be significantly large for the device, which makes it a promising candidate for realistic applications in molecular spintronics...

  10. Spintronics with metals: Current perpendicular-to-the-plane magneto-transport studies

    Science.gov (United States)

    Sharma, Amit

    In this thesis, we present studies to produce new information about three topics: current perpendicular to the plane magnetoresistance (CPP-MR), spin transfer torque (STT), and antiferromagnetic spintronics. Large values of CPP-MR interface parameters---specific interface resistance (Area times resistance), 2AR*, and scattering asymmetry, gamma---are desirable for the use of CPP-MR in devices. Stimulated by a nanopillar study by the Cornell Group, we first discovered that Py/Al had an unusually large 2AR*, but a small gamma. In the hope of finding metal pairs with large values of both the interface parameters, the Py/Al studies led us to study the following interfaces: (a) F/Al with F: Py (= Ni84Fe16). Co, Fe, Co91Fe9, and (b) F/N: Py/Pd, Fe/V, Fe/Nb and Co/Pt. None of the metal pairs looks better for CPP-MR devices. The Cornell group also found that bracketing Al with thin Cu in Py/Al/Py nanopillars, gave an MR similar to Py/Al/Py rather than to Py/Cu/Py. To try to understand this result, we studied the effect of Cu/Al/Cu spacers on ADeltaR = AR(AP) - AR(P) of Py exchange biased spin valves (EBSVs). Here AR(AP) and AR(P) are the specific resistances in the anti-parallel (AP) and parallel (P) configurations of the F layers. Intriguingly, fixing the Al thickness tAl = 10 nm and varying tCu has no effect on ADeltaR, but fixing tCu = 10 nm and varying t Al significantly affected ADeltaR. These unusual behaviors are probably due to strong Al and Cu intermixing, with probable formation of some fraction of ordered alloys. Recent calculations predicted that 2AR of Al/Ag interfaces would vary substantially with orientation and with alloying. The latter is a special potential problem, because Al and Ag interdiffuse at room temperature. To compare with the calculations, we determined 2AR of sputtered Al/Ag interfaces with (111) orientation. Our estimate agrees with calculations that assume 4 monolayers of interfacial disorder, consistent with modest intermixing. To aid in

  11. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bainsla, Lakhan, E-mail: lakhanbainsla@gmail.com, E-mail: suresh@phy.iitb.ac.in; Suresh, K. G., E-mail: lakhanbainsla@gmail.com, E-mail: suresh@phy.iitb.ac.in [Magnetic Materials Lab, Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-09-15

    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (T{sub C}) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X{sub 2}YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L2{sub 1} structure with four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX′YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation magnetization are

  12. Quantum computing and spintronics

    International Nuclear Information System (INIS)

    Kantser, V.

    2007-01-01

    Tentative to build a computer, which can operate according to the quantum laws, has leaded to concept of quantum computing algorithms and hardware. In this review we highlight recent developments which point the way to quantum computing on the basis solid state nanostructures after some general considerations concerning quantum information science and introducing a set of basic requirements for any quantum computer proposal. One of the major direction of research on the way to quantum computing is to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. We address some semiconductor approach based on spin orbit coupling in semiconductor nanostructures. (authors)

  13. DeviceNet-based device-level control in SSRF

    CERN Document Server

    Leng Yong Bin; Lu Cheng Meng; Miao Hai Feng; Liu Song Qiang; Shen Guo Bao

    2002-01-01

    The control system of Shanghai Synchrotron Radiation Facility is an EPICS-based distributed system. One of the key techniques to construct the system is the device-level control. The author describes the design and implementation of the DeviceNet-based device controller. A prototype of the device controller was tested in the experiments of magnet power supply and the result showed a precision of 3 x 10 sup - sup 5

  14. Magnon spintronics in non-collinear magnetic insulator/metal heterostructures

    NARCIS (Netherlands)

    Aqeel, Aisha

    2017-01-01

    The research presented in this thesis focuses on the growth of complex magnetic materials with unique magnetic properties and experimental investigation of fundamental spintronics phenomena in these magnetic insulators with magnetic orders varying from collinear to noncollinear chiral spin

  15. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  16. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    Science.gov (United States)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  17. Theory of superconducting spintronic SIsFS devices

    International Nuclear Information System (INIS)

    Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M.Yu.; Bol'ginov, V.V.; Ryazanov, V.V.; Vernik, I.V.; Mukhanov, O.A.; Golubov, A.A.

    2013-01-01

    Full text: Motivated by recent progress in developments of cryogenic memory compatible with single flux quantum (SFQ) circuits we have performed a theoretical study of magnetic SIsFS Josephson junctions, where 'S' is a bulk superconductor, 's' is a thin superconducting film, 'F' is a metallic ferromagnet and 'I' is an insulator. We calculate the Josephson current as a function of s and F layers thickness, temperature and exchange energy of F film. We outline several modes of operation of these junctions and demonstrate their unique ability to have high I C R N product in the π-state, comparable to that in SIS tunnel junctions commonly used in SFQ circuits. We develop a model describing switching of the Josephson critical current in these devices by external magnetic field. The results are in good agreement with the experimental data for Nb-Al/AlOx-Nb-Pd0:99Fe0:01-Nb junctions. This work is supported by RFBR No. 12-02-90010-Bel a .

  18. Fabrication of hybrid molecular devices using multi-layer graphene break junctions

    Science.gov (United States)

    Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F. A.; Menelaou, M.; Aliaga-Alcalde, N.; Burzurí, E.; van der Zant, H. S. J.

    2014-11-01

    We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

  19. Rare earth-based quaternary Heusler compounds MCoVZ (M = Lu, Y; Z = Si, Ge with tunable band characteristics for potential spintronic applications

    Directory of Open Access Journals (Sweden)

    Xiaotian Wang

    2017-11-01

    Full Text Available Magnetic Heusler compounds (MHCs have recently attracted great attention since these types of material provide novel functionalities in spintronic and magneto-electronic devices. Among the MHCs, some compounds have been predicted to be spin-filter semiconductors [also called magnetic semiconductors (MSs], spin-gapless semiconductors (SGSs or half-metals (HMs. In this work, by means of first-principles calculations, it is demonstrated that rare earth-based equiatomic quaternary Heusler (EQH compounds with the formula MCoVZ (M = Lu, Y; Z = Si, Ge are new spin-filter semiconductors with total magnetic moments of 3 µB. Furthermore, under uniform strain, there are physical transitions from spin-filter semiconductor (MS → SGS → HM for EQH compounds with the formula LuCoVZ, and from HM → SGS → MS → SGS → HM for EQH compounds with the formula YCoVZ. Remarkably, for YCoVZ EQH compounds there are not only diverse physical transitions, but also different types of spin-gapless feature that can be observed with changing lattice constants. The structural stability of these four EQH compounds is also examined from the points of view of formation energy, cohesive energy and mechanical behaviour. This work is likely to inspire consideration of rare earth-based EQH compounds for application in future spintronic and magneto-electronic devices.

  20. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  1. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2014-01-01

    C 60 fullerenes are interesting molecular semiconductors for spintronics since they exhibit weak spin-orbit and hyperfine interactions, which is a prerequisite for long spin lifetimes. We report spin-polarized transport in spin-valve-like structures containing ultrathin (<10 nm) C 60 layers,

  2. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    Science.gov (United States)

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  3. Introduction to spintronics

    CERN Document Server

    Bandyopadhyay, Supriyo

    2008-01-01

    The Early History of Spin Spin The Bohr Planetary Model and Space Quantization The Birth of "Spin" The Stern-Gerlach Experiment The Advent of Spintronics The Quantum Mechanics of Spin Pauli Spin Matrices The Pauli Equation and Spinors More on the Pauli Equation Extending the Pauli Equation - the Dirac Equation The Time Independent Dirac Equation Appendix The Bloch Sphere The Spinor and the "Qubit" The Bloch Sphere Concept Evolution of a Spinor Spin-1/2 Particle in a Constant Magnetic Field: Larmor Precession Preparing to Derive the Rabi Formula The Rabi Formula The Density Matrix The Density Matrix Concept: Case of a Pure State Properties of the Density Matrix Pure Versus Mixed State Concept of the Bloch Ball Time Evolution of the Density Matrix: Case of Mixed State The Relaxation Times T1 and T2 and the Bloch Equations Spin Orbit Interaction Spin Orbit Interaction in a Solid Magneto-Electric Sub-Bands in Quantum Confined Structures in the Presence of Spin-Orbit Interaction Dispersion Relations of Spin Resolv...

  4. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described

  5. Control rod selecting and driving device

    International Nuclear Information System (INIS)

    Isobe, Hideo.

    1981-01-01

    Purpose: To simultaneously drive a predetermined number of control rods in a predetermined mode by the control of addresses for predetermined number of control rods and read or write of driving codified data to and from the memory by way of a memory controller. Constitution: The system comprises a control rod information selection device for selecting predetermined control rods from a plurality of control rods disposed in a reactor and outputting information for driving them in a predetermined mode, a control rod information output device for codifying the information outputted from the above device and outputting the addresses to the predetermined control rods and driving mode coded data, and a driving device for driving said predetermined control rods in a predetermined mode in accordance with the codified data outputted from the above device, said control rod infromation output device comprising a memory device capable of storing a predetermined number of the codified data and a memory control device for storing the predetermined number of data into the above memory device at a predetermined timing while successively outputting the thus stored predetermined number of data at a predetermined timing. (Seki, T.)

  6. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  7. Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures

    KAUST Repository

    Velazquez-Rizo, Martin

    2017-01-01

    In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed

  8. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovsky, A M [Hewlett-Packard Laboratories, 1501 Page Mill Road, MS 1123, Palo Alto, CA 94304 (United States)

    2008-02-15

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  9. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bratkovsky, A M

    2008-01-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field

  10. Spintronic effects in metallic, semiconductor, metal oxide and metal semiconductor heterostructures

    Science.gov (United States)

    Bratkovsky, A. M.

    2008-02-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  11. Control rod control device

    International Nuclear Information System (INIS)

    Seiji, Takehiko; Obara, Kohei; Yanagihashi, Kazumi

    1998-01-01

    The present invention provides a device suitable for switching of electric motors for driving each of control rods in a nuclear reactor. Namely, in a control rod controlling device, a plurality of previously allotted electric motors connected in parallel as groups, and electric motors of any selected group are driven. In this case, a voltage of not driving predetermined selected electric motors is at first applied. In this state an electric current supplied to the circuit of predetermined electric motors is detected. Whether integration or failure of a power source and the circuit of the predetermined electric motors are normal or not is judged by the detected electric current supplied. After they are judged normal, the electric motors are driven by a regular voltage. With such procedures, whether the selected circuit is normal or not can be accurately confirmed previously. Since the electric motors are not driven just at the selected time, the control rods are not operated erroneously. (I.S.)

  12. Room-temperature spintronic effects in Alq3-based hybrid devices

    NARCIS (Netherlands)

    Dediu, V.; Hueso, L.E.; Bergenti, I; Riminucci, A.; Borgatti, F.; Graziosi, P.; Newby, C.; Casoli, F.; de Jong, Machiel Pieter; Taliani, C.; Zhan, Y.

    2008-01-01

    We report on efficient spin polarized injection and transport in long 102 nm channels of Alq3 organic semiconductor. We employ vertical spin valve devices with a direct interface between the bottom manganite electrode and Alq3, while the top-electrode geometry consists of an insulating tunnel

  13. Spintronic and transport properties of linear atomic strings of transition metals (Fe, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Neha, E-mail: nehatyagi.phy@gmail.com [Department of Applied Physics, Delhi Technological University, New Delhi (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design & Manufacturing, Jabalpur (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior (India)

    2016-05-06

    In the present work, first-principles investigations have been performed to study the spintronic and transport properties of linear atomic strings of Fe, Co and Ni. The structural stabilities of the considered strings were compared on the basis of binding energies which revealed that all the strings are energetically feasible to be achieved. Further, all the considered strings are found to be ferromagnetic and the observed magnetic moment ranges from 1.38 to 1.71 μ{sub B}. The observed transport properties and high spin polarization points towards their potential for nano interconnects and spintronic applications.

  14. Prediction of novel interface-driven spintronic effects

    International Nuclear Information System (INIS)

    Bhattacharjee, Satadeep; Singh, Surendra; Bellaiche, L; Wang, D; Viret, M

    2014-01-01

    The recently proposed coupling between the angular momentum density and magnetic moment (Raeliarijaona et al 2013 Phys. Rev. Lett. 110 137205) is shown here to result in the prediction of (i) novel spin currents generated by an electrical current and (ii) new electrical currents induced by a spin current in systems possessing specific interfaces between two different materials. Some of these spin (electrical) currents can be reversed near the interface by reversing the applied electrical (spin) current. Similarities and differences between these novel spintronic effects and the well-known spin Hall and inverse spin Hall effects are also discussed. (paper)

  15. Controllable transport of a skyrmion in a ferromagnetic narrow channel with voltage-controlled magnetic anisotropy

    Science.gov (United States)

    Wang, Junlin; Xia, Jing; Zhang, Xichao; Zhao, G. P.; Ye, Lei; Wu, Jing; Xu, Yongbing; Zhao, Weisheng; Zou, Zhigang; Zhou, Yan

    2018-05-01

    Magnetic skyrmions have potential applications in next-generation spintronic devices with ultralow energy consumption. In this work, the current-driven skyrmion motion in a narrow ferromagnetic nanotrack with voltage-controlled magnetic anisotropy (VCMA) is studied numerically. By utilizing the VCMA effect, the transport of skyrmion can be unidirectional in the nanotrack, leading to a one-way information channel. The trajectory of the skyrmion can also be modulated by periodically located VCMA gates, which protects the skyrmion from destruction by touching the track edge. In addition, the location of the skyrmion can be controlled by adjusting the driving pulse length in the presence of the VCMA effect. Our results provide guidelines for practical realization of the skyrmion-based information channel, diode, and skyrmion-based electronic devices such as racetrack memory.

  16. Control system of fuel transporting device

    International Nuclear Information System (INIS)

    Yokota, Minoru.

    1981-01-01

    Purpose: To effectively avoid an obstacle in a fuel transporting device by reading the outputs of absolute position detectors mounted on movable trucks, controlling the movements of the trucks, and thereby smoothly and accurately positioning the fuel transporting device at predetermined position and providing a contact detector thereat. Method: The outputs from absolute position detectors which are mounted on a longitudinally movable truck and a laterally movable truck are input to an input/output control circuit. The input/output control circuit serves to compare, the position a fuel transporting device is to be moved to, with the present position on the basis of said input detection signal and a command signal from an operator console, to calculate the amount of movement to be driven, to produce an operation signal therefor to a control panel, and to drive and control the drive motors which are respectively mounted on the trucks for the fuel transfer device. On the other hand, in case that the transfer device comes into contact with an obstacle, the contact detector will immediately operate to produce a stop command through the control panel to the transporting device, and avoid a collision with the obstacle. (Yoshino, Y.)

  17. Oxide thin films for spintronics application growth and characterization

    OpenAIRE

    Popovici, Nicoleta, 1973-

    2009-01-01

    Tese de doutoramento, Física (Física), Universidade de Lisboa, Faculdade de Ciências, 2009 During my PhD research I have synthesized thin films of a material known as a diluted magnetic semiconductor (DMS) using the pulsed laser deposition (PLD) technique. This material is envisioned to be of importance in the emerging field of spintronics where both the charge and the spin of the carriers can be combined to yield unique functionalities. It was envisaged that if spin polarized charge carri...

  18. All-spin logic operations: Memory device and reconfigurable computing

    Science.gov (United States)

    Patra, Moumita; Maiti, Santanu K.

    2018-02-01

    Exploiting spin degree of freedom of electron a new proposal is given to characterize spin-based logical operations using a quantum interferometer that can be utilized as a programmable spin logic device (PSLD). The ON and OFF states of both inputs and outputs are described by spin state only, circumventing spin-to-charge conversion at every stage as often used in conventional devices with the inclusion of extra hardware that can eventually diminish the efficiency. All possible logic functions can be engineered from a single device without redesigning the circuit which certainly offers the opportunities of designing new generation spintronic devices. Moreover, we also discuss the utilization of the present model as a memory device and suitable computing operations with proposed experimental setups.

  19. Summer School on Spintronics

    CERN Document Server

    Wolf, Stuart; Idzerda, Yves

    2003-01-01

    Stuart Wolf This book originated as a series of lectures that were given as part of a Summer School on Spintronics in the end of August, 1998 at Lake Tahoe, Nevada. It has taken some time to get these lectures in a form suitable for this book and so the process has been an iterative one to provide current information on the topics that are covered. There are some topics that have developed in the intervening years and we have tried to at least alert the readers to them in the Introduction where a rather complete set of references is provided to the current state of the art. The field of magnetism, once thought to be dead or dying, has seen a remarkable rebirth in the last decade and promises to get even more important as we enter the new millennium. This rebirth is due to some very new insight into how the spin degree of freedom of both electrons and nucleons can play a role in a new type of electronics that utilizes the spin in addition to or in place of the charge. For this new field to mature and prosper, ...

  20. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  1. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  2. A device for the hydraulic control of nuclear reactor control rods

    International Nuclear Information System (INIS)

    Frisch, Erling; Frisch, D.R.; Andrews, H.N.

    1974-01-01

    A device for driving and locking the control rods of a nuclear reactor. This device comprises a hydraulic driving piston mounted in a cylinder provided with a construction for absorbing shocks. The piston is provided, at is extremity, with a locking device adapted to engage a stationary lock, it being possible to control the latter for freeing said piston locking device; with such an arrangement, the control rod is normally maintained in position, and it can be freed only by a positive signal. Moreover, the control rod movements are slowed down, so as to prevent the gripping device from being damaged. This device can be used in the nuclear industry [fr

  3. Monitoring device for withdrawing control rods

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi.

    1985-01-01

    Purpose: To improve the sensitivity and the responsivity to an equivalent extent to those in the case where local power range monitors are densely arranged near each of the control rods, with no actual but pseudo increase of the number of local power range monitors. Constitution: The monitor arrangement is patterned by utilizing the symmetricity of the reactor core and stored in a monitor designating device. The symmetricity of control rods to be selected and withdrawn by an operator is judged by a control rod symmetry monitoring device, while the symmetricity of the withdrawn control rods is judged by a control rod withdrawal state monitoring device. Then, only when both of the devices judge the symmetricity, the control rods are subjected to gang driving by the control rod drive mechanisms. In this way, monitoring at a high sensitivity and responsivity is enabled with no increase for the number of monitors. (Yoshino, Y.)

  4. Control method for prosthetic devices

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  5. Remote controlled transport device

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Oka, Kiyoshi; Ito, Akira; Tada, Eisuke; Sato, Masaki

    1998-01-01

    The present invention provides a device for transporting equipments for maintenance and parts between a maintenance port and a facility for maintenance by remote control in a radioactive material handling facility such as a nuclear power plant. Namely, a power supply bus bar is disposed along a transferring path in order to supply power to a transporting means, and is divided into every region having a predetermined length. Each of the power supply bus bar regions is controlled for the power supply by a control device. Accordingly, the transporting means can be moved and driven successively being independent on every power supply bus bar region. Accordingly, a plurality of transporting means can be operated independently in a transferring path without laying around power cables and control signal cables. (I.S.)

  6. Operation control device under radiation exposure

    International Nuclear Information System (INIS)

    Kimura, Kiichi; Murakami, Toichi.

    1994-01-01

    The device of the present invention performs smooth progress of operation by remote control for a plurality of operations in periodical inspections in controlled areas of a nuclear power plant, thereby reducing the operator's exposure dose. Namely, the device monitors the progressing state of the operation by displaying the progress of operation on a CRT of a centralized control device present in a low dose area remote from an operation field through an ITV camera disposed in the vicinity of the operation field. Further, operation sequence and operation instruction procedures previously inputted in the device are indicated to the operation field through an operation instruction outputting device (field CRT) in accordance with the progress of the operation steps. On the other hand, the operation progress can be aided by inputting information from the operation field such as start or completion of the operation steps. Further, the device of the present invention can monitor the change of operation circumstances and exposure dose of operators based on the information from a radiation dose measuring device disposed in the operation circumstance and to individual operators. (I.S.)

  7. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    Science.gov (United States)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  8. Control System for Prosthetic Devices

    Science.gov (United States)

    Bozeman, Richard J. (Inventor)

    1996-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  9. Operation control device for nuclear power plants

    International Nuclear Information System (INIS)

    Suto, Osamu.

    1982-01-01

    Purpose: To render the controlling functions of a central control console more centralized by constituting the operation controls for a nuclear power plant with computer systems having substantially independent functions such as those of plant monitor controls, reactor monitor management and CRT display and decreasing interactions between each of the systems. Constitution: An input/output device for the input of process data for a nuclear power plant and indication data for a plant control console is connected to a plant supervisory and control computer system and a display computer system, the plant supervisory control computer system and a reactor and management computer system are connected with a CRT display control device, a printer and a CRT display input/output device, and the display computer system is connected with the CRT display control device and the CRT display unit on the central control console, whereby process input can be processed and displayed at high speed. (Yoshino, Y.)

  10. A controller for controlling a group of lighting devices and a method thereof

    OpenAIRE

    2017-01-01

    A controller (100) for controlling a group (110) of lighting devices (112, 114) is disclosed. The group (110) comprises a first lighting device (112) and a second lighting device (114). The controller (100) comprises a communication unit (102) for communicating with the first and second lighting devices (112, 114), and for receiving a first current light setting of the first lighting device (112) and a second current light setting of the second lighting device (114). The controller (100) furt...

  11. Testing device for control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1992-01-01

    A testing device for control rod drives comprises a logic measuring means for measuring an output signal from a control rod drive logic generation circuit, a control means for judging the operation state of a control rod and a man machine interface means for outputting the result of the judgement. A driving instruction outputted from the control rod operation device is always monitored by the control means, and if the operation instruction is stopped, a testing signal is outputted to the control rod control device to simulate a control rod operation. In this case, the output signal of the control rod drive logic generation circuit is held in a control rod drive memory means and intaken into a logic analysis means for measurement and an abnormality is judged by the control means. The stopping of the control rod drive instruction is monitored and the operation abnormality of the control rod is judged, to mitigate the burden of an operator. Further, the operation of the control rod drive logic generation circuit can be confirmed even during a nuclear plant operation by holding the control rod drive instruction thereby enabling to improve maintenance efficiency. (N.H.)

  12. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  13. Control Strategies for Arrays of Wave Energy Devices

    OpenAIRE

    Westphalen, J; Bacelli, G; Balitsky, P; Ringwood, John

    2011-01-01

    In this paper, we investigate the differences between two control strategies for a two-device linear array of wave energy converters (WEC) for device spacings of 4 to 80 times the device diameter. The WECs operate in heave only and are controlled in real time. The control strategies, called the independent device and global array control, estimate the excitation forces and calculate the optimum vertical velocity trajectory and reactive power take off force to achieve the ...

  14. Plasma position and shape control device for thermonuclear device

    International Nuclear Information System (INIS)

    Takeuchi, Kazuhiro; Abe, Mitsushi; Kinoshita, Shigemi.

    1993-01-01

    A plasma position and shape control system is constituted with a measuring device, a quenching probability calculation section and a control calculation section. A quenching probability is calculated in the quenching probability calculation section by using a measuring data on temperature, electric current and magnetic field of superconductive coils, based on a margin upto a limit value. The control calculation section selects a control method which decreases applied voltage or current instruction value as the quenching probability of the coils is higher. Since the quenching probability of the superconductive coils can be forecast and a state of low quenching danger can be selected, the safety of the device is improved. When the quenching danger is allowed to a predetermined value, a wide operation region can be provided. (N.H.)

  15. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  16. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure

    Science.gov (United States)

    Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.

    2011-11-01

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  17. FACTS device control strategy using PMU

    Directory of Open Access Journals (Sweden)

    Mohd Tauseef Khan

    2016-09-01

    Full Text Available The laying and commissioning of new transmission line is very difficult due to socio-economic problems, like environmental clearances, right of way, etc. Therefore, there is an emphasis on better utilization of available transmission infrastructure. FACTS devices can provide reactive power compensation, transmission capability enhancement, and voltage and stability improvement. FACTS devices operate under the command of system operator who analyses its demand by the data acquired through traditional SCADA system, state estimation algorithms and PMUs. SCADA together with PMU give accurate information about the operational state of power system. This paper proposes a scheme to automate the FACTS devices in collaboration with PMUs in a more efficient way. Highly precised data from PMUs can be fed to intelligent controllers for effective analyzing and automating the FACTS device through control command. Thus, this combination can provide real time control of reactive power, together with enhancement of power handling capability and stability improvement.

