WorldWideScience

Sample records for controlled spatial separation

  1. Spatial separation and entanglement of identical particles

    Science.gov (United States)

    Cunden, Fabio Deelan; di Martino, Sara; Facchi, Paolo; Florio, Giuseppe

    2014-04-01

    We reconsider the effect of indistinguishability on the reduced density operator of the internal degrees of freedom (tracing out the spatial degrees of freedom) for a quantum system composed of identical particles located in different spatial regions. We explicitly show that if the spin measurements are performed in disjoint spatial regions then there are no constraints on the structure of the reduced state of the system. This implies that the statistics of identical particles has no role from the point of view of separability and entanglement when the measurements are spatially separated. We extend the treatment to the case of n particles and show the connection with some recent criteria for separability based on subalgebras of observables.

  2. Spatial scale separation in regional climate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Feser, F.

    2005-07-01

    In this thesis the concept of scale separation is introduced as a tool for first improving regional climate model simulations and, secondly, to explicitly detect and describe the added value obtained by regional modelling. The basic idea behind this is that global and regional climate models have their best performance at different spatial scales. Therefore the regional model should not alter the global model's results at large scales. The for this purpose designed concept of nudging of large scales controls the large scales within the regional model domain and keeps them close to the global forcing model whereby the regional scales are left unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of the different simulations compared to the standard approach ensemble that occasionally shows large differences for the individual realisations. For climate hindcasts this method leads to results which are on average closer to observed states than the standard approach. Also the analysis of the regional climate model simulation can be improved by separating the results into different spatial domains. This was done by developing and applying digital filters that perform the scale separation effectively without great computational effort. The separation of the results into different spatial scales simplifies model validation and process studies. The search for 'added value' can be conducted on the spatial scales the regional climate model was designed for giving clearer results than by analysing unfiltered meteorological fields. To examine the skill of the different simulations pattern correlation coefficients were calculated between the global reanalyses, the regional climate model simulation and, as a reference, of an operational regional weather analysis. The regional climate model simulation driven with large-scale constraints achieved a high increase in similarity to the operational analyses for medium-scale 2 meter

  3. Spatial interference from well-separated split condensates

    International Nuclear Information System (INIS)

    Zawadzki, M. E.; Griffin, P. F.; Riis, E.; Arnold, A. S.

    2010-01-01

    We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference between two condensates axially separated by up to 0.25 mm - the largest separation observed with this kind of interferometer. Clear planar fringes are observed using standard (i.e., nontomographic) resonant absorption imaging. The effect of a weak inverted parabola potential on fringe separation is observed and agrees well with theory.

  4. First spatial isotopic separation of relativistic uranium projectile fragments

    International Nuclear Information System (INIS)

    Magel, A.; Voss, B.; Armbruster, P.; Aumann, T.; Clerc, H.G.; Czajkowski, S.; Folger, H.; Grewe, A.; Hanelt, E.; Heinz, A.; Irnich, H.; Jong, M. de; Junghans, A.; Nickel, F.; Pfuetzner, M.; Roehl, C.; Scheidenberger, C.; Schmidt, K.H.; Schwab, W.; Steinhaeuser, S.; Suemmerer, K.; Trinder, W.; Wollnik, H.

    1994-07-01

    Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z=92. This achievement has opened a new area in heavy-ion research and applications. (orig.)

  5. Entanglement between two spatially separated atomic modes

    Science.gov (United States)

    Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten

    2018-04-01

    Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

  6. Tuning of the Hanle effect from EIT to EIA using spatially separated probe and control beams.

    Science.gov (United States)

    Bhattarai, Mangesh; Bharti, Vineet; Natarajan, Vasant

    2018-05-14

    We demonstrate a technique for continuous tuning of the Hanle effect from electromagnetically induced transparency (EIT) to electromagnetically induced absorption (EIA) by changing the polarization ellipticity of a control beam. In contrast to previous work in this field, we use spatially separated probe and control beams. The experiments are done using magnetic sublevels of the F g  = 4 → F e  = 5 closed hyperfine transition in the 852 nm D 2 line of 133 Cs. The atoms are contained in a room temperature vapor cell with anti-relaxation (paraffin) coating on the walls. The paraffin coating is necessary for the atomic coherence to be transported between the beams. The experimental results are supported by a density-matrix analysis of the system, which also explains the observed amplitude and zero-crossing of the resonances. Such continuous tuning of the sign of a resonance has important applications in quantum memory and other precision measurements.

  7. Controlling Separation in Turbomachines

    Science.gov (United States)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  8. Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties

    International Nuclear Information System (INIS)

    Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M

    2011-01-01

    The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.

  9. Plasmons in spatially separated double-layer graphene nanoribbons

    International Nuclear Information System (INIS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-01-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons

  10. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation

    DEFF Research Database (Denmark)

    Sendroiu, I.E.; Mertens, Stijn; Schiffrin, D.J.

    2006-01-01

    The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface....... Variation of the ligand chain length provides control over the interparticle separation in the aggregates. The UV-visible spectra consist typically of a single particle band and a secondary band at higher wavelengths associated with the formation of aggregates in solution. The position of the latter depends...

  11. Simultaneous Multiple-Location Separation Control

    Science.gov (United States)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  12. Individual Differences in Spatial Pattern Separation Performance Associated with Healthy Aging in Humans

    Science.gov (United States)

    Stark, Shauna M.; Yassa, Michael A.; Stark, Craig E. L.

    2010-01-01

    Rodent studies have suggested that "pattern separation," the ability to distinguish among similar experiences, is diminished in a subset of aged rats. We extended these findings to the human using a task designed to assess spatial pattern separation behavior (determining at time of test whether pairs of pictures shown during the study were in the…

  13. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  14. Deterministic Generation of Quantum State Transfer Between Spatially Separated Single Molecule Magnets

    International Nuclear Information System (INIS)

    Song Peijun; Lue Xinyou; Huang Pei; Hao Xiangying; Yang Xiaoxue

    2010-01-01

    We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum electrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network. (general)

  15. Blind Separation of Nonstationary Sources Based on Spatial Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Zhang Yimin

    2006-01-01

    Full Text Available Blind source separation (BSS based on spatial time-frequency distributions (STFDs provides improved performance over blind source separation methods based on second-order statistics, when dealing with signals that are localized in the time-frequency (t-f domain. In this paper, we propose the use of STFD matrices for both whitening and recovery of the mixing matrix, which are two stages commonly required in many BSS methods, to provide robust BSS performance to noise. In addition, a simple method is proposed to select the auto- and cross-term regions of time-frequency distribution (TFD. To further improve the BSS performance, t-f grouping techniques are introduced to reduce the number of signals under consideration, and to allow the receiver array to separate more sources than the number of array sensors, provided that the sources have disjoint t-f signatures. With the use of one or more techniques proposed in this paper, improved performance of blind separation of nonstationary signals can be achieved.

  16. Work control in separations facilities

    International Nuclear Information System (INIS)

    Olson, L.D.

    1990-01-01

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment

  17. Analysis of multi-scale spatial separation in a block-type thorium-loaded helium-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Huang, Jie; Ding, Ming

    2017-01-01

    Highlights: • Four-level of spatial separation is described in a block-type thorium-loaded HTR. • A traditional two-step calculation scheme is used to get the neutronic performance. • Fuel cycle cost is calculated by the levelised lifetime cost method. • Fuel cycle cost decreases with the increase of separation level or thorium content. • Effective enrichment basically determines the fuel cycle cost. - Abstract: With nuclear energy’s rapid development in recent years, supply of nuclear fuel has become increasingly important. Thorium has re-gained attention because of its abundant reserves and excellent physical properties. Compared to the homogeneous Th/U MOX fuel, separation of thorium and uranium in space is a better use of thorium. Therefore, this paper describes four-level spatial separation – no separation, tristructural-isotropic (TRISO) level, channel level and block level – in a block-type thorium-loaded helium-cooled high-temperature reactor (HTR). A traditional two-step calculation scheme, lattice calculation followed by core calculation, is used to get the neutronic performance of the equilibrium cycle, including uranium enrichment, mass of fuel, effective multiplication factor, and average conversion ratio. Based on these data, the fuel cycle cost of different-scale spatial separation can be calculated by the levelised lifetime cost method as a function of thorium content. As the separation level increases from no separation to channel level, the effective enrichment decreases 15% due to the increase of resonance escape probability. So there is a 13% drop for the fuel cycle cost. For TRISO-level separation, as the thorium content increases from 9 to 57%, the effective enrichment decreases 14% because of the superior breeding capacity of U-233. As a result, the fuel cycle cost also has about a 12% decrease. From the perspective of fuel cycle economics, channel-level separation with 60% thorium content is suggested.

  18. Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter

    Directory of Open Access Journals (Sweden)

    Klaubert Dieter H

    2008-04-01

    Full Text Available Abstract Background The ability to specifically label proteins within living cells can provide information about their dynamics and function. To study a membrane protein, we fused a multi-functional reporter protein, HaloTag®, to the extracellular domain of a truncated integrin. Results Using the HaloTag technology, we could study the localization, trafficking and processing of an integrin-HaloTag fusion, which we showed had cellular dynamics consistent with native integrins. By labeling live cells with different fluorescent impermeable and permeable ligands, we showed spatial separation of plasma membrane and internal pools of the integrin-HaloTag fusion, and followed these protein pools over time to study bi-directional trafficking. In addition to combining the HaloTag reporter protein with different fluorophores, we also employed an affinity tag to achieve cell capture. Conclusion The HaloTag technology was used successfully to study expression, trafficking, spatial separation and real-time translocation of an integrin-HaloTag fusion, thereby demonstrating that this technology can be a powerful tool to investigate membrane protein biology in live cells.

  19. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    Science.gov (United States)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  20. Some thoughts on separation control strategies

    Indian Academy of Sciences (India)

    Flow separation generally leads to increased energy losses, instability and so ... Separation control strategy often refers to a clever (or intelligent) fluid ... bubble will have a certain influence, directly or indirectly, on the development of the shear.

  1. Investigation and Comparison of Separate Meter-In Separate Meter-Out Control Strategies

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Skoubo, Tobias

    2014-01-01

    In the later years, there has been an increased focus on new valve types, which yield the possibility to do Separate Meter-In Separate Meter-Out (SMISMO) control. This includes both digital valves, but proportional valves with separate metering spools and build in pressure sensors are also emerging....... The possibility to independently control the meter-in and meter-out side not only increase the functionality of the system, but also opens up for better performance and/or lowered energy consumption. The focus of the current paper is therefore on investigation and comparison of what may be obtained using...

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of wavefront distortions by the method of aperture sounding with spatially separated channels

    Science.gov (United States)

    Prilepskiy, Boris V.; Alikhanov, Alexey N.; Berchenko, Evgeniy A.; Kiselev, Vladimir Yu; Narusbek, Ernest A.; Filatov, Aleksander S.

    2005-08-01

    Features of the formation of signals in wavefront sensors with the single-frequency light wave phase modulation and spatial separation of control channels are considered. Analysis is performed for sensors in which phase modulation is governed by a controlled element located in the pupil of the optical system of a sensor or in the focal plane of the objective of this system. Peculiarities of the signal formation for a tilted wavefront are considered separately for internal points of the exit pupil in the case of light wave phase modulation in the pupil. It is shown that a signal at the modulation frequency in these wavefront sensors for points located far from the pupil boundaries is determined by the wavefront curvature.

  3. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  4. Separation control of NACA0015 airfoil using plasma actuators

    Science.gov (United States)

    Harada, Daisuke; Sakakibara, Jun

    2017-11-01

    Separation control of NACA0015 airfoil by means of plasma actuators was investigated. Plasma actuators in spanwise intermittent layout on the suction surface of the airfoil were activated with spanwise phase difference φ = 0 or φ = π in the case of dimensionless burst frequencyF+ = 6 and F+ = 0.5 at Re = 6.3 ×104 . The lift and drag of the airfoil were measured using a two component force balance. The flow around the airfoil was measured by PIV analysis. In the condition of F+ = 6 and φ = π at around stall angle, which is 10 degrees, the lift-to-drag ratio was higher than that ofF+ = 6 and φ = 0 . Therefore, it was confirmed that aerodynamic characteristics of the airfoil improved by disturbances with temporal and spatial phase difference.

  5. Chemistry with spatial control using particles and streams†

    Science.gov (United States)

    Kalinin, Yevgeniy V.; Murali, Adithya

    2012-01-01

    Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348

  6. Investigation of Separate Meter-In Separate Meter-Out Control Strategies for Systems with Over Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Hansen, Rico Hjerm

    2010-01-01

    to overcome this problem, but it typically implies higher energy consumption and/or decreased control performance. With the development of robust sensors and new valve types with separate meter-in, separate meter-out control it is, however, possible to overcome these stability problems in a much more...... intelligent way, also adding increased functionality to the system. The focus of the current paper is therefore on investigation of different control strategies for Separate Meter-In Separate Meter-Out (SMISMO) control of general single axis hydraulic system with a differential cylinder and an over......-centre valve included. The paper first presents a general model of the system considered, which is experimentally verified. This is followed by a discussion of different control strategies and their implications. For each of the control strategies controllers are described, taking into account the dynamics...

  7. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  8. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    Science.gov (United States)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  9. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  10. Intelligent supervision control for the VASPS separator

    Energy Technology Data Exchange (ETDEWEB)

    Melo, A.V.; Mendes, J.R.P. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: jricardo@dep.fem.unicamp.br; Serapiao, A.B.S [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Rio Claro, SP (Brazil)

    2007-10-15

    The Vertical Annular Separation and Pumping System, VASPS, has been applied to low-pressure subsea wells with high gas production potential. In this system, the separation is carried out on the sea bed, thus allowing the monophase transmission through different pipelines. In the present work, an analysis has been established between two conceptually distinct models for the control system, which is under development and uses the Fuzzy Control technique for the Electrical Submersible Pump (ESP) speed selection. The contrast is held on the objective of each controller, placing the operational performance against the stability of the control signal, which leads to the exploration of many specific aspects of the system, its behavior and requirements. (author)

  11. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  12. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.

    Directory of Open Access Journals (Sweden)

    Nadine Tinne

    Full Text Available The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers.

  13. The Economics of Storage, Transmission and Drought: Integrating Variable Wind Power into Spatially Separated Electricity Grids

    NARCIS (Netherlands)

    Scora, H.; Sopinka, A.; Kooten, van G.C.

    2012-01-01

    To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the

  14. Full Duplex Emulation via Spatial Separation of Half Duplex Nodes in a Planar Cellular Network

    DEFF Research Database (Denmark)

    Thomsen, Henning; Kim, Dong Min; Popovski, Petar

    2016-01-01

    A Full Duplex Base Station (FD-BS) can be used to serve simultaneously two Half-Duplex (HD) Mobile Stations (MSs), one working in the uplink and one in the downlink, respectively. The same functionality can be realized by having two interconnected and spatially separated Half Duplex Base Stations...... (HD-BSs), which is a scheme termed CoMPflex (CoMP for In-Band Wireless Full Duplex). A FD-BS can be seen as a special case of CoMPflex with separation distance zero. In this paper we study the performance of CoMPflex in a two-dimensional cellular scenario using stochastic geometry and compare...

  15. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  16. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  17. Separate first- and second-order processing is supported by spatial summation estimates at the fovea and eccentrically.

    Science.gov (United States)

    Sukumar, Subash; Waugh, Sarah J

    2007-03-01

    We estimated spatial summation areas for the detection of luminance-modulated (LM) and contrast-modulated (CM) blobs at the fovea, 2.5, 5 and 10 deg eccentrically. Gaussian profiles were added or multiplied to binary white noise to create LM and CM blob stimuli and these were used to psychophysically estimate detection thresholds and spatial summation areas. The results reveal significantly larger summation areas for detecting CM than LM blobs across eccentricity. These differences are comparable to receptive field size estimates made in V1 and V2. They support the notion that separate spatial processing occurs for the detection of LM and CM stimuli.

  18. Who plans for health improvement? SEA, HIA and the separation of spatial planning and health planning

    International Nuclear Information System (INIS)

    Bond, Alan; Cave, Ben; Ballantyne, Rob

    2013-01-01

    This study examines whether there is active planning for health improvement in the English spatial planning system and how this varies across two regions using a combination of telephone surveys and focus group interviews in 2005 and 2010. The spatial planning profession was found to be ill-equipped to consider the health and well-being implications of its actions, whilst health professionals are rarely engaged and have limited understanding and aspirations when it comes to influencing spatial planning. Strategic Environmental Assessment was not considered to be successful in integrating health into spatial plans, given it was the responsibility of planners lacking the capacity to do so. For their part, health professionals have insufficient knowledge and understanding of planning and how to engage with it to be able to plan for health gains rather than simply respond to health impacts. HIA practice is patchy and generally undertaken by health professionals outside the statutory planning framework. Thus, whilst appropriate assessment tools exist, they currently lack a coherent context within which they can function effectively and the implementation of the Kiev protocol requiring the engagement of health professionals in SEA is not to likely improve the consideration of health in planning while there continues to be separation of functions between professions and lack of understanding of the other profession. -- Highlights: ► Health professionals have limited aspirations for health improvement through the planning system. ► Spatial planners are ill-equipped to understand the health and well-being implications of their activities. ► SEA and HIA currently do not embed health consideration in planning decisions. ► The separation of health and planning functions is problematic for the effective conduct of SEA and/or HIA

  19. Who plans for health improvement? SEA, HIA and the separation of spatial planning and health planning

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Alan, E-mail: alan.bond@uea.ac.uk [InteREAM (Interdisciplinary Research in Environmental Assessment and Management), School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ (United Kingdom); Cave, Ben, E-mail: ben.cave@bcahealth.co.uk [Ben Cave Associates Ltd., Leeds (United Kingdom); Ballantyne, Rob, E-mail: robdballantyne@gmail.com [Planning and Health Consultant, Oxfordshire (United Kingdom)

    2013-09-15

    This study examines whether there is active planning for health improvement in the English spatial planning system and how this varies across two regions using a combination of telephone surveys and focus group interviews in 2005 and 2010. The spatial planning profession was found to be ill-equipped to consider the health and well-being implications of its actions, whilst health professionals are rarely engaged and have limited understanding and aspirations when it comes to influencing spatial planning. Strategic Environmental Assessment was not considered to be successful in integrating health into spatial plans, given it was the responsibility of planners lacking the capacity to do so. For their part, health professionals have insufficient knowledge and understanding of planning and how to engage with it to be able to plan for health gains rather than simply respond to health impacts. HIA practice is patchy and generally undertaken by health professionals outside the statutory planning framework. Thus, whilst appropriate assessment tools exist, they currently lack a coherent context within which they can function effectively and the implementation of the Kiev protocol requiring the engagement of health professionals in SEA is not to likely improve the consideration of health in planning while there continues to be separation of functions between professions and lack of understanding of the other profession. -- Highlights: ► Health professionals have limited aspirations for health improvement through the planning system. ► Spatial planners are ill-equipped to understand the health and well-being implications of their activities. ► SEA and HIA currently do not embed health consideration in planning decisions. ► The separation of health and planning functions is problematic for the effective conduct of SEA and/or HIA.

  20. Perceptual and Cognitive Load Interact to Control the Spatial Focus of Attention

    Science.gov (United States)

    Linnell, Karina J.; Caparos, Serge

    2011-01-01

    Caparos and Linnell (2009, 2010) used a variable-separation flanker paradigm to show that (a) when cognitive load is low, increasing perceptual load causes spatial attention to focus and (b) when perceptual load is high, decreasing cognitive load causes spatial attention to focus. Here, we tested whether the effects of perceptual and cognitive…

  1. Visual Spatial Attention Training Improve Spatial Attention and Motor Control for Unilateral Neglect Patients.

    Science.gov (United States)

    Wang, Wei; Ji, Xiangtong; Ni, Jun; Ye, Qian; Zhang, Sicong; Chen, Wenli; Bian, Rong; Yu, Cui; Zhang, Wenting; Shen, Guangyu; Machado, Sergio; Yuan, Tifei; Shan, Chunlei

    2015-01-01

    To compare the effect of visual spatial training on the spatial attention to that on motor control and to correlate the improvement of spatial attention to motor control progress after visual spatial training in subjects with unilateral spatial neglect (USN). 9 cases with USN after right cerebral stroke were randomly divided into Conventional treatment group + visual spatial attention and Conventional treatment group. The Conventional treatment group + visual spatial attention received conventional rehabilitation therapy (physical and occupational therapy) and visual spatial attention training (optokinetic stimulation and right half-field eye patching). The Conventional treatment group was only treated with conventional rehabilitation training (physical and occupational therapy). All patients were assessed by behavioral inattention test (BIT), Fugl-Meyer Assessment of motor function (FMA), equilibrium coordination test (ECT) and non-equilibrium coordination test (NCT) before and after 4 weeks treatment. Total scores in both groups (without visual spatial attention/with visual spatial attention) improved significantly (BIT: P=0.021/P=0.000, d=1.667/d=2.116, power=0.69/power=0.98, 95%CI[-0.8839,45.88]/95%CI=[16.96,92.64]; FMA: P=0.002/P=0.000, d=2.521/d=2.700, power=0.93/power=0.98, 95%CI[5.707,30.79]/95%CI=[16.06,53.94]; ECT: P=0.002/ P=0.000, d=2.031/d=1.354, power=0.90/power=0.17, 95%CI[3.380,42.61]/95%CI=[-1.478,39.08]; NCT: P=0.013/P=0.000, d=1.124/d=1.822, power=0.41/power=0.56, 95%CI[-7.980,37.48]/95%CI=[4.798,43.60],) after treatment. Among the 2 groups, the group with visual spatial attention significantly improved in BIT (P=0.003, d=3.103, power=1, 95%CI[15.68,48.92]), FMA of upper extremity (P=0.006, d=2.771, power=1, 95%CI[5.061,20.14]) and NCT (P=0.010, d=2.214, power=0.81-0.90, 95%CI[3.018,15.88]). Correlative analysis shows that the change of BIT scores is positively correlated to the change of FMA total score (r=0.77, Pvisual spatial training could

  2. Using spatial context to support prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Finnerty, Dannielle; Remington, Roger W

    2011-12-01

    The aim was to examine whether prospective memory error and response costs to ongoing tasks in an air traffic control simulation could be reduced by providing spatial context. Prospective memory refers to remembering to perform an intended action at an appropriate point in the future. Failures of prospective memory can occur in air traffic control. For this study, three conditions of participants performed an air traffic control task that required them to accept and hand off aircraft and to prevent conflicts. The prospective memory task required participants to remember to press an alternative key rather than the routine key when accepting target aircraft. A red line separated the display into upper and lower regions. Participants in the context condition were told that the prospective memory instruction would apply only to aircraft approaching from one region (upper or lower). Those in the standard condition were not provided this information. In the control condition, participants did not have to perform the prospective memory task. In the context condition, participants made fewer prospective memory errors than did those in the standard condition and made faster acceptance decisions for aircraft approaching from irrelevant compared with relevant regions. Costs to hand-off decision time were also reduced in the context condition. Spatial context provided no benefit to conflict detection. Participants could partially localize their allocation of attentional resources to the prospective memory task to relevant display regions. The findings are potentially applicable to air traffic control, whereby regularities in airspace structure and standard traffic flows allow controllers to anticipate the location of specific air traffic events.

  3. Spatially Controlled Relay Beamforming

    Science.gov (United States)

    Kalogerias, Dionysios

    This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant

  4. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Mandrosov, V I [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  5. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    Science.gov (United States)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20130014930'); toggleEditAbsImage('author_20130014930_show'); toggleEditAbsImage('author_20130014930_hide'); "> style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20130014930_show"> style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20130014930_hide">

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and

  6. The CEBAF separator cavity resonance control system

    International Nuclear Information System (INIS)

    M. Wissmann; C. Hovater; A. Guerra; T. Plawski

    2005-01-01

    The CEBAF energy upgrade will increase the maximum beam energy from 6 GeV to 12 GeV available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three halls. The resulting increase in RF separator cavity gradient and subsequent increase in RF power needed for these higher energies will require the cavities to have active resonance control. Currently, at the present 4 to 6 GeV energies, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW) which is maintained at a constant temperature of 95 Fahrenheit. This approach is no longer feasible and an active resonance control system that controls both water temperature and flow has been designed and built. The system uses a commercial PLC with embedded PID controls to regulate water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately, closed loop control will be maintained by monitoring each cavity's reflected power. This paper describes this system

  7. On spatial spillover in feedforward and feedback noise control

    Science.gov (United States)

    Xie, Antai; Bernstein, Dennis

    2017-03-01

    Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.

  8. Automatic Generation of Complex Spatial Trajectories of the UAV and Synthesis of Control

    Directory of Open Access Journals (Sweden)

    S. B. Tkachev

    2015-01-01

    function of energy. The full trajectory is assembled from the separated segments which have various types of parameterization.Programmed and nonlinear stabilizing controls are calculated for the designed spatial trajectory. The efficiency of the developed algorithms is shown using computer simulations.

  9. Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets.

    Science.gov (United States)

    Xiao, Han-Shuang; Dong, Jin-Ling; Wang, Liang-Yu; Zhao, Li-Jun; Wang, Feng; Zhang, Yun-Hong

    2008-12-01

    We report on the investigation of the phase separation of individual seawater droplets in the efflorescence processes with the spatially resolved Raman system. Upon decreasing the relative humidity (RH), CaSO4.0.5H2O separated out foremost fromthe droplet atan unexpectedly high RH of approcimately 90%. Occasionally, CaSO4.2H2O substituted for CaSO4.O.5H2O crystallizing first at approximately 78% RH. Relatively large NaCI solids followed to crystallize at approximately 55% RH and led to the great loss of the solution. Then, the KMgCl3.6H2O crystallites separated out from the residual solutions, adjacentto NaCl at approximately 44% RH. Moreover, a shell structure of dried sea salt particle was found to form at low RHs, with the NaCl crystals in the core and minor supersaturated solutions covered with MgSO4 gel coating on the surface. Ultimately, the shielded solution partly effloresced into MgSO4 hydrates at very dry state (<5% RH).

  10. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.

    2015-05-01

    211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  11. Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game

    International Nuclear Information System (INIS)

    Xia, Chengyi; Miao, Qin; Zhang, Juanjuan

    2013-01-01

    Highlights: • We present a novel game model in which interaction and learning neighborhood is not identical. • The separation between interaction and learning neighborhood can largely influence the cooperative behaviors. • Monte Carlo simulations are utilized to verify the evolution of cooperation. • When IN is fixed to be 4, medium-sized LN = 8 is the optimal size to promote the cooperation. • When LN is fixed to be 4, the cooperation can also be highly enhanced when IN > 4. -- Abstract: The evolutionary game theory is a very powerful tool to understand the collective cooperation behavior in many real-world systems. In the spatial game model, the payoff is often first obtained within a specific neighborhood (i.e., interaction neighborhood) and then the focal player imitates or learns the behavior of a randomly selected one inside another neighborhood which is named after the learning neighborhood. However, most studies often assume that the interaction neighborhood is identical with the learning neighborhood. Beyond this assumption, we present a spatial prisoner’s dilemma game model to discuss the impact of separation between interaction neighborhood and learning neighborhood on the cooperative behaviors among players on the square lattice. Extensive numerical simulations demonstrate that separating the interaction neighborhood from the learning neighborhood can dramatically affect the density of cooperators (ρ C ) in the population at the stationary state. In particular, compared to the standard case, we find that the medium-sized learning (interaction) neighborhood allows the cooperators to thrive and substantially favors the evolution of cooperation and ρ C can be greatly elevated when the interaction (learning) neighborhood is fixed, that is, too little or much information is not beneficial for players to make the contributions for the collective cooperation. Current results are conducive to further analyzing and understanding the emergence of

  12. Control of spatial discretisation in coastal oil spill modelling

    OpenAIRE

    Li, Yang

    2007-01-01

    Spatial discretisation plays an important role in many numerical environmental models. This paper studies the control of spatial discretisation in coastal oil spill modelling with a view to assure the quality of modelling outputs for given spatial data inputs. Spatial data analysis techniques are effective for investigating and improving the spatial discretisation in different phases of the modelling. Proposed methods are implemented and tested with experimental models. A new “Automatic Searc...

  13. Particle detector spatial resolution

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs

  14. Professional mathematicians differ from controls in their spatial-numerical associations.

    Science.gov (United States)

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  15. Transient performance of integrated SOFC system including spatial temperature control

    OpenAIRE

    Mueller, F; Fardadi, M; Shaffer, B; Brouwer, J; Jabbari, F

    2010-01-01

    Spatial temperature feedback control has been developed for a simulated integrated non-pressurized simple cycle solid oxide fuel cell (SOFC) system. The fuel cell spatial temperature feedback controller is based on (1) feed-forward set-points that minimize temperature variation in the fuel cell electrode-electrolyte solid temperature profile for the system operating power range, and (2) decentralized proportional-integral based feedback to maintain the fuel cell spatial temperature profile du...

  16. Active Control of Flow Separation Over an Airfoil

    Science.gov (United States)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  17. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...... applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics....

  18. The effect of fire on spatial separation between wolves and caribou

    Directory of Open Access Journals (Sweden)

    Hugh S. Robinson

    2012-03-01

    Full Text Available Fire management is an important conservation tool in Canada’s national parks. Fires can benefit some species, while others may be negatively impacted. We used GPS and VHF collar data for 47 wolves from 12 separate packs and 153 caribou from 5 separate herds, and resource selection analysis to model the effects of fire on these species’ habitat and potential interactions. Resource selection modeling showed that wolves select for burned areas and areas close to burns, presumably due to the presence of primary prey (i.e., elk and moose, while caribou avoid burns. Fire reduced the amount of high quality caribou habitat (a direct effect, but also increased the probability of wolf-caribou overlap (an indirect effect. We delineated a spatial index of caribou “safe zones” (areas of low overlap with wolves, and found a positive relationship between the proportion of a herd’s home range represented by “safe zone” in winter and population size (P = 0.10, n=4. While currently-planned prescribed fires in Banff and Jasper reduced the amount of quality caribou habitat by up to 4%, they reduced the area of “safe zones” by up to 7%, varying by herd, location, and season. We suggest that conservation managers should account for the indirect, predator-mediated impacts of fire on caribou in addition to direct effects of habitat loss.

  19. Grey-grey separate spatial soliton pairs in a biased series two-photon centrosymmetric photorefractive crystals circuit

    International Nuclear Information System (INIS)

    Ji, Xuanmang; Wang, Jinlai; Jiang, Qichang; Liu, Jinsong

    2012-01-01

    Grey-grey separate spatial soliton pairs are predicted in a biased series circuit consisting of two centrosymmetric photorefractive (PR) crystals with the two-photon PR effect. The numerical results show that two grey solitons in a soliton pair can affect each other by the light-induced current. The effects of the intensity of solitary waves and gating lights on the normalized profiles and the dynamical evolutions of solitons are discussed.

  20. Spatial control of groundwater contamination, using principal

    Indian Academy of Sciences (India)

    Spatial control of groundwater contamination, using principal component analysis ... anthropogenic (agricultural activities and domestic wastewaters), and marine ... The PC scores reflect the change of groundwater quality of geogenic origin ...

  1. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  2. Vibrations and spatial patterns in biomimetic surfaces: using the shark-skin effect to control blood clotting.

    Science.gov (United States)

    Ramachandran, Rahul; Maani, Nazanin; Rayz, Vitaliy L; Nosonovsky, Michael

    2016-08-06

    We study the effect of small-amplitude fast vibrations and small-amplitude spatial patterns on various systems involving wetting and liquid flow, such as superhydrophobic surfaces, membranes and flow pipes. First, we introduce a mathematical method of averaging the effect of small spatial and temporal patterns and substituting them with an effective force. Such an effective force can change the equilibrium state of a system as well as a phase state, leading to surface texture-induced and vibration-induced phase control. Vibration and patterns can effectively jam holes in vessels with liquid, separate multi-phase flow, change membrane properties, result in propulsion and locomotion and lead to many other multi-scale, nonlinear effects including the shark-skin effect. We discuss the application of such effects to blood flow for novel biomedical 'haemophobic' applications which can prevent blood clotting and thrombosis by controlling the surface pattern at a wall of a vessel (e.g. a catheter or stent).This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  3. Spatial control of groundwater contamination, using principal ...

    Indian Academy of Sciences (India)

    probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). ... topography, soil type, depth of water levels, and water usage. Thus, the ... of effective sites for infiltration of recharge water.

  4. A PC based control system for the CERN ISOLDE separators

    International Nuclear Information System (INIS)

    Billinge, R.; Bret, A.; Deloose, I.; Pace, A.; Shering, G.

    1992-01-01

    The control system of the two isotope separators of CERN, named ISOLDE, is being completely redesigned with the goal of having a flexible, high performance and inexpensive system. A new architecture that makes heavy use of the commercial software and hardware available for the huge Personal Computer (PC) market is being implemented on the 1700 geographically distributed control channels of the separators. 8 MS-DOS TM i386-based PCs with about 80 acquisition/control boards are used to access the equipments while 3 other PCs running Microsoft Windows TM and Microsoft Excel TM are used as consoles, the whole through a Novell TM Local Area Network with a PC Disk Server used as a database. This paper describes the interesting solutions found and discusses the reduced programming work load and costs that are expected to build the system before the start of the separators in March 1992. (author)

  5. Daily Access to Sucrose Impairs Aspects of Spatial Memory Tasks Reliant on Pattern Separation and Neural Proliferation in Rats

    Science.gov (United States)

    Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick

    2016-01-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…

  6. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    Science.gov (United States)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  7. Gift exchange and the separation of ownership and control

    NARCIS (Netherlands)

    Maximiano, S.; Sloof, R.; Sonnemans, J.

    2006-01-01

    Numerous gift exchange experiments have found a positive relationship between employers' wage offers and workers' effort levels. In (almost) all these experiments the employer both owns and controls the firm. Yet in reality many firms are characterized by the separation of ownership and control. In

  8. International Conference on Instability and Control of Massively Separated Flows

    CERN Document Server

    Soria, Julio

    2015-01-01

    This book contains the outcome of the international meeting on instability, control and noise generated by massive flow separation that was organized at the Monash Center, in Prato, Italy, September 4-6, 2013. The meeting served as the final review of the EU-FP7 Instability and Control of Massively Separated Flows Marie Curie travel grant and was supported by the European Office of Aerospace Research and Development. Fifty leading specialists from twelve countries reviewed the progress made since the 50s of the last century and discussed modern analysis techniques, advanced experimental flow diagnostics, and recent developments in active flow control techniques from the incompressible to the hypersonic regime. Applications involving massive flow separation and associated instability and noise generation mechanisms of interest to the aeronautical, naval and automotive industries have been addressed from a theoretical, numerical or experimental point of view, making this book a unique source containing the stat...

  9. Controls on the spatial distribution of oceanic δ13CDIC

    Directory of Open Access Journals (Sweden)

    P. B. Holden

    2013-03-01

    Full Text Available We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late-Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD. We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (pre-industrial and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally-reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.

  10. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  11. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Unknown

    Control strategies for laser separation of carbon isotopes. V PARTHASARATHY*, A K ... The emerging market for medical applications of C-13 is projected to be in the range of hundreds of ..... thermal effects during irradiation. In the absence of ...

  12. Airfoil boundary layer separation and control at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yarusevych, S.; Sullivan, P.E. [University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada); Kawall, J.G. [Ryerson University, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada)

    2005-04-01

    The boundary layer separation on a NACA 0025 airfoil was studied experimentally via hot-wire anemometry and surface pressure measurements. The results provide added insight into periodic boundary layer control, suggesting that matching the excitation frequency with the most amplified disturbance in the separated shear layer is optimal for improving airfoil performance. (orig.)

  13. Ultrafast Dynamics in Vanadium Dioxide: Separating Spatially Segregated Mixed Phase Dynamics in the Time-domain

    Science.gov (United States)

    Hilton, David

    2011-10-01

    In correlated electronic systems, observed electronic and structural behavior results from the complex interplay between multiple, sometimes competing degrees-of- freedom. One such material used to study insulator-to-metal transitions is vanadium dioxide, which undergoes a phase transition from a monoclinic-insulating phase to a rutile-metallic phase when the sample is heated to 340 K. The major open question with this material is the relative influence of this structural phase transition (Peirels transition) and the effects of electronic correlations (Mott transition) on the observed insulator-to-metal transition. Answers to these major questions are complicated by vanadium dioxide's sensitivity to perturbations in the chemical structure in VO2. For example, related VxOy oxides with nearly a 2:1 ratio do not demonstrate the insulator-to- metal transition, while recent work has demonstrated that W:VO2 has demonstrated a tunable transition temperature controllable with tungsten doping. All of these preexisting results suggest that the observed electronic properties are exquisitely sensitive to the sample disorder. Using ultrafast spectroscopic techniques, it is now possible to impulsively excite this transition and investigate the photoinduced counterpart to this thermal phase transition in a strongly nonequilibrium regime. I will discuss our recent results studying the terahertz-frequency conductivity dynamics of this photoinduced phase transition in the poorly understood near threshold temperature range. We find a dramatic softening of the transition near the critical temperature, which results primarily from the mixed phase coexistence near the transition temperature. To directly study this mixed phase behavior, we directly study the nucleation and growth rates of the metallic phase in the parent insulator using non-degenerate optical pump-probe spectroscopy. These experiments measure, in the time- domain, the coexistent phase separation in VO2 (spatially

  14. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  15. Aspects regarding computer control of 15 N separation plant

    International Nuclear Information System (INIS)

    Kaucsar, M.; Cosma, V.; Axente, D.; Baldea, A.; Bendea, H.; Bunea, V

    2001-01-01

    In order to improve the efficiency of a separation plant the whole process must be automatically controlled. The plant has a single output - the isotopic product. This output is characterized by a complex function, which involves qualitative or/and quantitative properties of the product. There are two important inputs into the system, namely: the amount of the substances and compounds which supply the plant and the electric power consumption. Our first aim is to reduce the input/output ratio of the separation plant. On the other hand, by applying this automatic control system we can reduce the operating personnel also. The isotopic product is sampled and analyzed using a dedicated mass spectrometer. An overall closed loop through the separation plant including this mass spectrometer could be very efficient, but the theoretical analysis is too complex and it is very difficult to realize it in practice. Therefore, multiple local control loops are preferred to apply for each product correlated parameter. Between these parameters there are complex interdependencies, governed by differential equations. The computer is equipped with standard input/output hardware, but in order to use it in the complex feedback loops, extra input/output hardware must be added, namely, dedicated input/output module cards. Depending on the operating principle of the detectors and actuators the signals involved in the whole system are analog and digital. The majority of the sensors and transducers generates analog signals and only a few of them have digital output. The last case is typical for transducers specialized mainly for detecting the level of a parameter. Actuators also need analog or digital control signals, corresponding to their operating principles. The computer control of isotopic plant has a great advantage of being very flexible in implementing adequate control software with operator friendly interfacing routines. (authors)

  16. Spatial orientation and postural control in patients with Parkinson's disease.

    Science.gov (United States)

    Pawlitzki, E; Schlenstedt, C; Schmidt, N; Rotkirch, I; Gövert, F; Hartwigsen, G; Witt, K

    2018-02-01

    Postural instability is one of the most disabling and risky symptoms of advanced Parkinson's disease (PD). The purpose of this study was to investigate whether and how this is mediated by a centrally impaired spatial orientation. Therefore, we performed a spatial orientation study in 21 PD patients (mean age 68years, SD 8.5 years, 9 women) in a medically on condition and 21 healthy controls (mean age 68.9years, SD 5.5years, 14 women). We compared their spatial responses to the horizontal axis (Sakashita's visual target cancellation task), the vertical axis (bucket-test), the sagittal axis (tilt table test) and postural stability using the Fullerton Advanced Balance Scale (FAB). We found larger deviations on the vertical axis in PD patients, although the direct comparisons of performance in PD patients and healthy controls did not reveal significant differences. While the total scores of the FAB Scale were significantly worse in PD (25.9 points, SD 7.2 points) compared to controls (35.1 points, SD 2.3 points, pbalance control. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) subsea separation and pumping system; Um controlador fuzzy para o sistema de separacao e bombeamento submarino - VASP (Vertical Annular Separation and Pumping System)

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Alex F.; Mendes, Jose Ricardo P.; Morooka, Celso K. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Guilherme, Ivan R. [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Estatistica, Matematica Aplicada e Computacao; Rigo, Jose Eduardo [Centro Federal de Educacao Tecnologica no Espirito Santo (CEFETES), Vitoria, ES (Brazil)

    2004-07-01

    In this paper the designs of a fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) liquid level and separation pressure control are presented, as well as a simulation of its work to evaluate the performance of the controller designed. The VASPS is a two-phase subsea separation and pumping system, which is made up of a separation vessel, where the mixture (liquid and gas) enters and suffers the separation process through three levels, the expansion chamber, the helix and the pool. The liquid inside the pool is taken to the platform using a pump that with a choke control the pool liquid level. The pool liquid level control is necessary because if the level exceeds the maximum value allowed, the liquid can invade the space occupied by the helix and hinder the separation process. An the other hand if the level is below the minimum allowed the pump can be damaged. The separation pressure control is important for operational security and efficiency issues, because when we keep the separation pressure near an optimum value we are maximizing its efficiency. With the controller and the simulator, many simulations of the work of system were made to get results that could be used to evaluate if the designed controller solved the problem and if its performance were satisfactory. After, a PID control system was designed to be used as comparison with the results obtained with the fuzzy controller, since the PID is widely used in the industrial environment. (author)

  18. Fluid Mechanics of Wing Adaptation for Separation Control

    Science.gov (United States)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  19. Thermally-controlled centrifuge for isotopic separation

    International Nuclear Information System (INIS)

    Cenedese, A.; Cunsolo, D.

    1976-01-01

    Among the various methods proposed to obtain lighter component enrichment in the isotopic separation of uranium, ultracentrifugation is becoming more and more interesting today, as this process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-dynamic features are investigated in the present study. In particular, the field inside the centrifuge has been subdivided into three axial zones: an internal central zone, characterized by an essentially axial flow; two external zones, near the two caps of the centrifuge; two intermediate zones, of a length of the order of the radius. For the analytical solution the linearized Navier-Stokes equations have been considered. The central zone flow is solved by separating the independent variables; the corresponding eigenvalue problem has been solved numerically. A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has been calculated. An integral method for the superimposition of the above mentioned eigensolutions is proposed in order to satisfy the conditions at the tops for thermally-controlled centrifuges. (author)

  20. Positive Analysis of Invasive Species Control as a Dynamic Spatial Process

    OpenAIRE

    Buyuktahtakin, Esra; Feng, Zhuo; Olsson, Aaryn; Frisvold, George B.; Szidarovszky, Ferenc

    2010-01-01

    This paper models control of invasive buffelgrass (Pennisetum ciliare), a fire-prone African bunchgrass spreading rapidly across the southern Arizona desert as a spatial dynamic process. Buffelgrass spreads over a gridded landscape. Weed carrying capacity, treatment costs, and damages vary over grid cells. Damage from buffelgrass depends on its spatial distribution in relation to valued resources. We conduct positive analysis of recommended heuristic strategies for buffelgrass control, evalua...

  1. Concentration control in an isotope separation plant; Regulation des concentrations dans une usine de separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Concentration control is examined for the case of a gaseous diffusion plant for uranium isotope separation. The effects of various typical perturbations are described and adequate systems of corrective actions are determined according to selected criteria. (author) [French] On considere une installation de separation des isotopes de l'uranium par diffusion gazeuse. On etudie les effets sur les concentrations isotopiques de diverses perturbations type donnees a l'avance et on determine le systeme d'actions correctives qui permet de reduire ces effets d'apres un critere d'efficacite donne. (auteur)

  2. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  3. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  4. PID temperature controller in pig nursery: spatial characterization of thermal environment.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-28

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  5. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  6. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    Science.gov (United States)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained

  7. On the Active and Passive Flow Separation Control Techniques over Airfoils

    Science.gov (United States)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  8. Industrial implementation of spatial variability control by real-time SPC

    Science.gov (United States)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  9. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  10. Turbulent Flow Modification With Thermoacoustic Waves for Separation Control

    Science.gov (United States)

    2017-08-24

    respectively. At the outlet, the time-average flow is set to be the target state of the sponge zone. In this section, the effects of momentum thickness...Turbulent Flow Modification With Thermoacoustic Waves For Separation Control The views, opinions and/or findings contained in this report are those...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida State University Sponsored Research Administration 874

  11. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    Science.gov (United States)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  12. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    Science.gov (United States)

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  13. Spatially and temporally controlled hydrogels for tissue engineering

    NARCIS (Netherlands)

    J., Leijten; Seo, Jungmok; Yue, Kan; Trujillo-de Santiago, Grissel; Tamayol, Ali; Ruiz-Esparza, Guillermo U.; Ryon Shin, Su; Sharifi, Roholah; Noshadi, Iman; Moises Alvarez, Mario; Shrike Zhang, Yu; Khademhosseini, Ali

    2017-01-01

    Recent years have seen tremendous advances in the field of hydrogel-based biomaterials. One of the most prominent revolutions in this field has been the integration of elements or techniques that enable spatial and temporal control over hydrogels’ properties and functions. Here, we critically review

  14. Using Pitch, Amplitude Modulation, and Spatial Cues for Separation of Harmonic Instruments from Stereo Music Recordings

    Directory of Open Access Journals (Sweden)

    Bryan Pardo

    2007-01-01

    Full Text Available Recent work in blind source separation applied to anechoic mixtures of speech allows for improved reconstruction of sources that rarely overlap in a time-frequency representation. While the assumption that speech mixtures do not overlap significantly in time-frequency is reasonable, music mixtures rarely meet this constraint, requiring new approaches. We introduce a method that uses spatial cues from anechoic, stereo music recordings and assumptions regarding the structure of musical source signals to effectively separate mixtures of tonal music. We discuss existing techniques to create partial source signal estimates from regions of the mixture where source signals do not overlap significantly. We use these partial signals within a new demixing framework, in which we estimate harmonic masks for each source, allowing the determination of the number of active sources in important time-frequency frames of the mixture. We then propose a method for distributing energy from time-frequency frames of the mixture to multiple source signals. This allows dealing with mixtures that contain time-frequency frames in which multiple harmonic sources are active without requiring knowledge of source characteristics.

  15. Vortex Formation During Unsteady Boundary-Layer Separation

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  16. Movable shark scales act as a passive dynamic micro-roughness to control flow separation

    International Nuclear Information System (INIS)

    Lang, Amy W; Bradshaw, Michael T; Smith, Jonathon A; Wheelus, Jennifer N; Motta, Philip J; Habegger, Maria L; Hueter, Robert E

    2014-01-01

    Shark scales on fast-swimming sharks have been shown to be movable to angles in excess of 50°, and we hypothesize that this characteristic gives this shark skin a preferred flow direction. During the onset of separation, flow reversal is initiated close to the surface. However, the movable scales would be actuated by the reversed flow thereby causing a greater resistance to any further flow reversal and this mechanism would disrupt the process leading to eventual flow separation. Here we report for the first time experimental evidence of the separation control capability of real shark skin through water tunnel testing. Using skin samples from a shortfin mako Isurus oxyrinchus, we tested a pectoral fin and flank skin attached to a NACA 4412 hydrofoil and separation control was observed in the presence of movable shark scales under certain conditions in both cases. We hypothesize that the scales provide a passive, flow-actuated mechanism acting as a dynamic micro-roughness to control flow separation. (paper)

  17. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Science.gov (United States)

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  18. Musical Applications and Design Techniques for the Gametrak Tethered Spatial Position Controller

    DEFF Research Database (Denmark)

    Freed, Adrian; Overholt, Daniel; Hansen, Anne-Marie

    2009-01-01

    The Gametrak spatial position controller has been saved from the fate of so many discontinued gaming controllers to become an attractive and increasingly popular platform for experimental musical controllers, math and science manipulatives, large scale interactive installations and as a playful...... tangible gaming interface that promotes inter-generational creative play and discovery . After introducing the peculiarities of the GameTrak and comparing it to related spatial position sensing systems we survey musical applications of the device. The short paper format cannot do justice to the depth...