  18. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  19. Understanding Electrically Active Interface Formation on Wide Bandgap Semiconductors through Molecular Beam Epitaxy Using Fe3O 4 for Spintronics as a Base Case

    Science.gov (United States)

    Hamedani Golshan, Negar

    Nanoelectronics, complex heterostructures, and engineered 3D matrix materials are quickly advancing from research possibilities to manufacturing challenges for applications ranging from high-power devices to solar cells to any number of novel multifunctional sensors and controllers. Formation of an abrupt and effective interface is one of the basic requirements for integration of functional materials on different types of semiconductors (from silicon to the wide bandgaps) which can significantly impact the functionality of nanoscale electronic devices. To realize the potential of next-generation electronics, the understanding and control of those initial stages of film layer formation must be understood and translated to a process that can control the initial stages of film deposition. Thin film Fe3O4 has attracted much attention as a material for exploring the potential of spintronics in next-generation information technologies. Synthesis of highly spin-polarized material as spin sources, in combination with wide bandgap semiconductors which have a long spin relaxation time in addition to functionality in high-temperature, high-power, and high-frequency environments, would enhance the performance of today's spintronic devices. Spinel ferrite Fe3O4 has a high Curie temperature of 858 K and it is predicted to possess half-metallic properties, i.e. 100% spin polarization at the Fermi level, which can lead to ultrahigh tunneling magnetoresistance at room temperature. However, these properties have been very difficult to realize in thin film form, and device design strategies require high-quality thin films of Fe3O4. The most common reason reported in literature for the failure of the films to achieve theoretical performance is that the growth techniques used today produce films with antiphase boundaries (APB). These APBs have a strong antiferromagnetic coupling that negatively impact the magnetic and transport properties of epitaxial Fe 3O4 films. Therefore, greater

  20. Brain-controlled body movement assistance devices and methods

    Energy Technology Data Exchange (ETDEWEB)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob; Moran, Daniel W.

    2017-01-10

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of the brain-controlled body movement assistance device.

  1. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  2. Plasma control device

    International Nuclear Information System (INIS)

    Matsutomi, Akiyoshi.

    1995-01-01

    Plasma position and shape estimation values are outputted based on measured values of coil current. When the measured values of the position and the shape are judged to be abnormal, position and shape estimation values estimated by a plasma position and shape estimation means are outputted as position and shape feed back values to a plasma position and shape control means instead of the position and shape measured values. Since only a portion of the abnormal position and shape measured values may also be replaced with the position and shape estimation values, errors in the plasma position and shape feed back values can be reduced as a whole. In addition, even if the position and shape measured values are abnormal or if they can not be measured, plasma control can be continued by alternative position and shape estimation values, thereby enabling to avoid interruption of plasma control. Since the position and shape estimation values are obtained not only with the measured values of coil current but also with the position and shape estimation values, the accuracy is improved. Further, noises superposed on the position and shape measured values are filtered, and the device is stabilized compared with a prior art device. (N.H.)

  3. A controller for controlling a group of lighting devices and a method thereof

    NARCIS (Netherlands)

    2017-01-01

    A controller (100) for controlling a group (110) of lighting devices (112, 114) is disclosed. The group (110) comprises a first lighting device (112) and a second lighting device (114). The controller (100) comprises a communication unit (102) for communicating with the first and second lighting

  4. System for remote control of underground device

    Science.gov (United States)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  5. System for remote control of underground device

    International Nuclear Information System (INIS)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-01-01

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics

  6. Voltage control of magnetism in multiferroic heterostructures.

    Science.gov (United States)

    Liu, Ming; Sun, Nian X

    2014-02-28

    Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME interaction observed in layered multiferroic heterostructures makes it practically possible for realizing electrically reconfigurable microwave devices, ultra-low power electronics and magnetoelectric random access memories (MERAMs). In this review, we demonstrate this remarkable E-field manipulation of magnetism in various multiferroic composite systems, aiming at the creation of novel compact, lightweight, energy-efficient and tunable electronic and microwave devices. First of all, tunable microwave devices are demonstrated based on ferrite/ferroelectric and magnetic-metal/ferroelectric composites, showing giant ferromagnetic resonance (FMR) tunability with narrow FMR linewidth. Then, E-field manipulation of magnetoresistance in multiferroic anisotropic magnetoresistance and giant magnetoresistance devices for achieving low-power electronic devices is discussed. Finally, E-field control of exchange-bias and deterministic magnetization switching is demonstrated in exchange-coupled antiferromagnetic/ferromagnetic/ferroelectric multiferroic hetero-structures at room temperature, indicating an important step towards MERAMs. In addition, recent progress in electrically non-volatile tuning of magnetic states is also presented. These tunable multiferroic heterostructures and devices provide great opportunities for next-generation reconfigurable radio frequency/microwave communication systems and radars, spintronics, sensors and memories.

  7. Testing device for pipeline groups and control method for testing device

    International Nuclear Information System (INIS)

    Naito, Shinji; Kajiyama, Shigeru; Takahashi, Fuminobu; Tsuchida, Kenji; Tachibana, Yukio; Shigehiro, Katsuya; Mahara, Yoichi.

    1995-01-01

    The device of the present invention comprises a testing device main body disposed to a rail, a movable mechanism positioning from a reference point, a circumferential direction scanning mechanism, an axial direction scanning mechanism, a posture control mechanism, and a testing probe. Upon testing of pipelines, the detection device main body and auxiliary members are moved from a reference point previously set on a rail for numerical control toward pipelines to be tested in a state where the axial direction scanning mechanism and the testing probe are suspended in the axial direction. The testing is conducted by controlling the position of the testing probe in the axial direction of the pipeline by means of the axial direction scanning mechanism, and scanning the testing probe to the outer circumference of the pipeline along the circumferential track by way of the circumferential direction scanning mechanism. The device can be extremely reduced in the thickness, and can be moved with no interference with pipelines and other obstacles by remote operation even under such undesired condition as the pipelines being crowded, so that non-destructive testing can be conducted accurately. (N.H.)

  8. Power control device

    International Nuclear Information System (INIS)

    Fukawa, Naohiro.

    1982-01-01

    Purpose: To alleviate the load of an operator by automatically operating the main controller, the speed controller, etc. of a recirculation control system and safely operating them without erroneous operation for long period of time, thereby improving the efficiency of a plant. Constitution: An electric type hydraulic control device controls loads of a turbine and a generator and outputs a control signal also to the main controller of a recirculation flow rate control system. At this time, the main controller is set at an automatic position, and the speed controller receives a recirculation pump speed signal from the main controller at the automatic position. The speed controller outputs a pump speed control signal to the recirculation pump system, and a reactor generates a power corresponding thereto. When the power control is automatically performed by the recirculation flow rate control, an operator sets a rate of change of the recirculation pump speed and the rate of change of the mean power range monitor at a change rate setting unit. Therefore, the control of the recirculation flow rate under the power control can be substantially entirely automated. (Yoshigara, H.)

  9. Automatic exchange unit for control rod drive device

    International Nuclear Information System (INIS)

    Nasu, Seiji; Sasaki, Masayoshi.

    1982-01-01

    Purpose: To enable automatic reoperation and continuation without external power interruption remedy device at the time of recovering the interrupted power soruce during automatic positioning operation. Constitution: In case of an automatic exchange unit for a control rod drive device of the control type for setting the deviation between the positioning target position and the present position of the device to zero, the position data of the drive device of the positioning target value of the device is automatically read, and an interlock of operation inhibit is applied to a control system until the data reading is completed and automatic operation start or restart conditions are sequentially confirmed. After the confirmation, the interlock is released to start the automatic operation or reoperation. Accordingly, the automatic operation can be safely restarted and continued. (Yoshihara, H.)

  10. Automatic operation device for control rods

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1984-01-01

    Purpose: To enable automatic operation of control rods based on the reactor operation planning, and particularly, to decrease the operator's load upon start up and shutdown of the reactor. Constitution: Operation plannings, demand for the automatic operation, break point setting value, power and reactor core flow rate change, demand for operation interrupt, demand for restart, demand for forecasting and the like are inputted to an input device, and an overall judging device performs a long-term forecast as far as the break point by a long-term forecasting device based on the operation plannings. The automatic reactor operation or the like is carried out based on the long-term forecasting and the short time forecasting is performed by the change in the reactor core status due to the control rod operation sequence based on the control rod pattern and the operation planning. Then, it is judged if the operation for the intended control rod is possible or not based on the result of the short time forecasting. (Aizawa, K.)

  11. Control rod guide tube cleaning device

    International Nuclear Information System (INIS)

    Tsuji, Tadashi; Shiota, Yoshiaki.

    1990-01-01

    Since there was no exclusive device for cleaning control rods, no effective cleaning could not be conducted and there was a possibility that obstacles may not be recovered. Then, there are disposed a first pump for supplying pressurized water, a spray nozzle for forming a swirling flow in a control rod guide tube, a second pump for pressurizing water introduced by a sucking pipeline and a collecting device for recovering obstacles intruding to water from the second pump. The pressurized water supplied from the first pump is introduced to a head passing through a blowing pipe and jetted from the spray nozzle to the control rod guide tube. In this case, a swirling stream occurs and obstacles in the control guide tube are mixed into water. The water containing the obstacles passes from the sucking port through a pipeline, introduced to the second pump and recovered to the collecting device. Since there is no water staying portion upon cleaning operation, the obstacles accumulating over the entire region of the bottom of the guide tube can be recovered reliably and efficiently. (N.H.)

  12. Towards nanoscale magnetic memory elements : fabrication and properties of sub - 100 nm magnetic tunnel junctions

    NARCIS (Netherlands)

    Fabrie, C.G.C.H.M.

    2008-01-01

    The rapidly growing field of spintronics has recently attracted much attention. Spintronics is electronics in which the spin degree of freedom has been added to conventional chargebased electronic devices. A magnetic tunnel junction (MTJ) is an example of a spintronic device. MTJs consist of two

  13. Multi-parameter geometrical scaledown study for energy optimization of MTJ and related spintronics nanodevices

    Science.gov (United States)

    Farhat, I. A. H.; Alpha, C.; Gale, E.; Atia, D. Y.; Stein, A.; Isakovic, A. F.

    The scaledown of magnetic tunnel junctions (MTJ) and related nanoscale spintronics devices poses unique challenges for energy optimization of their performance. We demonstrate the dependence of the switching current on the scaledown variable, while considering the influence of geometric parameters of MTJ, such as the free layer thickness, tfree, lateral size of the MTJ, w, and the anisotropy parameter of the MTJ. At the same time, we point out which values of the saturation magnetization, Ms, and anisotropy field, Hk, can lead to lowering the switching current and overall decrease of the energy needed to operate an MTJ. It is demonstrated that scaledown via decreasing the lateral size of the MTJ, while allowing some other parameters to be unconstrained, can improve energy performance by a measurable factor, shown to be the function of both geometric and physical parameters above. Given the complex interdependencies among both families of parameters, we developed a particle swarm optimization (PSO) algorithm that can simultaneously lower energy of operation and the switching current density. Results we obtained in scaledown study and via PSO optimization are compared to experimental results. Support by Mubadala-SRC 2012-VJ-2335 is acknowledged, as are staff at Cornell-CNF and BNL-CFN.

  14. Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes

    Directory of Open Access Journals (Sweden)

    Mohd Ambri Mohamed, Nobuhito Inami, Eiji Shikoh, Yoshiyuki Yamamoto, Hidenobu Hori and Akihiko Fujiwara

    2008-01-01

    Full Text Available We describe an alternative method for realizing a carbon nanotube spin field-effect transistor device by the direct synthesis of single-walled carbon nanotubes (SWNTs on substrates by alcohol catalytic chemical vapor deposition. We observed hysteretic magnetoresistance (MR at low temperatures due to spin-dependent transport. In these devices, the maximum ratio in resistance variation of MR was found to be 1.8%.

  15. Feedwater control method and device therefor

    International Nuclear Information System (INIS)

    Nakahara, Mitsugu; Ichikawa, Yoshiaki; Ishii, Yoshikazu; Suzuki, Katsuyuki; Tanikawa, Naoshi; Mizuki, Fumio.

    1997-01-01

    The present invention provides a method of and a device for easily changing the constitution of feedwater systems without causing change in the water level of a reactor even when a plurality of feedwater systems have imbalance points. Namely, a feedwater control device comprises at least two feedwater systems capable of feeding water to tanks independently respectively and a controller capable of controlling water level in the tanks by controlling these feedwater systems. There is disposed a means for outputting gradually increasing driving signals to other feedwater systems, when the water level controller automatically controls one of the feedwater systems. There is also disposed a means for switching from automatic control for one of the feedwater systems to automatic control for the other feedwater system by a water level controller when the other feedwater system is in a stable operation region. As a result, entire feedwater flow rate is not temporarily changed and the water level in the tanks can be maintained constant. (N.H.)

  16. Plasma control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To obtain the optimum controllability for the plasmas and the thermonuclear device by selectively executing control operation for proportion, integration and differentiation (PID) by first and second controllers respectively based on selection instruction signals. Constitution: Deviation between a vertical direction equilibrium position: Zp as the plasma status amount measured in a measuring section and an aimed value Zref thereof is inputted to a first PID selection controller. The first controller selectively executes one of the PID control operations in accordance with the first selection signal instruction instructed by a PID control operation instruction circuit. Further, Zp is also inputted to a second PID selection controller, which selectively executes one of the PID control operations in accordance with the second selection instruction signal in the same manner as in the first controller. The deviation amount u between operations signals u1 and u2 from the first and second PID selection controllers is inputted to a power source to thereby supply a predetermined current value to control coils that generate equilibrium magnetic fields for making the vertical direction equilibrium position of plasmas constant. (Kamimura, M.)

  17. A safety control device for detecting undesirable conditions

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-26

    The invention relates to safety control devices. It deals with a device adapted to transmit a warning signal and to the detection of an undesirable condition in an associated apparatus, said device comprising switching means comprising transistors mounted in a reaction path, feeding means for opening the switching means whenever an undesirable condition has been detected by sensors, whereby an oscillator is caused to stop oscillating, and an outlet device controlled by the oscillator stoppage. This can be applied to the supervision of nuclear reactor.

  18. Electrical control of 2D magnetism in bilayer CrI 3.

    Science.gov (United States)

    Huang, Bevin; Clark, Genevieve; Klein, Dahlia R; MacNeill, David; Navarro-Moratalla, Efrén; Seyler, Kyle L; Wilson, Nathan; McGuire, Michael A; Cobden, David H; Xiao, Di; Yao, Wang; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2018-04-23

    Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions 1-3 , and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy 4-6 . Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction 2,4,7-9 . Owing to their unique magnetic properties 10-14 , the recently reported two-dimensional magnets provide a new system for studying these features 15-19 . For instance, a bilayer of chromium triiodide (CrI 3 ) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition 15,16 . Here, we demonstrate electrostatic gate control of magnetism in CrI 3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

  19. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  20. Wind turbine remote control using Android devices

    Science.gov (United States)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  1. Device Configuration Handler for Accelerator Control Applications at Jefferson Lab

    International Nuclear Information System (INIS)

    Bickley, Matt; Chevtsov, P.; Larrieu, T.

    2003-01-01

    The accelerator control system at Jefferson Lab uses hundreds of physical devices with such popular instrument bus interfaces as Industry Pack (IPAC), GPIB, RS-232, etc. To properly handle all these components, control computers (IOCs) must be provided with the correct information about the unique memory addresses of the used interface cards, interrupt numbers (if any), data communication channels and protocols. In these conditions, the registration of a new control device in the control system is not an easy task for software developers. Because the device configuration is distributed, it requires the detailed knowledge about not only the new device but also the configuration of all other devices on the existing system. A configuration handler implemented at Jefferson Lab centralizes the information about all control devices making their registration user-friendly and very easy to use. It consists of a device driver framework and the device registration software developed on the basis of ORACLE database and freely available scripting tools (perl, php)

  2. GPS User Devices Parameter Control Methods

    OpenAIRE

    Klūga, A; Kuļikovs, M; Beļinska, V; Zeļenkovs, A

    2007-01-01

    In our day’s wide assortment of GPS user devices is manufacture. How to verify that parameters of the real device corresponds to parameters that manufacture shows. How to verify that parameters have not been changed during the operation time. The last one is very important for aviation GPS systems, which must be verified before the flight, but the values of parameter in time of repair works. This work analyses GPS user devices parameters control methods.

  3. Selection of input devices and controls for modern process control consoles

    International Nuclear Information System (INIS)

    Hasenfuss, O.; Zimmermann, R.

    1975-06-01

    In modern process control consoles man-machine communication is realized more and more by computer driven CRT displays, the most efficient communication system today. This paper describes the most important input devices and controls for such control consoles. A certain number of facts are given, which should be considered during the selection. The aptitude of the described devices for special tasks is discussed and recommendations are given for carrying out a selection. (orig.) [de

  4. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2

    Science.gov (United States)

    Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi

    2015-03-01

    Compared to the weak spin-orbit-interaction (SOI) in graphene, layered transitionmetal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way to extend functionalities of novel spintronics and valleytronics devices. Such a valley polarization achieved via valley-selective circular dichroism has been predicted theoretically and demonstrated with optical experiments in MX2 systems. Despite the exciting progresses, the generation of a valley/spin current by valley polarization in MX2 remains elusive and a great challenge. A spin/valley current in MX2 compounds caused by such a valley polarization has never been observed, nor its electric-field control. In this talk, we demonstrated, within an electric-double-layer transistor based on WSe2, the manipulation of a spin-coupled valley photocurrent whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further greatly modulated with an external electric field. Such room temperature generation and electric control of valley/spin photocurrent provides a new property of electrons in MX2 systems, thereby enabling new degrees of control for quantum-confined spintronics devices. (In collaboration with S.C. Zhang, Y.L. Chen, Z.X. Shen, B Lian, H.J. Zhang, G Xu, Y Xu, B Zhou, X.Q. Wang, B Shen X.F. Fang) Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  5. Device for controlling gas recovery

    International Nuclear Information System (INIS)

    Ichioka, Atsushi.

    1976-01-01

    Purpose: To provide a controlling device for UF 6 gas recovery device, which can increase working efficiency and to discriminate normality and abnormality of the recovery device. Constitution: The gas recovery device comprises a plurality of traps, which are connected in series. The UF 6 gas is introduced into the first trap where adsorbing work is taken place to accumulate UF 6 gases, and the UF 6 gases partly flow into the succeeding trap. Even in this trap, when the adsorbing work begins, the succeeding trap is operated in series fashion. In this manner, two traps are continuously operated to recover the gases while performing the steps of adsorbing, waiting and regenerating in that order. The switching operation of the aforesaid steps is accomplished on the basis of concentration of the UF 6 detected between two traps, which are continuously driven. (Kamimura, M.)

  6. Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control

    Directory of Open Access Journals (Sweden)

    Ivković Sanja

    2014-01-01

    Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.

  7. Monopole and topological electron dynamics in adiabatic spintronic and graphene systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.

    2010-01-01

    A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.

  8. Method and device for controlling radiation

    International Nuclear Information System (INIS)

    Wilhelm, G.M.

    1979-01-01

    A device which will control radiation emanating from colour television sets is described. It consists of two transparent plates the same size as a television screen, with a thin layer of transparent mineral oil sealed between them. The device may be installed by the manufacturer or bought separately and installed by the user. (LL)

  9. Control system and method for prosthetic devices

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.

  10. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures.

    Science.gov (United States)

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  11. Wearable Device Control Platform Technology for Network Application Development

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2016-01-01

    Full Text Available Application development platform is the most important environment in IT industry. There are a variety of platforms. Although the native development enables application to optimize, various languages and software development kits need to be acquired according to the device. The coexistence of smart devices and platforms has rendered the native development approach time and cost consuming. Cross-platform development emerged as a response to these issues. These platforms generate applications for multiple devices based on web languages. Nevertheless, development requires additional implementation based on a native language because of the coverage and functions of supported application programming interfaces (APIs. Wearable devices have recently attracted considerable attention. These devices only support Bluetooth-based interdevice communication, thereby making communication and device control impossible beyond a certain range. We propose Network Application Agent (NetApp-Agent in order to overcome issues. NetApp-Agent based on the Cordova is a wearable device control platform for the development of network applications, controls input/output functions of smartphones and wearable/IoT through the Cordova and Native API, and enables device control and information exchange by external users by offering a self-defined API. We confirmed the efficiency of the proposed platform through experiments and a qualitative assessment of its implementation.

  12. Object oriented programming techniques applied to device access and control

    International Nuclear Information System (INIS)

    Goetz, A.; Klotz, W.D.; Meyer, J.

    1992-01-01

    In this paper a model, called the device server model, has been presented for solving the problem of device access and control faced by all control systems. Object Oriented Programming techniques were used to achieve a powerful yet flexible solution. The model provides a solution to the problem which hides device dependancies. It defines a software framework which has to be respected by implementors of device classes - this is very useful for developing groupware. The decision to implement remote access in the root class means that device servers can be easily integrated in a distributed control system. A lot of the advantages and features of the device server model are due to the adoption of OOP techniques. The main conclusion that can be drawn from this paper is that 1. the device access and control problem is adapted to being solved with OOP techniques, 2. OOP techniques offer a distinct advantage over traditional programming techniques for solving the device access problem. (J.P.N.)

  13. Manipulating spin in organic spintronics : probing the interplay between the electronic and nuclear spins in organic semiconductors

    NARCIS (Netherlands)

    Bobbert, P.A.

    2014-01-01

    The growing interest in spin manipulation in the field of spin electronics, or "spintronics," is due to the wealth of exciting possibilities that it offers in areas of magnetic sensing, new types of information storage, low-power electronics, and quantum information processing. Nuclear spin

  14. Detection device for control rod scram

    International Nuclear Information System (INIS)

    Ishiyama, Satoshi.

    1989-01-01

    The device of the present invention comprises a control rod dropping separately from a control rod driving mechanism main body, a following tube falling separately accompanying therewith and a guide tube for guiding the dropping of the control rod and the following tube. Further, rare earth permanent magnets are embedded with the pole being axially oriented in the following tube and bobbins each mounted with an inner flange made of high magnetic permeability material are disposed to the guide tube. Coils are wound in the bobbin. In this control rod scram detection device, since magnetic fluxes can effectively be supplied to the coils, it is possible to obtain stable and highly reliable scram detection signals. Further, since the coils and the bobbins can be manufactured separately from the guide tube, their assemblies can be tested independently from the guide tube. (K.M.)

  15. Multilevel Resistance Switching Memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) Heterostructure by Combined Straintronics-Spintronics.

    Science.gov (United States)

    Zhou, Weiping; Xiong, Yuanqiang; Zhang, Zhengming; Wang, Dunhui; Tan, Weishi; Cao, Qingqi; Qian, Zhenghong; Du, Youwei

    2016-03-02

    We demonstrate a memory device with multifield switchable multilevel states at room temperature based on the integration of straintronics and spintronics in a La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) (011) heterostructure. By precisely controlling the electric field applied on the PMN-PT substrate, multiple nonvolatile resistance states can be generated in La2/3Ba1/3MnO3 films, which can be ascribed to the strain-modulated metal-insulator transition and phase separation of Manganite. Furthermore, because of the strong coupling between spin and charge degrees of freedom, the resistance of the La2/3Ba1/3MnO3 film can be readily modulated by magnetic field over a broad temperature range. Therefore, by combining electroresistance and magnetoresistance effects, multilevel resistance states with excellent retention and endurance properties can be achieved at room temperature with the coactions of electric and magnetic fields. The incorporation of ferroelastic strain and magnetic and resistive properties in memory cells suggests a promising approach for multistate, high-density, and low-power consumption electronic memory devices.

  16. A proposed protocol for remote control of automated assessment devices

    International Nuclear Information System (INIS)

    Kissock, P.S.; Pritchard, D.A.