  19. Spatial heterogeneity in liquid–liquid phase transition

    International Nuclear Information System (INIS)

    Duan Yun-Rui; Li Tao; Wu Wei-Kang; Li Jie; Zhou Xu-Yan; Liu Si-Da; Li Hui

    2017-01-01

    Molecular dynamics simulations are performed to investigate the liquid–liquid phase transition (LLPT) and the spatial heterogeneity in Al–Pb monotectic alloys. The results reveal that homogeneous liquid Al–Pb alloy undergoes an LLPT, separating into Al-rich and Pb-rich domains, which is quite different from the isocompositional liquid water with a transition between low-density liquid (LDL) and high-density liquid (HDL). With spatial heterogeneity becoming large, LLPT takes place correspondingly. The relationship between the cooling rate, relaxation temperature and percentage of Al and the spatial heterogeneity is also reported. This study may throw light on the relationship between the structure heterogeneity and LLPT, which provides novel strategies to control the microstructures in the fabrication of the material with high performance. (paper)

  20. A Matter of Balance: Motor Control is Related to Children’s Spatial and Proportional Reasoning Skills

    Science.gov (United States)

    Frick, Andrea; Möhring, Wenke

    2016-01-01

    Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children’s motor control and their spatial and proportional reasoning. We measured 6-year-olds’ spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children’s understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children’s balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157

  1. Separating VNF and Network Control for Hardware‐Acceleration of SDN/NFV Architecture

    Directory of Open Access Journals (Sweden)

    Tong Duan

    2017-08-01

    Full Text Available A hardware‐acceleration architecture that separates virtual network functions (VNFs and network control (called HSN is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software‐defined networking (SDN forwarding elements (FEs in SDN/network function virtualization (NFV architecture, while improving the efficiency of NFV infrastructure and the performance of network‐intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1 separation of traffic steering and packet processing in the FEs; (2 separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA‐10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.

  2. Effects of boundary-layer separation controllers on a desktop fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  3. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    Science.gov (United States)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three

  4. Spatial xenon oscillation control with expert systems

    International Nuclear Information System (INIS)

    Alten, S.; Danofsky, R.A.

    1993-01-01

    Spatial power oscillations were attributed to the xenon transients in a reactor core in 1958 by Randall and St. John. These transients are usually initiated by a local reactivity insertion and lead to divergent axial flux oscillations in the core at constant power. Several heuristic manual control strategies and automatic control methods were developed to damp the xenon oscillations at constant power operations. However, after the load-follow operation of the reactors became a necessity of life, a need for better control strategies arose. Even though various advanced control strategies were applied to solve the xenon oscillation control problem for the load-follow operation, the complexity of the system created difficulties in modeling. The strong nonlinearity of the problem requires highly sophisticated analytical approaches that are quite inept for numerical solutions. On the other hand, the complexity of a system and heuristic nature of the solutions are the basic reasons for using artificial intelligence techniques such as expert systems

  5. Closed-loop digital control of nuclear reactors characterized by spatial dynamics

    International Nuclear Information System (INIS)

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1991-03-01

    This report describes the theoretical development and the evaluation via both simulation and, to a lesser degree, experiment of a digital method for the closed-loop control of power and temperature in reactors characterized by spatial dynamics. The major conclusions of the research are that (1) the sophistication of advanced reactor physics and thermal-hydraulic nodal methods is now such that accurate, real-time models of spatially-dependent, heterogeneous reactor cores can be run on present-generation minicomputers; (2) operation of both present-day commercial reactors as well as the multi-modular reactors now being considered for construction in the United States could be significantly improved by incorporating model-generated information on in-core conditions in a digital controller; and (3) digital controllers for spatially-dependent reactors should have a hierarchical or multi-tiered structure consisting of supervisory algorithms that preclude challenges to the safety system, global control laws designed to provide an optimal response to temperature and power perturbations, and local control laws that maintain parameters such as the margin to departure from nucleate boiling within specification. The technology described is appropriate to present-day pressurized water reactors and to the proposed multi-modular designs. The end-product of this research was a (near) real-time analytic plant-estimation code that was given the acronym POPSICLE for POwer Plant SImulator and ControlLEr. POPSICLE's core neutronics model is based on a quasi-static transient solution of the analytic nodal diffusion equations. 126 refs., 159 figs., 17 tabs

  6. Closed-loop digital control of nuclear reactors characterized by spatial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Nuclear Engineering)

    1991-03-01

    This report describes the theoretical development and the evaluation via both simulation and, to a lesser degree, experiment of a digital method for the closed-loop control of power and temperature in reactors characterized by spatial dynamics. The major conclusions of the research are that (1) the sophistication of advanced reactor physics and thermal-hydraulic nodal methods is now such that accurate, real-time models of spatially-dependent, heterogeneous reactor cores can be run on present-generation minicomputers; (2) operation of both present-day commercial reactors as well as the multi-modular reactors now being considered for construction in the United States could be significantly improved by incorporating model-generated information on in-core conditions in a digital controller; and (3) digital controllers for spatially-dependent reactors should have a hierarchical or multi-tiered structure consisting of supervisory algorithms that preclude challenges to the safety system, global control laws designed to provide an optimal response to temperature and power perturbations, and local control laws that maintain parameters such as the margin to departure from nucleate boiling within specification. The technology described is appropriate to present-day pressurized water reactors and to the proposed multi-modular designs. The end-product of this research was a (near) real-time analytic plant-estimation code that was given the acronym POPSICLE for POwer Plant SImulator and ControlLEr. POPSICLE's core neutronics model is based on a quasi-static transient solution of the analytic nodal diffusion equations. 126 refs., 159 figs., 17 tabs.

  7. Prokaryotes in subsoil – evidence for spatial separation of oligotrophs and copiotrophs by co-occurrence networks

    Directory of Open Access Journals (Sweden)

    Michael eSchloter

    2015-11-01

    Full Text Available Soil microbial communities provide a wide range of soil functions including nutrient cycling, soil formation, and plant growth promotion. On the small scale, nutrient rich soil hotspots developed from soil animal or plant activity are important drivers for microbial communities and their activity pattern. Nevertheless, in subsoil, the spatial heterogeneity of microbes with diverging lifestyles has been barely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in topsoil and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophs and heterotrophs in subsoil and hotspots was assessed. Four co-occurring bacterial communities were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, which represent many copiotrophic bacteria, are affiliated to the hotspot communities – the rhizosphere and drilosphere – both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia with many oligotrophic bacteria, are the abundant groups of the bulk subsoil community. The bacterial core microbiome in this soil was estimated and only covers 7.6% of the bacterial sequencing reads but includes both oligotrophic and copiotrophic bacteria. Instead, the archaeal core microbiome includes 56% of the overall archaeal diversity and comprises only the ammonium oxidizing Nitrososphaera. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea are a stable backbone of the soil prokaryotes.

  8. Combined spatial prediction of schistosomiasis and soil-transmitted helminthiasis in Sierra Leone: a tool for integrated disease control.

    Directory of Open Access Journals (Sweden)

    Mary H Hodges

    Full Text Available BACKGROUND: A national mapping of Schistosoma haematobium was conducted in Sierra Leone before the mass drug administration (MDA with praziquantel. Together with the separate mapping of S. mansoni and soil-transmitted helminths, the national control programme was able to plan the MDA strategies according to the World Health Organization guidelines for preventive chemotherapy for these diseases. METHODOLOGY/PRINCIPAL FINDINGS: A total of 52 sites/schools were selected according to prior knowledge of S. haematobium endemicity taking into account a good spatial coverage within each district, and a total of 2293 children aged 9-14 years were examined. Spatial analysis showed that S. haematobium is heterogeneously distributed in the country with significant spatial clustering in the central and eastern regions of the country, most prevalent in Bo (24.6% and 8.79 eggs/10 ml, Koinadugu (20.4% and 3.53 eggs/10 ml and Kono (25.3% and 7.91 eggs/10 ml districts. By combining this map with the previously reported maps on intestinal schistosomiasis using a simple probabilistic model, the combined schistosomiasis prevalence map highlights the presence of high-risk communities in an extensive area in the northeastern half of the country. By further combining the hookworm prevalence map, the at-risk population of school-age children requiring integrated schistosomiasis/soil-transmitted helminth treatment regimens according to the coendemicity was estimated. CONCLUSIONS/SIGNIFICANCE: The first comprehensive national mapping of urogenital schistosomiasis in Sierra Leone was conducted. Using a new method for calculating the combined prevalence of schistosomiasis using estimates from two separate surveys, we provided a robust coendemicity mapping for overall urogenital and intestinal schistosomiasis. We also produced a coendemicity map of schistosomiasis and hookworm. These coendemicity maps can be used to guide the decision making for MDA strategies in combination

  9. Combined spatial prediction of schistosomiasis and soil-transmitted helminthiasis in Sierra Leone: a tool for integrated disease control.

    Science.gov (United States)

    Hodges, Mary H; Soares Magalhães, Ricardo J; Paye, Jusufu; Koroma, Joseph B; Sonnie, Mustapha; Clements, Archie; Zhang, Yaobi

    2012-01-01

    A national mapping of Schistosoma haematobium was conducted in Sierra Leone before the mass drug administration (MDA) with praziquantel. Together with the separate mapping of S. mansoni and soil-transmitted helminths, the national control programme was able to plan the MDA strategies according to the World Health Organization guidelines for preventive chemotherapy for these diseases. A total of 52 sites/schools were selected according to prior knowledge of S. haematobium endemicity taking into account a good spatial coverage within each district, and a total of 2293 children aged 9-14 years were examined. Spatial analysis showed that S. haematobium is heterogeneously distributed in the country with significant spatial clustering in the central and eastern regions of the country, most prevalent in Bo (24.6% and 8.79 eggs/10 ml), Koinadugu (20.4% and 3.53 eggs/10 ml) and Kono (25.3% and 7.91 eggs/10 ml) districts. By combining this map with the previously reported maps on intestinal schistosomiasis using a simple probabilistic model, the combined schistosomiasis prevalence map highlights the presence of high-risk communities in an extensive area in the northeastern half of the country. By further combining the hookworm prevalence map, the at-risk population of school-age children requiring integrated schistosomiasis/soil-transmitted helminth treatment regimens according to the coendemicity was estimated. The first comprehensive national mapping of urogenital schistosomiasis in Sierra Leone was conducted. Using a new method for calculating the combined prevalence of schistosomiasis using estimates from two separate surveys, we provided a robust coendemicity mapping for overall urogenital and intestinal schistosomiasis. We also produced a coendemicity map of schistosomiasis and hookworm. These coendemicity maps can be used to guide the decision making for MDA strategies in combination with the local knowledge and programme needs.

  10. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early

  11. Environmental and spatial controls of palm (Arecaceae) species richness across the Americas

    DEFF Research Database (Denmark)

    Bjorholm, Stine; Svenning, Jens-Christian; Skov, Flemming

    2005-01-01

    Our analysis suggests that in the Americas, palm species richness at spatial scales from 1° to 10° is most strongly controlled by water availability, although unknown broad-scale factors, perhaps soil, historical processes or geometric constraints, are also important.......Our analysis suggests that in the Americas, palm species richness at spatial scales from 1° to 10° is most strongly controlled by water availability, although unknown broad-scale factors, perhaps soil, historical processes or geometric constraints, are also important....

  12. Transitory Control of Unsteady Separation using Pulsed Actuation

    International Nuclear Information System (INIS)

    Woo, George T K; Glezer, Ari

    2011-01-01

    The dynamic mechanisms of transitory flow attachment effected by pulsed actuation of the separated flow over a stalled airfoil are investigated experimentally. Actuation is effected by momentary pulsed jets generated by a spanwise array of combustion-based actuators such that the characteristic time of jet duration is nominally an order of magnitude shorter than the flow's convective time scale. The transitory flow field in the cross stream plane above the airfoil and in its near wake is investigated using multiple high-resolution PIV images that are obtained phase-locked to the actuation for continuous tracking of vorticity concentrations. The brief actuation pulse leads to severing of the separated vorticity layer and the subsequent shedding of large-scale vortical structures owing to the collapse of the separated flow domain which is accompanied by strong changes in the circulation about the entire airfoil. By exploiting the disparity between the characteristic times of flow response to actuation and relaxation, it is shown that successive actuation pulses can extend the flow attachment and enhance the global aerodynamic performance. It is also shown that coupling of the actuation to the airfoil's motion during cyclical pitch enhances the effect of transitory flow control and leads to a significant suppression of dynamic stall.

  13. Spatially modulated structural colour in bird feathers

    Science.gov (United States)

    Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.

    2015-12-01

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

  14. Spatially modulated structural colour in bird feathers.

    Science.gov (United States)

    Parnell, Andrew J; Washington, Adam L; Mykhaylyk, Oleksandr O; Hill, Christopher J; Bianco, Antonino; Burg, Stephanie L; Dennison, Andrew J C; Snape, Mary; Cadby, Ashley J; Smith, Andrew; Prevost, Sylvain; Whittaker, David M; Jones, Richard A L; Fairclough, J Patrick A; Parker, Andrew R

    2015-12-21

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

  15. Correlation of propagation characteristics of solar cosmic rays detected onboard the spatially separated space probes Mars-7 and Prognoz-3

    International Nuclear Information System (INIS)

    Gombosi, T.; Somogyi, A.J.; Kolesov, G.Ya.; Kurt, V.G.; Kuzhevskii, B.M.; Logachev, Yu.I.; Savenko, I.A.

    1977-01-01

    Solar flare generated particle fluxes during the period 3-5 November, 1973 are analysed using the data of the Mars 7 and Prognoz-3 spacecrafts. The intensity profiles registrated onboard these satellites were quite similar, although the space probes were spatially separated by 0.3 AU. The general characteristics of the event can well be understood in terms of the effect of a corotating streat-stream interaction region on the general behaviour of energetic charged particles. (author)

  16. Method and apparatus for controlled condensation isotope separation

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Lee, J.T. Jr.; Kim, K.C.

    1981-01-01

    The invention provides a method for producing controlled homogeneous condensation of a molecular feed gas containing several isotopes. The feed gas flows at supersonic rates through an expansion nozzle under conditions at which the gas would normally condense. The gas is irradiated with laser radiation of a wavelength that selectively excites those molecules in the feed gas that contain a particular isotope, thus preventing their condensation. Condensate particles may be aerodynamically separated from the flowing gas stream

  17. Selective alteration of adult hippocampal neurogenesis and impaired spatial pattern separation performance in the RSK2-deficient mouse model of Coffin-Lowry syndrome.

    Science.gov (United States)

    Castillon, Charlotte; Lunion, Steeve; Desvignes, Nathalie; Hanauer, André; Laroche, Serge; Poirier, Roseline

    2018-07-01

    Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Using resolvent analysis for the design of separation control on a NACA 0012 airfoil

    Science.gov (United States)

    Yeh, Chi-An; Taira, Kunihiko

    2017-11-01

    A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).

  19. Beam control and diagnostic functions in the NIF transport spatial filter

    International Nuclear Information System (INIS)

    Holdener, F.R.; Ables, E.; Bliss, E.S.

    1996-10-01

    Beam control and diagnostic systems are required to align the National Ignition Facility (NIF) laser prior to a shot as well as to provide diagnostics on 192 beam lines at shot time. A design that allows each beam's large spatial filter lenses to also serve as objective lenses for beam control and diagnostic sensor packages helps to accomplish the task at a reasonable cost. However, this approach also causes a high concentration of small optics near the pinhole plane of the transport spatial filter (TSF) at the output of each beam. This paper describes the optomechanical design in and near the central vacuum vessel of the TSF

  20. Modern approaches of control of spatial organization of schoolchildren body in the process of physical education

    Directory of Open Access Journals (Sweden)

    Bondar O.M.

    2012-08-01

    Full Text Available Technology of control of spatial organization of body of schoolboys is developed. Technology includes the diagnostic, informative and practical stages. Research is oriented to the schoolchildren 7-16 years. The diagnostic stage is supposed by a complex inspection and express control of spatial organization of bodies. The informative stage includes computer treatment of research results. The practical stage consists of development of recommendations on the correction of indexes of spatial organization of body of schoolchildren. Logical component allows to expose the level of knowledge of parents and teachers of physical culture about control of spatial organization of body of schoolchildren. The developed technology allows to carry out timely diagnostics of violations of spatial organization of body of schoolchildren and estimate adequacy of pedagogical influences.

  1. Control over phase separation and nucleation using a laser-tweezing potential

    Science.gov (United States)

    Walton, Finlay; Wynne, Klaas

    2018-05-01

    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid-liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter.

  2. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    Science.gov (United States)

    Munday, Phillip M.

    The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard

  3. A model relating Eulerian spatial and temporal velocity correlations

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  4. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    Science.gov (United States)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  5. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy

    Directory of Open Access Journals (Sweden)

    Emiliano eMacaluso

    2013-10-01

    Full Text Available The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the ventral fronto-parietal networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions.

  6. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy

    Science.gov (United States)

    Macaluso, Emiliano; Doricchi, Fabrizio

    2013-01-01

    The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions. PMID:24155707

  7. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy.

    Science.gov (United States)

    Macaluso, Emiliano; Doricchi, Fabrizio

    2013-01-01

    The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions.

  8. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    the influence of membrane fouling. Previously, the REED and fermentation processes have been modeled and investigated separately (Prado- Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated process design and control structure development has been proposed (Prado...... to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  9. Strategy modulates spatial perspective-taking: evidence for dissociable disembodied and embodied routes

    Science.gov (United States)

    Gardner, Mark R.; Brazier, Mark; Edmonds, Caroline J.; Gronholm, Petra C.

    2013-01-01

    Previous research provides evidence for a dissociable embodied route to spatial perspective-taking that is under strategic control. The present experiment investigated further the influence of strategy on spatial perspective-taking by assessing whether participants may also elect to employ a separable “disembodied” route loading on inhibitory control mechanisms. Participants (N = 92) undertook both the “own body transformation” (OBT) perspective-taking task, requiring speeded spatial judgments made from the perspective of an observed figure, and a control task measuring ability to inhibit spatially compatible responses in the absence of a figure. Perspective-taking performance was found to be related to performance on the response inhibition control task, in that participants who tended to take longer to adopt a new perspective also tended to show a greater elevation in response times when inhibiting spatially compatible responses. This relationship was restricted to those participants reporting that they adopted the perspective of another by reversing left and right whenever confronted with a front-view figure; it was absent in those participants who reported perspective-taking by mentally transforming their spatial orientation to align with that of the figure. Combined with previously published results, these findings complete a double dissociation between embodied and disembodied routes to spatial perspective-taking, implying that spatial perspective-taking is subject to modulation by strategy, and suggesting that embodied routes to perspective-taking may place minimal demands on domain general executive functions. PMID:23964229

  10. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  11. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    Science.gov (United States)

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large

  12. FROM UNEMPLOYMENT TO WORK: AN ECONOMETRIC ANALYSIS WITH SPATIAL CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Oana Calavrezo

    2009-03-01

    Full Text Available The aim of our research is to analyze how the urban organization affects the unemployment-to-work transitions by considering several spatial indicators. This permits to capture two separate effects: "spatial mismatch" and "neighbourhood effects". In order to study the unemployment-to-work transitions, we implement survival models. They are applied on a sample obtained by merging three French databases: the "Trajectoires des demandeurs d'emplois" survey, the 1999 French census and finally, a database containing town inventory information. More precisely, in this paper, we analyze the duration of the first observed employment episode by using spatial indicators and by controlling three potential biases (endogeneity bias, selection bias and attrition bias.

  13. A microfluidic chip for blood plasma separation using electro-osmotic flow control

    International Nuclear Information System (INIS)

    Jiang, Hai; Weng, Xuan; Chon, Chan Hee; Wu, Xudong; Li, Dongqing

    2011-01-01

    In this paper, a microfluidic-based chip with two straight microchannels and five branch microchannels was designed and tested to separate blood plasma from a small sample of fresh human blood. The electro-osmotic flow method was used to control the separation of blood plasma. Blood cell removal and blood plasma extraction were realized in experiments. The efficiency of extracting blood plasma can be as high as 26%

  14. Environmental controls on multiscale spatial patterns of salt marsh vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2010-01-01

    In coastal environments, biogeographic patterns are generally influenced by surface elevation and horizontal distance from sea water. However, it is still unclear whether these major topographic factors are significant controls of vegetation patterns across spatial scales at which different physi...

  15. Fine particulate matter measurements in Swiss restaurants, cafés and bars: what is the effect of spatial separation between smoking and non-smoking areas?

    NARCIS (Netherlands)

    Huss, A.; Kooijman, C.; Breuer, M.; Bohler, P.; Zund, T.; Wenk, S.; Roosli, M.

    2010-01-01

    We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking

  16. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...... on the Great Belt Bridge streamlined girder....

  17. Separation flow control on a generic ground vehicle using steady microjet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Aubrun, Sandrine; Kourta, Azeddine [Universite d' Orleans, Laboratoire PRISME, Orleans cedex (France); McNally, Jonathan; Alvi, Farrukh [Florida State University, FAMU-FSU College of Engineering, Tallahassee, FL (United States)

    2011-11-15

    A model of a generic vehicle shape, the Ahmed body with a 25 slant, is equipped with an array of blowing steady microjets 6 mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV and wall pressure measurements and skin friction visualisations. By activating the steady microjet array, the drag coefficient was reduced by 9-14% and the lift coefficient up to 42%, depending on the Reynolds number. The strong modification of the flow topology under progressive flow control is particularly studied. (orig.)

  18. Parental Psychological Control and Dysfunctional Separation--Individuation: A Tale of Two Different Dynamics

    Science.gov (United States)

    Kins, Evie; Soenens, Bart; Beyers, Wim

    2012-01-01

    This study examined associations between psychologically controlling parenting and two possible manifestations of problematic separation--individuation (i.e., dysfunctional dependence and dysfunctional independence). To explain these associations, it has been argued that psychological control is an inherently independence-stifling parenting…

  19. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yaisa Andrews-Zwilling

    Full Text Available Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD, the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity.Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.

  20. Spatial and temporal analysis of postural control in dyslexic children.

    Science.gov (United States)

    Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia

    2015-07-01

    The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils.

    Science.gov (United States)

    Alam, Md Ferdous; Haque, Asadul

    2017-10-18

    An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis.

  2. The 3-D global spatial data model foundation of the spatial data infrastructure

    CERN Document Server

    Burkholder, Earl F

    2008-01-01

    Traditional methods for handling spatial data are encumbered by the assumption of separate origins for horizontal and vertical measurements. Modern measurement systems operate in a 3-D spatial environment. The 3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure offers a new model for handling digital spatial data, the global spatial data model or GSDM. The GSDM preserves the integrity of three-dimensional spatial data while also providing additional benefits such as simpler equations, worldwide standardization, and the ability to track spatial data accuracy with greater specificity and convenience. This groundbreaking spatial model incorporates both a functional model and a stochastic model to connect the physical world to the ECEF rectangular system. Combining horizontal and vertical data into a single, three-dimensional database, this authoritative monograph provides a logical development of theoretical concepts and practical tools that can be used to handle spatial data mo...

  3. Active Control of Separation From the Flap of a Supercritical Airfoil

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2006-01-01

    Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.

  4. Spatial flux instabilities, and their control in the graphite gas power reactors; Les instabilites spatiales du flux et leur controle dans les reacteurs de puissance graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Cailly, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Radial-azimuthal and axial spatial flux instabilities in graphite-gas reactors are studied by means of an analytical approach. Results are checked with those which are given by two dimensional (r, z and r, {theta}) kinetic models programmed for an IBM 7094 computer. At least, conclusions on the control of instabilities obtained from these models are reported. (author) [French] Les instabilites spatiales du flux dans les reacteurs graphite-gaz, radiales et azimutales d'une part, axiales d'autre part, sont etudiees au moyen d'une formulation analytique. Les resultats sont confrontes avec ceux que fournissent des modeles cinetiques a deux dimensions (r, z et r, {theta}) programmes sur IBM 7094. On donne enfin les conclusions relatives au controle de ces instabilites que ces modeles ont permis de degager. (auteur)

  5. Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval

    Science.gov (United States)

    Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong

    2012-01-01

    Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368

  6. Spatial Splitting and Intensity Suppression of Four-Wave Mixing in V-Type Three-Level Atomic System

    International Nuclear Information System (INIS)

    Chuang-She, Li; Wei-Tao, Yin; Chen-Zhi, Yuan; Mei-Zhen, Shi; Yan, Zhao; Yan-Peng, Zhang

    2010-01-01

    We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density

  7. Magnetic particle separation using controllable magnetic force switches

    International Nuclear Information System (INIS)

    Wei Zunghang; Lee, C.-P.; Lai, M.-F.

    2010-01-01

    Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.

  8. Large Spatial and Temporal Separations of Cause and Effect in Policy Making - Dealing with Non-linear Effects

    Science.gov (United States)

    McCaskill, John

    There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.

  9. Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.

    Science.gov (United States)

    Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter

    2011-03-01

    A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.