    1996-01-01

    Systems and devices that are controlled remotely are becoming more common in security systems in the US Air Force and other government agencies to provide protection of valuable assets. These systems reduce the number of needed personnel while still providing a high level of protection. However, each remotely controlled device usually has its own communication protocol. This limits the ability to change devices without changing the system that provides the communications control to the device. Sandia is pursuing a standard protocol that can be used to communicate with the different devices currently in use, or may be used in the future, in the US Air Force and other government agencies throughout the security community. Devices to be controlled include intelligent pan/tilt mounts, day/night video cameras, thermal imaging cameras, and remote data processors. Important features of this protocol include the ability to send messages of varying length, identify the sender, and more importantly, control remote data processors. This paper describes the proposed public domain protocol, features, and examples of use. The authors hope to elicit comments from security technology developers regarding format and use of remotely controlled automated assessment devices

  17. Method for installing a control rod driving device in a reactor

    International Nuclear Information System (INIS)

    Sato, Haruo; Watanabe, Masatoshi.

    1975-01-01

    Object: To install a device using a wire rope, including individually moving up and down a control rod and a control rod driving device thereby enabling to install them within a low house and to reduce time required for installing operation. Structure: The control rod is temporarily attached to a support structure for the control rod driving device, the control rod driving device is suspended on a crane positioned upwardly of the support structure, a rope connected to the control rod driving device is connected to the control rod, a sagged portion of the rope is then wound about a rotary cylinder, the control rod is disconnected from its temporary attachment, and the wound rope is wound back while the rotary cylinder is rotated to move down the control rod. After the rope has been released from the rotary cylinder, the control rod driving device is moved down by the crane. (Kamimura, M.)

  18. Spin transport and spin torque in antiferromagnetic devices

    Science.gov (United States)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  19. Novel spintronics devices for memory and logic: prospects and challenges for room temperature all spin computing

    Science.gov (United States)

    Wang, Jian-Ping

    An energy efficient memory and logic device for the post-CMOS era has been the goal of a variety of research fields. The limits of scaling, which we expect to reach by the year 2025, demand that future advances in computational power will not be realized from ever-shrinking device sizes, but rather by innovative designs and new materials and physics. Magnetoresistive based devices have been a promising candidate for future integrated magnetic computation because of its unique non-volatility and functionalities. The application of perpendicular magnetic anisotropy for potential STT-RAM application was demonstrated and later has been intensively investigated by both academia and industry groups, but there is no clear path way how scaling will eventually work for both memory and logic applications. One of main reasons is that there is no demonstrated material stack candidate that could lead to a scaling scheme down to sub 10 nm. Another challenge for the usage of magnetoresistive based devices for logic application is its available switching speed and writing energy. Although a good progress has been made to demonstrate the fast switching of a thermally stable magnetic tunnel junction (MTJ) down to 165 ps, it is still several times slower than its CMOS counterpart. In this talk, I will review the recent progress by my research group and my C-SPIN colleagues, then discuss the opportunities, challenges and some potential path ways for magnetoresitive based devices for memory and logic applications and their integration for room temperature all spin computing system.

  20. Reactor control device

    International Nuclear Information System (INIS)

    Kinoshita, Mitsuo.

    1991-01-01

    Heretofore, since the aimed value of a reactor power has been determined only based on the deviation between a temperature variation coefficient and the aimed value, it involves a problem that a region for finely determining a control constant is complicated. In view of the above, in the present invention, an approximate value of the aimed reactor power value is determined based on the aimed value for the temperature variation coefficient, then a compensation value for the aimed power value is determined based on the deviation between the temperature variation coefficient and the aimed value and, further, the aimed power value is determined based on the approximate value and the compensation value. Control elements are automatically operated so that the power follows the aimed value after determining the aimed value. Then, since the aimed reactor power value is controlled finely so that the responsiveness of the temperature variation coefficient is satisfactory and the temperature variation coefficient agrees with the aimed value, the stability for the control of temperature variation coefficient is satisfactory. That is, high performance control is enabled by a simple control algorithm to reduce the number of the steps for the design and the device control. (N.H.)

  1. A magnetorheological fluid-based multifunctional haptic device for vehicular instrument controls

    International Nuclear Information System (INIS)

    Han, Young-Min; Kim, Chan-Jung; Choi, Seung-Bok

    2009-01-01

    This paper presents control performances of a magnetorheological (MR) fluid-based multifunctional haptic device which is applicable to vehicular instrument controls. By combining in-vehicle functions into a single device, the proposed haptic device can transmit various reflection forces for each comfort function to a driver without requiring the driver's visual attention. As a multifunctional haptic device, a MR knob is proposed in this work and then devised to be capable of both rotary and push motions with a single knob. Under consideration of the spatial limitations of vehicle dashboards, design parameters are optimally determined by finite element analysis, and the objective function is to maximize a relative control torque. The proposed haptic device is then manufactured, and in-vehicle comfort functions are constructed in a virtual environment which makes the functions to communicate with the haptic device. Subsequently, a feed-forward controller using torque/force maps is formulated for the force tracking control. Control performances such as reflection force of the haptic device are experimentally evaluated via the torque/force map-based feed-forward controller

  2. Micro-Scalable Thermal Control Device

    Science.gov (United States)

    Moran, Matthew E. (Inventor)

    2002-01-01

    A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.

  3. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  4. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  5. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan

    2015-04-30

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  6. Automatic control device for the reduction of reactor power

    International Nuclear Information System (INIS)

    Sumida, Susumu; Mizuno, Hiroshi.

    1982-01-01

    Purpose: To early detect troubles in condensate pipeways and feedwater pipeways of BWR-type reactor. Constitution: Detectors are provided to a condensate pipe, a condensator, a low pressure condensate pump, a condensate desalting device and a high pressure condensate pump for constituting condensate pipeways, as well as to a feedwater heater, a feedwater pipe and a feedwater pump for constituting feedwater pipeways. Each of the detectors is connected by way of a lead wire to an abnormal detection and processing device. The abnormal detection and processing device, which are connected to a recycling control device, monitor the input from the detector and sends a control signal to the recycling control system upon calculation of a trouble signal from the detector. (Sekiya, K.)

  7. Power control device of an atomic power plant

    International Nuclear Information System (INIS)

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  8. Optically controlled multiple switching operations of DNA biopolymer devices

    International Nuclear Information System (INIS)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-01-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices

  9. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  10. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    Science.gov (United States)

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  11. Magnetization manipulation in multiferroic devices.

    Science.gov (United States)

    Gajek, Martin; Martin, Lane; Hao Chu, Ying; Huijben, Mark; Barry, Micky; Ramesh, Ramamoorthy

    2008-03-01

    Controlling magnetization by purely electrical means is a a central topic in spintronics. A very recent route towards this goal is to exploit the coupling between multiple ferroic orders which coexist in multiferroic materials. BiFeO3 (BFO) displays antiferromagnetic and ferroelectric orderings at room temperature and can thus be used as an electrically controllable pinning layer for a ferromagnetic electrode. Furthermore BFO remains ferroelectric down to 2nm and can therefore be integrated as a tunnel barrier in MTJ's. We will describe these two architecture schemes and report on our progresses towards the control of magnetization via the multiferroic layer in those structures.

  12. Device provides controlled gas leaks

    Science.gov (United States)

    Kami, S. K.; King, H. J.

    1968-01-01

    Modified palladium leak device provides a controlled release /leak/ of very small quantities of gas at low or medium pressures. It has no moving parts, requires less than 5 watts to operate, and is capable of releasing the gas either continuously or in pulses at adjustable flow rates.

  13. Reactor power control device

    International Nuclear Information System (INIS)

    Doi, Kazuyori.

    1981-01-01

    Purpose: To automatically control the BWR type reactor power by simple and short-time searching the load pattern nearest to the required pattern at a nuclear power plant side. Constitution: The reactor power is automatically regulated by periodical modifying of coefficients fitting to a reactor core model, according as a required load pattern. When a load requirement pattern is given, a simulator estimates the total power change and the axial power distribution change from a xenon density change output calculated by a xenon dynamic characteristic estimating device, and a load pattern capable of being realized is searched. The amount to be recirculated is controlled on the basis of the load patteren thus searched, and the operation of the BWR type reactor is automatically controlled at the side of the nuclear power plant. (Kamimura, M.)

  14. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    Science.gov (United States)

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  15. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces

    International Nuclear Information System (INIS)

    Taniyama, Tomoyasu

    2015-01-01

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications. (topical review)

  16. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    Science.gov (United States)

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  17. Medical Devices; Immunology and Microbiology Devices; Classification of the Assayed Quality Control Material for Clinical Microbiology Assays. Final order.

    Science.gov (United States)

    2017-07-27

    The Food and Drug Administration (FDA, Agency, or we) is classifying the assayed quality control material for clinical microbiology assays into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the assayed quality control material for clinical microbiology assays' classification. The Agency is classifying the device into class II (special controls) to provide a reasonable assurance of safety and effectiveness of the device.

  18. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  19. Spin-current-controlled modulation of the magnon spin conductance in a three-terminal magnon transistor

    NARCIS (Netherlands)

    Cornelissen, L. J.; Liu, J.; van Wees, B.J.; Duine, R. A.

    2018-01-01

    Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The

  20. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    Science.gov (United States)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  1. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  2. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  3. High and tunable spin current induced by magnetic-electric fields in a single-mode spintronic device

    International Nuclear Information System (INIS)

    Bala Kumar, S; Jalil, M B A; Tan, S G; Liang, G-C

    2009-01-01

    We proposed that a viable form of spin current transistor is one to be made from a single-mode device which passes electrons through a series of magnetic-electric barriers built into the device. The barriers assume a wavy spatial profile across the conduction path due to the inevitable broadening of the magnetic fields. Field broadening results in a linearly increasing vector potential across the conduction channel, which increases spin polarization. We have identified that the important factors for generating high spin polarization and conductance modulation are the low source-drain bias, the broadened magnetic fields, and the high number of FM gates within a fixed channel length.

  4. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  5. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  6. Fluid control structures in microfluidic devices

    Science.gov (United States)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  7. Stabilizing device for control rod tip

    International Nuclear Information System (INIS)

    Verdone, G.F.

    1982-01-01

    A control rod has a spring device on its lower end for eliminating oscillatory contact of the rod against its adjacent guide tube wall. The base of the device is connected to the lower tip of the rod. A plurality of elongated extensions are cantilevered downward from the base. Each extension has a shoulder for contacting the guide tube, and the plurality of shoulders as a group has a transverse dimension that is preset to be larger than the inner diameter of the guide tube such that an interference fit is obtained when the control rod is inserted in the tube. The elongated extensions form an open-ended, substantially hollow member through which most of the liquid coolant flows, and the spaces between adjacent extensions allow the flow to bypass the shoulders without experiencing a significant pressure drop

  8. Control rod withdrawal monitoring device

    International Nuclear Information System (INIS)

    Ebisuya, Mitsuo.

    1984-01-01

    Purpose: To prevent the power ramp even if a plurality of control rods are subjected to withdrawal operation at a time, by reducing the reactivity applied to the reactor. Constitution: The control rod withdrawal monitoring device is adapted to monitor and control the withdrawal of the control rods depending on the reactor power and the monitoring region thereof is divided into a control rod group monitoring region a transition region and a control group monitoring not interfere region. In a case if the distance between a plurality of control rods for which the withdrawal positions are selected is less than a limiting value, the coordinate for the control rods, distance between the control rods and that the control rod distance is shorter are displayed on a display panel, and the withdrawal for the control rods are blocked. Accordingly, even if a plurality of control rods are subjected successively to the withdrawal operation contrary to the control rod withdrawal sequence upon high power operation of the reactor, the power ramp can be prevented. (Kawakami, Y.)

  9. Control device for handling device of control rod drive

    International Nuclear Information System (INIS)

    Sasaki, Toshiya

    1998-01-01

    A predetermined aimed portion of control rod drives disposed in a pedestal is photographed, and image data and camera data including the position of the camera are outputted. Edge cut out processing image data are formed based on the outputted image data, and aimed image data and aimed camera data obtained when previously positioning the handling device precisely to a predetermined aimed position are stored. The aimed image data are taken out from the aimed image data file to prepare computer graphic image data, and there is disposed an image superposing processing portion for comparing images based on the computer graphic image data and images based on the image data for edge cut out processing, as well as comparing the aimed camera data and the camera data, and displaying each of them to an image display portion. (I.S.)

  10. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  11. Prototyping of concurrent control systems implemented in FPGA devices

    CERN Document Server

    Wiśniewski, Remigiusz

    2017-01-01

    This book focuses on prototyping aspects of concurrent control systems and their further implementation and partial reconfiguration in programmable devices. Further, it lays out a full prototyping flow for concurrent control systems. Based on a given primary specification, a system is described with an interpreted Petri net, which naturally reflects the concurrent and sequential relationships of the design. The book shows that, apart from the traditional option of static configuration of the entire system, the latest programmable devices (especially FPGAs) offer far more sophistication. Partial reconfiguration allows selected parts of the system to be replaced without having to reprogram the entire structure of the device. Approaches to dynamic and static partial reconfiguration of concurrent control systems are presented and described in detail.< The theoretical work is illustrated by examples drawn from various applications, with a milling machine and a traffic-light controller highlighted as representat...

  12. Norms concerning the programmable automatic control devices

    International Nuclear Information System (INIS)

    Fourmentraux, G.

    1995-01-01

    This presentation is a report of the studies carried out by the Work Group on Functioning Safety of Programmable Automatic Control Devices and by the Group for Prevention Studies (GEP) from the CEA. The objective of these groups is to evaluate the methods which could be used to estimate the functioning safety of control and instrumentation systems involved in the Important Elements for Safety (EIS) of the Basic Nuclear Installations (INB) of the CEA, and also to carry out a qualification of automatic control devices. Norms, protocols and tools for the evaluation are presented. The problem comprises two aspects: the evaluation of fault avoidance techniques and the evaluation of fault control techniques used during the conceiving. For the fault avoidance techniques, the quality assurance organization, the environment tests, and the software quality plans are considered. For the fault control techniques, the different available tools and fault injection models are analysed. The results of an analysis carried out with the DEF.I tool from the National Institute for Research and Safety (INRS) are reported. (J.S.). 23 refs

  13. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Science.gov (United States)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  14. Digital Control of External Devices through the Parallel Port of a ...

    African Journals Online (AJOL)

    Digital Control of External Devices through the Parallel Port of a Computer Using Visual Basic. ... Nigerian Journal of Technology ... Keywords: device controller, digital switching, digital interfacing, visual basic, computer parallel port ...

  15. Bidirectional Telemetry Controller for Neuroprosthetic Devices

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor

    2010-01-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  16. Bidirectional telemetry controller for neuroprosthetic devices.

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B; Han, Martin; Pikov, Victor

    2010-02-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s , allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes approximately 420 mW and operates without recharge for 8 h . It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 mus after the end of the stimulus pulse applied in the cochlear nucleus.

  17. Experimental and simulated control of lift using trailing edge devices

    Science.gov (United States)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  18. Control-rod scram device

    International Nuclear Information System (INIS)

    Matsui, Yoshiro; Saito, Koji.

    1986-01-01

    Purpose: To eliminate the requirement for the nitrogen gas system in a scram device and enable safety and reliable shutdown of a water-cooled reactor power plant. Constitution: A piston and a spring are contained within a hydraulic vessel, and the piston is driven by the energy stored in the spring so as to supply hydraulic water to control mechanisms. During usual reactor operation, a scram valve is closed and a high water pressure of about 130 kg/cm 2 is applied to the water filled in the vessel through a check valve. Upon occurrence of abnormal conditions and generation of scram signals, the scram valve is opened to supply the water filled in the vessel through the scram valve to the control rod drive mechanisms. When the water pressure in the vessel is decreased, since the piston is urged upwardly by the energy stored in the spring, the water filled in the vessel is intermitently supplied to the control rod drive mechanisms. Thus, control rods can be inserted into the nuclear reactor to shutdown the same. (Horiuchi, T.)

  19. Practical design control implementation for medical devices

    CERN Document Server

    Justiniano, Jose

    2003-01-01

    Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific

  20. Migrated Essure permanent birth control device: sonographic findings.

    Science.gov (United States)

    Khati, Nadia Juliet; Gorodenker, Joseph; Brindle, Kathleen Ann

    2014-05-01

    We report a case of a migrated Essure permanent birth control device. The correct diagnosis was made on conventional two-dimensional and three-dimensional pelvic sonography 7 years after placement of the device when the patient presented with persistent right-sided pain. The 3-month post placement hysterosalpingogram had shown an appropriately occluded right fallopian tube but had overlooked the abnormal position of the right Essure device, which was too proximal and extending slightly in the uterine cavity. Copyright © 2013 Wiley Periodicals, Inc.

  1. Efficient Spin Injection into Semiconductor

    International Nuclear Information System (INIS)

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  2. Experimental and simulated control of lift using trailing edge devices

    International Nuclear Information System (INIS)

    Cooperman, A; Blaylock, M; Van Dam, C P

    2014-01-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust

  3. EXOS research on master controllers for robotic devices

    Science.gov (United States)

    Marcus, Beth A.; An, Ben; Eberman, Brian

    1992-01-01

    Two projects are currently being conducted by EXOS under the Small Business Innovation Research (SBIR) program with NASA. One project will develop a force feedback device for controlling robot hands, the other will develop an elbow and shoulder exoskeleton which can be integrated with other EXOS devices to provide whole robot arm and hand control. Aspects covered are the project objectives, important research issues which have arisen during the developments, and interim results of the projects. The Phase 1 projects currently underway will result in hardware prototypes and identification of research issues required for complete system development and/or integration.

  4. Particle and impurity control in toroidal fusion devices

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1986-01-01

    A review of working particle and impurity control techniques used in and proposed for magnetic fusion devices is presented. The requirements of both present-day machines and envisaged fusion reactors are considered. The various techniques which have been proposed are characterized by whether they affect sources, sinks, or fluxes; in many cases a particular method or device can appear in more than one category. Examples are drawn from published results. The solutions proposed for the large devices which will be operating during the next 5 years are discussed

  5. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    Science.gov (United States)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  6. Consumer-grade EEG devices: are they usable for control tasks?

    Directory of Open Access Journals (Sweden)

    Rytis Maskeliunas

    2016-03-01

    Full Text Available We present the evaluation of two well-known, low-cost consumer-grade EEG devices: the Emotiv EPOC and the Neurosky MindWave. Problems with using the consumer-grade EEG devices (BCI illiteracy, poor technical characteristics, and adverse EEG artefacts are discussed. The experimental evaluation of the devices, performed with 10 subjects asked to perform concentration/relaxation and blinking recognition tasks, is given. The results of statistical analysis show that both devices exhibit high variability and non-normality of attention and meditation data, which makes each of them difficult to use as an input to control tasks. BCI illiteracy may be a significant problem, as well as setting up of the proper environment of the experiment. The results of blinking recognition show that using the Neurosky device means recognition accuracy is less than 50%, while the Emotiv device has achieved a recognition accuracy of more than 75%; for tasks that require concentration and relaxation of subjects, the Emotiv EPOC device has performed better (as measured by the recognition accuracy by ∼9%. Therefore, the Emotiv EPOC device may be more suitable for control tasks using the attention/meditation level or eye blinking than the Neurosky MindWave device.

  7. AmbiGaze : direct control of ambient devices by gaze

    OpenAIRE

    Velloso, Eduardo; Wirth, Markus; Weichel, Christian; Abreu Esteves, Augusto Emanuel; Gellersen, Hans-Werner Georg

    2016-01-01

    Eye tracking offers many opportunities for direct device control in smart environments, but issues such as the need for calibration and the Midas touch problem make it impractical. In this paper, we propose AmbiGaze, a smart environment that employs the animation of targets to provide users with direct control of devices by gaze only through smooth pursuit tracking. We propose a design space of means of exposing functionality through movement and illustrate the concept through four prototypes...

  8. Nuclear reactor power control device

    International Nuclear Information System (INIS)

    Koshi, Yuji; Sakata, Akira; Karatsu, Hiroyuki.

    1987-01-01

    Purpose: To control abrupt changes in neutron fluxes by feeding back a correction signal obtained from a deviation between neutron fluxes and heat fluxes for changing the reactor core flow rate to a recycling flow rate control system upon abrupt power change of a nuclear reactor. Constitution: In addition to important systems, that is, a reactor pressure control system and a recycling control system in the power control device of a BWR type power plant, a control circuit for feeding back a deviation between neutron fluxes and heat fluxes to a recycling flow rate control system is disposed. In the suppression circuit, a deviation signal is prepared in an adder from neutron flux and heat flux signals obtained through a primary delay filter. The deviation signal is passed through a dead band and an advance/delay filter into a correction signal, which is adapted to be fed back to the recycling flow rate control system. As a result, the reactor power control can be conducted smoothly and it is possible to effectively suppress the abrupt change or over shoot of the neutron fluxes and abrupt power change. (Kamimura, M.)

  9. Re-Active Passive devices for control of noise transmission through a panel

    Science.gov (United States)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan

    2008-01-01

    Re-Active Passive devices have been developed to control low-frequency (transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  10. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  11. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    Science.gov (United States)

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p 90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  12. Method and device for controlling nuclear reactor power

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Ebata, Shigeo.

    1988-01-01

    Purpose: To detect and suppress the special power oscillations in the reactor core. Method: Four pairs of LPRM detectors, each pair comprising two detectors are disposed at an identical axial direction of the reactor core and situated at substantially insymmetrical positions at least in longitudinal, vertical and orthogonal directions with respect to the center of te reactor core and LPRM signals from them are inputted into a device for judging special power oscillations. In this case, a standardized mutual relation function is determined on every pair for the respective LPRM signals. Generation of special power oscillations in the reactor core is judged when it is detected that peaks appearing at least in one of the function forms for each pair are negative and have absolute values exceeding a predetermined value and that time of peak is within a predetermined time. The judged signal is inputted to a selected control rod insertion device. The selected control rod insertion device, upon preceiving the signal, inserts selected control rods into the reactor core to suppress the special power oscillations. Accordingly, it is possible to improve the fuel integrity. (Horiuchi, T.)

  13. Strong interfacial exchange field in the graphene/EuS heterostructure

    NARCIS (Netherlands)

    Wei, Peng; Lee, Sunwoo; Lemaitre, Florian; Pinel, Lucas; Cutaia, Davide; Cha, Wujoon; Katmis, Ferhat; Zhu, Yu; Heiman, Donald; Hone, James; Moodera, Jagadeesh S.; Chen, Ching Tzu

    2016-01-01

    Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low power consumption and quantum operation capability. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and

  14. Control rod driving hydraulic device

    International Nuclear Information System (INIS)

    Sugano, Hiroshi.

    1993-01-01

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  15. Channel Access and Power Control for Mobile Crowdsourcing in Device-to-Device Underlaid Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2018-01-01

    Full Text Available With the access of a myriad of smart handheld devices in cellular networks, mobile crowdsourcing becomes increasingly popular, which can leverage omnipresent mobile devices to promote the complicated crowdsourcing tasks. Device-to-device (D2D communication is highly desired in mobile crowdsourcing when cellular communications are costly. The D2D cellular network is more preferable for mobile crowdsourcing than conventional cellular network. Therefore, this paper addresses the channel access and power control problem in the D2D underlaid cellular networks. We propose a novel semidistributed network-assisted power and a channel access control scheme for D2D user equipment (DUE pieces. It can control the interference from DUE pieces to the cellular user accurately and has low information feedback overhead. For the proposed scheme, the stochastic geometry tool is employed and analytic expressions are derived for the coverage probabilities of both the cellular link and D2D links. We analyze the impact of key system parameters on the proposed scheme. The Pareto optimal access threshold maximizing the total area spectral efficiency is obtained. Unlike the existing works, the performances of the cellular link and D2D links are both considered. Simulation results show that the proposed method can improve the total area spectral efficiency significantly compared to existing schemes.

  16. Use of integrity control and automatic start of reserve in a multi-channel temperature and flow rate control device

    International Nuclear Information System (INIS)

    Strzalkowski, L.

    1975-01-01

    A way to increase reliability of process quantity control is control of the integrity of the control plants themselves. The possibilities of integrity control on control devices having simply duplicated control channels or working on the basis of the ''two-from-three'' principle are valued. A highly reliable integrity control is possible by use of test signals. For an appropriate control device, structure and function of the assemblies are described. The integrity control device may be used in the water coolant temperature and flow rate control system for all technological channels of the research reactor ''Maria''

  17. Traffic Control Device Evaluation Program : FY 2017

    Science.gov (United States)

    2018-03-01

    This report presents findings on the activities conducted in the Traffic Control Device Evaluation Program during the 2017 fiscal year. The research on sponsored changeable message signs (continued from the previous year) was terminated by the Federa...