  10. Optical separation and controllable delivery of cells from particle and cell mixture

    Directory of Open Access Journals (Sweden)

    Li Yuchao

    2015-11-01

    Full Text Available Cell separation and delivery have recently gained significant attention in biological and biochemical studies. In thiswork, an optical method for separation and controllable delivery of cells by using an abruptly tapered fiber probe is reported. By launching a laser beam at the wavelength of 980 nm into the fiber, a mixture of cells with sizes of ~5 and ~3 μm and poly(methyl methacrylate particles with size of 5 μm are separated into three chains along the direction of propagation of light. The cell and particle chains are delivered in three dimensions over 600 μm distance. Experimental results are interpreted by numerical simulations. Optical forces and forward migration velocities of different particles and cells are calculated and discussed.

  11. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  12. Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor–actuator networks

    International Nuclear Information System (INIS)

    Zhang Jian-Zhong; Cui Bao-Tong; Zhuang Bo

    2017-01-01

    A guidance policy for controller performance enhancement utilizing mobile sensor–actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy. (paper)

  13. Phase separation in artificial vesicles driven by light and curvature

    Science.gov (United States)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  14. Aspects regarding at 13C isotope separation column control using Petri nets system

    International Nuclear Information System (INIS)

    Boca, M L; Ciortea, M E

    2015-01-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13 C Isotope Separation column using Petri nets. The major problem with 13 C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13 C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times. (paper)

  15. Single-photon three-qubit quantum logic using spatial light modulators.

    Science.gov (United States)

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  16. Control and Resistance in the Heterotopic Spatiality of Pleasantville

    Directory of Open Access Journals (Sweden)

    Evrim ERSÖZ KOÇ

    2016-02-01

    Full Text Available Pleasantville presents the experience of the teenage twins David and Jennifer who are transported to the 1950s TV soap opera named Pleasantville via the TV remote control. The twins introduce free sex, arts, literature, rock and roll, and jazz to this perfected town in which residents live in order. This clash of cultures results in social unrest as the residents become aware that the order is an outcome of submission and challenge the roles attributed to them. The transformation from control to resistance is the dominant motif of the film. Using Foucault’s theory of heterotopia, this study scrutinizes how the heterotopian principles in the spatial presentations provide a good lens to negotiate forms of control and resistance.

  17. Continuous separation of submicron particles using Angled electrodes

    International Nuclear Information System (INIS)

    Yunus, Nurul A Md; Green, Nicolas G

    2008-01-01

    Dielectrophoretic separation of particles is achieved by the generation of electric forces on the particles by non-uniform electric fields. This paper presents a technique based on negative dielectrophoresis in a novel design of electrode array for the non-contact separation of polarisable particles. Angled electrodes are used to generate a lateral force in a microfluidic channel separating a mixed stream of particles into distinct streams of constituent components and achieving a high degree of spatial separation.

  18. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    Science.gov (United States)

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.

  19. Comparing Spatial Predictions

    KAUST Repository

    Hering, Amanda S.

    2011-11-01

    Under a general loss function, we develop a hypothesis test to determine whether a significant difference in the spatial predictions produced by two competing models exists on average across the entire spatial domain of interest. The null hypothesis is that of no difference, and a spatial loss differential is created based on the observed data, the two sets of predictions, and the loss function chosen by the researcher. The test assumes only isotropy and short-range spatial dependence of the loss differential but does allow it to be non-Gaussian, non-zero-mean, and spatially correlated. Constant and nonconstant spatial trends in the loss differential are treated in two separate cases. Monte Carlo simulations illustrate the size and power properties of this test, and an example based on daily average wind speeds in Oklahoma is used for illustration. Supplemental results are available online. © 2011 American Statistical Association and the American Society for Qualitys.

  20. Direct conversion of a three-atom W state to a Greenberger–Horne–Zeilinger state in spatially separated cavities

    International Nuclear Information System (INIS)

    Wang, Guo-Yuan; Wang, Dong-Yang; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    State conversion between the Greenberger–Horne–Zeilinger (GHZ) state and the W state is a challenging open problem because these states cannot be converted to each other by just local operations and classical communication. Here we propose a cavity quantum electrodynamics method based on interference of polarized photons emitted by the atoms trapped in spatially separated optical cavities that can convert a three-atom W state to a GHZ state. We calculate the success probability and fidelity of the converted GHZ state when the cavity decay, spontaneous atomic decay and photon leakage of the cavities are taken into account for a practical system, which shows that the proposed scheme is feasible and within the reach of current experimental technology. (paper)

  1. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  2. Bridging the divide: Middle Eastern walls and fences and the spatial governance of problem populations

    NARCIS (Netherlands)

    Pallister-Wilkins, P.

    2015-01-01

    Building on a long history of spatial control through walling in the region, walls and fences have been built in the Middle East in recent years to undertake a range of practices. Gated communities, residential and security compounds, anti-migrant walls, separation barriers and counter-insurgency

  3. Computational Study of Separation Control Using ZNMF Devices: Flow Physics and Scaling Laws

    National Research Council Canada - National Science Library

    Mittal, Rajat

    2008-01-01

    The primary objective of the proposed research was to gain a fundamental understanding of strategies, mechanisms, and scaling laws for successful control of separation using zern-net mass-flux (ZNMF) actuators...

  4. Controlled Topological Transitions in Thin-Film Phase Separation

    KAUST Repository

    Hennessy, Matthew G.; Burlakov, Victor M.; Goriely, Alain; Wagner, Barbara; Mü nch, Andreas

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. In this paper the evolution of a binary mixture in a thin-film geometry with a wall at the top and bottom is considered. By bringing the mixture into its miscibility gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias of the walls toward each one of the constituents ensures the nucleation of thin boundary layers that grow until the constituents have moved into one of the two layers. These layers are separated by an interfacial region where the composition changes rapidly. Conditions that ensure the separation into two layers with a thin interfacial region are investigated based on a phase-field model. Using matched asymptotic expansions a corresponding sharp-interface problem for the location of the interface is established. It is then argued that this newly created two-layer system is not at its energetic minimum but destabilizes into a controlled self-replicating pattern of trapezoidal vertical stripes by minimizing the interfacial energy between the phases while conserving their area. A quantitative analysis of this mechanism is carried out via a thin-film model for the free interfaces, which is derived asymptotically from the sharp-interface model.

  5. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    Science.gov (United States)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  6. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    Science.gov (United States)

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  7. Investigating Spatial Interdependence in E-Bike Choice Using Spatially Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Chengcheng Xu

    2017-08-01

    Full Text Available Increased attention has been given to promoting e-bike usage in recent years. However, the research gap still exists in understanding the effects of spatial interdependence on e-bike choice. This study investigated how spatial interdependence affected the e-bike choice. The Moran’s I statistic test showed that spatial interdependence exists in e-bike choice at aggregated level. Bayesian spatial autoregressive logistic analyses were then used to investigate the spatial interdependence at individual level. Separate models were developed for commuting and non-commuting trips. The factors affecting e-bike choice are different between commuting and non-commuting trips. Spatial interdependence exists at both origin and destination sides of commuting and non-commuting trips. Travellers are more likely to choose e-bikes if their neighbours at the trip origin and destination also travel by e-bikes. And the magnitude of this spatial interdependence is different across various traffic analysis zones. The results suggest that, without considering spatial interdependence, the traditional methods may have biased estimation results and make systematic forecasting errors.

  8. Controlling for unmeasured confounding and spatial misalignment in long?term air pollution and health studies

    OpenAIRE

    Lee, Duncan; Sarran, Christophe

    2015-01-01

    The health impact of long?term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution?health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the...

  9. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    Science.gov (United States)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  10. Elements of spatial data quality

    CERN Document Server

    Guptill, SC

    1995-01-01

    Elements of Spatial Data Quality outlines the need and suggests potential categories for the content of a comprehensive statement of data quality that must be imbedded in the metadata that accompanies the transfer of a digital spatial data file or is available in a separate metadata catalog. Members of the International Cartographic Association's Commission on Spatial Data Quality have identified seven elements of data quality: positional accuracy, attribute accuracy, completeness, logical consistency, lineage, semantic accuracy and temporal information. In the book the authors describe: compo

  11. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    Science.gov (United States)

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  12. Separation control on the wing by jet actuators

    Science.gov (United States)

    Karyakin, O. M.; Nalivaiko, A. G.; Ustinov, M. V.; Flaxman, Ja. Sh.

    2018-05-01

    Use of jet actuators to eliminate flow separation is experimentally investigated on a straight wing with a NACA 0012 airfoil. It is shown that under the influence of synthetic jets the size of separation zone greatly reduces and the flow separation point displaces downstream. In addition, lift coefficient increases by more than 10%.

  13. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds

    Science.gov (United States)

    Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.

    2018-04-01

    A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.

  15. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  16. Higher-order relationship between eigen-value separation and static flux tilts

    International Nuclear Information System (INIS)

    Beckner, W.D.

    1975-01-01

    Spatial kinetics phenomena in nuclear reactors, such as xenon-induced spatial flux oscillations, are currently being analyzed using the higher harmonic solutions to the static reactor balance equation. An important parameter in such an analysis is a global quantity called eigenvalue separation. It is desirable to be able to experimentally measure this parameter in power reactors in order to confirm design calculations. Since spatial distortions in the flux shape depend on the eigenvalue separation of the reactor, an attempt has been made previously to use this fact as a means of measuring the parameter. It was postulated that an induced flux distortion or ''static flux tilt'' could be measured and theoretically related to eigenvalue separation. Unfortunately, the behavior of experimental data did not exactly agree with theoretical predictions, and values of the parameter found using the original static flux tilt technique were consistently low. The theory has been re-evaluated here and the previously observed discrepancy eliminated. Techniques have been also developed to allow for more accurate interpretation of experimental data. In order to make the method applicable to real systems, the theory has been extended to two spatial dimensions; extension to three dimensions follows directly. Possible trouble areas have been investigated, and experimental procedures for use of the technique to measure the eigenvalue separation in power reactors are presented

  17. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  18. The AIDS epidemic in the Amazon region: a spatial case-control study in Rondonia, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Rita Donalisio

    2013-10-01

    Full Text Available OBJECTIVE To analyze spatial changes in the risk of AIDS and the relationship between AIDS incidence and socioeconomic variables in the state of Rondonia, Amazon region. METHODS A spatial, population case-control study in Rondonia, Brazil, based on 1,780 cases reported to the Epidemiological Surveillance System and controls based on demographic data from 1987 to 2006. The cases were grouped into five consecutive four-year periods. A generalized additive model was adjusted to the data; the dependent variable was the status of the individuals (case or control, and the independent variables were a bi-dimensional spline of the geographic coordinates and some municipality-level socioeconomic variables. The observed values of the Moran’s I test were compared to a reference distribution of values generated under conditions of spatial randomness. RESULTS AIDS risk shows a marked spatial and temporal pattern. The disease incidence is related to socioeconomic variables at the municipal level in Rondônia, such as urbanization and human capital. The highest incidence rates of AIDS are in municipalities along the BR-364 highway and calculations of the Moran’s I test show positive spatial correlation associated with proximity of the municipality to the highway in the third and fourth periods (p = 0.05. CONCLUSIONS Incidence of the disease is higher in municipalities of greater economic wealth and urbanization, and in those municipalities bisected by Rondônia’s main roads. The rapid development associated with the opening up of once remote regions may be accompanied by an increase in these risks to health.

  19. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil

    Directory of Open Access Journals (Sweden)

    Zhao Guoqing

    2014-10-01

    Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.

  20. Control of unsteady separated flow associated with the dynamic pitching of airfoils

    Science.gov (United States)

    Ahmed, Sajeer

    1991-01-01

    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  1. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    Science.gov (United States)

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners.

    Science.gov (United States)

    Schwartz, Andrew H; Shinn-Cunningham, Barbara G

    2013-04-01

    Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.

  3. Effects of Artificial Gravity and Bed Rest on Spatial Orientation and Balance Control

    Science.gov (United States)

    Paloski, William H.; Moore, S. T.; Feiveson, A. H.; Taylor, L. C.

    2007-01-01

    While the vestibular system should be well-adapted to bed rest (a condition it experiences approximately 8/24 hrs each day), questions remain regarding the degree to which repeated exposures to the unusual gravito-inertial force environment of a short-radius centrifuge might affect central processing of vestibular information used in spatial orientation and balance control. Should these functions be impaired by intermittent AG, its feasibility as a counter-measure would be diminished. We, therefore, examined the effects of AG on spatial orientation and balance control in 15 male volunteers before and after 21 days of 6 HDT bed rest (BR). Eight of the subjects were treated with daily 1hr AG exposures (2.5g at the feet; 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls (C). Spatial orientation was assessed by measures of ocular counter-rolling (OCR; rotation of the eye about the line of sight, an otolith-mediated reflex) and subjective visual vertical (SVV; perception of the spatial upright). Both OCR and SVV measurements were made with the subject upright, lying on their left sides, and lying on their right sides. OCR was measured from binocular eye orientation recordings made while the subjects fixated for 10s on a point target directly in front of the face at a distance of 1 m. SVV was assessed by asking subjects (in the dark) to adjust to upright (using a handheld controller) the orientation of a luminous bar randomly perturbed (15) to either side of the vertical meridian. Balance control performance was assessed using a computerized dynamic posturography (CDP) protocol similar to that currently required for all returning crew members. During each session, the subjects completed a combination of trials of sensory organization test (SOT) 2 (eyes closed, fixed platform) and SOT 5 (eyes closed, sway-referenced platform) with and without static and dynamic pitch plane head movements (plus or minus 20 deg., dynamic

  4. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  5. Separate Mechanisms Recruited by Exogenous and Endogenous Spatial Cues: Evidence from a Spatial Stroop Paradigm

    Science.gov (United States)

    Funes, Maria Jesus; Lupianez, Juan; Milliken, Bruce

    2007-01-01

    The present experiments tested whether endogenous and exogenous cues produce separate effects on target processing. In Experiment 1, participants discriminated whether an arrow presented left or right of fixation pointed to the left or right. For 1 group, the arrow was preceded by a peripheral noninformative cue. For the other group, the arrow was…

  6. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.; Howard, Ian A.; Sweetnam, Sean; Burke, Timothy M.; McGehee, Michael D.; Laquai, Fré dé ric

    2015-01-01

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  7. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-04-07

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  8. Support for distinct subcomponents of spatial working memory: a double dissociation between spatial-simultaneous and spatial-sequential performance in unilateral neglect.

    Science.gov (United States)

    Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry

    2015-01-01

    Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.

  9. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.

    Science.gov (United States)

    Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian

    2018-01-15

    Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all pretrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (pretrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of an atom laser based on the spatial control of the scattering length

    International Nuclear Information System (INIS)

    Carpentier, Alicia V.; Michinel, Humberto; Rodas-Verde, Maria I.; Perez-Garcia, Victor M.

    2006-01-01

    In this paper we analyze atom lasers based on the spatial modulation of the scattering length of a Bose-Einstein condensate. We demonstrate, through numerical simulations and approximate analytical methods, the controllable emission of matter-wave bursts and study the dependence of the process on the spatial shape of the scattering length along the axis of emission. We also study the role of an additional modulation of the scattering length in time

  11. Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body

    Science.gov (United States)

    Das, S. P.; Srinivasan, U.; Arakeri, J. H.

    2013-07-01

    Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.

  12. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    Science.gov (United States)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  13. Spatial and Temporal Patterns In Ecohydrological Separation

    Science.gov (United States)

    Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.

    2017-12-01

    The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.

  14. The perceptual basis of spatial sound perception

    NARCIS (Netherlands)

    Kohlrausch, A.G.

    2003-01-01

    Our ability to derive spatial impressions from a sound field is based on the facts that we have two sensors which are spatially separated by typically 18 cm and that the space in between these sensors is filled by acoustically nontransparant material. The first fact leads to a time difference at the

  15. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  16. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  17. Spatial strategies for managing visitor impacts in National Parks

    Science.gov (United States)

    Leung, Y.-F.; Marion, J.L.

    1999-01-01

    Resource and social impacts caused by recreationists and tourists have become a management concern in national parks and equivalent protected areas. The need to contain visitor impacts within acceptable limits has prompted park and protected area managers to implement a wide variety of strategies and actions, many of which are spatial in nature. This paper classifies and illustrates the basic spatial strategies for managing visitor impacts in parks and protected areas. A typology of four spatial strategies was proposed based on the recreation and park management literature. Spatial segregation is a common strategy for shielding sensitive resources from visitor impacts or for separating potentially conflicting types of use. Two forms of spatial segregation are zoning and closure. A spatial containment strategy is intended to minimize the aggregate extent of visitor impacts by confining use to limited designated or established Iocations. In contrast, a spatial dispersal strategy seeks to spread visitor use, reducing the frequency of use to levels that avoid or minimize permanent resource impacts or visitor crowding and conflict. Finally, a spatial configuration strategy minimizes impacting visitor behavior though the judicious spatial arrangement of facilities. These four spatial strategics can be implemented separately or in combination at varying spatial scales within a single park. A survey of national park managers provides an empirical example of the diversity of implemented spatial strategies in managing visitor impacts. Spatial segregation is frequently applied in the form of camping restrictions or closures to protect sensitive natural or cultural resources and to separate incompatible visitor activities. Spatial containment is the most widely applied strategy for minimizing the areal extent of resource impacts. Spatial dispersal is commonly applied to reduce visitor crowding or conflicts in popular destination areas but is less frequently applied or

  18. Control Strategy of Two Capacitor Voltages for Separate MPPTs in Photovoltaic Systems Using Neutral-Point-Clamped Inverters

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Blaabjerg, Frede; Lee, Kyo-Beum

    2015-01-01

    The centralized topology with three-level inverters are widely used in photovoltaic (PV) systems due to their less installation costs and complexity. However, the common maximum power point tracking (MPPT) is a disadvantage of the centralized topology particularly under the partial shading...... and panel mismatch conditions. In this system, if PV modules are separately connected to the split capacitor voltage, the MPPT efficiency can be improved by the proposed control strategy. By the proposed method, the two capacitor voltages can be controlled asymmetrically to perform the separate MPPTs...... of each PV module connected to separate capacitors. The outputs can be generated without distortion even if two capacitors are asymmetrically regulated. Simulation and experimental results verify the validity and feasibility of the proposed methods....

  19. Visual long-term memory for spatial frequency?

    Science.gov (United States)

    Lages, Martin; Paul, Aileen

    2006-06-01

    It has been suggested that a visual long-term memory based on a sensory representation of the stimulus accounts for discrimination performance when the reference and the test stimuli are separated in time. Decision processes involved in setting response criteria, however, may also contribute to discrimination performance. In the present study, it is shown that under proper control, spatial frequency discrimination thresholds from a group of observers, each performing on a single trial, are significantly higher for a 2-h than for a 5-sec retention interval, whereas thresholds from individual observers performing in repeated trials with a 2-h retention interval are considerably lower. The results suggest that discrimination performance may depend on the retention of task-relevant information, such as a response criterion, rather than on visual memory of the stimulus. It is concluded that it is risky to postulate a high-fidelity long-term visual memory for spatial frequency on the basis of psychophysical group discrimination thresholds.

  20. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.

    Science.gov (United States)

    Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C

    2015-01-01

    Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.

  1. Controlled power supply for isotopes separator; Alimentations regulees pour separateur d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lavaitte, A; Pottier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1953-07-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [French] Cet equipement est destine a equiper le separateur d'isotopes qui fait l'objet du rapport C.E.A. n 138. Il comprend: - une alimentation regulee en tension. - une alimentation regulee en courant. Le spectre de fluctuations de ces ensembles est different dans les deux cas. (auteurs)

  2. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    Science.gov (United States)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and

  3. Interference between postural control and spatial vs. non-spatial auditory reaction time tasks in older adults.

    Science.gov (United States)

    Fuhrman, Susan I; Redfern, Mark S; Jennings, J Richard; Furman, Joseph M

    2015-01-01

    This study investigated whether spatial aspects of an information processing task influence dual-task interference. Two groups (Older/Young) of healthy adults participated in dual-task experiments. Two auditory information processing tasks included a frequency discrimination choice reaction time task (non-spatial task) and a lateralization choice reaction time task (spatial task). Postural tasks included combinations of standing with eyes open or eyes closed on either a fixed floor or a sway-referenced floor. Reaction times and postural sway via center of pressure were recorded. Baseline measures of reaction time and sway were subtracted from the corresponding dual-task results to calculate reaction time task costs and postural task costs. Reaction time task cost increased with eye closure (p = 0.01), sway-referenced flooring (p vision x age interaction indicated that older subjects had a significant vision X task interaction whereas young subjects did not. However, when analyzed by age group, the young group showed minimal differences in interference for the spatial and non-spatial tasks with eyes open, but showed increased interference on the spatial relative to non-spatial task with eyes closed. On the contrary, older subjects demonstrated increased interference on the spatial relative to the non-spatial task with eyes open, but not with eyes closed. These findings suggest that visual-spatial interference may occur in older subjects when vision is used to maintain posture.

  4. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    International Nuclear Information System (INIS)

    Abdoli, A; Mirzaee, I; Purmahmod, N; Anvari, A

    2008-01-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s -1 at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A b and D c , have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications

  5. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Science.gov (United States)

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  6. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated

  7. Controlling phase separation in vanadium dioxide thin films via substrate engineering

    Science.gov (United States)

    Gilbert Corder, Stephanie N.; Jiang, Jianjuan; Chen, Xinzhong; Kittiwatanakul, Salinporn; Tung, I.-Cheng; Zhu, Yi; Zhang, Jiawei; Bechtel, Hans A.; Martin, Michael C.; Carr, G. Lawrence; Lu, Jiwei; Wolf, Stuart A.; Wen, Haidan; Tao, Tiger H.; Liu, Mengkun

    2017-10-01

    The strong electron-lattice interactions in correlated electron systems provide unique opportunities for altering the material properties with relative ease and flexibility. In this Rapid Communication, we use localized strain control via a focused-ion-beam patterning of Ti O2 substrates to demonstrate that one can selectively engineer the insulator-to-metal transition temperature, the fractional component of the insulating and metallic phases, and the degree of optical anisotropy down to the length scales of the intrinsic phase separation in V O2 thin films without altering the quality of the films. The effects of localized strain control on the strongly correlated electron system are directly visualized by state-of-the-art IR near-field imaging and spectroscopy techniques and x-ray microdiffraction measurements.

  8. Separation of a light additive gas by separation nozzle cascades

    International Nuclear Information System (INIS)

    Becker, E.; Bley, P.; Ehrfeld, W.; Fritz, W.; Steinhaus, H.

    1984-01-01

    Double-turn separation nozzles, in comparison with single-turn separation nozzles, offer much greater advantages in the separation of UF6 and H2 than in the separation of the U isotopes, for which the double-turn separation nozzles were conceived. By using a double-turn separation-nozzle stage as a preseparation stage in combination with a low-temperature separator, one can reduce the ratio of the buffer input stream to the product stream, in contrast with the solution used up to this time, with only a slight increase in cost of about an order of magnitude. The control program in the case of return feeding of the UF6 from the buffer and the danger of production losses connected with it are thereby correspondingly diminished. An example is given of the enrichment of 235U using the title facility with UF6. (orig./PW)

  9. Optimization of spatial light distribution through genetic algorithms for vision systems applied to quality control

    International Nuclear Information System (INIS)

    Castellini, P; Cecchini, S; Stroppa, L; Paone, N

    2015-01-01

    The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)

  10. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    Directory of Open Access Journals (Sweden)

    Arnaud eDechesne

    2014-12-01

    Full Text Available Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays nonrandom spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH and some agricultural management practices (pesticide application, tillage, while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modelling and experimental systems that do not include soil’s full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  11. Influence of throttling of the heavy fraction on the uranium isotope separation in the separation nozzle

    International Nuclear Information System (INIS)

    Bley, P.; Ehrfeld, W.; Heiden, U.

    1978-04-01

    In a separation nozzle cascade for enrichment of U-235 the cut of the separation elements is adjusted by throttling the heavy fraction. This control process influences directly the flow properties in the nozzle and may noticeably change its separation characteristics. This paper deals with an experimental investigation of the throttling effect on the separation and control characteristics of the separation nozzle operated with a H 2 /UF 6 mixture. In consideration of the extremely small characteristic dimensions of commercial separation nozzle elements the influence of manufacturing tolerances on the characteristics of the throttled nozzle was analysed in detail. It appears, that the elementary effect of isotope separation increases by throttling of the heavy fraction up to 5% without changing the optimum operating conditions. This increase of the elementary effect is not only obtained for separation nozzles with zero tolerances but also for separation nozzles having finite tolerances of the skimmer position. Tolerances of the nozzle width, however, become increasingly detrimental, when the heavy fraction is throttled. Regarding the control characteristics of the separation nozzle it was found out, that the UF 6 -cut of the throttled nozzle reacts more sensitively to alterations of the operating pressures and less sensitively to alterations of the UF 6 -concentration of the process gas mixture. (orig.) [de

  12. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.

    Science.gov (United States)

    Bui, Anh D; Nguyen, Theresa M; Limouse, Charles; Kim, Hannah K; Szabo, Gergely G; Felong, Sylwia; Maroso, Mattia; Soltesz, Ivan

    2018-02-16

    Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    Science.gov (United States)

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  14. Early handling effect on female rat spatial and non-spatial learning and memory.

    Science.gov (United States)

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators

    Directory of Open Access Journals (Sweden)

    Wuqiang Yang

    2006-04-01

    Full Text Available In the oil industry, huge saving may be made if suitable multi-interface levelmeasurement systems are employed for effectively monitoring crude oil separators andefficient control of their operation. A number of techniques, e.g. externally mounteddisplacers, differential pressure transmitters and capacitance rod devices, have beendeveloped to measure the separation process with gas, oil, water and other components.Because of the unavailability of suitable multi-interface level measurement systems, oilseparators are currently operated by the trial-and-error approach. In this paper someconventional techniques, which have been used for level measurement in industry, and newdevelopment are discussed.

  16. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, S; Zeng, X H; Plain, J; Royer, P; Bachelot, R; Akil, S [Laboratoire de Nanotechnologie et d' Instrumentation Optique, ICD CNRS FRE 2848, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes (France); Balan, L; Lougnot, D J; Soppera, O; Vidal, L, E-mail: lavinia.balan@uha.fr [Institut de Science des Materiaux de Mulhouse CNRS LRC 7228, 15 rue Jean Starcky, 68057 Mulhouse (France)

    2010-03-05

    The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

  17. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  18. Increasing Wage Gap, Spatial Structure and Market Access: Evidence from Swedish Micro Data

    OpenAIRE

    Nabavi, Pardis

    2015-01-01

    The new economic geography predicts that the wage gap will increase with accessibility to markets but does not consider the impact of spatial proximity. In contrast, urban economic theory explains wage differences by density without accounting for accessibility. Using a rich Swedish micro-panel, we empirically examine the two rival theories for males and females separately, controlling for individual, firm and regional characteristics. The regression results indicate that wage dispersion is c...

  19. Isotope separation by standing waves

    International Nuclear Information System (INIS)

    Altshuler, S.

    1984-01-01

    The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, the beam having in either case a desired isotope and at least one other. The particle beam is directed so as to impinge on the standing electromagnetic wave, which may be a light wave. The particles, that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the standing electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted. (author)

  20. Spatial resolution test of a beam diagnostic system for DESIREE

    Science.gov (United States)

    Das, Susanta; Kallberg, A.

    2010-11-01

    A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).

  1. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  2. Price and quality in spatial competition

    OpenAIRE

    Brekke, Kurt R.; Siciliani, Luigi; Straume, Odd Rune

    2010-01-01

    We study the relationship between competition and quality within a spatial competition framework where firms compete in prices and quality. We generalise existing literature on spatial price–quality competition along several dimensions, including utility functions that are non-linear in income and cost functions that are non-separable in output and quality. Our main message is that the scope for a positive relationship between competition and quality is underestimated in the existing literatu...

  3. Transitioning Resolution Responsibility between the Controller and Automation Team in Simulated NextGen Separation Assurance

    Science.gov (United States)

    Cabrall, C.; Gomez, A.; Homola, J.; Hunt, S..; Martin, L.; Merccer, J.; Prevott, T.

    2013-01-01

    As part of an ongoing research effort on separation assurance and functional allocation in NextGen, a controller- in-the-loop study with ground-based automation was conducted at NASA Ames' Airspace Operations Laboratory in August 2012 to investigate the potential impact of introducing self-separating aircraft in progressively advanced NextGen timeframes. From this larger study, the current exploratory analysis of controller-automation interaction styles focuses on the last and most far-term time frame. Measurements were recorded that firstly verified the continued operational validity of this iteration of the ground-based functional allocation automation concept in forecast traffic densities up to 2x that of current day high altitude en-route sectors. Additionally, with greater levels of fully automated conflict detection and resolution as well as the introduction of intervention functionality, objective and subjective analyses showed a range of passive to active controller- automation interaction styles between the participants. Not only did the controllers work with the automation to meet their safety and capacity goals in the simulated future NextGen timeframe, they did so in different ways and with different attitudes of trust/use of the automation. Taken as a whole, the results showed that the prototyped controller-automation functional allocation framework was very flexible and successful overall.

  4. Communication: Control of chemical reactions using electric field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  5. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  6. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, A; Mirzaee, I; Purmahmod, N [Faculty of Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Anvari, A [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: ab.abdoli@gmail.com

    2008-09-07

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s{sup -1} at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A{sub b} and D{sub c}, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  7. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg [Laboratory of Optics and Spectroscopy, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia (Bulgaria); Marinov, Yordan G.; Petrov, Alexander G. [Laboratory of Biomolecular Layers, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia, Bulgaria (Bulgaria)

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii) spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.

  8. The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction

    Science.gov (United States)

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa

    It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.

  9. Superconductivity in Ba sub 1 sub - sub x K sub x BiO sub 3 : possible scenario of spatially separated Fermi-Bose mixture

    CERN Document Server

    Menushenkov, A P; Kuznetsov, A V; Kagan, M Y

    2001-01-01

    A new scenario for the metal-insulator phase transition and superconductivity in the perovskite-like bismuthates Ba sub 1 sub - sub x K sub x BiO sub 3 (BKBO) is proposed. It is shown that two types of charge carriers, the local pairs (real-space bosons) and the itinerant electrons, exist in the metallic compound BKBO (x >= 0.37). The real-space bosons are responsible for the charge transport in semiconducting BaBiO sub 3 and for superconductivity in the metallic BKBO. The appearance of the Fermi-liquid state as the percolation threshold is overcome (x >= 0.37) explains the observed metal-insulator phase transition. Because bosons and fermions occupy different types of the octahedral BiO sub 6 complexes, they are separated in real space, and therefore, the spatially separated Fermi-Bose mixture of a new type is likely to be realized in the bismuthates. The nature of superconductivity is consistently explained in the framework of this scenario. A new superconducting oxide Ba sub 1 sub - sub x La sub x PbO sub ...

  10. Blind Separation of Event-Related Brain Responses into Independent Components

    National Research Council Canada - National Science Library

    Makeig, Scott

    1996-01-01

    .... We report here a method for the blind separation of event-related brain responses into spatially stationary and temporally independent subcomponents using an Independent Component Analysis algorithm...

  11. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  12. Spatial reconstruction of single-cell gene expression

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  13. The Heerlen confluence : porosity, integration and separation

    NARCIS (Netherlands)

    Krishnamurthy, Sukanya; Reijnders, Daniek; van Gorkom, Joost; van Tetering, Thijs

    2015-01-01

    Historically the river Rhine and the Meuse have acted not just as frontiers of separation between Germany to the east with Belgium and the Netherlands to the west, but over the centuries has also developed into a core-region of central Europe. The spatial, cultural and political landscape of where

  14. Optimal laser control of molecular wave packet dynamics under the influence of dissipation: possibility of isotope separation

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2004-01-01

    Possibility of fs-laser-pulse isotope separation is numerically investigated using optimal control theory. Optimal pulses that separate the 1:1 mixture of 79 Br 2 and 28 1 Br 2 are calculated. Quantum interferences induced by the optimally designed fs pulse efficiently enhance the isotope shifts through multiple electronic transitions, which results in a high enrichment factor. When utilizing vibrational multi-photon transitions (a virtual model), an optimal pulse can transfer the two isotopes to specified different vibrational states with almost 100% probability. In the presence of colored noises, the optimal pulse achieves the control with minimum loss of product yields within the bath correlation time. (author)

  15. The CP 1 type separators-superheaters

    International Nuclear Information System (INIS)

    Palacio, G.

    1984-01-01

    Analysis of the functionnement of the separators superheaters in the first French 900 MW PWR units (Fessenhein 1-2 and Bugey 2-3-4-5) and in the program CP 1 units: localization of the separators superheaters, design, tests and choice of the materials, description of the separators superheaters (shells, separators, superheater bundles, internal lagging, purging tank and condensate stank, steam line equipments); study of the various operation modes (nominals, transients, malfunctions, conservation during shutdowns) and the in service behaviour of the components; study of the modifications on the CP 1 equipments and their behaviour; description of the measures, tests and on site controls (controls during planned shutdowns and controls during service) [fr

  16. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  17. Spatial econometrics using microdata

    CERN Document Server

    Dubé, Jean

    2014-01-01

    This book provides an introduction to spatial analyses concerning disaggregated (or micro) spatial data.Particular emphasis is put on spatial data compilation and the structuring of the connections between the observations. Descriptive analysis methods of spatial data are presented in order to identify and measure the spatial, global and local dependency.The authors then focus on autoregressive spatial models, to control the problem of spatial dependency between the residues of a basic linear statistical model, thereby contravening one of the basic hypotheses of the ordinary least squares appr

  18. Application of 241Am EDXRF in detecting and controlling of rare earth separation process by solvent extraction

    International Nuclear Information System (INIS)

    Yan Chunhua; Jia Jiangtao; Liao Chunsheng; Wang Mingwen; Li Biaoguo; Xu Guangxian

    1996-01-01

    The article investigated a fast EDXRF analysis method by radioisotope excited ( 241 Am) employing a high-purity germanium detector in rare earth separation process by solvent extraction. Applying the method, hydrochloride aqueous samples of SeEuGd/Tb/Dy separation processes were off-line analyzed. Comparative results measured by ICP were also given out. The results show that the method can be used for a wide rare earth concentration range with low error. Being fast, effective, precise and non-destructive, it can be used for on-line analysis to detect and control rare earth separation process by solvent extraction

  19. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-09-01

    Full Text Available The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs. Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data.

  20. Active flow control of the laminar separation bubble on a plunging airfoil near stall

    Science.gov (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann

    2017-11-01

    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  1. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    Science.gov (United States)

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Spatial Control of Functional Response in 4D-Printed Active Metallic Structures

    Science.gov (United States)

    Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa

    2017-04-01

    We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods.

  3. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    Science.gov (United States)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.

  4. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  5. Active vibration control of spatial flexible multibody systems

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambrósio, Jorge A. C.; Roseiro, Luis M.; Amaro, A.; Vasques, C. M. A.

    2013-01-01

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  6. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  7. Evidence for Separate Contributions of High and Low Spatial Frequencies during Visual Word Recognition.

    Science.gov (United States)

    Winsler, Kurt; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan

    2017-01-01

    Previous studies have shown that different spatial frequency information processing streams interact during the recognition of visual stimuli. However, it is a matter of debate as to the contributions of high and low spatial frequency (HSF and LSF) information for visual word recognition. This study examined the role of different spatial frequencies in visual word recognition using event-related potential (ERP) masked priming. EEG was recorded from 32 scalp sites in 30 English-speaking adults in a go/no-go semantic categorization task. Stimuli were white characters on a neutral gray background. Targets were uppercase five letter words preceded by a forward-mask (#######) and a 50 ms lowercase prime. Primes were either the same word (repeated) or a different word (un-repeated) than the subsequent target and either contained only high, only low, or full spatial frequency information. Additionally within each condition, half of the prime-target pairs were high lexical frequency, and half were low. In the full spatial frequency condition, typical ERP masked priming effects were found with an attenuated N250 (sub-lexical) and N400 (lexical-semantic) for repeated compared to un-repeated primes. For HSF primes there was a weaker N250 effect which interacted with lexical frequency, a significant reversal of the effect around 300 ms, and an N400-like effect for only high lexical frequency word pairs. LSF primes did not produce any of the classic ERP repetition priming effects, however they did elicit a distinct early effect around 200 ms in the opposite direction of typical repetition effects. HSF information accounted for many of the masked repetition priming ERP effects and therefore suggests that HSFs are more crucial for word recognition. However, LSFs did produce their own pattern of priming effects indicating that larger scale information may still play a role in word recognition.

  8. Vacation homes, spatial planning and sustainability

    DEFF Research Database (Denmark)

    Xue, Jin

    2014-01-01

    patterns of vacation homes are highly relevant to environmental sustainability. Unlike the spatial planning for urban areas where the urban environmental problamatique has been highly recognized and theories of sustainable urban development and planning relatively fully developed, vacation home has been...... a missing component in sustainable spatial development and planning both in theories and practice. Moreover, spatial planning for urban areas and vacation homes cannot be separated as they mutually influence each other. Against this background, the paper is concerned with how and to what extent concerns...... on sustainability of vacation homes is integrated into the spatial planning in the Danish context. The lack of ontological and theoretical debates on the environmental sustainability of vacation homes will be reflected upon before investigating the Danish case. A deep realist approach is adopted to explore...

  9. Spatial modelling with R-INLA: A review

    KAUST Repository

    Bakka, Haakon; Rue, Haavard; Fuglstad, Geir-Arne; Riebler, Andrea; Bolin, David; Krainski, Elias; Simpson, Daniel; Lindgren, Finn

    2018-01-01

    Coming up with Bayesian models for spatial data is easy, but performing inference with them can be challenging. Writing fast inference code for a complex spatial model with realistically-sized datasets from scratch is time-consuming, and if changes are made to the model, there is little guarantee that the code performs well. The key advantages of R-INLA are the ease with which complex models can be created and modified, without the need to write complex code, and the speed at which inference can be done even for spatial problems with hundreds of thousands of observations. R-INLA handles latent Gaussian models, where fixed effects, structured and unstructured Gaussian random effects are combined linearly in a linear predictor, and the elements of the linear predictor are observed through one or more likelihoods. The structured random effects can be both standard areal model such as the Besag and the BYM models, and geostatistical models from a subset of the Mat\\'ern Gaussian random fields. In this review, we discuss the large success of spatial modelling with R-INLA and the types of spatial models that can be fitted, we give an overview of recent developments for areal models, and we give an overview of the stochastic partial differential equation (SPDE) approach and some of the ways it can be extended beyond the assumptions of isotropy and separability. In particular, we describe how slight changes to the SPDE approach leads to straight-forward approaches for non-stationary spatial models and non-separable space-time models.

  10. Spatial modelling with R-INLA: A review

    KAUST Repository

    Bakka, Haakon

    2018-02-18

    Coming up with Bayesian models for spatial data is easy, but performing inference with them can be challenging. Writing fast inference code for a complex spatial model with realistically-sized datasets from scratch is time-consuming, and if changes are made to the model, there is little guarantee that the code performs well. The key advantages of R-INLA are the ease with which complex models can be created and modified, without the need to write complex code, and the speed at which inference can be done even for spatial problems with hundreds of thousands of observations. R-INLA handles latent Gaussian models, where fixed effects, structured and unstructured Gaussian random effects are combined linearly in a linear predictor, and the elements of the linear predictor are observed through one or more likelihoods. The structured random effects can be both standard areal model such as the Besag and the BYM models, and geostatistical models from a subset of the Mat\\\\\\'ern Gaussian random fields. In this review, we discuss the large success of spatial modelling with R-INLA and the types of spatial models that can be fitted, we give an overview of recent developments for areal models, and we give an overview of the stochastic partial differential equation (SPDE) approach and some of the ways it can be extended beyond the assumptions of isotropy and separability. In particular, we describe how slight changes to the SPDE approach leads to straight-forward approaches for non-stationary spatial models and non-separable space-time models.

  11. Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Michael S.H.; Yarusevych, Serhiy [University of Waterloo, Waterloo, ON (Canada)

    2012-06-15

    Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0 to 21 . The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the

  12. Spatial Computation

    Science.gov (United States)

    2003-12-01

    Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address

  13. Light-induced spatial control of pH-jump reaction at smart gel interface.

    Science.gov (United States)

    Techawanitchai, Prapatsorn; Ebara, Mitsuhiro; Idota, Naokazu; Aoyagi, Takao

    2012-11-01

    We proposed here a 'smart' control of an interface movement of proton diffusion in temperature- and pH-responsive hydrogels using a light-induced spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (NBA) was integrated into poly(N-isopropylacrylamide-o-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. NBA-integrated hydrogels demonstrated quick release of proton upon UV irradiation, allowing the pH inside the gel to decrease below the pK(a) of P(NIPAAm-co-CIPAAm) within a minute. The NBA-integrated gel was shown to shrink rapidly upon UV irradiation without polymer "skin layer" formation due to a uniform decrease of pH inside the gel. Spatial control of gel shrinking was also created by irradiating UV light to a limited region of the gel through a photomask. The interface of proton diffusion ("active interface") gradually moved toward non-illuminated area. The apparent position of "active interface", however, did not change remarkably above the LCST, while protons continuously diffused outward direction. This is because the "active interface" also moved inward direction as gel shrank above the LCST. As a result, slow movement of the apparent interface was observed. The NBA-integrated gel was also successfully employed for the controlled release of an entrapped dextran in a light controlled manner. This system is highly promising as smart platforms for triggered and programmed transportation of drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Interspecific and intraspecific spatial separation by birds breeding in nest boxes

    Directory of Open Access Journals (Sweden)

    Denis C. Deeming

    2017-12-01

    Full Text Available Nest boxes can be seen as a conservation tool for improving low-grade nesting habitat but it is unclear how sympatric species using boxes establish a spatial distribution relative to conspecifics and heterospecifics. This study determined the distances between nest boxes occupied by Blue Tits (Cyanistes caeruleus and Great Tits (Parus major in two British woodlands to ascertain whether spatial distribution was affected by species and, if it was, whether there were reproductive consequences of this breeding distribution. Occupancy of nest boxes at two woodland sites were recorded on an annual basis between 2010 and 2014, inclusive. Distances between nest boxes, and reproductive activity, were recorded. Even if nest boxes showed a clumped distribution in the woodlands, the occupancy of the boxes was random. Not all boxes were used and the minimum distance between occupied boxes was at least twice the distance between boxes in general. Blue Tits tended to have greater distances between boxes containing conspecifics but distances between boxes containing heterospecifics were generally of comparable lengths. Reproductive output was only affected in relation to clutch size for Blue Tits nesting at one site. Nest boxes that aim to improve habitats that lack suitable nesting sites should be placed to reflect actual dispersal distances of the focal bird species.

  15. Spatial effects in meta-foodwebs.

    Science.gov (United States)

    Barter, Edmund; Gross, Thilo

    2017-08-30

    In ecology it is widely recognised that many landscapes comprise a network of discrete patches of habitat. The species that inhabit the patches interact with each other through a foodweb, the network of feeding interactions. The meta-foodweb model proposed by Pillai et al. combines the feeding relationships at each patch with the dispersal of species between patches, such that the whole system is represented by a network of networks. Previous work on meta-foodwebs has focussed on landscape networks that do not have an explicit spatial embedding, but in real landscapes the patches are usually distributed in space. Here we compare the dispersal of a meta-foodweb on Erdős-Rényi networks, that do not have a spatial embedding, and random geometric networks, that do have a spatial embedding. We found that local structure and large network distances in spatially embedded networks, lead to meso-scale patterns of patch occupation by both specialist and omnivorous species. In particular, we found that spatial separations make the coexistence of competing species more likely. Our results highlight the effects of spatial embeddings for meta-foodweb models, and the need for new analytical approaches to them.

  16. Investigation of turbulent separation in a forward-facing step flow

    International Nuclear Information System (INIS)

    Pearson, D S; Goulart, P J; Ganapathisubramani, B

    2011-01-01

    The relation between the upstream and downstream regions of separation of the flow over a forward-facing step is investigated using experimental data. High-speed Particle Image Velocimetry (PIV) data is used to show a correlation between the wall shear stress of the oncoming boundary layer and the streamwise location of reverse flow upstream of the step. The time delay associated with the correlation is consistent with average convection velocities in the lower boundary layer. This suggests that appropriate addition of momentum into the boundary layer could be used to control the spatial extent of the separation upstream of the step. In addition, low-speed PIV data is used to show statistical relations between the flow characteristics of the recirculation regions in the vicinity of the step face. It is shown that a slower than average flow velocity above the step face is associated with an increase in the wall-normal extent of upstream reverse flow, an increase in the inclination of the flow above the step and an increase in downstream vorticity.

  17. Trajectory separation of channeled ions in crystalline materials

    International Nuclear Information System (INIS)

    Temkin, Misha; Chakarov, Ivan; Webb, Roger

    2000-01-01

    Spatial distributions of ions implanted into crystals can be of a very complex shape with 'lobes' due to ions penetrating through open channels in several directions. This paper suggests an analytical model which represents such a distribution as a linear combination of 'random' distribution and one or more 'channeled' distributions. This study is focused on the algorithm of the separation of ion trajectories into several distributions. The first distribution includes those ions which have undergone predominantly random collisions. The other distributions include those ions which have undergone mainly 'weak' collisions and traveled mostly along the main channeling directions. Our binary collision approximation (BCA) simulator is used for generating and analyzing ion trajectories. The spatial moments can be extracted from each separated distribution. It is shown that 2D analytical distributions obtained as a linear combination of distributions derived from these moments and aligned along corresponding channeling direction are in a very good agreement with direct BCA calculations

  18. Inverse Opal Scaffolds with Gradations in Mineral Content for Spatial Control of Osteogenesis.

    Science.gov (United States)

    Zhu, Chunlei; Qiu, Jichuan; Pongkitwitoon, Suphannee; Thomopoulos, Stavros; Xia, Younan

    2018-05-30

    The design and fabrication of inverse opal scaffolds with gradations in mineral content to achieve spatial control of osteogenesis are described. The gradient in mineral content is established via the diffusion-limited transport of hydroxyapatite nanoparticles in a closely packed lattice of gelatin microbeads. The mineral-graded scaffold has an array of uniform pores and interconnected windows to facilitate efficient transport of nutrients and metabolic wastes, ensuring high cell viability. The graded distribution of mineral content can provide biochemical and mechanical cues for spatially regulating the osteogenic differentiation of adipose-derived stromal cells. This new class of scaffolds holds promise for engineering the interfaces between mineralized and unmineralized tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection

    Science.gov (United States)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-02-01

    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  20. Feature-based attentional modulation increases with stimulus separation in divided-attention tasks.

    Science.gov (United States)

    Sally, Sharon L; Vidnyánsky, Zoltán; Papathomas, Thomas V

    2009-01-01

    Attention modifies our visual experience by selecting certain aspects of a scene for further processing. It is therefore important to understand factors that govern the deployment of selective attention over the visual field. Both location and feature-specific mechanisms of attention have been identified and their modulatory effects can interact at a neural level (Treue and Martinez-Trujillo, 1999). The effects of spatial parameters on feature-based attentional modulation were examined for the feature dimensions of orientation, motion and color using three divided-attention tasks. Subjects performed concurrent discriminations of two briefly presented targets (Gabor patches) to the left and right of a central fixation point at eccentricities of +/-2.5 degrees , 5 degrees , 10 degrees and 15 degrees in the horizontal plane. Gabors were size-scaled to maintain consistent single-task performance across eccentricities. For all feature dimensions, the data show a linear increase in the attentional effects with target separation. In a control experiment, Gabors were presented on an isoeccentric viewing arc at 10 degrees and 15 degrees at the closest spatial separation (+/-2.5 degrees ) of the main experiment. Under these conditions, the effects of feature-based attentional effects were largely eliminated. Our results are consistent with the hypothesis that feature-based attention prioritizes the processing of attended features. Feature-based attentional mechanisms may have helped direct the attentional focus to the appropriate target locations at greater separations, whereas similar assistance may not have been necessary at closer target spacings. The results of the present study specify conditions under which dual-task performance benefits from sharing similar target features and may therefore help elucidate the processes by which feature-based attention operates.

  1. The scope and control of attention as separate aspects of working memory.

    Science.gov (United States)

    Shipstead, Zach; Redick, Thomas S; Hicks, Kenny L; Engle, Randall W

    2012-01-01

    The present study examines two varieties of working memory (WM) capacity task: visual arrays (i.e., a measure of the amount of information that can be maintained in working memory) and complex span (i.e., a task that taps WM-related attentional control). Using previously collected data sets we employ confirmatory factor analysis to demonstrate that visual arrays and complex span tasks load on separate, but correlated, factors. A subsequent series of structural equation models and regression analyses demonstrate that these factors contribute both common and unique variance to the prediction of general fluid intelligence (Gf). However, while visual arrays does contribute uniquely to higher cognition, its overall correlation to Gf is largely mediated by variance associated with the complex span factor. Thus we argue that visual arrays performance is not strictly driven by a limited-capacity storage system (e.g., the focus of attention; Cowan, 2001), but may also rely on control processes such as selective attention and controlled memory search.