  18. Control rod excess withdrawal prevention device

    International Nuclear Information System (INIS)

    Takayama, Yoshihito.

    1992-01-01

    Excess withdrawal of a control rod of a BWR type reactor is prevented. That is, the device comprises (1) a speed detector for detecting the driving speed of a control rod, (2) a judging circuit for outputting an abnormal signal if the driving speed is greater than a predetermined level and (3) a direction control valve compulsory closing circuit for controlling the driving direction of inserting and withdrawing a control rod based on an abnormal signal. With such a constitution, when the with drawing speed of a control rod is greater than a predetermined level, it is detected by the speed detector and the judging circuit. Then, all of the direction control valve are closed by way of the direction control valve compulsory closing circuit. As a result, the operation of the control rod is stopped compulsorily and the withdrawing speed of the control rod can be lowered to a speed corresponding to that upon gravitational withdrawal. Accordingly, excess withdrawal can be prevented. (I.S)

  19. Design controls for the medical device industry

    CERN Document Server

    Teixeira, Marie B

    2013-01-01

    The second edition of a bestseller, Design Controls for the Medical Device Industry provides a comprehensive review of the latest design control requirements, as well as proven tools and techniques to ensure your company's design control program evolves in accordance with current industry practice. The text assists in the development of an effective design control program that not only satisfies the US FDA Quality System Regulation (QSR) and ISO 9001 and 13485 standards, but also meets today's third-party auditor/investigator expectations and saves you valuable time and money.The author's cont

  20. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Science.gov (United States)

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  1. An Automatic Occlusion Device for Remote Control of Tumor Tissue Ischemia

    Science.gov (United States)

    El-Dahdah, Hamid; Wang, Bei; He, Guanglong; Xu, Ronald X.

    2015-01-01

    We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multi-modal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics. PMID:20082532

  2. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films.

    Science.gov (United States)

    Li, D L; Ma, Q L; Wang, S G; Ward, R C C; Hesjedal, T; Zhang, X-G; Kohn, A; Amsellem, E; Yang, G; Liu, J L; Jiang, J; Wei, H X; Han, X F

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.

  3. Quantum control of topological defects in magnetic systems

    Science.gov (United States)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  4. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  5. Graphene as a flexible template for controlling magnetic interactions between metal atoms.

    Science.gov (United States)

    Lee, Sungwoo; Kim, Dongwook; Robertson, Alex W; Yoon, Euijoon; Hong, Suklyun; Ihm, Jisoon; Yu, Jaejun; Warner, Jamie H; Lee, Gun-Do

    2017-03-01

    Metal-doped graphene produces magnetic moments that have potential application in spintronics. Here we use density function theory computational methods to show how the magnetic interaction between metal atoms doped in graphene can be controlled by the degree of flexure in a graphene membrane. Bending graphene by flexing causes the distance between two substitutional Fe atoms covalently bonded in graphene to gradually increase and these results in the magnetic moment disappearing at a critical strain value. At the critical strain, a carbon atom can enter between the two Fe atoms and blocks the interaction between relevant orbitals of Fe atoms to quench the magnetic moment. The control of interactions between doped atoms by exploiting the mechanical flexibility of graphene is a unique approach to manipulating the magnetic properties and opens up new opportunities for mechanical-magnetic 2D device systems.

  6. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  7. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    Science.gov (United States)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  8. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.

    Science.gov (United States)

    Lu, Yang; Lee, Jong Ho; Chen, I-Wei

    2017-08-31

    Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.

  9. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  10. Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface

    Directory of Open Access Journals (Sweden)

    Takayuki Nozaki

    2018-02-01

    Full Text Available We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA and the voltage-controlled magnetic anisotropy (VCMA in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices.

  11. Control device for a nuclear reactor with a multitude of control rods, extending into the reactor core from above, with linear drive mechanisms and additional gripper devices

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    The components of the additional gripper devices with magnetically operated finger-shaped latches are separated from the also magnetically operated latches of the linear drive mechanisms in order to avoid common-mode failures when fast shutdown is required. Only part of the safety rods are held by the additional gripping devices in the withdrawn position. There is provided for recording elements indicating positively which one of the safety locks is gearing with the control rods. At the upper end of each control rod there is a coupling head held by electromagnetically operated locking devices in the withdrawn position, if control power is available. (DG) [de

  12. Electronic control devices

    International Nuclear Information System (INIS)

    Hartill, D.L.

    1981-01-01

    The subject of these lectures is the translation of information from particle detectors to computers. Large solid angle general purpose detectors at the intersection regions of high energy e+e- storage rings and pp and pp storage rings are discussed. Three choices for data acquisition are reviewed: use CAMAC (Computer Aided Measurement and Control), start from scratch and design a system, or wait for the final version of the proposed FASTBUS to be developed. The do-it-yourself procedure includes designs of drift chamber discriminator, time to amplitude converter, and data card block diagram. Trigger systems, the fast decision making systems judging an event interesting enough for a read-out cycle to be initiated, are discussed. Finally, a FASTBUS system layout, with its goals of minimum bus speed, general system topologies, and support multiple smart devices is given

  13. SeleCon: Scalable IoT Device Selection and Control Using Hand Gestures.

    Science.gov (United States)

    Alanwar, Amr; Alzantot, Moustafa; Ho, Bo-Jhang; Martin, Paul; Srivastava, Mani

    2017-04-01

    Although different interaction modalities have been proposed in the field of human-computer interface (HCI), only a few of these techniques could reach the end users because of scalability and usability issues. Given the popularity and the growing number of IoT devices, selecting one out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we propose a pointing approach to interact with devices, as pointing is arguably a natural way for device selection. We introduce SeleCon for device selection and control which uses an ultra-wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point to the device to select it then draw a hand gesture in the air to specify a control action. To this end, SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for identifying the selected device from ranging measurements. Furthermore, SeleCon supports an alphabet of gestures that can be used for controlling the selected devices. We performed our experiment in a 9 m -by-10 m lab space with eight deployed devices. The results demonstrate that SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the UWB transceiver, when a user's wrist is stationary.

  14. Real-Time Occupant Based Plug-in Device Control Using ICT in Office Buildings

    Directory of Open Access Journals (Sweden)

    Woo-Bin Bae

    2016-03-01

    Full Text Available The purpose of this study is to reduce the unnecessary plug loads used by computers, monitors, and computer peripheral devices, all of which account for more than 95% of the entire plug loads of an office building. To this end, an occupant-based plug-in device control (OBC-P software was developed. The OBC-P software collects real-time information about the presence or absence of occupants who are connected to the access point through the Wifi and controls the power of monitors or computers, while a standby power off device controls computer peripheral devices. To measure the plug load saving of the occupant-based plug-in device control, an experiment was conducted, targeting 10 occupants of three research labs of the graduate school, for two weeks. The experiment results showed that it could save the plug loads of monitors and computer peripheral devices by 15% in the Awake mode, and by 26% in the Sleep mode.

  15. Spin voltage generation through optical excitation of complementary spin populations

    Science.gov (United States)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  16. A Multiposture Locomotor Training Device with Force-Field Control

    Directory of Open Access Journals (Sweden)

    Jianfeng Sui

    2014-11-01

    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  17. Autotuning of PID controller by means of human machine interface device

    Directory of Open Access Journals (Sweden)

    Michał Awtoniuk

    2017-06-01

    Full Text Available More and more control systems are based on industry microprocessors like PLC controllers (Programmable Logic Controller. The most commonly used control algorithm is PID (Proportional-Integral-Derivative algorithm. Autotuning procedure is not available in every PLC. These controllers are typically used in cooperation with HMI (Human Machine Interface devices. In the study two procedures of autotuning of the PID controller were implemented in the HMI device: step method and relay method. Six tuning rules for step methods and one for relay method were chosen. The autotuning procedures on simulated controlled object and PLC controller without build-in autotuning were tested. The object of control was first order system plus time delay.

  18. Development and control of a magnetorheological haptic device for robot assisted surgery.

    Science.gov (United States)

    Shokrollahi, Elnaz; Goldenberg, Andrew A; Drake, James M; Eastwood, Kyle W; Kang, Matthew

    2017-07-01

    A prototype magnetorheological (MR) fluid-based actuator has been designed for tele-robotic surgical applications. This device is capable of generating forces up to 47 N, with input currents ranging from 0 to 1.5 A. We begin by outlining the physical design of the device, and then discuss a novel nonlinear model of the device's behavior. The model was developed using the Hammerstein-Wiener (H-W) nonlinear black-box technique and is intended to accurately capture the hysteresis behavior of the MR-fluid. Several experiments were conducted on the device to collect estimation and validation datasets to construct the model and assess its performance. Different estimating functions were used to construct the model, and their effectiveness is assessed based on goodness-of-fit and final-prediction-error measurements. A sigmoid network was found to have a goodness-of-fit of 95%. The model estimate was then used to tune a PID controller. Two control schemes were proposed to eliminate the hysteresis behavior present in the MR fluid device. One method uses a traditional force feedback control loop and the other is based on measuring the magnetic field using a Hall-effect sensor embedded within the device. The Hall-effect sensor scheme was found to be superior in terms of cost, simplicity and real-time control performance compared to the force control strategy.

  19. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  20. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  1. A versatile nanotechnology to connect individual nano-objects for the fabrication of hybrid single-electron devices

    International Nuclear Information System (INIS)

    Bernand-Mantel, A; Bouzehouane, K; Seneor, P; Fusil, S; Deranlot, C; Petroff, F; Fert, A; Brenac, A; Notin, L; Morel, R

    2010-01-01

    We report on the high yield connection of single nano-objects as small as a few nanometres in diameter to separately elaborated metallic electrodes, using a 'table-top' nanotechnology. Single-electron transport measurements validate that transport occurs through a single nano-object. The vertical geometry of the device natively allows an independent choice of materials for each electrode and the nano-object. In addition ferromagnetic materials can be used without encountering oxidation problems. The possibility of elaborating such hybrid nanodevices opens new routes for the democratization of spintronic studies in low dimensions.

  2. A simple optical fibre-linked remote control system for multiple devices

    Indian Academy of Sciences (India)

    We report on the development of a simple control system which can handle multiple devices through an optical fibre data link. The devices are controlled using a set of DACs through serial data communication via a serial port of a PC. Serial data from the PC get converted to parallel mode using a homemade “serial in ...

  3. Control rod position detection device

    International Nuclear Information System (INIS)

    Akita, Haruo; Ogiwara, Sakae.

    1996-01-01

    The device of the present invention is used in a back-up shut down system of an LMFBR type reactor which is easy for maintenance, has high reliability and can recognize the position of control rods accurately. Namely, a permanent magnet is disposed to a control rod extension tube connected to the lower portion of the control rod. The detector guide tube is disposed in the vicinity of the control rod extension tube. A detector having a detection coil is inserted into a detector tube. With such constitution, the control rod can be detected at one position using the following method. (1) the movement of the magnetic field of the permanent magnet is detected by the detection coil. (2) a plurality of grooves are formed on the control rod extension tube, and the movement of the grooves is detected. In addition, the detection coil is inserted into the detector guide tube, and the signals from the detection coil are inputted to a signal processing circuit disposed at the outside of the reactor vessel using an MI cable to enable the maintenance of the detector. Further, if the detector comprises a detection coil and an excitation coil, the position of a dropped control rod can be recognized at a plurality of points. (I.S.)

  4. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  5. [Microcomputer control of a LED stimulus display device].

    Science.gov (United States)

    Ohmoto, S; Kikuchi, T; Kumada, T

    1987-02-01

    A visual stimulus display system controlled by a microcomputer was constructed at low cost. The system consists of a LED stimulus display device, a microcomputer, two interface boards, a pointing device (a "mouse") and two kinds of software. The first software package is written in BASIC. Its functions are: to construct stimulus patterns using the mouse, to construct letter patterns (alphabet, digit, symbols and Japanese letters--kanji, hiragana, katakana), to modify the patterns, to store the patterns on a floppy disc, to translate the patterns into integer data which are used to display the patterns in the second software. The second software package, written in BASIC and machine language, controls display of a sequence of stimulus patterns in predetermined time schedules in visual experiments.

  6. Reactor feedwater control device

    International Nuclear Information System (INIS)

    Koshi, Yuji.

    1993-01-01

    In the device of the present invention, an excess response is not caused in a reactor feed water system even when voids are fluctuated by using an actual water level signal as a reactor water level signal. That is, a standard water level signal and a reactor water level signal are inputted to a comparator. An adder adds water level difference signal outputted from the comparator and mismatch flow rate signal prepared by multiplying the difference between a main steam flow rate signal and a feed water flow rate signal by a mismatch gain. A feed water controller integrates the added signal and outputs flow rate demand signal. A feed water system receives the flow rate demand signal as input. A water level calculation means is disposed to such a device for calculating an actual water level based on the change of coolant possessing amount of the reactor, and the output thereof is defined as a reactor water level signal. With such procedures, excessive elevation of water level of the reactor can be prevented even upon occurrence of void fluctuation phenomenon or the like in the reactor such as upon sole scram operation. Accordingly, plant shut down caused thereby can be avoided safely. (I.S.)

  7. Fuel control device for various gas turbine configurations

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, C F; Tutherly, H W

    1980-09-29

    The hydromechanic fuel control device can be adapted for various engine configurations as for example turbofan-, turbopro-, and turboshaft engines by providing those elements which are common for all engine configurations in the main housing and a detachable block for each individual configuration with all control elements and flow channels necessary for the respective configuration.

  8. Ultrathin magnetic structures IV applications of nanomagnetism

    CERN Document Server

    Heinrich, Bretislav

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is de...

  9. Ultrathin magnetic structures III fundamentals of nanomagnetism

    CERN Document Server

    Bland, JAC

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be ...

  10. Non-Hebbian learning implementation in light-controlled resistive memory devices.

    Science.gov (United States)

    Ungureanu, Mariana; Stoliar, Pablo; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2012-01-01

    Non-Hebbian learning is often encountered in different bio-organisms. In these processes, the strength of a synapse connecting two neurons is controlled not only by the signals exchanged between the neurons, but also by an additional factor external to the synaptic structure. Here we show the implementation of non-Hebbian learning in a single solid-state resistive memory device. The output of our device is controlled not only by the applied voltages, but also by the illumination conditions under which it operates. We demonstrate that our metal/oxide/semiconductor device learns more efficiently at higher applied voltages but also when light, an external parameter, is present during the information writing steps. Conversely, memory erasing is more efficiently at higher applied voltages and in the dark. Translating neuronal activity into simple solid-state devices could provide a deeper understanding of complex brain processes and give insight into non-binary computing possibilities.

  11. Device for controlling the hydraulic lifter of drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Kraskov, P N

    1981-04-10

    A device is suggested for controlling the hydraulic lifter of a drilling unit. It contains a throttling valve with cylinder for servocontrol, mechanism for assigning the program for lowering velocity connected to the power cylinder, and oil tank. In order to improve the reliable concentration of the drilling unit by guaranteeing possible alternation for halting descent when the string falls on a projection in the well, the device is equipped with a normally open two-position hydraulically controlled distributor with spring return connected to the working surface of the power cylinder and valve connected to it with logical function of ILI for hydraulic control of the normally opened two-position distributor. The latter connects the working cavity of the servocontrol cylinder with the oil tank.

  12. A device for automatic photoelectric control of the analytical gap for emission spectrographs

    Science.gov (United States)

    Dietrich, John A.; Cooley, Elmo F.; Curry, Kenneth J.

    1977-01-01

    A photoelectric device has been built that automatically controls the analytical gap between electrodes during excitation period. The control device allows for precise control of the analytical gap during the arcing process of samples, resulting in better precision of analysis.

  13. SeleCon: Scalable IoT Device Selection and Control Using Hand Gestures

    Science.gov (United States)

    Alanwar, Amr; Alzantot, Moustafa; Ho, Bo-Jhang; Martin, Paul; Srivastava, Mani

    2018-01-01

    Although different interaction modalities have been proposed in the field of human-computer interface (HCI), only a few of these techniques could reach the end users because of scalability and usability issues. Given the popularity and the growing number of IoT devices, selecting one out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we propose a pointing approach to interact with devices, as pointing is arguably a natural way for device selection. We introduce SeleCon for device selection and control which uses an ultra-wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point to the device to select it then draw a hand gesture in the air to specify a control action. To this end, SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for identifying the selected device from ranging measurements. Furthermore, SeleCon supports an alphabet of gestures that can be used for controlling the selected devices. We performed our experiment in a 9m-by-10m lab space with eight deployed devices. The results demonstrate that SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the UWB transceiver, when a user’s wrist is stationary. PMID:29683151

  14. 40 CFR 63.985 - Nonflare control devices used to control emissions from storage vessels and low throughput...

    Science.gov (United States)

    2010-07-01

    ... included. (E) For condensers, the design evaluation shall include the final temperature of the stream vapors, the type of condenser, and the design flow rate of the emission stream. (ii) Performance test. A... control device design evaluation or performance test requirements. When using a control device other than...

  15. Controlling Access to Input/Output Peripheral Devices

    Directory of Open Access Journals (Sweden)

    E. Y. Rodionov

    2010-03-01

    Full Text Available In this paper the author proposes a system that manages information security policy on enterprise. Problems related to managing information security policy on enterprise and access to peripheral devices in computer systems functioning under control of Microsoft Windows NT operating systems are considered.

  16. Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices

    Science.gov (United States)

    Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly

    2010-01-01

    In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.

  17. Plant control device

    International Nuclear Information System (INIS)

    Sato, Masuo; Ono, Makoto.

    1995-01-01

    A plant control device comprises an intellectual instrumentation group for measuring a predetermined process amount, an intellectual equipment group operating in accordance with a self-countermeasure, a system information space for outputting system information, a system level monitoring and diagnosing information generalization section for outputting system information, a system level maintenance information generalization section for outputting information concerning maintenance, a plant level information space and a plant level information generalization section. Each of them determines a state of the plant autonomously, and when abnormality is detected, each of the intellectual instrumentation, equipments and systems exchange information with each other, to conduct required operations including operations of intellectual robots, as required. Appropriate countermeasures for gauges, equipments and systems can be conducted autonomously at a place where operators can not access to improve reliability of complicate operations in the working site, as well as improve plant safety and reliability. (N.H.)

  18. Measuring device for control rod driving time

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiko; Hanabusa, Masatoshi.

    1993-01-01

    The present invention concerns a measuring device for control driving time having a function capable of measuring a selected control rod driving time and measuring an entire control rod driving time simultaneously. A calculation means and a store means for the selected rod control rod driving time, and a calculation means and a store means for the entire control rod driving time are disposed individually. Each of them measures the driving time and stores the data independent of each other based on a selected control rod insert ion signal and an entire control rod insertion signal. Even if insertion of selected and entire control rods overlaps, each of the control rod driving times can be measured reliably to provide an advantageous effect capable of more accurately conducting safety evaluation for the nuclear reactor based on the result of the measurement. (N.H.)

  19. Modular manual control device for manipulators

    International Nuclear Information System (INIS)

    Dzholdasbekov, U.A.; Lukyanov, A.T.; Slutsky, L.I.; Safontsev, E.A.; Dzhamalov, N.K.

    1991-01-01

    The device described in this patent comprises a base, a series of connected modules, each with a position pickup and a handle. One module is provided for each degree of mobility of the manipulator being controlled; the modular construction enables the control of manipulators with differing degrees of mobility. One rotary movement module and three orthogonal linear movement modules are provided. Each linear module has two parallel guides between which a carriage is supported for movement by balls. The position pickup is provided on the carriage. The rotary module comprises inner and outer casings, relative movement of which is detected by pickup. Further rotary pickups may be provided for rotation about axes. A close/open switch and a speed control pickup may also be provided. (author)

  20. Magnetic field control of 90°, 180°, and 360° domain wall resistance

    Science.gov (United States)

    Majidi, Roya

    2012-10-01

    In the present work, we have compared the resistance of the 90°, 180°, and 360° domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Néel-type domain walls between two domains whose magnetization differs by angle of 90°, 180°, and 360° are considered. The results indicate that the resistance of the 360° DW is more considerable than that of the 90° and 180° DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  1. Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in the study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.

  2. X-ray analysis of spintronic semiconductor and half metal thin film systems; Roentgenstrukturuntersuchungen an spintronischen Halbleiter- und Halbmetall-Duennschichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Andreas

    2010-07-01

    In this work the structural properties of spintronic semiconductor and halfmetalic thin-film systems were investigated. The layer thicknesses and interface roughnesses of the multi-layer systems were estimated by X-ray reflectivity measurements. The fits were performed using the software Fewlay which uses the Parratt formalism to calculate the reflectivities. The relaxation of the films was analyzed by reciprocal space mapping on preferably highly indexed Bragg reflexes. (orig.)

  3. Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element.

    Science.gov (United States)

    Lόpez-Mir, L; Frontera, C; Aramberri, H; Bouzehouane, K; Cisneros-Fernández, J; Bozzo, B; Balcells, L; Martínez, B

    2018-01-16

    Multiple spin functionalities are probed on Pt/La 2 Co 0.8 Mn 1.2 O 6 /Nb:SrTiO 3 , a device composed by a ferromagnetic insulating barrier sandwiched between non-magnetic electrodes. Uniquely, La 2 Co 0.8 Mn 1.2 O 6 thin films present strong perpendicular magnetic anisotropy of magnetocrystalline origin, property of major interest for spintronics. The junction has an estimated spin-filtering efficiency of 99.7% and tunneling anisotropic magnetoresistance (TAMR) values up to 30% at low temperatures. This remarkable angular dependence of the magnetoresistance is associated with the magnetic anisotropy whose origin lies in the large spin-orbit interaction of Co 2+ which is additionally tuned by the strain of the crystal lattice. Furthermore, we found that the junction can operate as an electrically readable magnetic memory device. The findings of this work demonstrate that a single ferromagnetic insulating barrier with strong magnetocrystalline anisotropy is sufficient for realizing sensor and memory functionalities in a tunneling device based on TAMR.

  4. RIO EPICS device support application case study on an ion source control system (ISHP)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Diego [UPM – Universidad Politécnica de Madrid, Madrid (Spain); Ruiz, Mariano, E-mail: mariano.ruiz@upm.es [UPM – Universidad Politécnica de Madrid, Madrid (Spain); Eguiraun, Mikel [Department of Electricity and Electronic, Faculty of Science and Technology, University of Basque Country, Bilbao (Spain); Arredondo, Iñigo [ESS Bilbao Consortium, Zamudio (Spain); Badillo, Inari; Jugo, Josu [Department of Electricity and Electronic, Faculty of Science and Technology, University of Basque Country, Bilbao (Spain); Vega, Jesús; Castro, Rodrigo [Asociación EURATOM/CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • A use case example of RIO/FlexRIO design methodology is described. • Ion source device is controlled and monitored by means EPICS IOCs. • NIRIO EPICS device support demonstrates that is able to manage RIO devices. • Easy and fast deployment is possible using RIO/FlexRIO design methodology using NIRIO-EDS. • RIO/FlexRIO technology and EPICS are a good combination for support large scale experiments in fusion environments. - Abstract: Experimental Physics and Industrial Control System (EPICS) is a software tool that during last years has become relevant as a main framework to deploy distributed control systems in large scientific environments. At the moment, ESS Bilbao uses this middleware to perform the control of their Ion Source Hydrogen Positive (ISHP) project. The implementation of the control system was based on: PXI Real Time controllers using the LabVIEW-RT and LabVIEW-EPICS tools; and RIO devices based on Field-Programmable Gate Array (FPGA) technology. Intended to provide a full compliant EPICS IOCs for RIO devices and to avoid additional efforts on the system maintainability, a migration of the current system to a derivative Red Hat Linux (CentOS) environment has been conducted. This paper presents a real application case study for using the NIRIO EPICS device support (NIRIO-EDS) to give support to the ISHP. Although RIO FPGA configurations are particular solutions for ISHP performance, the NIRIO-EDS has permitted the control and monitoring of devices by applying a well-defined design methodology into the previous FPGA configuration for RIO/FlexRIO devices. This methodology has permitted a fast and easy deployment for the new robust, scalable and maintainable software to support RIO devices into the ISHP control architecture.

  5. Control solutions for robots using Android and iOS devices

    Science.gov (United States)

    Evans, A. William, III; Gray, Jeremy P.; Rudnick, Dave; Karlsen, Robert E.

    2012-06-01

    As more Soldiers seek to utilize robots to enhance their mission capabilities, controls are needed which are intuitive, portable, and adaptable to a wide range of mission tasks. Android™ and iOS™ devices have the potential to meet each of these requirements as well as being based on readily available hardware. This paper will focus on some of the ways in which an Android™ or iOS™ device could be used to control specific and varied robot mobility functions and payload tools. Several small unmanned ground vehicle (SUGV) payload tools will have been investigated at Camp Pendleton during a user assessment and mission feasibility study for automatic remote tool changing. This group of payload tools will provide a basis, to researchers, concerning what types of control functions are needed to fully utilize SUGV robotic capabilities. Additional, mobility functions using tablet devices have been used as part of the Safe Operation of Unmanned systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO) which is investigating the safe operation of robotics. Using Android™ and iOS™ hand-held devices is not a new concept in robot manipulation. However, the authors of this paper hope to introduce some novel concepts that may serve to make the interaction between Soldier and machine more fluid and intuitive. By creating a better user experience, Android™ and iOS™ devices could help to reduce training time, enhance performance, and increase acceptance of robotics as valuable mission tools for Soldiers.

  6. Brain Computer Interface-Controlling Devices Utilizing The Alpha Brain Waves

    Directory of Open Access Journals (Sweden)

    Rohan Hundia

    2015-01-01

    Full Text Available Abstract This paper describes the development and testing of an interface system whereby one can control external devices by voluntarily controlling alpha waves that is through eye movement. Such a system may be used for the control of prosthetics robotic arms and external devices like wheelchairs using the alpha brain waves and the Mu rhythm. The response generated through the movement of the eye detecting and controlling the amplitude of the alpha brain waves is interfaced and processed to control Robotic systems and smart home control. In order to measure the response of alpha waves over different lobes of the brain initially I measured these signals over 32 regions using silver chloride plated electrodes. By the opening and the closure of the eyes and the movement in the up-down left-right directions and processing these movements measuring them over the occipital region I was able to differentiate the amplitude of the alpha waves generated due to these several movements. In the First session testing period subjects were asked to close and open their eyes and they were able to control limited movements of a Robot and a prosthetic arm. In the Second 2session the movement of the eyes was also considered left-right up-down along with the opening and closure during this time span they were able to control more dimensions of the robot several devices at the same time using different eye movements.

  7. Nanoscale Device Properties of Tellurium-based Chalcogenide Compounds

    Science.gov (United States)

    Dahal, Bishnu R.

    The great progress achieved in miniaturization of microelectronic devices has now reached a distinct bottleneck, as devices are starting to approach the fundamental fabrication and performance limit. Even if a major breakthrough is made in the fabrication process, these scaled down electronic devices will not function properly since the quantum effects can no longer be neglected in the nanoscale regime. Advances in nanotechnology and new materials are driving novel technologies for future device applications. Current microelectronic devices have the smallest feature size, around 10 nm, and the industry is planning to switch away from silicon technology in the near future. The new technology will be fundamentally different. There are several leading technologies based on spintronics, tunneling transistors, and the newly discovered 2-dimensional material systems. All of these technologies are at the research level, and are far from ready for use in making devices in large volumes. This dissertation will focus on a very promising material system, Te-based chalcogenides, which have potential applications in spintronics, thermoelectricity and topological insulators that can lead to low-power-consumption electronics. Very recently it was predicted and experimentally observed that the spin-orbit interaction in certain materials can lead to a new electronic state called topological insulating phase. The topological insulator, like an ordinary insulator, has a bulk energy gap separating the highest occupied electronic band from the lowest empty band. However, the surface states in the case of a three-dimensional or edge states in a two-dimensional topological insulator allow electrons to conduct at the surface, due to the topological character of the bulk wavefunctions. These conducting states are protected by time-reversal symmetry, and cannot be eliminated by defects or chemical passivation. The edge/surface states satisfy Dirac dispersion relations, and hence the physics

  8. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    International Nuclear Information System (INIS)

    Galanakis, I.

    2015-01-01

    Half-metallic Co 2 MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co 2 MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co 2 MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co 2 MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices

  9. Touch-free, gesture-based control of medical devices and software based on the leap motion controller.

    Science.gov (United States)

    Mauser, Stanislas; Burgert, Oliver

    2014-01-01

    There are several intra-operative use cases which require the surgeon to interact with medical devices. We used the Leap Motion Controller as input device and implemented two use-cases: 2D-Interaction (e.g. advancing EPR data) and selection of a value (e.g. room illumination brightness). The gesture detection was successful and we mapped its output to several devices and systems.

  10. Remote device control and monitor system for the LHD deuterium experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Ohsuna, Masaki; Ito, Tatsuki; Nonomura, Miki; Imazu, Setsuo; Emoto, Masahiko; Iwata, Chie; Yoshida, Masanobu; Yokota, Mitsuhiro; Maeno, Hiroya; Aoyagi, Miwa; Ogawa, Hideki; Nakamura, Osamu; Morita, Yoshitaka; Inoue, Tomoyuki; Watanabe, Kiyomasa [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Ida, Katsumi; Ishiguro, Seiji; Kaneko, Osamu [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan)

    2016-11-15

    Highlights: • Device remote control will be significant for the LHD deuterium experiments. • A central management GUI to control the power distribution for devices. • For safety, power management is separated from operational commanding. • Wi-Fi was tested and found to be not reliable with fusion plasmas. - Abstract: Upon beginning the LHD deuterium experiment, the opportunity for maintenance work in the torus hall will be conspicuously reduced such that all instruments must be controlled remotely. The LHD data acquisition (DAQ) and archiving system have been using about 110 DAQ front-end, and the DAQ central control and monitor system has been implemented for their remote management. This system is based on the “multi-agent” model whose communication protocol has been unified. Since DAQ front-end electronics would suffer from the “single-event effect” (SEE) of D-D neutrons, software-based remote operation might become ineffective, and then securely intercepting or recycling the electrical power of the device would be indispensable for recovering from a non-responding fault condition. In this study, a centralized control and monitor system has been developed for a number of power distribution units (PDUs). This system adopts the plug-in structure in which the plug-in modules can absorb the differences among the commercial products of numerous vendors. The combination of the above-mentioned functionalities has led to realizing the flexible and highly reliable remote control infrastructure for the plasma diagnostics and the device management in LHD.

  11. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.

    Science.gov (United States)

    Ho, Hung-Jung; Chen, Tien-Chi

    2009-11-01

    Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.

  12. Magnetic Transport in Spin Antiferromagnets for Spintronics Applications

    Directory of Open Access Journals (Sweden)

    Mohamed Azzouz

    2017-10-01

    Full Text Available Had magnetic monopoles been ubiquitous as electrons are, we would probably have had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist, however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we address the issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-dimensional Heisenberg antiferromagnets by invoking the (broken electricity-magnetism duality symmetry. The ground state of these materials is a spin-liquid state that can be described well via the Jordan–Wigner fermions, which permit an easy definition of the magnetic particle and thermal currents. The magnetic and magnetic thermal conductivities are calculated in the present work using the bond–mean field theory. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid. The driving force for the magnetic current is a magnetic field with a gradient along the magnetic conductor. We predict the generation of a magneto-motive force and realization of magnetic circuits using low-dimensional Heisenberg antiferromagnets. The present work is also about claiming that what the experiments in spintronics attempt to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.

  13. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

    KAUST Repository

    Yin, Y. W.

    2015-03-03

    As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed in manganite/(Ba, Sr)TiO3/manganite MFTJs at low temperatures and room temperature four-resistance state devices were also obtained. To enhance the TER for potential logic operation with a magnetic memory, La0.7Sr0.3MnO3/BaTiO3/La0.5Ca0.5MnO3 /La0.7Sr0.3MnO3 MFTJs were designed by utilizing a bilayer tunneling barrier in which BaTiO3 is ferroelectric and La0.5Ca0.5MnO3 is close to ferromagnetic metal to antiferromagnetic insulator phase transition. The phase transition occurs when the ferroelectric polarization is reversed, resulting in an increase of TER by two orders of magnitude. Tunneling magnetoresistance can also be controlled by the ferroelectric polarization reversal, indicating strong magnetoelectric coupling at the interface.

  14. Recycling temperature elevation device and temperature control method for control rod driving system

    International Nuclear Information System (INIS)

    Okamura, Hajime.

    1996-01-01

    The present invention concerns a device for and a method of controlling a recycling temperature control device for control rod drives (CRD) of a nuclear power plant, which can prevent occurrence of cavitation and keep the amount of cooling water to be transferred to a water source transfer pipeline thereby improving maintenanciability, operationability and reliability. Namely, a supply pipeline supplies cooling water required for the control rod drives from a water source. A CRD pump elevates the pressure of the cooling water. A recycling pipeline is branched from the downstream of the CRD pump of the supply pipeline and connected to the supply pipeline at the upstream of the CRD pump. A first pressure element and a restricting valve disposed at the upstream thereof are connected to the upstream of the CRD pump and the water source transfer pipeline. The water source transfer pipeline is branched from the recycling pipeline and connected to the water source. A second pressure element is disposed to a recycling pipeline at the downstream of the branched point from the water source transfer pipeline. (I.S.)

  15. Creating a systems engineering approach for the manual on uniform traffic control devices.

    Science.gov (United States)

    2011-03-01

    The Manual on Uniform Traffic Control Devices (MUTCD) provides basic principles for use of traffic : control devices (TCD). However, most TCDs are not explicitly required, and the decision to use a given : TCD in a given situation is typically made b...

  16. Electromagnetic analysis of locking device for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Heo, H.; Kim, J. I.; Kim, J. H.; Kim, Y. W.; Park, J. S.

    1998-01-01

    A numerical electromagnetic analysis was performed for the control rod locking device which is installed in the control element drive mechanism of integral reactor, SMART. A plunger model for the electromagnetic analysis of the locking device was developed and theoretical bases for the model were established. Design parameters related to plunger pushing force were identified, and the optimum design point was determined by analyzing the trend of the plunger pushing force with finite element method

  17. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    Science.gov (United States)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID

  18. Evaluation of the leap motion controller as a new contact-free pointing device.

    Science.gov (United States)

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  19. A Wii-controlled safety device for electric chainsaws

    Directory of Open Access Journals (Sweden)

    R. Gubiani

    2013-09-01

    Full Text Available Forestry continues to represent one of the most hazardous economic sectors of human activity, and historically, the operation of chainsaws has mainly been restricted to professional lumberjacks. In recent years, because of low cost, chainsaws have become popular among unprofessionals, e.g. for cutting firewood and trimming trees. Serious or lethal lesions due to the use of chainsaws or electric chainsaws are often observed by traumatologists or forensic pathologists. Such serious accidents often occur during occupational activities and are essentially due to kickback or uncorrected use of the tool, or when the operator falls down losing the control of the implement. A new device in order to stop a cutting chain was developed and adapted to an electric chainsaw. The device is based on a Wiimote controller (Nintendo™, including two accelerometers and two gyroscopes for detecting rotation and inclination. A Bluetooth wireless technology is used to transfer data to a portable computer. The data collected about linear and angular acceleration are filtered by an algorithm, based on the Euclid norm, capable to distinguishing between normal movements and dangerous chainsaw movements. The result show a good answer to device and when happen a dangerous situation an alarm signal is sent back to the implement in order to stop the cutting chain. The device show a correct behavior in tested dangerous situations and is envisaged to extend to combustion engine chainsaws, as well as to other portable equipment used in agriculture and forestry operations and for this objectives were patented.

  20. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy

    KAUST Repository

    Hou, Zhipeng

    2017-06-07

    The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions can be realized. For example, being able to create and manipulate skyrmionic spin textures at room temperature is of great importance for further technological applications because they can adapt to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3 Sn2 magnet with uniaxial magnetic anisotropy is reported. The magnetization dynamics are investigated using in situ Lorentz transmission electron microscopy, revealing that the transformation between different magnetic bubbles and domains is via the motion of Bloch lines driven by an applied external magnetic field. These results demonstrate that Fe3 Sn2 facilitates a unique magnetic control of topological spin textures at room temperature, making it a promising candidate for further skyrmion-based spintronic devices.

  1. Broadband Wireless Data Acquisition and Control Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum is proposing to develop a broadband wireless device for real-time data acquisition and monitoring applicable to the field instrumentation and control...

  2. Leap Motion Device Used to Control a Real Anthropomorphic Gripper

    Directory of Open Access Journals (Sweden)

    Ionel Staretu

    2016-06-01

    Full Text Available This paper presents for the first time the use of the Leap Motion device to control an anthropomorphic gripper with five fingers. First, a description of the Leap Motion device is presented, highlighting its main functional characteristics, followed by testing of its use for capturing the movements of a human hand's fingers in different configurations. Next, the HandCommander soft module and the Interface Controller application are described. The HandCommander is a software module created to facilitate interaction between a human hand and the GraspIT virtual environment, and the Interface Controller application is required to send motion data to the virtual environment and to test the communication protocol. For the test, a prototype of an anthropomorphic gripper with five fingers was made, including a proper hardware system of command and control, which is briefly presented in this paper. Following the creation of the prototype, the command system performance test was conducted under real conditions, evaluating the recognition efficiency of the objects to be gripped and the efficiency of the command and control strategies for the gripping process. The gripping test is exemplified by the gripping of an object, such as a screw spanner. It was found that the command system, both in terms of capturing human hand gestures with the Leap Motion device and effective object gripping, is operational. Suggestive figures are presented as examples.

  3. Embedded Control System for Smart Walking Assistance Device.

    Science.gov (United States)

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  4. Defective aluminium nitride nanotubes: a new way for spintronics? A density functional study

    International Nuclear Information System (INIS)

    Simeoni, M; Santucci, S; Picozzi, S; Delley, B

    2006-01-01

    The structural and electronic properties (in terms of Mulliken charges, density of states and band structures) of pristine and defective (10,0) AlN nanotubes have been calculated within density functional theory. The results show that, in several defective tubes, a spontaneous spin-polarization arises, due to the presence of spin-split flat bands close to the Fermi level, with a strong localization of the corresponding electronic states and of the magnetic moments. The highest positive spin-magnetization (3 μ B per cell) is found for the vacancy in the Al site, while the other magnetic tubes (the vacancy in N, C and O substitutional for N and Al, respectively) show a magnetization of only 1 μ B per cell. The spontaneous magnetization of some defective tubes might open the way to their use for spintronic applications

  5. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  6. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  7. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin-Orbitronics.

    Science.gov (United States)

    Kepenekian, Mikaël; Even, Jacky

    2017-07-20

    In halide hybrid organic-inorganic perovskites (HOPs), spin-orbit coupling (SOC) presents a well-documented large influence on band structure. However, SOC may also present more exotic effects, such as Rashba and Dresselhaus couplings. In this Perspective, we start by recalling the main features of this effect and what makes HOP materials ideal candidates for the generation and tuning of spin-states. Then, we detail the main spectroscopy techniques able to characterize these effects and their application to HOPs. Finally, we discuss potential applications in spintronics and in spin-orbitronics in those nonmagnetic systems, which would complete the skill set of HOPs and perpetuate their ride on the crest of the wave of popularity started with optoelectronics and photovoltaics.

  8. Device for rearranging control rods of experimental reactors

    International Nuclear Information System (INIS)

    Louda, J.

    1975-01-01

    The invention claims a means for the adjustment of control rods in experimental reactors with a continuously variable pitch of the fuel element spacer. The proposed device permits obtaining maximum variability in the physical modelling of nuclear power reactor cores in experimental reactors. (F.M.)

  9. Method and device for controlling reactor power

    International Nuclear Information System (INIS)

    Oohashi, Masahisa; Masuda, Hiroyuki.

    1982-01-01

    Purpose: To enable load following-up operation of a reactor adapted to perform power conditioning by the control of the liquid poison density in the core and by the control rods. Constitution: In a case where the reactor power is repeatedly changed in a reactor having a liquid poison density control device and control rods, the time period for the power control is divided depending on the magnitude of the change with time in the reactivity and the optimum values are set for the injection and removal amount of the liquid poison within the divided period. Then, most parts of the control required for the power change are alloted to the liquid poison that gives no effect on the power distribution while minimizing the movement of the control rods, whereby the power change in the reactor as in the case of the load following-up operation can be practiced with ease. (Kawakami, Y.)

  10. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  11. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    Science.gov (United States)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  12. A osteogenesis distraction device enabling control of vertical direction for syndromic craniosynostosis.

    Science.gov (United States)

    Kobayashi, Shinji; Fukawa, Toshihiko; Hirakawa, Takashi; Maegawa, Jiro

    2014-02-01

    We have developed a hybrid facial osteogenesis distraction system that combines the advantages of external and internal distraction devices to enable control of both the distraction distance and vector. However, when the advanced maxilla has excessive clockwise rotation and shifts more downward vertically than planned, it might be impossible to pull it up to correct it. We invented devices attached to external distraction systems that can control the vertical vector of distraction to resolve this problem. The purpose of this article is to describe the result of utilizing the distraction system for syndromic craniosynostosis. In addition to a previously reported hybrid facial distraction system, the devices for controlling the vertical direction of the advanced maxilla were attached to the external distraction device. The vertical direction of the advanced maxilla can be controlled by adjustment of the spindle units. This system was used for 2 patients with Crouzon and Apert syndrome. The system enabled control of the vertical distance, with no complications during the procedures. As a result, the maxilla could be advanced into the planned position including overcorrection without excessive clockwise rotation of distraction. Our system can alter the cases and bring them into the planned position, by controlling the vertical vector of distraction. We believe that this system might be effective in infants with syndromic craniosynostosis as it involves 2 osteotomies and horizontal and vertical direction of elongation can be controlled.

  13. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    Science.gov (United States)

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  14. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  15. Ferromagnets as pure spin current generators and detectors

    Science.gov (United States)

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  16. Electromagnetic analysis of locking device for SMART control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    A numerical electromagnetic analysis was performed for the control rod locking device which is installed in the control element drive mechanism of integral reactor, SMART. A plunger model for the electromagnetic analysis of the locking device was developed and theoretical bases for the model were established. Design parameters related to plunger pushing force were identified, and the optimum design point was determined by analysing the trend of the plunger pushing force with finite element method. 8 refs., 22 figs., 2 tabs. (Author)

  17. Remote control of nanoscale devices

    Science.gov (United States)

    Högberg, Björn

    2018-01-01

    Processes that occur at the nanometer scale have a tremendous impact on our daily lives. Sophisticated evolved nanomachines operate in each of our cells; we also, as a society, increasingly rely on synthetic nanodevices for communication and computation. Scientists are still only beginning to master this scale, but, recently, DNA nanotechnology (1)—in particular, DNA origami (2)—has emerged as a powerful tool to build structures precise enough to help us do so. On page 296 of this issue, Kopperger et al. (3) show that they are now also able to control the motion of a DNA origami device from the outside by applying electric fields.

  18. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  19. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG) Signal Acquisitions

    OpenAIRE

    Khamis Herman; Mohamaddan Shahrol; Komeda Takashi; Alias Aidil Azli; Tanjong Shirley Jonathan; Julai Norhuzaimin; Hashim Nurul ‘Izzati

    2017-01-01

    The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG) and flex sensor which was implemented to the device. It wa...

  20. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes

    Science.gov (United States)

    Ozbulut, Osman E.; Hurlebaus, Stefan

    2011-11-01

    This paper proposes a re-centering variable friction device (RVFD) for control of civil structures subjected to near-field earthquakes. The proposed hybrid device has two sub-components. The first sub-component of this hybrid device consists of shape memory alloy (SMA) wires that exhibit a unique hysteretic behavior and full recovery following post-transformation deformations. The second sub-component of the hybrid device consists of variable friction damper (VFD) that can be intelligently controlled for adaptive semi-active behavior via modulation of its voltage level. In general, installed SMA devices have the ability to re-center structures at the end of the motion and VFDs can increase the energy dissipation capacity of structures. The full realization of these devices into a singular, hybrid form which complements the performance of each device is investigated in this study. A neuro-fuzzy model is used to capture rate- and temperature-dependent nonlinear behavior of the SMA components of the hybrid device. An optimal fuzzy logic controller (FLC) is developed to modulate voltage level of VFDs for favorable performance in a RVFD hybrid application. To obtain optimal controllers for concurrent mitigation of displacement and acceleration responses, tuning of governing fuzzy rules is conducted by a multi-objective heuristic optimization. Then, numerical simulation of a multi-story building is conducted to evaluate the performance of the hybrid device. Results show that a re-centering variable friction device modulated with a fuzzy logic control strategy can effectively reduce structural deformations without increasing acceleration response during near-field earthquakes.

  1. Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices

    Science.gov (United States)

    Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.

    Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.

  2. Use of advanced programmable logic controllers to monitor and control the Elmo Bumpy Torus-proof-of-principle device

    International Nuclear Information System (INIS)

    Boyd, B.A.

    1983-01-01

    The Elmo Bumpy Torus - Proof-of-Principle (EBT-P) device is designed with an instrumentation and control system based upon the use of an advanced Programmable Logic Controller (PLC). The modern PLC incorporates many advanced programming features not available in earlier PLC's intended for application to conventional relay logic replacement. The additional power and flexibility of these modern PLC's is especially applicable to an experimental device such as EBT-P which is made up of several complex interrelated subsystems whose operational characteristics will be evolving throughout the lifetime of the device. The rationale for the selection of advanced PLC's for EBT-P and the approach taken to design of the software developed to control EBT-P are the topics addressed in this paper

  3. Quality Control Method for a Micro-Nano-Channel Microfabricated Device

    Science.gov (United States)

    Grattoni, Alessandro; Ferrari, Mauro; Li, Xuewu

    2012-01-01

    A variety of silicon-fabricated devices is used in medical applications such as drug and cell delivery, and DNA and protein separation and analysis. When a fluidic device inlet is connected to a compressed gas reservoir, and the outlet is at a lower pressure, a gas flow occurs through the membrane toward the outside. The method relies on the measurement of the gas pressure over the elapsed time inside the upstream and downstream environments. By knowing the volume of the upstream reservoir, the gas flow rate through the membrane over the pressure drop can be calculated. This quality control method consists of measuring the gas flow through a device and comparing the results with a standard curve, which can be obtained by testing standard devices. Standard devices can be selected through a variety of techniques, both destructive and nondestructive, such as SEM, AFM, and standard particle filtration.

  4. Spin-current diode with a ferromagnetic semiconductor

    International Nuclear Information System (INIS)

    Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here, we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics

  5. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  6. Nanoscale architectural tuning of parylene patch devices to control therapeutic release rates

    International Nuclear Information System (INIS)

    Pierstorff, Erik; Lam, Robert; Ho, Dean

    2008-01-01

    The advent of therapeutic functionalized implant coatings has significantly impacted the medical device field by enabling prolonged device functionality for enhanced patient treatment. Incorporation of drug release from a stable, biocompatible surface is instrumental in decreasing systemic application of toxic therapeutics and increasing the lifespan of implants by the incorporation of antibiotics and anti-inflammatories. In this study, we have developed a parylene C-based device for controlled release of Doxorubicin, an anti-cancer chemotherapy and definitive read-out for preserved drug functionality, and further characterized the parylene deposition condition-dependent tunability of drug release. Drug release is controlled by the deposition of a layer of 20-200 nm thick parylene over the drug layer. This places a porous layer above the Doxorubicin, limiting drug elution based on drug accessibility to solvent and the solvent used. An increase in the thickness of the porous top layer prolongs the elution of active drug from the device from, in the conditions tested, the order of 10 min to the order of 2 d in water and from the order of 10 min to no elution in PBS. Thus, the controlled release of an anti-cancer therapeutic has been achieved via scalably fabricated, parylene C-encapsulated drug delivery devices.

  7. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  8. Half metallic ferromagnet Pr_0_._9_5Mn_0_._9_3_9O_3 for spin based devices

    International Nuclear Information System (INIS)

    Santhosh Kumar, B.; Praveen Shankar, N.; Venkateswaran, C.; Manimuthu, P.

    2016-01-01

    Half Metallic Ferromagnets (HMF) are excellent candidates for spintronics devices due to their unusual 3d and 4s bands. Band theory and first principles calculations strongly predict that Pr based compounds are promising HMF candidates due to their spin hybridisation. Among all Pr based HMF, Pr_0_._9_5Mn_0_._9_3_9O_3 is special because of its pervoskite structure. The different oxidation states of Mn and Pr will enhance the hybridisation of 3d and 4f bands. The present study is experimental effort on the preparation of Pr based compounds

  9. Device for the nuclear reactor automatic start-up and power control

    International Nuclear Information System (INIS)

    Nikiforov, B.N.; Volkov, A.V.; Ogon'kov, A.I.