  2. Photochemical separation and extraction device

    International Nuclear Information System (INIS)

    Wada, Yukio; Morimoto, Kyoichi.

    1998-01-01

    The present invention concerns a device for separating neptunium and plutonium from highly radioactive liquid wastes, in which valance control by irradiation of UV rays and extraction operation by using an organic solvent can be conducted simultaneously in the same reaction vessel. Namely, a step of irradiating UV rays to the liquid in the reaction vessel to control the valence of predetermined materials and a step of separating the materials by conducting solvent-extraction while stirring with a solvent are conducted simultaneously or successively. Then, facilities for the separation method can be reduced and the operation steps can be simplified. (N.H.)

  3. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  4. Visualisation and research strategy for computational spatial and structural design interaction

    NARCIS (Netherlands)

    Peeten, D.; Hofmeyer, H.; Thabet, W

    2010-01-01

    A research engine is under development for studying the interaction of spatial and structural design processes. The design processes are being implemented as two separate configurable transformation steps; a conversion step and an optimisation step. A significant part of the spatial-to-structural

  5. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    Science.gov (United States)

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. On the properties and mechanisms of microjet arrays in crossflow for the control of flow separation

    Science.gov (United States)

    Fernandez, Erik J.

    By utilizing passive and active methods of flow control, the aerodynamic performance of external and internal components can be greatly improved. Recently however, the benefits of applying active flow control methods to turbomachinery components for improved fuel efficiency, reduced engine size, and greater operational envelope has sparked a renewed interest in some of these flow control techniques. The more attractive of these, is active control in the form of jets in cross flow. With their ability to be turned on and off, as well as their negligible effect on drag when not being actuated, they are well suited for applications such as compressor and turbine blades, engine inlet diffusers, internal engine passages, and general external aerodynamics. This study consists of two parts. The first is the application of active control on a low-pressure turbine (LPT) cascade to determine the effectiveness of microjet actuators on flow separation at relatively low speeds. The second study, motivated by the first, involves a parametric study on a more canonical model to examine the effects of various microjet parameters on the efficacy of separation control and to provide a better understanding of the relevant flow physics governing this control approach. With data obtained from velocity measurements across the wide parametric range, correlations for the growth of the counter-rotating vortex pairs generated by these actuators are deduced. From the information and models obtained throughout the study, basic suggestions for microjet actuator design are presented.

  7. Competitive short-term and long-term memory processes in spatial habituation.

    Science.gov (United States)

    Sanderson, David J; Bannerman, David M

    2011-04-01

    Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.

  8. Investigating the Complexity of Transitioning Separation Assurance Tools into NextGen Air Traffic Control

    Science.gov (United States)

    Gomez, Ashley Nicole; Martin, Lynne Hazel; Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Mercer, Joey; Prevot, Thomas

    2013-01-01

    In a study, that introduced ground-based separation assurance automation through a series of envisioned transitional phases of concept maturity, it was found that subjective responses to scales of workload, situation awareness, and acceptability in a post run questionnaire revealed as-predicted results for three of the four study conditions but not for the third, Moderate condition. The trend continued for losses of separation (LOS) where the number of LOS events were far greater than expected in the Moderate condition. To offer an account of why the Moderate condition was perceived to be more difficult to manage than predicted, researchers examined the increase in amount and complexity of traffic, increase in communication load, and increased complexities as a result of the simulation's mix of aircraft equipage. Further analysis compared the tools presented through the phases, finding that controllers took advantage of the informational properties of the tools presented but shied away from using their decision support capabilities. Taking into account similar findings from other studies, it is suggested that the Moderate condition represented the first step into a "shared control" environment, which requires the controller to use the automation as a decision making partner rather than just a provider of information. Viewed in this light, the combination of tools offered in the Moderate condition was reviewed and some tradeoffs that may offset the identified complexities were suggested.

  9. Spatial reconstruction of single-cell gene expression data.

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  10. Lax pairs: a novel type of separability

    International Nuclear Information System (INIS)

    Fokas, A S

    2009-01-01

    An attempt is made to place into historical context the fundamental concept of Lax pairs. For economy of presentation, emphasis is placed on the effectiveness of Lax pairs for the analysis of integrable nonlinear evolution PDEs. It is argued that Lax pairs provide a deeper type of separability than the classical separation of variables. Indeed, it is shown that: (a) the solution of the Cauchy problem of evolution equations is based on the derivation of a nonlinear Fourier transform pair, and this is achieved by employing the spectral analysis of one of the two eigenvalue equations forming a Lax pair; thus, although this methodology still follows the reverent philosophy of the classical separation of variables and transform methods, it can be applied to a class of nonlinear PDEs. (b) The solution of initial-boundary-value problems of evolution equations is based on the simultaneous spectral analysis of both equations forming a Lax pair and hence, in a sense, it employs the synthesis instead of the separation of variables; this methodology does not have a direct classical analogue, however, it can be considered as the nonlinearization of a method which combines Green's function classical integral representations with an analogue of the method of images, but which are now formulated in the spectral (Fourier) instead of the physical space. In addition to presenting a general methodology for analysing initial- and initial-boundary-value problems for nonlinear integrable evolution equations in one and two spatial variables, recent progress is reviewed for the derivation and the solution of integrable nonlinear evolution PDEs formulated in higher than two spatial dimensions. (topical review)

  11. An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception

    Directory of Open Access Journals (Sweden)

    Lux Li

    2017-06-01

    Full Text Available Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference and varied on the other arm (the comparison. In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding.

  12. One-dimension-based spatially ordered architectures for solar energy conversion.

    Science.gov (United States)

    Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun

    2015-08-07

    The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

  13. Cluster-based control of a separating flow over a smoothly contoured ramp

    Science.gov (United States)

    Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek

    2017-12-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.

  14. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R [The University of Tennessee, Knoxville (United States)

    1998-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  15. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  16. Effect of spatial separation of pigs on spread of Streptococcus suis serotype 9.

    Directory of Open Access Journals (Sweden)

    Niels Dekker

    Full Text Available The spread of an infectious agent in a population can be reduced by interfering in the infectiousness or susceptibility of individuals, and/or in their contact structure. The aim of this study was to quantify the effect of prevention of direct contact between infectious and susceptible pigs on the transmission of Streptococcus suis (S. suis. In three replicate experiments, S. suis-free pigs were housed in boxes either in pairs (25 pairs or alone (15 pigs. The distance between the boxes was ±1 m. At 7 weeks of age, one pig of each pair was inoculated intranasally with S. suis serotype 9; the other pigs were exposed to S. suis by either direct (pairs or indirect contact (individually housed pigs. Tonsillar brush and saliva swab samples from all pigs were collected regularly for 4 weeks post inoculation to monitor colonization with S. suis. All inoculated pigs became infected, and their pen mates became colonized within 2 days. Thirteen indirectly exposed pigs became positive within 7-25 days after exposure. The rate of direct transmission βdir was estimated to be 3.58 per pig per day (95% CI: 2.29-5.60. The rate of indirect transmission increased in time, depending on the cumulative number of days pigs tested positive for the presence of S. suis. The estimate β'ind was 0.001 (95% CI: 0.0006-0.0017 new infections per pig per day for each day that an infected pig was tested positive for S. suis. We conclude that prevention of direct contact reduces the rate at which susceptible pigs become colonized. Simulation studies using these parameters showed, however, that such intervention measure would not limit S. suis serotype 9 spread in a commercial pig farm to a relevant extent, implying that spatial separation of groups op pigs within a compartment would not be effective on a farm.

  17. H2-optimal control of an adaptive optics system : Part I, data-driven modeling of the wavefront disturbance

    NARCIS (Netherlands)

    Hinnen, K.; Verhaegen, M.; Doelman, N.

    2005-01-01

    Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By

  18. Theoretical perspectives on electron transfer and charge separation events in photochemical water cleavage systems

    International Nuclear Information System (INIS)

    Kozak, J.J.; Lenoir, P.M.; Musho, M.K.; Tembe, B.L.

    1984-01-01

    We study in this paper the dynamics induced by models for photochemical water cleavage systems, focusing on the spatial and temporal factors influencing electron transfer and charge separation processes in such systems. The reaction-diffusion theory is formulated in full generality and the consequences explored in a number of spatio-temporal regimes, viz. the spatially homogeneous system in the long-time limit (i.e. the steady state for a well-stirred system), the spatially homogeneous system in evolution, and the spatially inhomogeneous system in evolution (where, in the latter study, we consider electron transfer at the cluster surface to be governed by a rate constant that reflects the localized nature of such processes). The results of numerical simulations are presented for all three cases and used to highlight the importance of heterogeneous environments in enhancing the cage escape yield of charge separated species, and to demonstrate the dependence of the hydrogen yield on the localization of electron-transfer processes in the vicinity of the microcatalyst surface

  19. The effect of oil and gas content on the controllability and separation in a de-oiling hydrocyclone

    OpenAIRE

    Belaidi, Hafid

    2003-01-01

    The effect of free gas on cyclonic oil-water separation was examined using a geometry which sought to minimise problems with gas. Tests were carried out using the purpose built oil-water separation facility at Bradford University where pre-choke conditions could be partially simulated. Firstly, tests were carried out with water and gas-water to look at flow behaviour and control parameters, then comparative tests carried out with gas-oil-water. Comparisons were also made with tests data from ...

  20. 3-D vision and figure-ground separation by visual cortex.

    Science.gov (United States)

    Grossberg, S

    1994-01-01

    A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with

  1. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  2. Effectiveness of the custom-mold room temperature vulcanizing silicone toe separator on hallux valgus: A prospective, randomized single-blinded controlled trial.

    Science.gov (United States)

    Chadchavalpanichaya, Navaporn; Prakotmongkol, Voraluck; Polhan, Nattapong; Rayothee, Pitchaya; Seng-Iad, Sirirat

    2018-04-01

    Silicone toe separator is considered as a conservative treatment for hallux valgus. The prefabricated toe separator does not fit all. However, effectiveness in prescription of the custom-mold toe separator is still unknown. To investigate the effect of using a custom-mold room temperature vulcanizing silicone toe separator to decrease hallux valgus angle and hallux pain. The compliances, complications, and satisfactions of toe separator were also explored. A prospective, randomized single-blinded controlled trial. A total of 90 patients with a moderate degree of hallux valgus were enrolled in a study at the Foot Clinic, Siriraj Hospital, Thailand. Patients were randomized into two groups; the study group was prescribed a custom-mold room temperature vulcanizing silicone toe separator for 6 h per night for 12 months. Patients in both groups received proper foot care and shoes and were permitted to continue drug treatment. In total, 40 patients in the study group and 39 patients in the control group completed the study. The hallux valgus angle was obtained through radiographic measurement. At month 12, both groups had significant differences in mean hallux valgus angle with a decrease of 3.3° ± 2.4° for the study group and increase of 1.9° ± 1.9° for the control group. There were statistically significant differences of hallux valgus angle between the two groups ( p Hallux pain was decreased in the study group. A custom-mold room temperature vulcanizing silicone toe separator can decrease hallux valgus angle and pain with no serious complications. Clinical relevance The custom-mold room temperature vulcanizing silicone toe separator for treatment of hallux valgus reduces deformity and hallux pain.

  3. Developments in plasma enhanced spatial ALD for high throughput applications [3.04

    NARCIS (Netherlands)

    Creyghton, Y.; Illiberi, A.; Mione, M.; Boekel, W. van; Debernardi, N.; Seitz, M.; Bruele, F. van den; Poodt, P.; Roozeboom,F.

    2016-01-01

    Atomic layer deposition by means of spatial separation of reactive gases is emerging as an industrial manufacturing technology. Integration of non-thermal plasma in spatial ALD machines will further expand the process window towards lower operation temperatures and specific materials requiring

  4. Modeling tumor control probability for spatially inhomogeneous risk of failure based on clinical outcome data

    DEFF Research Database (Denmark)

    Lühr, Armin; Löck, Steffen; Jakobi, Annika

    2017-01-01

    PURPOSE: Objectives of this work are (1) to derive a general clinically relevant approach to model tumor control probability (TCP) for spatially variable risk of failure and (2) to demonstrate its applicability by estimating TCP for patients planned for photon and proton irradiation. METHODS AND ...

  5. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    International Nuclear Information System (INIS)

    Chen Kang; Liang Hua

    2016-01-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. (paper)

  6. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters.

    Science.gov (United States)

    Cohen, Michael X

    2017-09-27

    The number of simultaneously recorded electrodes in neuroscience is steadily increasing, providing new opportunities for understanding brain function, but also new challenges for appropriately dealing with the increase in dimensionality. Multivariate source separation analysis methods have been particularly effective at improving signal-to-noise ratio while reducing the dimensionality of the data and are widely used for cleaning, classifying and source-localizing multichannel neural time series data. Most source separation methods produce a spatial component (that is, a weighted combination of channels to produce one time series); here, this is extended to apply source separation to a time series, with the idea of obtaining a weighted combination of successive time points, such that the weights are optimized to satisfy some criteria. This is achieved via a two-stage source separation procedure, in which an optimal spatial filter is first constructed and then its optimal temporal basis function is computed. This second stage is achieved with a time-delay-embedding matrix, in which additional rows of a matrix are created from time-delayed versions of existing rows. The optimal spatial and temporal weights can be obtained by solving a generalized eigendecomposition of covariance matrices. The method is demonstrated in simulated data and in an empirical electroencephalogram study on theta-band activity during response conflict. Spatiotemporal source separation has several advantages, including defining empirical filters without the need to apply sinusoidal narrowband filters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Systematic analysis of aircraft separation requirements

    Science.gov (United States)

    Ennis, Rachelle Lea

    2005-12-01

    Minimum separation standards are necessary for safety in the air traffic control system. At the same time, minimum separation standards constrain the flow of air traffic and cause delays that translate to millions of dollars in fuel costs. Two necessary separation standards are defined. Then, practical methods for calculating the minimum required size of these separation standards are presented. First, the protected zone is considered. The protected zone represents a region around a given aircraft that no other aircraft should penetrate for the safety of both aircraft. It defines minimum separation requirements. Three major components of the protected zone and their interplays are identified: a vortex region, a safety buffer region, and a state-uncertainty region. A systematic procedure is devised for the analysis of the state-uncertainty region. In particular, models of trajectory controls are developed that can be used to represent different modes of pilot and/or autopilot controls, such as path feedback and non-path feedback. Composite protected zones under various conditions are estimated, and effective ways to reduce sizes of protected zones for advanced air traffic management are examined. In order to maintain minimum separation standards between two aircraft, proper avoidance maneuvers must be initiated before their relative separation reaches the minimum separation due to aircraft dynamics, controller and pilot response delays, etc. The concept of the required action threshold is presented. It is defined as the advanced time for which the conflict resolution process must begin in order to maintain minimum separation requirements. Five main segments in the process of conflict resolution are identified, discussed, and modeled: state information acquisition, comprehension and decision, communication, pilot response, and aircraft maneuver. Each of the five segments is modeled via a time constant. Time estimates for the first four segments are obtained from

  8. Physical Separation in the Workplace

    DEFF Research Database (Denmark)

    Stea, Diego; Foss, Nicolai Juul; Holdt Christensen, Peter

    2015-01-01

    Physical separation is pervasive in organizations, and has powerful effects on employee motivation and organizational behaviors. However, research shows that workplace separation is characterized by a variety of tradeoffs, tensions, and challenges that lead to both positive and negative outcomes....... We develop new theory on the nature, antecedents, and motivational implications of separation awareness - a psychological state in which people are aware of their physical separation from others—and proffer a model of the mechanisms that link separation and motivation. We distinguish between control...... and autonomy affirmation as psychological states that are triggered by physical separation in the workplace, and discuss individual and context specific moderators, as well as motivational implications of separation awareness. In doing so, we reconcile the seemingly contradicting findings that have been...

  9. Experimental study of spatial distribution of Ar glow discharge plasma

    International Nuclear Information System (INIS)

    Guo, X.M.; Zhou, T.D.; Pai, S.T.

    1996-01-01

    The characteristics of the spatial distribution of Ar glow discharge plasma were experimentally investigated. By means of direct comparisons between theory and experiment, the effects of the variation of gap separation, gas pressure, and electrode radius on the spatial distributions of electron density and electric field were studied. Results indicate that the maximum electron density moves toward the cathode as the gap separation or gas pressure increases while variation of electrode radius produces little effect. Predictions from a theoretical model have been experimentally verified. General agreements between theory and experiment were found to be reasonably good except in the cathode region, where discrepancy exists. copyright 1996 American Institute of Physics

  10. Development and evaluation of separation elements

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.; Rocha, Z.

    1990-01-01

    For industrial testing of the uranium enrichment technology by the jet nozzle process, it is being erected in Resende the 'First Cascade' (FC) and it was built the Separation Element Plant (FES). For the development, optimization and quality control of the separation elements produced by FES, it was set up in CDTN a laboratorial infrastructure. As part of it, it was designed, built and assembled the Separation Slit Testing Equipment (ITRS), with several components developed and constructed in CDTN. The tests are being carried out in ITRS with the objective of adjusting the machine tools of FES used in the line production of the separation elements. From the satisfactory results obtained with these tests, FES will start the production of separation tubes to be installed in FC. The objective of this paper is to describe the operation and evaluation tests in ITRS, as well as to present their contribution to the development and quality control of the separation elements produced in FES. (author) [pt

  11. The Spatial Release of Cognitive Load in Cocktail Party Is Determined by the Relative Levels of the Talkers.

    Science.gov (United States)

    Andéol, Guillaume; Suied, Clara; Scannella, Sébastien; Dehais, Frédéric

    2017-06-01

    In a multi-talker situation, spatial separation between talkers reduces cognitive processing load: this is the "spatial release of cognitive load". The present study investigated the role played by the relative levels of the talkers on this spatial release of cognitive load. During the experiment, participants had to report the speech emitted by a target talker in the presence of a concurrent masker talker. The spatial separation (0° and 120° angular distance in azimuth) and the relative levels of the talkers (adverse, intermediate, and favorable target-to-masker ratio) were manipulated. The cognitive load was assessed with a prefrontal functional near-infrared spectroscopy. Data from 14 young normal-hearing listeners revealed that the target-to-masker ratio had a direct impact on the spatial release of cognitive load. Spatial separation significantly reduced the prefrontal activity only for the intermediate target-to-masker ratio and had no effect on prefrontal activity for the favorable and the adverse target-to-masker ratios. Therefore, the relative levels of the talkers might be a key point to determine the spatial release of cognitive load and more specifically the prefrontal activity induced by spatial cues in multi-talker situations.

  12. Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media

    International Nuclear Information System (INIS)

    Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong

    2008-01-01

    Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through

  13. Long-term impact of the World Bank Loan Project for schistosomiasis control: a comparison of the spatial distribution of schistosomiasis risk in China.

    Directory of Open Access Journals (Sweden)

    Zhijie Zhang

    Full Text Available BACKGROUND: The World Bank Loan Project (WBLP for controlling schistosomiasis in China was implemented during 1992-2001. Its short-term impact has been assessed from non-spatial perspective, but its long-term impact remains unclear and a spatial evaluation has not previously been conducted. Here we compared the spatial distribution of schistosomiasis risk using national datasets in the lake and marshland regions from 1999-2001 and 2007-2008 to evaluate the long-term impact of WBLP strategy on China's schistosomiasis burden. METHODOLOGY/PRINCIPAL FINDINGS: A hierarchical Poisson regression model was developed in a Bayesian framework with spatially correlated and uncorrelated heterogeneities at the county-level, modeled using a conditional autoregressive prior structure and a spatially unstructured Gaussian distribution, respectively. There were two important findings from this study. The WBLP strategy was found to have a good short-term impact on schistosomiasis control, but its long-term impact was not ideal. It has successfully reduced the morbidity of schistosomiasis to a low level, but can not contribute further to China's schistosomiasis control because of the current low endemic level. A second finding is that the WBLP strategy could not effectively compress the spatial distribution of schistosomiasis risk. To achieve further reductions in schistosomiasis-affected areas, and for sustainable control, focusing on the intermediate host snail should become the next step to interrupt schistosomiasis transmission within the two most affected regions surrounding the Dongting and Poyang Lakes. Furthermore, in the lower reaches of the Yangtze River, the WBLP's morbidity control strategy may need to continue for some time until snails in the upriver provinces have been well controlled. CONCLUSION: It is difficult to further reduce morbidity due to schistosomiasis using a chemotherapy-based control strategy in the lake and marshland regions of China

  14. Long-term impact of the World Bank Loan Project for schistosomiasis control: a comparison of the spatial distribution of schistosomiasis risk in China.

    Science.gov (United States)

    Zhang, Zhijie; Zhu, Rong; Ward, Michael P; Xu, Wanghong; Zhang, Lijuan; Guo, Jiagang; Zhao, Fei; Jiang, Qingwu

    2012-01-01

    The World Bank Loan Project (WBLP) for controlling schistosomiasis in China was implemented during 1992-2001. Its short-term impact has been assessed from non-spatial perspective, but its long-term impact remains unclear and a spatial evaluation has not previously been conducted. Here we compared the spatial distribution of schistosomiasis risk using national datasets in the lake and marshland regions from 1999-2001 and 2007-2008 to evaluate the long-term impact of WBLP strategy on China's schistosomiasis burden. A hierarchical Poisson regression model was developed in a Bayesian framework with spatially correlated and uncorrelated heterogeneities at the county-level, modeled using a conditional autoregressive prior structure and a spatially unstructured Gaussian distribution, respectively. There were two important findings from this study. The WBLP strategy was found to have a good short-term impact on schistosomiasis control, but its long-term impact was not ideal. It has successfully reduced the morbidity of schistosomiasis to a low level, but can not contribute further to China's schistosomiasis control because of the current low endemic level. A second finding is that the WBLP strategy could not effectively compress the spatial distribution of schistosomiasis risk. To achieve further reductions in schistosomiasis-affected areas, and for sustainable control, focusing on the intermediate host snail should become the next step to interrupt schistosomiasis transmission within the two most affected regions surrounding the Dongting and Poyang Lakes. Furthermore, in the lower reaches of the Yangtze River, the WBLP's morbidity control strategy may need to continue for some time until snails in the upriver provinces have been well controlled. It is difficult to further reduce morbidity due to schistosomiasis using a chemotherapy-based control strategy in the lake and marshland regions of China because of the current low endemic levels of infection. The future control

  15. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control

    NARCIS (Netherlands)

    Lopez-Galmiche, G.; Eznaveh, Z. Sanjabi; Antonio-Lopez, J.E.; Benitez, A. M. Velazquez; Rodriguez-Asomoza, Jorge; Mondragon, J. J. Sanchez; Gonnet, C.; Sillard, P.; Li, G.; Schülzgen, A.; Okonkwo, C.M.; Amezcua Correa, R.

    2016-01-01

    We demonstrate a few-mode erbium-doped fiber amplifier employing a mode-selective photonic lantern for controlling the modal content of the pump light. Amplification of six spatial modes in a 5 m long erbium-doped fiber to x223C;6.2x2009;x2009;dBm average power is obtained while maintaining high

  16. Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.

    Science.gov (United States)

    Lauer, Jillian E; Lourenco, Stella F

    2016-10-01

    Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.

  17. Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies.

    Science.gov (United States)

    Lee, Duncan; Sarran, Christophe

    2015-11-01

    The health impact of long-term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution-health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the known covariates, which is caused by unmeasured confounding. A second challenge is how to adjust the functional form of the model to account for the spatial misalignment between the pollution and disease data, which causes within-area variation in the pollution data. These challenges have largely been ignored in existing long-term spatial air pollution and health studies, so here we propose a novel Bayesian hierarchical model that addresses both challenges and provide software to allow others to apply our model to their own data. The effectiveness of the proposed model is compared by simulation against a number of state-of-the-art alternatives proposed in the literature and is then used to estimate the impact of nitrogen dioxide and particulate matter concentrations on respiratory hospital admissions in a new epidemiological study in England in 2010 at the local authority level. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.

  18. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  19. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  20. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  1. Physical Activity Improves Verbal and Spatial Memory in Older Adults with Probable Mild Cognitive Impairment: A 6-Month Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Lindsay S. Nagamatsu

    2013-01-01

    Full Text Available We report secondary findings from a randomized controlled trial on the effects of exercise on memory in older adults with probable MCI. We randomized 86 women aged 70–80 years with subjective memory complaints into one of three groups: resistance training, aerobic training, or balance and tone (control. All participants exercised twice per week for six months. We measured verbal memory and learning using the Rey Auditory Verbal Learning Test (RAVLT and spatial memory using a computerized test, before and after trial completion. We found that the aerobic training group remembered significantly more items in the loss after interference condition of the RAVLT compared with the control group after six months of training. In addition, both experimental groups showed improved spatial memory performance in the most difficult condition where they were required to memorize the spatial location of three items, compared with the control group. Lastly, we found a significant correlation between spatial memory performance and overall physical capacity after intervention in the aerobic training group. Taken together, our results provide support for the prevailing notion that exercise can positively impact cognitive functioning and may represent an effective strategy to improve memory in those who have begun to experience cognitive decline.

  2. Spatial associations between social groups and ozone air pollution exposure in the Beijing urban area.

    Science.gov (United States)

    Zhao, Xinyi; Cheng, Hongguang; He, Siyuan; Cui, Xiangfen; Pu, Xiao; Lu, Lu

    2018-07-01

    Few studies have linked social factors to air pollution exposure in China. Unlike the race or minority concepts in western countries, the Hukou system (residential registration system) is a fundamental reason for the existence of social deprivation in China. To assess the differences in ozone (O 3 ) exposure among social groups, especially groups divided by Hukou status, we assigned estimates of O 3 exposure to the latest census data of the Beijing urban area using a kriging interpolation model. We developed simultaneous autoregressive (SAR) models that account for spatial autocorrelation to identify the associations between O 3 exposure and social factors. Principal component regression was used to control the multicollinearity bias as well as explore the spatial structure of the social data. The census tracts (CTs) with higher proportions of persons living alone and migrants with non-local Hukou were characterized by greater exposure to ambient O 3 . The areas with greater proportions of seniors had lower O 3 exposure. The spatial distribution patterns were similar among variables including migrants, agricultural population and household separation (population status with separation between Hukou and actual residences), which fit the demographic characteristics of the majority of migrants. Migrants bore a double burden of social deprivation and O 3 pollution exposure due to city development planning and the Hukou system. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Spatial dispersion in atom-surface quantum friction

    International Nuclear Information System (INIS)

    Reiche, D.; Dalvit, D. A. R.; Busch, K.; Intravaia, F.

    2017-01-01

    We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change not only the magnitude but also the distance scaling of quantum friction.

  4. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  5. Network analysis reveals multiscale controls on streamwater chemistry.

    Science.gov (United States)

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  6. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph; Treat, Neil D.; Scaccabarozzi, Alberto D.; Razzell Hollis, Joseph; Fleischli, Franziska D.; Bannock, James H.; de Mello, John; Michels, Jasper J.; Kim, Ji-Seon; Stingelin, Natalie

    2014-01-01

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  7. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  8. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  9. Running Improves Pattern Separation during Novel Object Recognition.

    Science.gov (United States)

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  10. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G

    2016-01-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  11. Separation of magnetic field lines

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2012-01-01

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor σ, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e 2σ , and the ratio of the longer distance to the initial radius increases as e σ . Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/ω pe , which is about 10 cm in the solar corona, and reconnection must be triggered if σ becomes sufficiently large. The radius of the sun, R ⊙ =7×10 10 cm is about e 23 times larger, so when σ≳23, two lines separated by c/ω pe at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, σ, are derived, and the importance of exponentiation is discussed.

  12. X-RAYS SEPARATOR: FORWARD STEP IN TECHNOLOGY OF OPTICAL SEPARATION

    Directory of Open Access Journals (Sweden)

    N. N. Potrakhov

    2017-01-01

    Full Text Available Presently the X-ray separation is used not only for research program, but it is also elaborated and applied for different sectors of economy. The seeds as biological objects that possess the complicated microstructure are very difficult to be exanimated by x-ray technology. The application of x-rays and further elaboration of optical  separators, principle  of action, basic specifications, way of their use and their efficiency was shown in the article. The x-ray separator may distinguish all hidden seed defects as it was described by a programmer, where owing to the use of the optical separating block in visual range it is possible to add some more details as a shape, brightness and a color of object surface being exanimated. The elaboration of such separation equipment is scientifically hard work requiring time and expenses. Last year researchers of ‘LETI’ developed the working model of industrial x-ray separator for examination of grains and nuts in different crops. This model was made on the basis of photoseparator F-5 manufactured at OAO ‘Voronezhselmash’. The instrument state and its mechanism operation are highlighted on monitor. In the regime of processing (separation and examination of each controlled batch, the passport is produced with  following  information on identification  code,  time of material receiving, time of test passed, number of grains or seeds tested. The code of receiver of material is given to each of established characteristics when working the regime of separation, determination of number of objects with characteristics tested and number of unidentified objects. The application of x-ray separators constructed on the basis of photoseparator F-5 enables to carry out the complex estimation on seed quality and separation in only instrument with the development of electronic protocol with many characteristics.

  13. Spatial selective attention in a complex auditory environment such as polyphonic music.

    Science.gov (United States)

    Saupe, Katja; Koelsch, Stefan; Rübsamen, Rudolf

    2010-01-01

    To investigate the influence of spatial information in auditory scene analysis, polyphonic music (three parts in different timbres) was composed and presented in free field. Each part contained large falling interval jumps in the melody and the task of subjects was to detect these events in one part ("target part") while ignoring the other parts. All parts were either presented from the same location (0 degrees; overlap condition) or from different locations (-28 degrees, 0 degrees, and 28 degrees or -56 degrees, 0 degrees, and 56 degrees in the azimuthal plane), with the target part being presented either at 0 degrees or at one of the right-sided locations. Results showed that spatial separation of 28 degrees was sufficient for a significant improvement in target detection (i.e., in the detection of large interval jumps) compared to the overlap condition, irrespective of the position (frontal or right) of the target part. A larger spatial separation of the parts resulted in further improvements only if the target part was lateralized. These data support the notion of improvement in the suppression of interfering signals with spatial sound source separation. Additionally, the data show that the position of the relevant sound source influences auditory performance.

  14. Use of reference materials for quality control of elemental analysis by neutron activation with radiochemical separation

    International Nuclear Information System (INIS)

    Woittiez, J.R.W.

    1990-01-01

    This paper describes the use of certified reference materials to monitor the long-term quality of radiochemical separations. The practical limitations which determine the actual design of the quality control are discussed. The hypothesis that the high yield of the radiochemical separation will be constant with time has been checked and validated for the elements Zn, Fe, Co, Cd, Mo and to a lesser extent for W and Th using NBS SRM 1577A, BCR CRM 274 and IAEA RM A-11. This validation could not be made for the elements Cr, Au, and Ag. Especially for Cr there is a serious lack of appropiate certified reference materials. (orig.)

  15. Blind speech separation system for humanoid robot with FastICA for audio filtering and separation

    Science.gov (United States)

    Budiharto, Widodo; Santoso Gunawan, Alexander Agung

    2016-07-01

    Nowadays, there are many developments in building intelligent humanoid robot, mainly in order to handle voice and image. In this research, we propose blind speech separation system using FastICA for audio filtering and separation that can be used in education or entertainment. Our main problem is to separate the multi speech sources and also to filter irrelevant noises. After speech separation step, the results will be integrated with our previous speech and face recognition system which is based on Bioloid GP robot and Raspberry Pi 2 as controller. The experimental results show the accuracy of our blind speech separation system is about 88% in command and query recognition cases.

  16. Basic processes in reading aloud and colour naming: towards a better understanding of the role of spatial attention.

    Science.gov (United States)

    Robidoux, Serje; Rauwerda, Derek; Besner, Derek

    2014-05-01

    Whether or not lexical access from print requires spatial attention has been debated intensively for the last 30 years. Studies involving colour naming generally find evidence that "unattended" words are processed. In contrast, reading-based experiments do not find evidence of distractor processing. One theory ascribes the discrepancy to weaker attentional demands for colour identification. If colour naming does not capture all of a subject's attention, the remaining attentional resources can be deployed to process the distractor word. The present study combined exogenous spatial cueing with colour naming and reading aloud separately and found that colour naming is less sensitive to the validity of a spatial cue than is reading words aloud. Based on these results, we argue that colour naming studies do not effectively control attention so that no conclusions about unattended distractor processing can be drawn from them. Thus we reiterate the consistent conclusion drawn from reading aloud and lexical decision studies: There is no word identification without (spatial) attention.

  17. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  18. Space power(s) gender – socio- spatial control of prostitution and the bourgeois gender order

    OpenAIRE

    Ruhne, Renate

    2015-01-01

    Using the example of the city of Frankfurt am Main the paper    examines the conflict relationship between increasing acceptance and persistent demands for stringent controls that characterizes the perception of prostitution in Germany today. Focusing on prevalent socio-spatial forms of control, that aim at excluding the field from « normal » everyday life, the first part will demonstrate how and why prostitution, though legalized and more and more accepted, remains   powerfully stigmatized t...

  19. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    Science.gov (United States)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  20. Ecological Interface Design of a Tactical Airborne Separation Assistance Tool

    NARCIS (Netherlands)

    Van Dam, S.; Mulder, M.; Van Paassen, M.M.

    2008-01-01

    In a free-flight airspace environment, pilots have more freedom to choose user-preferred trajectories. An onboard pilot support system is needed that exploits travel freedom while maintaining spatial separation with other traffic. Ecological interface design is used to design an interface tool that

  1. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.

    Science.gov (United States)

    George, Brandon; Aban, Inmaculada

    2015-01-15

    Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  3. Spatial correlation in precipitation trends in the Brazilian Amazon

    Science.gov (United States)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  4. The effect of temperature and the control rod position on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2007-01-01

    The effect of water and fuel temperature increase and changes in the control rod positions on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor (MNSR) is discussed. The cross sections of all the reactor components at different temperatures are generated using the WIMSD4 code. These group constants are used then in the CITATION code to calculate the special neutron flux distribution using four energy groups. This work shows that water and fuel temperature increase in the reactor during the reactor daily operating time does not affect the spatial neutron flux distribution in the reactor. Changing the control rod position does not affect as well the spatial neutron flux distribution except in the region around the control rod position. This stability in the spatial neutron flux distribution, especially in the inner and outer irradiation sites, makes MNSR as a good tool for the neutron activation analysis (NAA) technique and production of radioisotopes with medium or short half lives during the reactor daily operating time. (author)

  5. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.

    Science.gov (United States)

    Bazant, Martin Z

    2017-07-01

    Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations. The Glansdorff-Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler-Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

  6. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  7. Experimental substantiation of separation techniques of lead and uranium microamounts using isotopic dilution method as control method

    International Nuclear Information System (INIS)

    Agapova, A.A.; Shcherbinina, N.K.

    1983-01-01

    Methods,ensuring at low levels of contamination a high degree of lead and uranium microamount separation from solutions of geological samples, have been selected and subjected to the detailed testing. The method of isotope dilution, , combining high accuracy and sensitivity of determinations, is used as the main control methods, is used as the main control method. Using the method, processe es of uranium extpaction are traced, special attention is paid to the detailed description of lead extraction at all the stages of the methods selected. Opera ations of ion exchange for lead and uranium in microcolumns with the Bio-Rad r sin are considered, as well as operations of lead electrolytic separation. The chemical procedures suggested permit to solve one of the main methodical tasks f sample preparation, containing microgram amounts of lead and uranium, for high h-prcision measurement of their isotope composition using mass-spectrometric method

  8. Event structure and cognitive control.

    Science.gov (United States)

    Reimer, Jason F; Radvansky, Gabriel A; Lorsbach, Thomas C; Armendarez, Joseph J

    2015-09-01

    Recently, a great deal of research has demonstrated that although everyday experience is continuous in nature, it is parsed into separate events. The aim of the present study was to examine whether event structure can influence the effectiveness of cognitive control. Across 5 experiments we varied the structure of events within the AX-CPT by shifting the spatial location of cues and probes on a computer screen. When location shifts were present, a pattern of AX-CPT performance consistent with enhanced cognitive control was found. To test whether the location shift effects were caused by the presence of event boundaries per se, other aspects of the AX-CPT were manipulated, such as the color of cues and probes and the inclusion of a distractor task during the cue-probe delay. Changes in cognitive control were not found under these conditions, suggesting that the location shift effects were specifically related to the formation of separate event models. Together, these results can be accounted for by the Event Horizon Model and a representation-based theory of cognitive control, and suggest that cognitive control can be influenced by the surrounding environmental structure. (c) 2015 APA, all rights reserved).

  9. Field assessment of a novel spatial repellent for malaria control: a feasibility and acceptability study in Mondulkiri, Cambodia.

    Science.gov (United States)

    Liverani, Marco; Charlwood, Jacques Derek; Lawford, Harriet; Yeung, Shunmay

    2017-10-13

    Large-scale use of insecticide-treated nets and indoor residual spraying have contributed to a significant decrease in malaria transmission worldwide. Further reduction and progress towards elimination, however, require complementary control measures which can address the remaining gaps in protection from mosquito bites. Following the development of novel pyrethroids with high knockdown effects on malaria vectors, programmatic use of spatial repellents has been suggested as one potential strategy to fill the gaps. This report explores social and contextual factors that may influence the relevance, uptake and sustainable use of a spatial repellent in two remote villages in Mondulkiri province, Cambodia, with endemic malaria transmission. The repellent consisted of polyethylene emanators, held in an open plastic frame and impregnated with 10% metofluthrin. In a baseline survey, 90.9% of households in Ou Chra (n = 30/33) and 96.6% in Pu Cha (n = 57/59) were interviewed. Behavioural data were collected for all household occupants (n = 448). In both villages, there were times and places in which people remained exposed to mosquito bites. Prior to the installation of the repellent, 50.6 and 59.5% of respondents noted that bites occurred "very often" inside the house and in the outdoor area surrounding the house, respectively. Indoor biting was reported to occur more frequently in the evening, followed by at night, while outdoor biting occurred more frequently in the early morning. In a follow-up survey, spatial repellents were well received in both villages, although 63.2% of respondents would not replace bed nets with repellents. Most participants (96.6%) were willing to use the product again; the mean willingness to pay was US$ 0.3 per unit. A preference for local procurement methods emerged. Widespread use of spatial repellents would not fill all protective gaps, but, if their entomological efficacy can be ascertained, outdoor application has the potential to

  10. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    Science.gov (United States)

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention

  11. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    Science.gov (United States)

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention

  12. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Adriana L. Ruiz-Rizzo

    2018-03-01

    Full Text Available Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity and selectivity functions (i.e., top-down control and spatial laterality. However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI. Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable

  13. The (Spatial) Memory Game: Testing the Relationship Between Spatial Language, Object Knowledge, and Spatial Cognition.

    Science.gov (United States)

    Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R

    2018-02-19

    The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.

  14. Assessment of tuberculosis spatial hotspot areas in Antananarivo, Madagascar, by combining spatial analysis and genotyping.

    Science.gov (United States)

    Ratovonirina, Noël Harijaona; Rakotosamimanana, Niaina; Razafimahatratra, Solohery Lalaina; Raherison, Mamy Serge; Refrégier, Guislaine; Sola, Christophe; Rakotomanana, Fanjasoa; Rasolofo Razanamparany, Voahangy

    2017-08-14

    Tuberculosis (TB) remains a public health problem in Madagascar. A crucial element of TB control is the development of an easy and rapid method for the orientation of TB control strategies in the country. Our main objective was to develop a TB spatial hotspot identification method by combining spatial analysis and TB genotyping method in Antananarivo. Sputa of new pulmonary TB cases from 20 TB diagnosis and treatment centers (DTCs) in Antananarivo were collected from August 2013 to May 2014 for culture. Mycobacterium tuberculosis complex (MTBC) clinical isolates were typed by spoligotyping on a Luminex® 200 platform. All TB patients were respectively localized according to their neighborhood residence and the spatial distribution of all pulmonary TB patients and patients with genotypic clustered isolates were scanned respectively by the Kulldorff spatial scanning method for identification of significant spatial clustering. Areas exhibiting spatial clustering of patients with genotypic clustered isolates were considered as hotspot TB areas for transmission. Overall, 467 new cases were included in the study, and 394 spoligotypes were obtained (84.4%). New TB cases were distributed in 133 of the 192 Fokontany (administrative neighborhoods) of Antananarivo (1 to 15 clinical patients per Fokontany) and patients with genotypic clustered isolates were distributed in 127 of the 192 Fokontany (1 to 13 per Fokontany). A single spatial focal point of epidemics was detected when ignoring genotypic data (p = 0.039). One Fokontany of this focal point and three additional ones were detected to be spatially clustered when taking genotypes into account (p Madagascar and will allow better TB control strategies by public health authorities.

  15. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.

    Science.gov (United States)

    Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-21

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is

  16. Improving the Photo-Oxidative Performance of Bi2MoO6 by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition.

    Science.gov (United States)

    Wu, Xuelian; Hart, Judy N; Wen, Xiaoming; Wang, Liang; Du, Yi; Dou, Shi Xue; Ng, Yun Hau; Amal, Rose; Scott, Jason

    2018-03-21

    It has been reported that photogenerated electrons and holes can be directed toward specific crystal facets of a semiconductor particle, which is believed to arise from the differences in their surface electronic structures, suggesting that different facets can act as either photoreduction or photo-oxidation sites. This study examines the propensity for this effect to occur in faceted, plate-like bismuth molybdate (Bi 2 MoO 6 ), which is a useful photocatalyst for water oxidation. Photoexcited electrons and holes are shown to be spatially separated toward the {100} and {001}/{010} facets of Bi 2 MoO 6 , respectively, by facet-dependent photodeposition of noble metals (Pt, Au, and Ag) and metal oxides (PbO 2 , MnO x , and CoO x ). Theoretical calculations revealed that differences in energy levels between the conduction bands and valence bands of the {100} and {001}/{010} facets can contribute to electrons and holes being drawn to different surfaces of the plate-like Bi 2 MoO 6 . Utilizing this knowledge, the photo-oxidative capability of Bi 2 MoO 6 was improved by adding an efficient water oxidation co-catalyst, CoO x , to the system, whereby the extent of enhancement was shown to be governed by the co-catalyst location. A greater oxygen evolution occurred when CoO x was selectively deposited on the hole-rich {001}/{010} facets of Bi 2 MoO 6 compared to when CoO x was randomly located across all of the facets. The elevated performance exhibited for the selectively loaded CoO x /Bi 2 MoO 6 was ascribed to the greater opportunity for hole trapping by the co-catalyst being accentuated over other potentially detrimental effects, such as the co-catalyst acting as a recombination medium and/or covering reactive sites. The results indicate that harnessing the synergy between the spatial charge separation and the co-catalyst location on the appropriate facets of plate-like Bi 2 MoO 6 can promote its photocatalytic activity.

  17. Spatial and temporal variability of chorus and hiss

    Science.gov (United States)

    Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.

    2017-12-01

    Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.

  18. Generalized synchronization and coherent structures in spatially extended systems

    International Nuclear Information System (INIS)

    Basnarkov, Lasko; Duane, Gregory S.; Kocarev, Ljupco

    2014-01-01

    We study the synchronization of a coupled pair of one-dimensional Kuramoto–Sivashinsky systems, with equations augmented by a third-space-derivative term. With two different values of a system parameter, the two systems synchronize in the generalized sense. The phenomenon persists even in the extreme case when one of the equations is missing the extra term. Master–slave synchronization error is small, so the generalized synchronization relationship is useful for predicting the state of the master from that of the slave, or conversely, for controlling the slave. The spatial density of coupling points required to bring about generalized synchronization appears to be related to the wavelength of traveling wave solutions, and more generally to the width of coherent structures in the separate systems

  19. What Contributes to the Split-Attention Effect? The Role of Text Segmentation, Picture Labelling, and Spatial Proximity

    Science.gov (United States)

    Florax, Mareike; Ploetzner, Rolf

    2010-01-01

    In the split-attention effect spatial proximity is frequently considered to be pivotal. The transition from a spatially separated to a spatially integrated format not only involves changes in spatial proximity, but commonly necessitates text segmentation and picture labelling as well. In an experimental study, we investigated the influence of…

  20. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process is...

  1. Pitting temporal against spatial integration in schizophrenic patients.

    Science.gov (United States)

    Herzog, Michael H; Brand, Andreas

    2009-06-30

    Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.

  2. Directional antenna array (DAA) for communications, control, and data link protection

    Science.gov (United States)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  3. Spatial-orientation priming impedes rather than facilitates the spontaneous control of hand-retraction speeds in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Polina Yanovich

    Full Text Available BACKGROUND: Often in Parkinson's disease (PD motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. METHODS: To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT required the same postural- and hand-paths as the orientation-priming version (primed-UP. Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. RESULTS AND CONCLUSIONS: We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial

  4. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    International Nuclear Information System (INIS)

    Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.; Carley, Jack; Corbin, Gail A.; Carroll, Sue L.; Watson, David B.; Jardine, Phil M.; Zhou, Jizhong; Criddle, Craig S.; Fields, Matthew W.

    2009-01-01

    Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.

  5. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.; Carley, Jack; Corbin, Gail A.; Carroll, Sue L.; Watson, David B.; Jardine, Phil M.; Zhou, Jizhong; Criddle, Craig S.; Fields, Matthew W.

    2009-05-22

    Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.

  6. Gender differences in multitasking reflect spatial ability.

    Science.gov (United States)

    Mäntylä, Timo

    2013-04-01

    Demands involving the scheduling and interleaving of multiple activities have become increasingly prevalent, especially for women in both their paid and unpaid work hours. Despite the ubiquity of everyday requirements to multitask, individual and gender-related differences in multitasking have gained minimal attention in past research. In two experiments, participants completed a multitasking session with four gender-fair monitoring tasks and separate tasks measuring executive functioning (working memory updating) and spatial ability (mental rotation). In both experiments, males outperformed females in monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of monitoring accuracy, but only spatial ability mediated gender differences in multitasking. Menstrual changes accentuated these effects, such that gender differences in multitasking (and spatial ability) were eliminated between males and females who were in the menstrual phase of the menstrual cycle but not between males and females who were in the luteal phase. These findings suggest that multitasking involves spatiotemporal task coordination and that gender differences in multiple-task performance reflect differences in spatial ability.

  7. Can components in distortion-product otoacoustic emissions be separated?

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; W. Purcell, David; Christensen, Flemming

    2012-01-01

    Otoacoustic emissions are signals emitted from the cochlea, either spontaneously or evoked by stimuli. Measured with an acoustic probe sealed in the ear-canal, they reveal information about a part of the mechanism of hearing that is otherwise inaccessible. Outer hair cells in the cochlea work...... to improve hearing sensitivity by means of nonlinear amplification, which produces distortion. In the measurement of otoacoustic emissions, two tones can be delivered to the cochlea to invoke this nonlinearity and elicit the distortion-product otoacoustic emission (DPOAE). DPOAEs arise mainly from two...... spatially separated generation mechanisms, thus making interpretation of DPOAE measurements complicated. In this study, we test whether or not source separation by group delays is equivalent to separation by time delays – either result is equally interesting to understand given the complexity of the cochlea...

  8. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Badawi, N.; Aamand, Jens

    2014-01-01

    across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance......Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we...... critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates...

  9. Electrophysiological evidence for cognitive control during conflict processing in visual spatial attention.

    Science.gov (United States)

    Kehrer, Stefanie; Kraft, Antje; Irlbacher, Kerstin; Koch, Stefan P; Hagendorf, Herbert; Kathmann, Norbert; Brandt, Stephan A

    2009-11-01

    Event-related potentials were measured to investigate the role of visual spatial attention mechanisms in conflict processing. We suggested that a more difficult target selection leads to stronger attentional top-down control, thereby reducing the effects of arising conflicts. This hypothesis was tested by varying the selection difficulty in a location negative priming (NP) paradigm. The difficult task resulted in prolonged responses as compared to the easy task. A behavioral NP effect was only evident in the easy task. Psychophysiologically the easy task was associated with reduced parietal N1, enhanced frontocentral N2 and N2pc components and a prolonged P3 latency for the conflict as compared to the control condition. The N2pc effect was also obvious in the difficult task. Additionally frontocentral N2 amplitudes increased and latencies of N2pc and P3 were delayed compared to the easy task. The differences at frontocentral and parietal electrodes are consistent with previous studies ascribing activity in the prefrontal and parietal cortex as the source of top-down attentional control. Thus, we propose that stronger cognitive control is involved in the difficult task, resulting in a reduced behavioral NP conflict.