    1978-01-01

    A description and flowsheet of a reactor start-up and power-control automatic device containing no nonlinear elements with a relay characteristic are presented. The device consists of two independent channels for measuring the physical power and time (period) constant of the reactor. Requirements for the device are considered, based on the condition of a minimum permissible number of a servomechanism operations due to fluctuations of an input signal which appear because of the statistical nature of processes taking place in the reactor. It is noted that the threshold amplifier used in the device allows a considerable decrease of the reactor start-up time

  10. Gravity insensitive inventory control device for a two-phase flow system

    International Nuclear Information System (INIS)

    Bland, T.J.

    1987-01-01

    A liquid inventory control device is described for a flow system where the liquid changes phase to a vapor and back and a pitot pump separates vapor from liquid and pumps the liquid to a component of the flow system comprising: a liquid storage device for storing liquid under pressure, a tube positioned within the pitot pump and in open communication with the liquid storage device, and the tube having an opening positioned within the pitot pump at a location to establish a desired liquid level in the pitot pump and at which level the pressure at the pitot tube inlet will equal the liquid pressure at the liquid storage device

  11. Optimizing the construction of devices to control inaccesible surfaces - case study

    Science.gov (United States)

    Niţu, E. L.; Costea, A.; Iordache, M. D.; Rizea, A. D.; Babă, Al

    2017-10-01

    The modern concept for the evolution of manufacturing systems requires multi-criteria optimization of technological processes and equipments, prioritizing associated criteria according to their importance. Technological preparation of the manufacturing can be developed, depending on the volume of production, to the limit of favourable economical effects related to the recovery of the costs for the design and execution of the technological equipment. Devices, as subsystems of the technological system, in the general context of modernization and diversification of machines, tools, semi-finished products and drives, are made in a multitude of constructive variants, which in many cases do not allow their identification, study and improvement. This paper presents a case study in which the multi-criteria analysis of some structures, based on a general optimization method, of novelty character, is used in order to determine the optimal construction variant of a control device. The rational construction of the control device confirms that the optimization method and the proposed calculation methods are correct and determine a different system configuration, new features and functions, and a specific method of working to control inaccessible surfaces.

  12. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  13. Electronic Devices for Controlling the Very High Voltage in the ALICE TPC Detector

    CERN Document Server

    Boccioli, Marco

    2007-01-01

    The Time Projection Chamber (TPC) is the core of the ALICE experiment at CERN. The TPC Very High Voltage project covers the development of the control system for the power supply that generates the 100kV necessary for the drift field in the TPC. This paper reports on the project progress, introducing the control system architecture from the electronics up to the control level. All the electronic devices will be described, highlighting their communication issues, and the challenges in integrating these devices in a PLC-based control system.

  14. Study to Improve Security for IoT Smart Device Controller: Drawbacks and Countermeasures

    Directory of Open Access Journals (Sweden)

    Xin Su

    2018-01-01

    Full Text Available Including mobile environment, conventional security mechanisms have been adapted to satisfy the needs of users. However, the device environment-IoT-based number of connected devices is quite different to the previous traditional desktop PC- or mobile-based environment. Based on the IoT, different kinds of smart and mobile devices are fully connected automatically via device controller, such as smartphone. Therefore, controller must be secure compared to conventional security mechanism. According to the existing security threats, these are quite different from the previous ones. Thus, the countermeasures applied should be changed. However, the smart device-based authentication techniques that have been proposed to date are not adequate in terms of usability and security. From the viewpoint of usability, the environment is based on mobility, and thus devices are designed and developed to enhance their owners’ efficiency. Thus, in all applications, there is a need to consider usability, even when the application is a security mechanism. Typically, mobility is emphasized over security. However, considering that the major characteristic of a device controller is deeply related to its owner’s private information, a security technique that is robust to all kinds of attacks is mandatory. In this paper, we focus on security. First, in terms of security achievement, we investigate and categorize conventional attacks and emerging issues and then analyze conventional and existing countermeasures, respectively. Finally, as countermeasure concepts, we propose several representative methods.

  15. Biomass fueled fluidized bed combustion: atmospheric emissions, emission control devices and environmental regulations

    International Nuclear Information System (INIS)

    Grass, S.W.; Jenkins, B.M.

    1994-01-01

    Fluidized bed combustors have become the technological choice for power generation from biomass fuels in California. Atmospheric emission data obtained during compliance tests are compared for five operating 18 to 32 MW fluidized bed combustion power plants. The discussion focuses on the impact of fuel properties and boiler design criteria on the emission of pollutants, the efficiency of pollution control devices, and regulations affecting atmospheric emissions. Stack NO x emission factors are shown not to vary substantially among the five plants which burn fuels with nitrogen concentrations between 0.3 and 1.1% dry weight. All facilities use at least one particular control device, but not all use limestone injection or other control techniques for sulfur and chlorine. The lack of control for chlorine suggests the potential for emission of toxic species due to favorable temperature conditions existing in the particulate control devices, particularly when burning fuels containing high concentrations of chlorine. (Author)

  16. Magnetic field control of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain wall resistance

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Roya, E-mail: royamajidi@gmail.com [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811 Tehran (Iran, Islamic Republic of)

    2012-10-01

    In the present work, we have compared the resistance of the 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Neel-type domain walls between two domains whose magnetization differs by angle of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign are considered. The results indicate that the resistance of the 360 Degree-Sign DW is more considerable than that of the 90 Degree-Sign and 180 Degree-Sign DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  17. Design of belt conveyor electric control device based on CC-link bus

    Science.gov (United States)

    Chen, Goufen; Zhan, Minhua; Li, Jiehua

    2016-01-01

    In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.

  18. Researching on Control Device of Prestressing Wire Reinforcement

    Science.gov (United States)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  19. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this ...... in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle....

  20. Linear motion device and method for inserting and withdrawing control rods

    International Nuclear Information System (INIS)

    Smith, J. E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism

  1. Tuning spin-polarized transport in organic semiconductors

    Science.gov (United States)

    Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.

  2. Anti-ejection device, which can be released, for control rods of nuclear reactor

    International Nuclear Information System (INIS)

    Belz, G.

    1983-01-01

    The present invention proposes an anti-ejection device which allows to withdraw the control rod out of a PWR reactor core if the locking systems of the rod translation are streck. This device prohibits the control rod ejection as long as an effort lower than a predetermined value is not applied on the control rod. This limit value is determined with regard of the efforts which may be applied on the control rod in case of an external accidental source. Nevertheless, if the anti-ejection mechanism remains stuck, it is however possible to withdraw the control rod out of the core applying on its control rod drives an effort higher than the limit value [fr

  3. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  4. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

    KAUST Repository

    Yin, Y. W.; Raju, M.; Hu, Weijin; Burton, J. D.; Kim, Y.-M.; Borisevich, A. Y.; Pennycook, S. J.; Yang, S. M.; Noh, T. W.; Gruverman, A.; Li, X. G.; Zhang, Z. D.; Tsymbal, E. Y.; Li, Qi

    2015-01-01

    between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four

  5. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    Directory of Open Access Journals (Sweden)

    Daniel Bachmann

    2014-12-01

    Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  6. Network device interface for digitally interfacing data channels to a controller via a network

    Science.gov (United States)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  7. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    Science.gov (United States)

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  8. A new portable device for automatic controlled-gradient cryopreservation of blood mononuclear cells

    DEFF Research Database (Denmark)

    Hviid, L; Albeck, G; Hansen, B

    1993-01-01

    Protection of the functional integrity of mononuclear cells stored in liquid N2 requires careful control of the freezing procedure. Consequently, optimal quality of cryopreserved cells is usually assured by freezing according to a specified time-temperature gradient generated by computer......-controlled freezing devices. While such equipment offers large capacity and secures maximum survival and functional integrity of the lymphocytes upon thawing, it is quite costly and strictly stationary. We have previously developed and tested an alternative, manual device for controlled-gradient lymphocyte freezing...

  9. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  10. EPICS device support module as ATCA system manager for the ITER fast plant system controller

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo F., E-mail: pricardofc@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Santos, Bruno; Gonçalves, Bruno; Carvalho, Bernardo B.; Sousa, Jorge; Rodrigues, A.P.; Batista, António J.N.; Correia, Miguel; Combo, Álvaro [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, Coimbra (Portugal); Varandas, Carlos A.F. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal)

    2013-10-15

    Highlights: ► In Nuclear Fusion, demanding security and high-availability requirements call for redundancy to be available. ► ATCA based Nuclear Fusion Systems are composed by several electronic and mechanical component. ► Control and monitoring of ATCA electronic systems are recommended. ► ITER Fast Plant System Controller Project CODAC system prototype. ► EPICS device support module as External ATCA system manager solution. -- Abstract: This paper presents an Enhanced Physics and Industrial Control System (EPICS) device support module for the International Thermonuclear Experimental Reactor (ITER) Fast Plant System Controller (FPSC) project based in Advanced Telecommunications Computing Architecture (ATCA) specification. The developed EPICS device support module provides an External System Manager (ESM) solution for monitoring and control the ITER FPSC ATCA shelf system and data acquisition boards in order to take proper action and report problems to a control room operator or high level management unit in case of any system failure occurrence. EPICS device support module acts as a Channel Access (CA) server to report problems and publish ATCA system data information to the control room operator, high level management unit or other CA network clients such as Control System Studio Operator Interfaces (CSS OPIs), Best Ever Alarm System Toolkit (BEAST), Best Ever Archive Utility (BEAUTY) or other CA client applications. EPICS device support module communicates with the ATCA Shelf manager (ShM) using HTTP protocol to send and receive commands through POST method in order to get and set system and shelf components properties such as fan speeds measurements, temperatures readings, module status and ATCA boards acquisition and configuration parameters. All system properties, states, commands and parameters are available through the EPICS device support module CA server in EPICS Process Variables (PV) and signals format. ATCA ShM receives the HTTP protocol

  11. Investigations of the Impact of Biodiesel Metal Contaminants on Emissions Control Devices

    Energy Technology Data Exchange (ETDEWEB)

    Brookshear, D. W.; Lance, M. J.; McCormick, Robert L.; Toops, T. J.

    2017-02-27

    Biodiesel is a renewable fuel with the potential to displace a portion of petroleum use. However, as with any alternative fuel, in order to be a viable choice it must be compatible with the emissions control devices. The finished biodiesel product can contain up to 5 ppm Na+K and 5 ppm Ca+Mg, and these metal impurities can lead to durability issues with the devices used to control emissions in diesel vehicles. Significant work has been performed to understand how the presence of these metals impacts each individual component of diesel emissions control systems, and this chapter summarizes the findings of these research efforts.

  12. Structure and properties of quarternary and tetragonal Heusler compounds for spintronics and spin transver torque applications

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Vajiheh Alijani

    2012-03-07

    This work is divided into two parts: part 1 is focused on the prediction of half-metallicity in quaternary Heusler compounds and their potential for spintronic applications and part 2 on the structural properties of Mn{sub 2}-based Heusler alloys and tuning the magnetism of them from soft to hard-magnetic for spin-transfer torque applications. In part 1, three different series of quaternary Heusler compounds are investigated, XX'MnGa (X=Cu, Ni and X'=Fe,Co), CoFeMnZ (Z=Al,Ga,Si,Ge), and Co{sub 2-x}Rh{sub x}MnZ (Z=Ga,Sn,Sb). All of these quaternary compounds except CuCoMnGa are predicted to be half-metallic ferromagnets by ab-initio electronic structure calculations. In the XX'MnGa class of compounds, NiFeMnGa has a low Curie temperature for technological applications but NiCoMnGa with a high spin polarization, magnetic moment, and Curie temperature is an interesting new material for spintronics applications. All CoFeMnZ compounds exhibit a cubic Heusler structur and their magnetic moments are in fair agreement with the Slater-Pauling rule indicating the halfmetallicity and high spin polarization required for spintronics applications. Their high Curie temperatures make them suitable for utilization at room temperature and above. The structural investigation revealed that the crystal structure of all Co{sub 2-x}Rh{sub x}MnZ compounds aside from CoRhMnSn exhibit different types of anti-site disorder. The magnetic moments of the disordered compounds deviate from the Slater-Pauling rule indicating that 100% spin polarization are not realized in CoRhMnGa, CoRhMnSb, and Co{sub 0.5}Rh{sub 1.5}MnSb. Exchange of one Co in Co{sub 2}MnSn by Rh results in the stable, well-ordered compound CoRhMnSn. This exchange of one of the magnetic Co atoms by a non-magnetic Rh atom keeps the magnetic properties and half-metallicity intact. In part 2, two series of Mn{sub 2}-based Heusler alloys are investigated, Mn{sub 3-x}Co{sub x}Ga and Mn{sub 2-x}Rh{sub 1+x}Sn. It has been

  13. Intermediate-term and long-term outcome of piggyback drainage: connecting glaucoma drainage device to a device in-situ for improved intraocular pressure control.

    Science.gov (United States)

    Dervan, Edward; Lee, Edward; Giubilato, Antonio; Khanam, Tina; Maghsoudlou, Panayiotis; Morgan, William H

    2017-11-01

    This study provides results of a treatment option for patients with failed primary glaucoma drainage device. The study aimed to describe and evaluate the long-term intraocular pressure control and complications of a new technique joining a second glaucoma drainage device directly to an existing glaucoma drainage device termed 'piggyback drainage'. This is a retrospective, interventional cohort study. Eighteen eyes of 17 patients who underwent piggyback drainage between 2004 and 2013 inclusive have been studied. All patients had prior glaucoma drainage device with uncontrolled intraocular pressure. The piggyback technique involved suturing a Baerveldt (250 or 350 mm) or Molteno3 glaucoma drainage device to an unused scleral quadrant and connecting the silicone tube to the primary plate bleb. Failure of intraocular pressure control defined as an intraocular pressure greater than 21 mmHg on maximal therapy on two separate occasions or further intervention to control intraocular pressure. The intraocular pressure was controlled in seven eyes (39%) at last follow-up with a mean follow-up time of 74.2 months. The mean preoperative intraocular pressure was 27.1 mmHg (95% confidence interval 23.8-30.3) compared with 18.4 mmHg (95% confidence interval 13.9-22.8) at last follow-up. The mean time to failure was 57.1 months (95% confidence interval 32.2-82), and the mean time to further surgery was 72.3 months (95% confidence interval 49.9-94.7). Lower preoperative intraocular pressure was associated with longer duration of intraocular pressure control (P = 0.048). If the intraocular pressure was controlled over 2 years, it continued to be controlled over the long term. Two eyes (11%) experienced corneal decompensation. Piggyback drainage represents a viable surgical alternative for the treatment of patients with severe glaucoma with failing primary glaucoma drainage device, particularly in those at high risk of corneal decompensation. © 2017 Royal Australian and New Zealand

  14. Applications of magnetorheological brakes in manual control of lifting devices and manipulators

    International Nuclear Information System (INIS)

    Chciuk, M; Milecki, A; Myszkowski, A

    2009-01-01

    The article is aimed to design and testing of joystick with force feedback used in direct, human control of lifting device. The paper starts with the basic description of designed and tested by us MR rotary brake. Some initial laboratory investigations results of such brakes are presented. The usage of MR brakes in 2 axis joystick is proposed. Such, built by as joystick, is described. It was used as Human-Machine Interface in active control of lifting device. The designed and built 2 axis manipulator with electrohydraulic drive is described. In the paper, the based on PC with input/output card, control system of mentioned above joystick with MR brake and manipulator is described. Finally the control algorithm is proposed.

  15. Shielding device for control rod in nuclear reactor

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo; Tomatsu, Tsutomu.

    1995-01-01

    The device of the present invention shields radiation emitted from control rods to greatly reduce an operator's radiation exposure even if reactor water level is lowered and the upper portion of the control rod is exposed upon inspection of a BWR type reactor. Namely, a shield assembly has a structure comprising a set of four columnar shields in a two-row and two-column arrangement, which can be inserted into a control rod guide tube. Upon conducting inspection, the control rod is lowered into the control rod guide tube, and in this state, the columnar shields of the shield assembly are inserted to the control rod in the control rod guide tube. With such procedures, the upper portion of the control rod protruded from the control rod guide tube is covered with the shield assembly. As a result, radiation leaked from the control rod is shielded. Accordingly, irradiation in the reactor due to leaked radiation can be prevented thereby enabling to reduce an operator's radiation exposure. (I.S.)

  16. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Directory of Open Access Journals (Sweden)

    Faxian Xiu

    2011-03-01

    Full Text Available Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs, materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism.

  17. Model predictive control approach for a CPAP-device

    Directory of Open Access Journals (Sweden)

    Scheel Mathias

    2017-09-01

    Full Text Available The obstructive sleep apnoea syndrome (OSAS is characterized by a collapse of the upper respiratory tract, resulting in a reduction of the blood oxygen- and an increase of the carbon dioxide (CO2 - concentration, which causes repeated sleep disruptions. The gold standard to treat the OSAS is the continuous positive airway pressure (CPAP therapy. The continuous pressure keeps the upper airway open and prevents the collapse of the upper respiratory tract and the pharynx. Most of the available CPAP-devices cannot maintain the pressure reference [1]. In this work a model predictive control approach is provided. This control approach has the possibility to include the patient’s breathing effort into the calculation of the control variable. Therefore a patient-individualized control strategy can be developed.

  18. Control device for start-up of reactor depressurization system

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Saito, Minoru; Oda, Shingo; Miura, Satoshi; Hashimoto, Koji; Tate, Hitoshi; Fujii, Kazunobu

    1998-01-01

    The present invention concerns are emergency reactor core cooling system (ECCS) of a BWR type reactor and provides a control device for start-up of an automatic depressurization system. Namely, the device has an object of preventing erroneous opening of a main steam escape safety value when testing a start-up signal circuit of an automatic depressurization system for testing the automatic depressurization system. A start-up signal circuit receives both signals of a reactor container pressure high signal and a reactor pressure vessel water level low signal and outputs an automatic start-up signal for compulsorily opening a main steam escape safety valve automatically. A test switch having a self-holding circuit is disposed to a central control chamber. A test signal circuit is disposed for preventing transfer of an erroneous start-up signal to the main steam escape safety valve due to a simulation signal during output test signals by the test switch. (I.S.)

  19. Reactive power control of wind farm using facts devices

    International Nuclear Information System (INIS)

    Ashfaq, S.; Arif, A.; Shakeel, A.; Mahmood, T.

    2014-01-01

    Wind energy is an attainable option to complement other types of pollution-free green generation Grid connections of renewable energy resources are vital if they are to be effectively exploited, but grid connection brings problems of voltage fluctuation and harmonic distortion. FACTs devices are one of the power electronics revolutions to improve voltage profile, system stability, and reactive power control and to reduce transmission losses. The studied system here is a variable speed wind generation system based on Induction Generator (IG) with integration of different FACTs controllers in the wind farm. To harness the wind power efficiently the most reliable and expensive system in the present era is grid connected doubly fed induction generator. Induction generator with FACTs devices is a suitable economical replacement. The suggested scheme is implemented in MATLAB Simulink with real time parameters of GHARO wind power plant in Sind, and corresponding results and output waveforms proves the potential strength of proposed methodology. (author)

  20. Web software for the control and management of radiation protection devices in the Cadarache site

    International Nuclear Information System (INIS)

    Beltritti, F.

    2010-01-01

    This series of slides presents how to use a new software dedicated to the management of the periodical controls that have to be performed on the equipment involved in radiation protection. This software is ready to be dispatched on the CEA site of Cadarache. This software gives information on: the device to be controlled, the controls that have to be performed, the procedures to follow to make the test, the equipment necessary for the test particularly the need for radioactive sources, the maintenance of the device, the previous measurements and in the end the device's conformity. An evaluation of the conformity of all the devices present in a building or an area or of a particular type can be easily obtained. (A.C.)

  1. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  2. Integrated circuit devices in control systems of coal mining complexes

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Systems of automatic monitoring and control of coal mining complexes developed in the 1960's used electromagnetic relays, thyristors, and flip-flops on transistors of varying conductivity. The circuits' designers, devoted much attention to ensuring spark safety, lowering power consumption, and raising noise immunity and repairability of functional devices. The fast development of integrated circuitry led to the use of microelectronic components in most devices of mine automation. An analysis of specifications and experimental research into integrated circuits (IMS) shows that the series K 176 IMS components made by CMOS technology best meet mine conditions of operation. The use of IMS devices under mine conditions has demonstrated their high reliability. Further development of integrated circuitry involve using microprocessors and microcomputers. (SC)

  3. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....... across and current through the LED and the means for generating the activation signal is adapted to generate the activating signal based on the voltage, the current and a current- voltage model related to LED. The current-voltage model defines a relationship between the current, the voltage...

  4. Device and method of cooling control rod drives

    International Nuclear Information System (INIS)

    Togashi, Hidetoshi; Mase, Noriaki; Matsumura, Yuichi.

    1985-01-01

    Purpose: To prevent the generation of local temperature rise depending on the reactor core position of the control rod drives and control the temperature to an averaged state in BWR type reactors. Method: Control rod drives having a large charging length of the housing in the pressure vessel involve such a factor that the temperature of the control rod drives is increased by the synergistic effect due to the radiation heat from the reactor core and to the unevenness of the cooling water flow rate, which renders an appropriate temperature control difficult for the reactor core position. A cooling water flow rate controlling device having a restriction mechanism is disposed on the cooling water feed path for each of the hydraulic control units of the control rod drives, so that flow rate to the control rod drives is increased at the center of the reactor core and decreased at the periphery thereof. As a result, average temperature state can be set, temperature increase due to cloggings can be prevented and the thermal effect can be eliminated to thereby improve the reliability. (Moriyama, K.)

  5. 242-A Control System device logic software documentation. Revision 2

    International Nuclear Information System (INIS)

    Berger, J.F.

    1995-01-01

    A Distributive Process Control system was purchased by Project B-534. This computer-based control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and Monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment System Engineering Group of Westinghouse. This document describes the Device Logic for this system

  6. Linear motion device and method for inserting and withdrawing control rods

    Science.gov (United States)

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  7. Development of a device for hydraulic and thermal control and regulation for hydrobiological research

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1975-09-01

    A device for the control of the level and temperature of water flowing in tanks used for hydrobiological research is described. The device is mainly devoted to allow programming of temperature amplitude and variations through time. A detailed description is given of the programmer able to control any physicochemical regulation based on analogue comparison of voltage [fr

  8. Respiratory protective device design using control system techniques

    Science.gov (United States)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  9. The new realized mobile device for extremal control research and presentation

    Directory of Open Access Journals (Sweden)

    Matej URBANSKÝ

    2015-12-01

    Full Text Available At our department we deal with torsional oscillating mechanical systems (TOMS continuous tuning during its operation in terms of torsional oscillation size. Therefore was build the new mobile device for research and presentation purposes of the TOMS continuous tuning using extremal control method. This paper deals mainly with design of the mobile device and its special compressed air distribution system, which is necessary for its regular function.

  10. The upgraded control and instrumentation system of C5 irradiation device

    International Nuclear Information System (INIS)

    Iordache, A.; Ancuta, M.; Gruia, L.; Pulpa, A.; Salistean, E.; Gusescu, G.

    2013-01-01

    C5 capsule is an irradiation device of TRIGA SSR, which is designed for irradiation of structural materials in an inert environment for mechanical behavior characterization and the material microstructure evolution during irradiation. The paper presents the upgraded control and instrumentation system of the C5 irradiation device which was designed and manufactured to enhance the performance of this system for better surveillance and processing the acquired experimental data. (authors)

  11. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review

    International Nuclear Information System (INIS)

    Helsen, Lieve

    2005-01-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices. - Submicron arsenic fumes are difficult to control in conventional air pollution control devices

  12. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly; Ou, Kevin; Jackson, John K.; Letchford, Kevin; Cui, Jing; Wolf, Ki Tae; Graber, Florian; Zhao, Tom; Matsubara, Joanne A.; Burt, Helen; Chiao, Mu; Lin, Liwei

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved

  13. 78 FR 79300 - Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems for Acute...

    Science.gov (United States)

    2013-12-30

    .... FDA-2013-N-0581] Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems... of these devices into class II. List of Subjects in 21 CFR Part 870 Medical devices, Cardiovascular... Commissioner of Food and Drugs, 21 CFR part 870 is amended as follows: PART 870--CARDIOVASCULAR DEVICES 0 1...

  14. Control of the technological processes at ''Azovstal'' plant using radioisotope devices

    Energy Technology Data Exchange (ETDEWEB)

    Nosochenko, O V; Overchenko, Z V; Karpov, O I; Deryabina, G N

    1980-05-01

    Considered is the state of radioisotope control of the technological process at 'Azovstal' plant which has permitted to increase the quality of metal and of metal production. With the help of radioisotope densimeter PR-1024 carried out is the control of the density of the lime solution used for hearth spraying at pig iron casting. A system of automatic correction of skip coke supply according to indications of moisture gauges ''Neutron 3-1'' is implemented at blast furnaces. A radioisotope thickness gauge of hot rolling is positioned on the section of finishing stand of thick-sheet plant, its operation is based on the ..gamma.. radiation weakening in dependence on sheet thickness. The introduction of thickness gauges in the automatized system of rolling control is planned. A radioisotope device ''Paza 2'' for measuring of continuous ingot skin thickness is tested successively at the plant. Gamma-relay devices are used to control the level of loose materials in bunkers. Noted is the prospects of using radioisotopic means of control and automatization of technological processes in ferrous matallurgy.

  15. Magnetoelectric control of valley and spin in a silicene nanoribbon modulated by the magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    An, Xing-Tao, E-mail: anxt@hku.hk

    2015-03-20

    The control of valley and spin degrees of freedom and the transport properties of electrons in a zigzag silicene nanoribbon modulated by the magnetic superlattices are investigated theoretically. Due to the valley–spin locking effect in silicene, the valley degree of freedom can be controlled by magnetic means. The valley or/and spin selection induced by the exchange field result in the perfect spin–valley filter and tunneling magnetoresistance effect in the double ferromagnetic barriers on the surface of the silicene nanoribbon. It is more interesting that there are valley-resolved minigaps and minibands in the zigzag silicene nanoribbon modulated by the magnetic superlattices which give rise to the periodically modulated spin (or/and valley) polarization and tunneling magnetoresistance. The results obtained may have certain practical significance in applications for future valleytronic and spintronic devices. - Highlights: • The valley can be controlled by a magnetic field in silicene. • The valley-resolved miniband transport is studied in the silicene superlattices. • There are the perfect spin–valley filter and tunneling magnetoresistance effect.

  16. Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

    Science.gov (United States)

    Kemp, Stephen W. P.; Urbanchek, Melanie G.; Irwin, Zachary T.; Chestek, Cynthia A.; Cederna, Paul S.

    2017-05-01

    Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.

  17. Pain control in orthodontics using a micropulse vibration device: A randomized clinical trial.

    Science.gov (United States)

    Lobre, Wendy D; Callegari, Brent J; Gardner, Gary; Marsh, Curtis M; Bush, Anneke C; Dunn, William J

    2016-07-01

    To investigate the relationship between a micropulse vibration device and pain perception during orthodontic treatment. This study was a parallel group, randomized clinical trial. A total of 58 patients meeting eligibility criteria were assigned using block allocation to one of two groups: an experimental group using the vibration device or a control group (n  =  29 for each group). Patients used the device for 20 minutes daily. Patients rated pain intensity on a visual analog scale at appropriate intervals during the weeks after the separator or archwire appointment. Data were analyzed using repeated measures analysis of variance at α  =  .05. During the 4-month test period, significant differences between the micropulse vibration device group and the control group for overall pain (P  =  .002) and biting pain (P  =  .003) were identified. The authors observed that perceived pain was highest at the beginning of the month, following archwire adjustment. The micropulse vibration device significantly lowered the pain scores for overall pain and biting pain during the 4-month study period.

  18. A Numerical Analysis of Phononic-Assisted Control of Ultrasound Waves in Acoustofluidic Device

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Bruus, Henrik

    2015-01-01

    and streaming has received much attention, since it relies solely on mechanical properties such as particle size and contrast in density and compressibility. We present a theoretical study of phononic-assisted control of ultrasound waves in acoustofluidic devices. We propose the use of phononic crystal...... diffractors, which can be introduced in acoustofluidic structures. These diffractors can be applied in the design of efficient resonant cavities, directional sound waves for new types of particle sorting methods, or acoustically controlled deterministic lateral displacement. The PnC-diffractor-based devices...... can be made configurable, by embedding the diffractors, all working at the same excitation frequency but with different resulting diffraction patterns, in exchangeable membranes on top of the device....

  19. Nanoscale magnetic ratchets based on shape anisotropy

    Science.gov (United States)

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  20. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  1. Coupling device of the control rod and of the drive mechanism

    International Nuclear Information System (INIS)

    Savary, F.

    1986-01-01

    The invention proposes a coupling device removable in which the connection between the upper head of the control rod and the drive mechanism is a real rigid fixing, in the mechanical sense of the term, suppressing longitudinal play and allowing to restrict the momenta occurring when locating the control rods [fr

  2. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.

    Science.gov (United States)

    Hussein, Sami; Kruger, Jörg

    2011-01-01

    Robot assisted training has proven beneficial as an extension of conventional therapy to improve rehabilitation outcome. Further facilitation of this positive impact is expected from the application of cooperative control algorithms to increase the patient's contribution to the training effort according to his level of ability. This paper presents an approach for cooperative training for end-effector based gait rehabilitation devices. Thereby it provides the basis to firstly establish sophisticated cooperative control methods in this class of devices. It uses a haptic control framework to synthesize and render complex, task specific training environments, which are composed of polygonal primitives. Training assistance is integrated as part of the environment into the haptic control framework. A compliant window is moved along a nominal training trajectory compliantly guiding and supporting the foot motion. The level of assistance is adjusted via the stiffness of the moving window. Further an iterative learning algorithm is used to automatically adjust this assistance level. Stable haptic rendering of the dynamic training environments and adaptive movement assistance have been evaluated in two example training scenarios: treadmill walking and stair climbing. Data from preliminary trials with one healthy subject is provided in this paper. © 2011 IEEE

  3. The Operation of a Domestic Interface Device for the HANARO Control Rod

    International Nuclear Information System (INIS)

    Choi, Young San; Kim, Sang Jin; Lee, Jung Hee; Kim, Hyung Kyoo

    2010-01-01

    The interface device for the HANARO control rod which was supplied by a foreign company put difficulties on reactor operation due to the obsolescence of the products and lukewarm technical support from the manufacturer. The development of the interface device based on domestic technology has been completed in order to solve the problems in this issue and to ensure safe and reliable reactor operation. This paper describes the development process of the domestic interface device conducted which was over 5 years, the field test results, and the reactor operation application results

  4. Hybrid supercapacitors for reversible control of magnetism.

    Science.gov (United States)

    Molinari, Alan; Leufke, Philipp M; Reitz, Christian; Dasgupta, Subho; Witte, Ralf; Kruk, Robert; Hahn, Horst

    2017-05-10

    Electric field tuning of magnetism is one of the most intensely pursued research topics of recent times aiming at the development of new-generation low-power spintronics and microelectronics. However, a reversible magnetoelectric effect with an on/off ratio suitable for easy and precise device operation is yet to be achieved. Here we propose a novel route to robustly tune magnetism via the charging/discharging processes of hybrid supercapacitors, which involve electrostatic (electric-double-layer capacitance) and electrochemical (pseudocapacitance) doping. We use both charging mechanisms-occurring at the La 0.74 Sr 0.26 MnO 3 /ionic liquid interface to control the balance between ferromagnetic and non-ferromagnetic phases of La 1-x Sr x MnO 3 to an unprecedented extent. A magnetic modulation of up to ≈33% is reached above room temperature when applying an external potential of only about 2.0 V. Our case study intends to draw attention to new, reversible physico-chemical phenomena in the rather unexplored area of magnetoelectric supercapacitors.

  5. Device Control Using Gestures Sensed from EMG

    Science.gov (United States)

    Wheeler, Kevin R.

    2003-01-01

    In this paper we present neuro-electric interfaces for virtual device control. The examples presented rely upon sampling Electromyogram data from a participants forearm. This data is then fed into pattern recognition software that has been trained to distinguish gestures from a given gesture set. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard.

  6. Intelligent Security Auditing Based on Access Control of Devices in Ad Hoc Network

    Institute of Scientific and Technical Information of China (English)

    XU Guang-wei; SHI You-qun; ZHU Ming; WU Guo-wen; CAO Qi-ying

    2006-01-01

    Security in Ad Hoc network is an important issue under the opening circumstance of application service. Some protocols and models of security auditing have been proposed to ensure rationality of contracting strategy and operating regulation and used to identify abnormal operation. Model of security auditing based on access control of devices will be advanced to register sign of devices and property of event of access control and to audit those actions. In the end, the model is analyzed and simulated.

  7. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system

    Science.gov (United States)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2018-03-01

    We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

  8. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system.

    Science.gov (United States)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2018-03-01

    We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

  9. Control rod driving mechanism of reactor, control device and operation method therefor

    International Nuclear Information System (INIS)

    Ariyoshi, Masahiko; Matsumoto, Fujio; Matsumoto, Koji; Kinugasa, Kunihiko; Nara, Yoshihiko; Otama, Kiyomaro; Mikami, Takao

    1998-01-01

    The present invention provides a device for and a method of directly driving control rods of an FBR type reactor linearly by a cylinder type linear motor while having a driving shaft as an electric conductor. Namely, a linear induction motor drives a driving shaft connected with a control rod and vertically moving the control rod by electromagnetic force as an electric conductor. The position of the control rod is detected by a position detector. The driving shaft is hung by a wire by way of an electromagnet which is attachably/detachably held. With such a constitution, the driving shaft connected with the control rod can be vertically moved linearly, stopped or kept. Since they can be driven smoothly at a wide range speed, the responsibility and reliability of the reactor operation can be improved. In addition, since responsibility of the control rod operation is high, scram can be conducted by the linear motor. Since the driving mechanism can be simplified, maintenance and inspection operation can be mitigated. (I.S.)

  10. Medical Devices; General Hospital and Personal Use Devices; Classification of the Ultraviolet Radiation Chamber Disinfection Device. Final order.

    Science.gov (United States)

    2015-11-20

    The Food and Drug Administration (FDA or the Agency) is classifying the ultraviolet (UV) radiation chamber disinfection device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the UV radiation chamber disinfection device classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  11. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    Science.gov (United States)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  12. 78 FR 36702 - Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems (IABP) for...

    Science.gov (United States)

    2013-06-19

    .... FDA-2013-N-0581] Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems... Device In the preamble to the proposed rule (44 FR 13369; March 9, 1979), the Cardiovascular Device... Bypass Grafting: A Propensity Score Analysis,'' Interactive Cardiovascular and Thoracic Surgery, vol. 9...

  13. Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints

    Directory of Open Access Journals (Sweden)

    Paula B. Garcia-Rosa

    2015-12-01

    Full Text Available The energy cost for producing electricity via wave energy converters (WECs is still not competitive with other renewable energy sources, especially wind energy. It is well known that energy maximising control plays an important role to improve the performance of WECs, allowing the energy conversion to be performed as economically as possible. The control strategies are usually subsequently employed on a device that was designed and optimized in the absence of control for the prevailing sea conditions in a particular location. If an optimal unconstrained control strategy, such as pseudo-spectral optimal control (PSOC, is adopted, an overall optimized system can be obtained no matter whether the control design is incorporated at the geometry optimization stage or not. Nonetheless, strategies, such as latching control (LC, must be incorporated at the optimization design stage of the WEC geometry if an overall optimized system is to be realised. In this paper, the impact of device motion and force constraints in the design of control-informed optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify the connection between the control and the optimal device design. Intuitively, one might expect that if the constraints are very tight, the optimal device shape is the same regardless of incorporating or not the constrained control at the geometry optimization stage. However, this paper tests the hypothesis that the imposition of constraints will limit the control influence on the optimal device shape. PSOC, LC and passive control (PC are considered in this study. In addition, constrained versions of LC and PC are presented.

  14. On the feasibility of device fingerprinting in industrial control systems

    NARCIS (Netherlands)

    Caselli, M.; Hadziosmanovic, D.; Zambon, Emmanuele; Kargl, Frank; Luiijf, Eric; Hartel, Pieter H.

    2013-01-01

    As Industrial Control Systems (ICS) and standard IT networks are becoming one heterogeneous entity, there has been an increasing effort in adjusting common security tools and methodologies to fit the industrial environment. Fingerprinting of industrial devices is still an unexplored research field.

  15. Closed Loop Control Compact Exercise Device for Use on MPCV

    Science.gov (United States)

    Sheehan, Chris; Funk, Justin; Funk, Nathan; Kutnick, Gilead; Humphreys, Brad; Bruinsma, Douwe; Perusek, Gail

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. To combat spaceflight physiological deconditioning, astronauts will use resistive and aerobic exercise regimens for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the mass and volume available for an exercise device in the next generation of spacecraft is limited. Therefore, compact exercise device prototypes are being developed for human in the loop evaluations. The NASA Human Research Program (HRP) is managing Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation for all exploration mission profiles from Multi-Purpose Crew Vehicle (MPCV) exploration missions (e.g., EM-2, up to 21 day) to Mars Transit (up to 1000 day) missions. Numerous technologies have been considered and evaluated against HRP-approved functional requirements and include flywheel, pneumatic and closed-loop microprocessor-controlled motor driven power plants. Motor driven technologies offer excellent torque density and load accuracy characteristics as well as the ability to create custom mechanical impedance (the dynamic relationship between force and velocity) and custom load versus position exercise algorithms. Further, closed-loop motor-driven technologies offer the ability to monitor exercise dose parameters and adapt to the needs of the crewmember for real time optimization of exercise prescriptions. A simple proportional-integral-derivative (PID) controller is demonstrated in a prototype motor driven exercise device with comparison to resistive static and dynamic load set points and aerobic work rate targets. The resistive load term in the algorithm includes a constant force component (Fcmg) as well as inertial component (Fima) and a discussion of system tuning is presented

  16. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  17. Remote controlled stud bolt handling device for reactor pressure vessel

    International Nuclear Information System (INIS)

    Shindo, Takenori; Shigehiro, Katsuya; Ito, Morio; Okada, Kenji

    1988-01-01

    In nuclear power stations, at the time of regular inspection, the works of opening and fixing the upper covers of reactor pressure vessels are carried out for inspecting the inside of reactor pressure vessels and exchanging fuel rods. These upper covers are fastened with many stud bolts, therefore, the works of opening and fixing require a large amount of labor, and are done under the restricted condition of wearing protective clothings and masks. Babcock Hitachi K.K. has completed the development of a remotely controlled automatic bolt tightenig device for this purpose, therefore, its outline is reported. The conventional method of these works and the problems in it are described. The design of the new device aimed at the parallel execution of cleaning screw threads, loosening and tightening nuts, and taking off and putting on nuts and washers, thus contributing to the shortening of regular inspection period, the reduction of the radiation exposure of workers, and the decrease of the number of workers. The function, reliability and endurance of the new device were confirmed by the verifying test using a device made for trial. The device is composed of a stand, a rail and four stations each with a cleaning unit, a stud tensioner and a nut handling unit. (K.I.)

  18. Reactor power control device in BWR power plant

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1997-01-01

    The present invention provides a device for controlling reactor power based on a start-up/shut down program in a BWR type reactor, as well as for detecting deviation, if occurs, of the power from the start-up/shut down program, to control a recycling flow rate control system or control rod drive mechanisms. Namely, a power instruction section successively executes the start-up/shut down program and controls the coolant recycling system and the control rod driving mechanisms to control the power. A current state monitoring and calculation section receives a process amount, calculates parameters showing the plant state, compares/monitors them with predetermined values, detecting the deviation, if occurs, of the plant state from the start-up/shut down program, and prevents output of a power increase control signal which leads to power increase. A forecasting and monitoring/calculation section forecasts and calculates the plant state when not yet executed steps of the start-up/shut down program are performed, stops the execution of the start-up/shut down program in the next step in a case of forecasting that the results of the calculation will deviate from the start-up/shut down program. (I.S.)

  19. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole

    Science.gov (United States)

    Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei

    2017-03-01

    The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.

  20. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    OpenAIRE

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...

  1. Chaos control and taming of turbulence in plasma devices

    DEFF Research Database (Denmark)

    Klinger, T.; Schröder, C.; Block, D.

    2001-01-01

    Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply...... to plasma instabilities. In the present paper we discuss recent progress in chaos control and taming of turbulence in three different plasma "model" experiments: (1) Chaotic oscillations in simple plasma diodes, (2) ionization wave turbulence in the positive column of glow discharges, and (3) drift wave...

  2. Electric field-controlled magnetization in exchange biased IrMn/Co/PZT multilayers

    International Nuclear Information System (INIS)

    Huong Giang, D T; Duc, N H; Agnus, G; Maroutian, T; Lecoeur, P

    2013-01-01

    Electric-field modulating exchange bias and near 180° deterministic magnetization switching at room temperature are demonstrated in simple antiferromagnetic/ferromagnetic/ferroelectric (AFM/FM/FE) exchange-coupled multiferroic multilayers of IrMn/Co/PZT. A rather large exchange bias field shift up to ΔH ex /H ex = 500% was obtained. This change governs mainly the electric-field strength rather than the applied current. It is explained as being realized through the competition between the electric-field induced uniaxial and unidirectional anisotropies. These results show good prospects for low-power spintronic devices. (paper)

  3. Hierarchical Brokering with Feedback Control Framework in Mobile Device-Centric Clouds

    Directory of Open Access Journals (Sweden)

    Chao-Lieh Chen

    2016-01-01

    Full Text Available We propose a hierarchical brokering architecture (HiBA and Mobile Multicloud Networking (MMCN feedback control framework for mobile device-centric cloud (MDC2 computing. Exploiting the MMCN framework and RESTful web-based interconnection, each tier broker probes resource state of its federation for control and management. Real-time and seamless services were developed. Case studies including intrafederation energy-aware balancing based on fuzzy feedback control and higher tier load balancing are further demonstrated to show how HiBA with MMCN relieves the embedding of algorithms when developing services. Theoretical performance model and real-world experiments both show that an MDC2 based on HiBA features better quality in terms of resource availability and network latency if it federates devices with enough resources distributed in lower tier hierarchy. The proposed HiBA realizes a development platform for MDC2 computing which is a feasible solution to User-Centric Networks (UCNs.

  4. A Low-Power High-Speed Spintronics-Based Neuromorphic Computing System Using Real Time Tracking Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    2018-01-01

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect lead to a significant increase in stimulation time...... of such NCSs. Moreover, current NCSs need an extra phase to read the MTJ state after stimulation which is in contrast with real neuron functionality in human body. In this paper, the read circuit is replaced with a proposed real-time sensing (RTS) circuit. The RTS circuit tracks the MTJ state during...... stimulation phase. As soon as switching happens, the RTS circuit terminates the MTJ current and stimulates the post neuron. Hence, the RTS circuit not only improves the energy consumption and speed, but also makes the operation of NCS similar to real neuron functionality. The simulation results in 65-nm CMOS...

  5. ORELA data acquisition system hardware. Vol 4. ORELA device controllers (Q-5098)

    International Nuclear Information System (INIS)

    Reynolds, J.W.; Wintenberg, R.E.

    1977-01-01

    A report is given describing the programming, word formats, control signals, voltage levels, connector layouts, ground isolation, and a theory of operation with a simplified logic diagram for the Oak Ridge Electron Linear Accelerator (ORELA) Device Controllers. The ORELA Isolated Pulse Generators are also described

  6. Dispersion interferometer for controlled fusion devices

    International Nuclear Information System (INIS)

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  7. Challenges and opportunities with spin-based logic

    Science.gov (United States)

    Perricone, Robert; Niemier, Michael; Hu, X. Sharon

    2017-09-01

    In this paper, we provide a short overview of efforts to process information with spin as a state variable. We highlight initial efforts in spintronics where devices concepts such as spinwaves, field coupled nanomagnets, etc. were are considered as vehicles for processing information. We also highlight more recent work where spintronic logic and memory devices are considered in the context of information processing hardware for the internet of things (IoT), and where the ability to constantly "checkpoint" processor state can support computing in environments with unreliable power supplies.

  8. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    Science.gov (United States)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  9. Exponential increase in the on-off ratio of conductance in organic memory devices by controlling the surface morphology of the devices

    Science.gov (United States)

    Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit

    2018-05-01

    We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on-off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.

  10. P-type zinc oxide spinels: application to transparent conductors and spintronics

    International Nuclear Information System (INIS)

    Stoica, Maria; S Lo, Cynthia

    2014-01-01

    We report on the electronic and optical properties of two theoretically predicted stable spinel compounds of the form ZnB 2 O 4 , where B = Ni or Cu; neither compound has been previously synthesized, so we compare them to the previously studied p-type ZnCo 2 O 4 spinel. These new materials exhibit spin polarization, which is useful for spintronics applications, and broad conductivity maxima near the valence band edge that indicate good p-type dopability. We show that 3d electrons on the octahedrally coordinated Zn atom fall deep within the valence band and do not contribute significantly to the electronic structure near the band edge of the material, while the O 2p and tetrahedrally coordinated B 3d electrons hybridize broadly in the shallow valence states, resulting in increasing curvature (i.e., decreased electron effective mass) of valence bands near the band edge. In particular, ZnCu 2 O 4 exhibits high electrical conductivities in the p-doping region near the valence band edge that, at σ=2×10 4  S cm −1 , are twice the maximum found for ZnCo 2 O 4 , a previously synthesized compound in this class of materials. This material also exhibits ferromagnetism in all of its most stable structures, which makes it a good candidate for further study as a dilute magnetic semiconductor. (paper)

  11. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Science.gov (United States)

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  12. Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers

    Energy Technology Data Exchange (ETDEWEB)

    Cotoros, Ingrid A. [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we "write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of

  13. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.

    Science.gov (United States)

    Sugar, Thomas G; He, Jiping; Koeneman, Edward J; Koeneman, James B; Herman, Richard; Huang, H; Schultz, Robert S; Herring, D E; Wanberg, J; Balasubramanian, Sivakumar; Swenson, Pete; Ward, Jeffrey A

    2007-09-01

    The structural design, control system, and integrated biofeedback for a wearable exoskeletal robot for upper extremity stroke rehabilitation are presented. Assisted with clinical evaluation, designers, engineers, and scientists have built a device for robotic assisted upper extremity repetitive therapy (RUPERT). Intense, repetitive physical rehabilitation has been shown to be beneficial overcoming upper extremity deficits, but the therapy is labor intensive and expensive and difficult to evaluate quantitatively and objectively. The RUPERT is developed to provide a low cost, safe and easy-to-use, robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. The RUPERT has four actuated degrees-of-freedom driven by compliant and safe pneumatic muscles (PMs) on the shoulder, elbow, and wrist. They are programmed to actuate the device to extend the arm and move the arm in 3-D space. It is very important to note that gravity is not compensated and the daily tasks are practiced in a natural setting. Because the device is wearable and lightweight to increase portability, it can be worn standing or sitting providing therapy tasks that better mimic activities of daily living. The sensors feed back position and force information for quantitative evaluation of task performance. The device can also provide real-time, objective assessment of functional improvement. We have tested the device on stroke survivors performing two critical activities of daily living (ADL): reaching out and self feeding. The future improvement of the device involves increased degrees-of-freedom and interactive control to adapt to a user's physical conditions.

  14. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film

    Science.gov (United States)

    Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing

    2018-02-01

    Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.

  15. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    Science.gov (United States)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  16. Reliability of Dubbed Technical Systems with Built-In Control Device

    Directory of Open Access Journals (Sweden)

    V. A. Аnischenko

    2013-01-01

    Full Text Available The paper substantiates a selection of passive or active system for dubbing technical systems in accordance with characteristics pertaining to probability of no-failure operation and mean–time-between failures with due account of non-reliability of a built-in control device and systems complexity. 

  17. Reversible Vector Ratchet Effect in Skyrmion Systems

    Science.gov (United States)

    Ma, Xiaoyu; Reichhardt, Charles; Reichhardt, Cynthia

    Magnetic skyrmions are topological non-trivial spin textures found in several magnetic materials. Since their motion can be controlled using ultralow current densities, skyrmions are appealing for potential applications in spintronics as information carriers and processing devices. In this work, we studied the collective transport properties of driven skyrmions based on a particle-like model with molecular dynamics (MD) simulation. Our results show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a new class of ratchet system, which we call a vector ratchet, that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated up to 360 degrees relative to the substrate asymmetry direction. This could represent a new method for controlling skyrmion motion for spintronic applications.

  18. BRAKE DEVICE

    Science.gov (United States)

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  19. Randomized controlled trial in rural Ethiopia to assess a portable water treatment device.

    Science.gov (United States)

    Boisson, Sophie; Schmidt, Wolf-Peter; Berhanu, Tsegahiwot; Gezahegn, Henock; Clasen, Thomas

    2009-08-01

    We conducted a randomized controlled trial to assess the Lifestraw Personal pipe-style water treatment device among a rural population in Ethiopia. A total of 313 households (including 1516 persons) were randomly assigned either to an intervention group in which each householder received a Lifestraw Personal or a control. Households were visited fortnightly over a five-month intervention period and asked to report any episode of diarrhea during the previous week. A random sample of 160 devices was tested each month to assess the presence of thermotolerant coliforms (TTC) and residual iodine in treated water and to measure flow rate under simulated use. Members of the intervention group had 25% fewer weeks with diarrhea than those of the control group (longitudinal prevalence ratio = 0.75; 95% CI 0.60; 0.95). All 718 filtered water samples were free of TTC, were free of detectable iodine disinfectant, and showed a constant flow rate over time. After the five-month intervention period, 34% of participants reported use of device in the preceding week and 13% reported consistent use. While the device was associated with a 25% reduction in longitudinal prevalence of diarrhea, low levels of use suggest that much of this effect is likely to be attributable to reporting bias that is common in open trials with nonobjective outcomes.

  20. Software of the control computer of HPD scanning device

    International Nuclear Information System (INIS)

    Belyaev, A.V.; Rubtsov, V.F.; Slepnev, S.K.; Susov, Yu.I.

    1979-01-01

    Specific features of HPD measuring system are considered which are important for TPA-1001i computer programming, being the control computer of scanning device. The instruction language intended for interacting the computer with HPD electronics is given. Resident, auxiliary and test subprograms including those for interrupt handling, for monitoring, a driver for the operation with a teletype, a loader, a cross-assembler are described

  1. im4Things: An Ontology-Based Natural Language Interface for Controlling Devices in the Internet of Things

    KAUST Repository

    Noguera-Arnaldos, José Á ngel; Paredes-Valverde, Mario André s; Salas-Zá rate, Marí a Pilar; Rodriguez-Garcia, Miguel Angel; Valencia-Garcí a, Rafael; Ochoa, José Luis

    2017-01-01

    . However, the IoT also introduces new challenges, some of which arise from the large range of devices currently available and the heterogeneous interfaces provided for their control. The control and management of this variety of devices and interfaces

  2. New spintronic superlattices composed of half-metallic compounds with zinc-blende structure

    International Nuclear Information System (INIS)

    Fong, C Y; Qian, M C

    2004-01-01

    The successful growth of zinc-blende half-metallic compounds, namely CrAs and CrSb, in thin film forms offers a new direction to search for novel spintronic materials. By using a well documented first-principles algorithm, the VASP code, we predict the electronic and magnetic properties of superlattices made of these exciting half-metallic materials. Not only are the superlattices constructed with two of the half-metallic compounds (CrAs/MnAs) but also they are modelled to combine with both a III-V (GaAs-MnAs/CrAs/GaAs) and a IV-IV (MnC/SiC) semiconductor. We investigate variable thicknesses for the combinations. For every case, we find the equilibrium lattice constant as well as the lattice constant at which the superlattice exhibits the half-metallic properties. For CrAs/MnAs, the half-metallic properties are presented and the magnetic moments are shown to be the sum of the moments for MnAs and CrAs. The half-metallic properties of GaAs-MnAs/CrAs/GaAs are found to be crucially dependent on the completion of the d-p hybridization. The magnetic properties of MnC/SiC are discussed with respect to the properties of MnC

  3. Dynamic pipe control with a multiple digit automatic measuring device

    International Nuclear Information System (INIS)

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  4. PCI-VME bridge device driver design of a high-performance data acquisition and control system on LINUX

    International Nuclear Information System (INIS)

    Sun Yan; Ye Mei; Zhang Nan; Zhao Jingwei

    2000-01-01

    Data Acquisition and Control is an important part of Nuclear Electronic and Nuclear Detection application in HEP. The key methods are introduced for designing LINUX Device Driver of PCI-VME Bridge Device based on the realized Data Acquisition and Control System

  5. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.

    Science.gov (United States)

    Sengupta, Abhronil; Shim, Yong; Roy, Kaushik

    2016-12-01

    Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by  ∼  100× in comparison to a corresponding digital/analog CMOS neuron implementation.

  6. PCI-VME bridge device driver design of a high-performance data acquisition and control system on LINUX

    International Nuclear Information System (INIS)

    Sun Yan; Ye Mei; Zhang Nan; Zhao Jingwei

    2001-01-01

    Data acquisition and control is an important part of nuclear electronic and nuclear detection application in HEP. The key method has been introduced for designing LINUX device driver of PCI-VME bridge device based on realized by authors' data acquisition and control system

  7. Device for relocating fuel elements and control rods in a core reactor

    International Nuclear Information System (INIS)

    Hoffmeister, B.; Schwarz, W.

    1976-01-01

    A device is described for changing the location of fuel elements and control rods in a core reactor with a guiding mast which is mounted on a movable working platform for rotation about a vertical axis and which is provided with a gripping body for grasping the fuel elements and control rods, said gripping body being suspended on a lifting mechanism and being displaceable in vertical direction within the guiding mast while being prevented from rotating relative to the guiding mast. The device furthermore comprises winding means for storing supply lines which are introduced at the top into the guiding mast and the gripper body. The device also includes power operated means for actuating the lifting mechanism. The winding means and lifting mechanism rotate with the mast and are so arranged in the mast that any water dripping therefrom runs down the inside of the mast. Supply conduits leading to the mast are connected thereby by slack loops which permit 360 0 of rotation of the mast. 11 claims, 6 drawing figures

  8. Optimal control and quantum simulations in superconducting quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel J.

    2014-10-31

    Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.

  9. Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments

    Directory of Open Access Journals (Sweden)

    Carlos Perez-Vidal

    2012-04-01

    Full Text Available This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753 to measure the consumption of electrical energy and thento transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600 has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user’s program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  10. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    Science.gov (United States)

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  11. Control device of air-fuel ratio of alcohol-gasoline mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuo

    1987-08-19

    Concerning alcohol-gasoline mixed fuel, even the same amount of the fuel shows different air-fuel ratio depending upon alcohol concentration in the fuel, accordingly it is required to know the alcohol concentration when it is intended to make the air-fuel ratio to be the same as the predetermined ratio. Although a sensor which can detect in quick response and exactly the alcohol concentration has not been developed, the alcohol concentration in gasoline can be detected by detecting the concentration of the water in exhaust gas and many hygrometers which can detect the concentration of the water with high precision are available. With regard to an internal combustion engine equipped with a fuel supply device in order to supply alcohol-gasoline mixed fuel into an engine suction passage, this invention offers an air-fuel ratio control device to control the amount of the fuel to be supplied from the fuel supply device by detecting the concentration of alcohol in the gasoline from among the output signals of the main hygrometer and the auxiliary hygrometer. The former hygrometer to detect the concentration of the water in the exhaust gas is set in the engine exhaust gas passage and the latter is installed to detect the concentration of the water in the air. (4 figs)

  12. Design of a gait training device for control of pelvic obliquity.

    Science.gov (United States)

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  13. Electrical detection of proton-spin motion in a polymer device at room temperature

    Science.gov (United States)

    Boehme, Christoph

    With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.

  14. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation

    International Nuclear Information System (INIS)

    Park, Yong-Lae; Chen, Bor-rong; Pérez-Arancibia, Néstor O; Young, Diana; Wood, Robert J; Nagpal, Radhika; Stirling, Leia; Goldfield, Eugene C

    2014-01-01

    We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle–foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle–tendon–ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27° (14° dorsiflexion and 13° plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments. (paper)

  15. 40 CFR 63.3546 - How do I establish the emission capture system and add-on control device operating limits during...

    Science.gov (United States)

    2010-07-01

    ... system and add-on control device operating limits during the performance test? 63.3546 Section 63.3546... device or system of multiple capture devices. The average duct static pressure is the maximum operating... Add-on Controls Option § 63.3546 How do I establish the emission capture system and add-on control...

  16. Graphene barristor, a triode device with a gate-controlled Schottky barrier.

    Science.gov (United States)

    Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam

    2012-06-01

    Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

  17. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.

    Science.gov (United States)

    Gurari, Netta; Baud-Bovy, Gabriel

    2014-09-30

    The emergence of commercial haptic devices offers new research opportunities to enhance our understanding of the human sensory-motor system. Yet, commercial device capabilities have limitations which need to be addressed. This paper describes the customization of a commercial force feedback device for displaying forces with a precision that exceeds the human force perception threshold. The device was outfitted with a multi-axis force sensor and closed-loop controlled to improve its transparency. Additionally, two force sensing resistors were attached to the device to measure grip force. Force errors were modeled in the frequency- and time-domain to identify contributions from the mass, viscous friction, and Coulomb friction during open- and closed-loop control. The effect of user interaction on system stability was assessed in the context of a user study which aimed to measure force perceptual thresholds. Findings based on 15 participants demonstrate that the system maintains stability when rendering forces ranging from 0-0.20 N, with an average maximum absolute force error of 0.041 ± 0.013 N. Modeling the force errors revealed that Coulomb friction and inertia were the main contributors to force distortions during respectively slow and fast motions. Existing commercial force feedback devices cannot render forces with the required precision for certain testing scenarios. Building on existing robotics work, this paper shows how a device can be customized to make it reliable for studying the perception of weak forces. The customized and closed-loop controlled device is suitable for measuring force perceptual thresholds. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni–Zn Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu [Electronic Materials; amp,; Dong, Guohua [Electronic Materials; amp,; Zhou, Ziyao [Electronic Materials; amp,; Xian, Dan [Collaborative Innovation Center of High-End Manufacturing; Hu, Zhongqiang [Electronic Materials; amp,; Ren, Wei [Electronic Materials; amp,; Collaborative Innovation Center of High-End Manufacturing; Ye, Zuo-Guang [Electronic Materials; amp,; Department; Chen, Wei [Materials; Jiang, Zhuang-De [Collaborative Innovation Center of High-End Manufacturing; Liu, Ming [Electronic Materials; amp,; Collaborative Innovation Center of High-End Manufacturing

    2017-12-01

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni0.5Zn0.5Fe2O4 (NZFO)/Pb(Mg2/3Nb1/3)-PbTiO3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.

  19. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni-Zn Ferrite.

    Science.gov (United States)

    Xue, Xu; Dong, Guohua; Zhou, Ziyao; Xian, Dan; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Jiang, Zhuang-De; Liu, Ming

    2017-12-13

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni 0.5 Zn 0.5 Fe 2 O 4 (NZFO)/Pb(Mg 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.

  20. Retrofit device and method to improve humidity control of vapor compression cooling systems

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  1. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  2. Three-Axis Attitude Control of Solar Sails Utilising Reflectivity Control Devices

    Science.gov (United States)

    Theodorou, Theodoros

    Solar sails are spacecraft that utilise the Solar Radiation Pressure, the force generated by impinging photons, to propel themselves. Conventional actuators are not suitable for controlling the attitude of solar sails therefore specific attitude control methods have been devised to tackle this. One of these methods is to change the centre of pressure with respect to the center of mass thus creating a torque. Reflectivity Control Devices (RCDs) have been proposed and successfully used to change the centre of pressure. Current methods that utilise RCDs have control authority over two axis only with no ability to control the torque about the normal of the sail surface. This thesis extends the state of the art and demonstrates 3-axis control by generating arbitrary torque vectors within a convex polyhedron. Two different RCD materials are considered, transmission and diffusion technologies both compatible with the proposed concept. A number of metrics have been developed which facilitate the comparison of different sail configurations. One of these metics is the sun map which is a graphic representation of the sun angles for which control authority is maintained. An iterative design process is presented which makes use of the metrics developed and aids in the design of a sail which meets the mission requirements and constraints. Moreover, the effects of different parameters on the performance of the proposed control concept are discussed. For example it is shown that by alternating the angle between the edge and middle RCDs the control authority increases. The concept's scalability has been investigated and a hybrid control scheme has been devised which makes use of both RCDs and reaction wheels. The RCDs are complemented by the reaction wheels to achieve higher slew rates while in turn the RCDs desaturate the reaction wheels. Finally, a number of simulations are conducted to verify the validity of the proposed concept.

  3. The application of charge-coupled device processors in automatic-control systems

    Science.gov (United States)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  4. On the temperature dependence of spin pumping in ferromagnet–topological insulator–ferromagnet spin valves

    Directory of Open Access Journals (Sweden)

    A.A. Baker

    Full Text Available Topological insulators (TIs have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet–TI–ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature. Keywords: Topological insulator, Spin pumping, Spintronics, Ferromagnetic resonance

  5. Slow-release fluoride devices for the control of dental decay.

    Science.gov (United States)

    Chong, Lee-Yee; Clarkson, Jan E; Dobbyn-Ross, Lorna; Bhakta, Smriti

    2018-03-01

    Slow-release fluoride devices have been investigated as a potentially cost-effective method of reducing dental caries in people with high risk of disease. This is the second update of the Cochrane Review first published in 2006 and previously updated in 2014. To evaluate the effectiveness and safety of different types of slow-release fluoride devices on preventing, arresting, or reversing the progression of carious lesions on all surface types of primary (deciduous) and permanent teeth. Cochrane Oral Health's Information Specialist searched the following electronic databases: Cochrane Oral Health's Trials Register (to 23 January 2018); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 12) in the Cochrane Library (searched 23 January 2018); MEDLINE Ovid (1946 to 23 January 2018); and Embase Ovid (1980 to 23 January 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials (23 January 2018). We placed no restrictions on the language or date of publication when searching the electronic databases. Parallel randomised controlled trials (RCTs) comparing slow-release fluoride devices with an alternative fluoride treatment, placebo, or no intervention in all age groups. The main outcome measures sought were changes in numbers of decayed, missing, and filled teeth or surfaces (DMFT/DMFS in permanent teeth or dmft/dmfs in primary teeth), and progression of carious lesions through enamel and into dentine. We conducted data collection and analysis using standard Cochrane review methods. At least two review authors independently performed all the key steps in the review such as screening of abstracts, application of inclusion criteria, data extraction, and risk of bias assessment. We resolved discrepancies through discussions or arbitration by a third or fourth review author. We found no evidence comparing slow

  6. Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism.

    Science.gov (United States)

    Zhao, Shishun; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Feng, Mengmeng; Yang, Qu; Yan, Yuan; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-05-01

    Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. Here, a key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] + [TFSI] - /Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. A reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient of ≈146 Oe V -1 . Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. This work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Data acquisition and control of the 370 TBq high-pressure tritium doping device, TRIBA

    International Nuclear Information System (INIS)

    Pfeil, A.; Heer, H.; Laesser, R.; Klatt, K.H.

    1987-07-01

    The report is arranged as follows: After an introduction, the first section briefly discusses measured values obtained with the 37 TBq (10 3 Ci) doping device with a view to the enhanced measuring range that is achievable with the newly developed 370 TBq (10 4 Ci) device. Sections 3 and 4 explain the technical design of the device and the measuring and control equipment connected to the computer. All following sections are detailed descriptions of the computer configuration and the software. (orig./HP) [de

  8. Control of a powered prosthetic device via a pinch gesture interface

    Science.gov (United States)

    Yetkin, Oguz; Wallace, Kristi; Sanford, Joseph D.; Popa, Dan O.

    2015-06-01

    A novel system is presented to control a powered prosthetic device using a gesture tracking system worn on a user's sound hand in order to detect different grasp patterns. Experiments are presented with two different gesture tracking systems: one comprised of Conductive Thimbles worn on each finger (Conductive Thimble system), and another comprised of a glove which leaves the fingers free (Conductive Glove system). Timing tests were performed on the selection and execution of two grasp patterns using the Conductive Thimble system and the iPhone app provided by the manufacturer. A modified Box and Blocks test was performed using Conductive Glove system and the iPhone app provided by Touch Bionics. The best prosthetic device performance is reported with the developed Conductive Glove system in this test. Results show that these low encumbrance gesture-based wearable systems for selecting grasp patterns may provide a viable alternative to EMG and other prosthetic control modalities, especially for new prosthetic users who are not trained in using EMG signals.

  9. Present status of device controls and hardware interfaces for the RCNP ring cyclotron

    International Nuclear Information System (INIS)

    Yamazaki, T.; Tamura, K.; Hosono, K.

    1994-01-01

    Since the first proton beam from the injector AVF cyclotron was injected to the ring cyclotron in 1991, the computer control system has been used for the beam acceleration of the ring cyclotron. Some device control modules have been updated, and computer configuration has been changed in 1992. Total control system performs basic facilities almost satisfactory under actual cyclotron operation. (author)

  10. Nuclear reactor control device by vertical displacement of neutron absorber scram rods

    International Nuclear Information System (INIS)

    Defaucheux, Jacques; Pasqualini, Gilbert; Wiart, Albert; Martin, Jean.

    1981-01-01

    Nuclear reactor control system by vertical displacement of an assembly absorbing the neutrons inside a reactor core and drop of the absorbing assembly in maximum insertion position under the effect of its own weight for emergency shutdown. The absorbing assembly is secured to the bottom end of a vertical control rod, the displacement of which is actuated by an electro-magnetic device [fr

  11. Fuel inspection device

    International Nuclear Information System (INIS)

    Tsuji, Tadashi.

    1990-01-01

    The fuel inspection device of the present invention has a feature of obtaining an optimum illumination upon fuel rod interval inspection operation in a fuel pool. That is, an illumination main body used underwater is connected to a cable which is led out on a floor. A light control device is attached to the other end of the cable and an electric power cable is connected to the light control device. A light source (for example, incandescent lamp) is incorporated in the casing of the illumination main body, and a diffusion plate is disposed at the front to provide a plane light source. The light control device has a light control knob capable of remote-controlling the brightness of the light of the illumination main body. In the fuel inspection device thus constituted, halation is scarcely caused on the image screen upon inspection of fuels by a submerged type television camera to facilitate control upon inspection. Accordingly, efficiency of the fuel inspection can be improved to shorten the operation time. (I.S.)

  12. Spacer type mediated tunable spin crossover (SCO) characteristics of pyrene decorated 2,6-bis(pyrazol-1-yl)pyridine (bpp) based Fe(ii) molecular spintronic modules.

    Science.gov (United States)

    Kumar, Kuppusamy Senthil; Šalitroš, Ivan; Moreno-Pineda, Eufemio; Ruben, Mario

    2017-08-14

    A simple "isomer-like" variation of the spacer group in a set of Fe(ii) spin crossover (SCO) complexes designed to probe spin state dependence of electrical conductivity in graphene-based molecular spintronic junctions led to the observation of remarkable variations in the thermal- and light-induced magnetic characteristics, paving a simple route for the design of functional SCO complexes with different temperature switching regimes based on a 2,6-bis(pyrazol-1-yl)pyridine ligand skeleton.

  13. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  14. Device controllers using an industrial personal computer of the PF 2.5-GeV Electron Linac at KEK

    International Nuclear Information System (INIS)

    Otake, Yuji; Yokota, Mitsuhiro; Kakihara, Kazuhisa; Ogawa, Yujiro; Ohsawa, Satoshi; Shidara, Tetsuo; Nakahara, Kazuo

    1992-01-01

    Device controllers for electron guns and slits using an industrial personal computer have been designed and installed in the Photon Factory 2.5-GeV Electron Linac at KEK. The design concept of the controllers is to realize a reliable system and good productivity of hardware and software by using an industrial personal computer and a programmable sequence controller. The device controllers have been working reliably for several years. (author)

  15. A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen level.

    Science.gov (United States)

    Lee, Seung Yeob; Yang, Sung

    2018-04-25

    Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.

  16. DOE-EPSCoR Final Report Period: September 1, 2008- August 31, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram [Univ. of Puerto Rico, Rio Piedras, PR (United States); Gomez, M. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Morell, G. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Fonseca, L. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Ishikawa, Y. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Palai, R. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Thomas, R. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Kumar, A. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Velev, J. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Makarov, V. [Univ. of Puerto Rico, Rio Piedras, PR (United States); Perales, O. [Univ. of Puerto Rico, Mayaguez, PR (United States); Tomar, M. S. [Univ. of Puerto Rico, Mayaguez, PR (United States); Otano, W. [Univ. of Puerto Rico, Cayey, PR (United States)

    2016-10-31

    In this project, multifunctional nanostructured spintronic and magnetoelectric materials were investigated by experimental and computational efforts for applications in energy efficient electronic systems that integrate functionalities and thus have the potential to enable a new generation of faster responding devices and increased integration densities. The team systematically investigated transition metal (TM)-doped ZnO nanostructures, silicide nanorods, magnetoelectric oxides, and ferroelectric/ferromagnetic heterostructures. In what follows, we report the progress made by researchers during the above period in developing and understanding of 1) Spintronics nanostructures; 2) Resistive switching phenomenon in oxides for memory devices; 3) Magnetoelectric multiferroics; 4) Novel high-k gate oxides for logic devices; 5) Two dimensional (2D) materials; and 6) Theoretical studies in the above fields.

  17. DOE-EPSCoR Final Report Period: September 1, 2008- August 31, 2016

    International Nuclear Information System (INIS)

    Katiyar, Ram; Gomez, M.; Morell, G.; Fonseca, L.; Ishikawa, Y.; Palai, R.; Thomas, R.; Kumar, A.; Velev, J.; Makarov, V.; Perales, O.; Tomar, M. S.; Otano, W.

    2016-01-01

    In this project, multifunctional nanostructured spintronic and magnetoelectric materials were investigated by experimental and computational efforts for applications in energy efficient electronic systems that integrate functionalities and thus have the potential to enable a new generation of faster responding devices and increased integration densities. The team systematically investigated transition metal (TM)-doped ZnO nanostructures, silicide nanorods, magnetoelectric oxides, and ferroelectric/ferromagnetic heterostructures. In what follows, we report the progress made by researchers during the above period in developing and understanding of 1) Spintronics nanostructures; 2) Resistive switching phenomenon in oxides for memory devices; 3) Magnetoelectric multiferroics; 4) Novel high-k gate oxides for logic devices; 5) Two dimensional (2D) materials; and 6) Theoretical studies in the above fields.

  18. Radiation as a microbiological contamination control of drugs, cosmetics and medical devices

    International Nuclear Information System (INIS)

    Ishizeki, Chuichi

    1985-01-01

    This paper deals with current status of radiation sterilization or disinfection of drugs, cosmetics, their materials, and medical devices, and with quality control as a tool for securing microbiological safety, especially current status of sterilization tests. Ointment containing tetracyclin, steroid hormones, gelatin, and enzymes are presented as drug samples to be irradiated, and explanations for radiation sterilization of these drugs are provided. An outline of the application of radiation in cosmetics and medical devices is given. Issues are also provided from the viewpoint of safey and effectiveness of radiation sterilization. (Namekawa, K.)

  19. Design of central control system for large helical device (LHD)

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kaneko, H.; Yamaguchi, S.; Watanabe, K.Y.; Taniguchi, Y.; Motojima, O.

    1993-11-01

    The world largest superconducting fusion machine LHD (Large Helical Device) is under construction in Japan, aiming at steady state operations. Its basic control system consists of UNIX computers, FDDI/Ethernet LANs, VME multiprocessors and VxWorks real-time OS. For flexible and reliable operations of the LHD machine a cooperative distributed system with more than 30 experimental equipments is controlled by the central computer and the main timing system, and is supervised by the main protective interlock system. Intelligent control systems, such as applications of fuzzy logic and neural networks, are planed to be adopted for flexible feedback controls of plasma configurations besides the classical PID control scheme. Design studies of its control system and related R and D programs with coil-plasma simulation systems are now being performed. The construction of the LHD Control Building in a new site will begin in 1995 after finishing the construction of the LHD Experimental Building, and the hardware construction of the LHD central control equipments will be started in 1996. A first plasma production by means of this control system is expected in 1997. (author)

  20. Realization of the Energy Saving of the Environmental Examination Device Temperature Control System in Consideration of Temperature Characteristics

    Science.gov (United States)

    Onogaki, Hitoshi; Yokoyama, Shuichi

    The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.