  10. Event Structure and Cognitive Control

    OpenAIRE

    Reimer, Jason F.; Radvansky, Gabriel A.; Lorsbach, Thomas C.; Armendarez, Joseph J.

    2015-01-01

    Recently, a great deal of research has demonstrated that although everyday experience is continuous in nature, it is parsed into separate events. The aim of the present study was to examine whether event structure can influence the effectiveness of cognitive control. Across five experiments we varied the structure of events within the AX-CPT by shifting the spatial location of cues and probes on a computer screen. When location shifts were present, a pattern of AX-CPT performance consistent w...

  11. Acetaminophen Versus Liquefied Ibuprofen for Control of Pain During Separation in Orthodontic Patients: A Randomized Triple Blinded Clinical Trial

    Directory of Open Access Journals (Sweden)

    Tahereh Hosseinzadeh Nik

    2016-07-01

    Full Text Available The aim of this randomized clinical study was to investigate the effectiveness of acetaminophen 650 mg or liquefied ibuprofen 400 mg in pain control of orthodontic patients during separation with an elastic separator. A total of 101 patients with specific inclusion criteria were divided randomly into three groups (acetaminophen, liquefied ibuprofen, and placebo. They were instructed to take their drugs one hour before separator placement and every six hours afterward (five doses in total. They recorded their discomfort on visual analog scales immediately after separator placement, 2 hours later, 6 hours later, at bedtime, and 24 hours after separator placement. Repeated measure analysis of variance (ANOVA was used to compare the mean pain scores between the three groups. Data were collected from 89 patients. The pain increased with time in all groups. Pain scores were statistically lower in the analgesic groups compared with the placebo group (P.value<0.001, but no statistically significant difference was found in mean pain scores between the two drug groups (acetaminophen and liquefied ibuprofen (P.value=1. Acetaminophen and liquefied ibuprofen have similar potential in pain reduction during separation.

  12. Competing sound sources reveal spatial effects in cortical processing.

    Directory of Open Access Journals (Sweden)

    Ross K Maddox

    Full Text Available Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.

  13. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application

    Science.gov (United States)

    Deng, Shengwei; Hu, Hui; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo

    2018-05-01

    Ultrathin membranes with controllable pore sizes have great potential to realize high-selectivity gas separation at low energy cost, especially for those mixtures with narrow size distributions. Using a combination of van der Waals-corrected density functional theory (DFT) calculations and molecular dynamics (MD) simulation, we examine the separation ability of biaxial stretched monolayer C2N nanosheets which is applied to the O2 separation from CO/CO2/O2 mixtures in the cathode of proton exchange membrane fuel cells (PEMFC). The DFT calculations show that the diffusion energy barrier for molecules passing through the membrane followed by CO, CO2 and O2 in descending order, and an overall decrease of energy barriers due to the widen the pore size is observed with the increase of applied strains. Furthermore, MD results show that the nanosheet can effectively purify O2 from CO2 and CO with a strain from 8% to 10%. It confirms that the selectivity is determined by the electronic structure related interaction in addition to the kinetic diameter of individual molecules. The O2 permeability is improved progressively with further increase of strain, and small amount of CO2 begins to permeate through the nanosheet at relatively large strain, while the excellent CO isolation is not compromised until the theoretical maximum strain.

  14. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    Science.gov (United States)

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  15. Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Chen, Yan; Yu, Hua; Lu, Hongwei; Ji, Zhenguo; Huang, Ping

    2015-01-01

    Highlights: • Na 5 Gd 9 F 32 nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na 5 Gd 9 F 32 lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na 5 Gd 9 F 32 nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na 5 Gd 9 F 32 lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb 3+ /Er 3+ ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties

  16. SPATIAL SEGMENTATION WITHIN METROPOLITAN LABOUR MARKET: MAPPING THE GENDER DIMENSION

    OpenAIRE

    DEBNATH, TANIA

    2017-01-01

    Spatial segmentation of the labour market of informal workers within the metropolitan is observed globally. InIndia it is not only compartmentalised on gender, caste, ethnic lines but also geographically segmented by thecreation of spatially disjoined markets. The differential impact of this limited mobility on female and malelabour remains largely unexplored. The present paper argues that the labour market for informal workers issegmented into smaller labour markets separated by commuting (h...

  17. On the spatial specificity of audiovisual crossmodal exogenous cuing effects.

    Science.gov (United States)

    Lee, Jae; Spence, Charles

    2017-06-01

    It is generally-accepted that the presentation of an auditory cue will direct an observer's spatial attention to the region of space from where it originates and therefore facilitate responses to visual targets presented there rather than from a different position within the cued hemifield. However, to date, there has been surprisingly limited evidence published in support of such within-hemifield crossmodal exogenous spatial cuing effects. Here, we report two experiments designed to investigate within- and between-hemifield spatial cuing effects in the case of audiovisual exogenous covert orienting. Auditory cues were presented from one of four frontal loudspeakers (two on either side of central fixation). There were eight possible visual target locations (one above and another below each of the loudspeakers). The auditory cues were evenly separated laterally by 30° in Experiment 1, and by 10° in Experiment 2. The potential cue and target locations were separated vertically by approximately 19° in Experiment 1, and by 4° in Experiment 2. On each trial, the participants made a speeded elevation (i.e., up vs. down) discrimination response to the visual target following the presentation of a spatially-nonpredictive auditory cue. Within-hemifield spatial cuing effects were observed only when the auditory cues were presented from the inner locations. Between-hemifield spatial cuing effects were observed in both experiments. Taken together, these results demonstrate that crossmodal exogenous shifts of spatial attention depend on the eccentricity of both the cue and target in a way that has not been made explicit by previous research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Spatial summation and spatial discrimination of cold pain: effect of spatial configuration and skin type.

    Science.gov (United States)

    Defrin, Ruth; Sheraizin, Anat; Malichi, Liron; Shachen, Orit

    2011-12-01

    Spatial summation (SS) and spatial discrimination (SD) are essential for pain perception. In the cold-pain sensation, these processes have hardly been studied. Our aim was to study the SS and SD of cold pain, as well as the SS of cold-pain threshold (CPT) in hairy and glabrous skin. Two discrete stimuli (9 cm(2) each) were applied to the forearm with separation distances of 0-40 cm and in addition, a single stimulus on each forearm. For each configuration, the CPT, suprathreshold cold-pain ratings, and the reported number of activated stimuli (SD) were obtained. In another experiment, SS of CPT was tested in the hairy and glabrous skin of the hand using small (2.25 cm(2)) and large (9 cm(2)) probe sizes. The SS of CPT and of cold pain existed over separation distances of up to 30-40 cm, at which point SD became better than chance. When the 2 forearms were stimulated, SS was abolished and cold pain was inhibited. CPT was significantly higher in hairy than glabrous skin, but the amount of SS of CPT was similar in the 2 skin types. Noxious cold-evoked thermal qualities were more common in the glabrous than the hairy skin. (1) SS and SD of cold pain are reciprocal; (2) whereas cold pain can summate over large distances, the SD of cold pain is poor; (3) SS of cold pain does not exist between contralateral body sides, however, inhibition occurs; (4) SS is independent of skin type and sensitivity to cold pain; (5) differences in pain quality between hairy and glabrous skin may reflect innervation differences. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. The role and origin of dilatant structural environments in the spatial control of geo-economic deposits

    International Nuclear Information System (INIS)

    Rosello, E.

    2010-01-01

    A major controlling the geometry, size and spatial location of the mineralization is the tectonic structure. This control is indeed essential in epigenetic deposits, where the structure is the main factor to determine the circulation, precipitation, and in many cases the generation of hydrothermal solutions associated with mineral deposits and / or alterations. Therefore, learning the type of structural control that a particular deposit is charged on a particular aspect and of fundamental importance not only in yacimientología to contribute to the genetic knowledge but also in economic terms to provide ideas and guidance in tasks prospecting, exploration and mineral exploitation

  20. A knowledge-based system for control of xenon-induced spatial power oscillations during load-follow operations

    International Nuclear Information System (INIS)

    Chung, Sun-Kyo; Danofsky, R.A.; Spinrad, B.I.

    1988-01-01

    As is well known, large pressurized water reactors (PWRs) are subject to xenon-induced axial power oscillations at some time during a given cycle. Attention to this behavior is required during load-follow operations. A knowledge-based system for controlling xenon-induced spatial power oscillations is described. Experience with a limited set of load-follow patterns has demonstrated that the system is capable of providing advice on appropriate control actions. A simulation model, coupled with a rule-learning process, has been found to be a useful way for determining appropriate weights for the rules that relate power patterns and control actions

  1. Precise and Arbitrary Deposition of Biomolecules onto Biomimetic Fibrous Matrices for Spatially Controlled Cell Distribution and Functions.

    Science.gov (United States)

    Jia, Chao; Luo, Bowen; Wang, Haoyu; Bian, Yongqian; Li, Xueyong; Li, Shaohua; Wang, Hongjun

    2017-09-01

    Advances in nano-/microfabrication allow the fabrication of biomimetic substrates for various biomedical applications. In particular, it would be beneficial to control the distribution of cells and relevant biomolecules on an extracellular matrix (ECM)-like substrate with arbitrary micropatterns. In this regard, the possibilities of patterning biomolecules and cells on nanofibrous matrices are explored here by combining inkjet printing and electrospinning. Upon investigation of key parameters for patterning accuracy and reproducibility, three independent studies are performed to demonstrate the potential of this platform for: i) transforming growth factor (TGF)-β1-induced spatial differentiation of fibroblasts, ii) spatiotemporal interactions between breast cancer cells and stromal cells, and iii) cancer-regulated angiogenesis. The results show that TGF-β1 induces local fibroblast-to-myofibroblast differentiation in a dose-dependent fashion, and breast cancer clusters recruit activated stromal cells and guide the sprouting of endothelial cells in a spatially resolved manner. The established platform not only provides strategies to fabricate ECM-like interfaces for medical devices, but also offers the capability of spatially controlling cell organization for fundamental studies, and for high-throughput screening of various biomolecules for stem cell differentiation and cancer therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An evaluation of the Parents Plus-Parenting When Separated programme.

    Science.gov (United States)

    Keating, Adele; Sharry, John; Murphy, Michelle; Rooney, Brendan; Carr, Alan

    2016-04-01

    This study evaluated the Parents Plus-Parenting when Separated Programme, an intervention specifically designed to address the needs of separated parents in an Irish context. In a randomized control trial, 82 separated parents with young children were assigned to the Parents Plus-Parenting when Separated Programme treatment group and 79 to a waiting-list control group. They were assessed on measures of client goals, parenting satisfaction, child and parental adjustment and interparental conflict at baseline (Time 1) and 6 weeks later (Time 2), after the treatment group completed the Parents Plus-Parenting when Separated Programme. From Time 1 to 2, significant goal attainment, increases in parenting satisfaction and decreases in child behaviour problems, parental adjustment problems and interparental conflict occurred in the Parents Plus-Parenting when Separated Programme group, but not in the control group. These results supported the effectiveness of Parents Plus-Parenting when Separated Programme, which should be made more widely available to separated parents. © The Author(s) 2015.

  3. Spatial analysis and planning under imprecision

    CERN Document Server

    Leung, Y

    1988-01-01

    The book deals with complexity, imprecision, human valuation, and uncertainty in spatial analysis and planning, providing a systematic exposure of a new philosophical and theoretical foundation for spatial analysis and planning under imprecision. Regional concepts and regionalization, spatial preference-utility-choice structures, spatial optimization with single and multiple objectives, dynamic spatial systems and their controls are analyzed in sequence.The analytical framework is based on fuzzy set theory. Basic concepts of fuzzy set theory are first discussed. Many numerical examples and emp

  4. Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis.

    Science.gov (United States)

    Sgorbini, Barbara; Bicchi, Carlo; Cagliero, Cecilia; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia

    2015-01-09

    Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, and quality is mandatory for safe human consumption. An analysis strategy based on separative (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single analysis directly on the plant material as such. Eight-to-ten lots of each of the following herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by fingerprinting, through statistical elaboration with principal component analysis (PCA). Characterizing aromatic markers were directly quantified on the solid matrix through multiple headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative and non-separative methods (where the latter were applicable); the two were in full agreement, RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, and 3.1-16.8% for thujones in sage. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.

  6. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  7. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  8. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    2014-01-01

    Full Text Available Altered DNA methylation patterns in CD4(+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (N(patients = 8, N(controls = 8 and gene expression (N(patients = 9, Ncontrols = 10 profiles of CD4(+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (N(patients = 12, N(controls = 12, but not by gene expression (N(patients = 21, N(controls = 21 was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (N(patients = 35 and controls (N(controls = 12, which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4(+ T cells.

  9. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate

    Science.gov (United States)

    Burkhard, Silja Barbara

    2018-01-01

    Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650

  10. Spatial resolution in depth-controlled surface sensitive x-ray techniques

    International Nuclear Information System (INIS)

    Yun, W.B.; Viccaro, P.J.

    1992-01-01

    The spatial resolution along the surface normal and the total depth probed are two important parameters in depth-controlled surface sensitive X-ray techniques employing grazing incidence geometry. The two parameters are analyzed in terms of optical properties (refractive indices) of the media involved and parameters of the incident X-ray beam: beam divergence, X-ray energy, and spectral bandwidth. We derive analytical expressions of the required beam divergence and spectral bandwidth of the incident beam as a function of the two parameters. Sample calculations are made for X-ray energies between 0.1 and 100 keV and for solid Be, Cu, and Au, representing material matrices consisting of low, medium, and high atomic number elements. A brief discussion on obtaining the required beam divergence and spectral bandwidth from present X-ray sources and optics is given

  11. Control of spatial xenon oscillations in pressurized water reactors via the Kalman filter

    International Nuclear Information System (INIS)

    Lin, C.; Lin, Y.J.

    1994-01-01

    A direct control method is developed to control the spatial xenon oscillations in pressurized water reactors. The xenon and iodine concentration difference between the top and bottom halves of the core is estimated by using the extended Kalman filter (EKF), which is a closed-loop estimation method. The measurement equation used in the observer is the axial offset measurement equation, which reflects the xenon unbalanced effect on the axial offset. Meanwhile, some of the coefficients of the observer are estimated on-line to reduce estimation error resulting from model error, i.e., simplified xenon and iodine dynamics. Therefore, the estimation can be guaranteed to be accurate, and the success of the estimation does not greatly depend on the accuracy of the observer model. The predicted one-step ahead xenon concentration, by using the EKF, was used to calculate the possible axial offset variation, and then the control rod motion was calculated to compensate for it. The simulation results show that the proposed method successfully controls the xenon oscillations

  12. Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.

    Directory of Open Access Journals (Sweden)

    Lihua Wu

    Full Text Available For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.

  13. Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.

    Science.gov (United States)

    Wu, Lihua; Leung, Henry; Jiang, Hao; Zheng, Hong; Ma, Li

    2016-01-01

    For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs) from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.

  14. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  15. Control, monitoring and data acquisition systems in pilot plant for tritium and deuterium separation

    International Nuclear Information System (INIS)

    Retevoi, Carmen; Balteanu, Ovidiu Ioan

    1999-01-01

    To achieve the control, monitoring and data acquisition for a pilot plant for tritium and deuterium separation we have developed a system based on computer processing which transfers and treats all the data from the physical system. It consists of six basic elements: 1. a process computer ; 2. a National Instruments Amplifier/Multiplexed - SCXI 1000 with a SCXI 1100 Module with 32 differential input channels; 3. a Honeywell Digital Process Recorder - DPR 250, with 32 universal input, 12 digital input and 12 internal relays; 4. a control system for 4 throttle valves; 5. a National Instruments Data Acquisition board - AT-MIO-16XE-10, with 8 differential channels; 6. a system consisting of up to 20 digital programming current units for carbon RTD's. All the parameters from transducers, sensors and transmitters are introduced into the multiplexer and beyond into the acquisition data board. With LabVIEW soft support (National Instrument product), we made a graphic interface which displays the plant and all the parameters and their points of measure and cumulates all these data into a file. On the other hand all the pressure flow and level values are monitored by the recorder DPR 250, which has a RS232/RS485 port for PC communication. The temperatures are measured with carbon RTD's and a system comprising 20 programming current units connected by RS485 serial bus and a RS485/RS232 converter directly to the serial port of process computer. A special program makes the voltage/temperature conversion. The control system for throttle valves comprises a central unit, which communicates by RS232 bus with 4 controllers commanding 4 stepping motors. Every stepping motor is linked by a reductor to the throttle valve. This system can operate in either manual or automatic mode. The central unit can communicate with process computer via RS232 link. In this way a process computer can receive all the parameters by means of RS232/RS245 link or directly through the multiplexer and

  16. Predicting speech release from masking through spatial separation in distance

    DEFF Research Database (Denmark)

    Chabot-Leclerc, Alexandre; Dau, Torsten

    2014-01-01

    of spatial release from masking (SRM) where the masker is moved, on-axis, away from the target. Two binaural models, which use the conventional audio signal-to-noise ratio (SNR) in the decision metric, and two monaural models, using a decision metric based on the SNR in the envelope domain (SNRenv), were...... considered. The predictions were compared to data from Westermann et al. [2013, POMA, 19, 050156] in condi- tions where the target was located 0.5 m in front of the listener and the masker was presented at a distance of 0.5, 2, 5 or 10 m in front of the listener. The data showed an SRM of 10 dB when moving...... the masker from a distance of 0.5 m to a distance of 10 m. The long-term monaural model based on the SNRenv metric was able to account for most of the SRM data, whereas the models that used the audio SNR did not predict any SRM, even when they included an equalizationcancellation-like process. The short...

  17. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin; Ibrahim, Yehia M.; Webb, Ian K.; Baker, Erin M.; Prost, Spencer A.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.

    2016-11-02

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.

  18. Separation of oily materials in radioactive waste waters by flotation. Determination of operation and control parameters

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Flores E, R.M.

    2003-01-01

    In this work the determination of the operation and control parameters (air/solids ratio G/S, retention time Θ, pressure P and de pressurized volume of mixed air-water V), of the flotation system used in the treatment of oleaginous residual water (polluted mainly with 60 Co) coming from the decontamination process of worn out oils, using as response parameters the concentration of oleaginous material and the residual turbidity. The obtained results allowed to observe the dependence of G/S with the pressure and volume of air-water given. At the same time it was settled down that the set of operation conditions that offers the greater separation percentage of G As and turbidity in the smallest time, they are those obtained by V 2 = 0.0012 m 3 and P 2 = 620 kPa, (G/S = 0.30 - 0.35, = 14-16 min) for what were employees as the ideal values of operation and control in the flotation system. As long as, the concentration of total Co is found under 1 mgL -1 . Finally, the selected flotation system showed high separation levels of 60 Co, whose specific activity are below of 0.007 BqmL -1 . (Author)

  19. Fresenius AS.TEC204 blood cell separator.

    Science.gov (United States)

    Sugai, Mikiya

    2003-02-01

    Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.

  20. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    Science.gov (United States)

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  1. Experimental Evaluation of a Mixed Controller That Amplifies Spatial Errors and Reduces Timing Errors

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-06-01

    Full Text Available Research on motor learning suggests that training with haptic guidance enhances learning of the timing components of motor tasks, whereas error amplification is better for learning the spatial components. We present a novel mixed guidance controller that combines haptic guidance and error amplification to simultaneously promote learning of the timing and spatial components of complex motor tasks. The controller is realized using a force field around the desired position. This force field has a stable manifold tangential to the trajectory that guides subjects in velocity-related aspects. The force field has an unstable manifold perpendicular to the trajectory, which amplifies the perpendicular (spatial error. We also designed a controller that applies randomly varying, unpredictable disturbing forces to enhance the subjects’ active participation by pushing them away from their “comfort zone.” We conducted an experiment with thirty-two healthy subjects to evaluate the impact of four different training strategies on motor skill learning and self-reported motivation: (i No haptics, (ii mixed guidance, (iii perpendicular error amplification and tangential haptic guidance provided in sequential order, and (iv randomly varying disturbing forces. Subjects trained two motor tasks using ARMin IV, a robotic exoskeleton for upper limb rehabilitation: follow circles with an ellipsoidal speed profile, and move along a 3D line following a complex speed profile. Mixed guidance showed no detectable learning advantages over the other groups. Results suggest that the effectiveness of the training strategies depends on the subjects’ initial skill level. Mixed guidance seemed to benefit subjects who performed the circle task with smaller errors during baseline (i.e., initially more skilled subjects, while training with no haptics was more beneficial for subjects who created larger errors (i.e., less skilled subjects. Therefore, perhaps the high functional

  2. The CEBAF RF separator system

    International Nuclear Information System (INIS)

    Hovater, C.; Arnold, G.; Fugitt, J.; Harwood, L.; Kazimi, R.; Lahti, G.; Mammosser, J.; Nelson, R.; Piller, C.; Turlington, L.

    1996-01-01

    The 4 GeV CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) is arranged in a five-pass racetrack configuration, with two superconducting radio-frequency (SRF) linacs joined by independent magnetic transport arcs. The 1497 MHz continuous electron beam is composed of three interlaced variable-intensity 499 MHz beams that can be independently directed from any of the five passes to any of the three experimental halls. Beam extraction is made possible by a system of nine warm sub-harmonic separator cavities capable of delivering a 100 urad kick to any pass at a maximum machine energy of 6 GeV. Each separator cavity is a half-wavelength, two cell design with a high transverse shunt impedance and a small transverse dimension. The cavities are powered by 1 kW solid state amplifiers operating at 499 MHz. Cavity phase and gradient control are provided through a modified version of the same control module used for the CEBAF SRF cavity controls. The system has recently been tested while delivering beam to Hall C. In this paper we present a description of the RF separator system and recent test results with beam. (author)

  3. Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra

    Science.gov (United States)

    Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella

    2015-04-01

    The Arctic is experiencing rapid climate change relative to the rest of the globe, and this increase in temperature has feedback effects across hydrological and thermal regimes, plant community distribution and carbon stocks within tundra soils. Arctic wetlands account for a significant amount of methane emissions from natural ecosystems to the atmosphere and with further permafrost degradation under a warming climate, these emissions are expected to increase. Methane (CH4) is an extremely important component of the global carbon cycle with a global warming potential 28.5 times greater than carbon dioxide over a 100 year time scale (IPCC, 2013). In order to validate carbon cycle models, modelling methane at broader landscape scales is needed. To date direct measurements of methane have been sporadic in time and space which, while capturing some key controls on the spatial heterogeneity, make it difficult to accurately upscale methane emissions to the landscape and regional scales. This study investigates what is controlling the spatial heterogeneity of methane fluxes across Arctic tundra. We combined over 300 portable chamber observations from 13 micro-topographic positions (with multiple vegetation types) across three locations spanning a 300km latitudinal gradient in Northern Alaska from Barrow to Ivotuk with synchronous measurements of environmental (soil temperature, soil moisture, water table, active layer thaw depth, pH) and vegetation (plant community composition, height, sedge tiller counts) variables to evaluate key controls on methane fluxes. To assess the diurnal variation in CH4 fluxes, we also performed automated chamber measurements in one study site (Barrow) location. Multiple statistical approaches (regression tree and multiple linear regression) were used to identify key controlling variables and their interactions. Methane emissions across all sites ranged from -0.08 to 15.3 mg C-CH4 m-2 hr-1. As expected, soil moisture was the main control

  4. Controlled synthesis of Fe3O4/ZIF-8 nanoparticles for magnetically separable nanocatalysts.

    Science.gov (United States)

    Pang, Fei; He, Mingyuan; Ge, Jianping

    2015-04-27

    Fe3O4/ZIF-8 nanoparticles were synthesized through a room-temperature reaction between 2-methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as-prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m(2) g(-1)). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF-8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  6. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.

    Science.gov (United States)

    Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J

    2014-07-01

    We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

  7. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  8. Multiple Speech Source Separation Using Inter-Channel Correlation and Relaxed Sparsity

    Directory of Open Access Journals (Sweden)

    Maoshen Jia

    2018-01-01

    Full Text Available In this work, a multiple speech source separation method using inter-channel correlation and relaxed sparsity is proposed. A B-format microphone with four spatially located channels is adopted due to the size of the microphone array to preserve the spatial parameter integrity of the original signal. Specifically, we firstly measure the proportion of overlapped components among multiple sources and find that there exist many overlapped time-frequency (TF components with increasing source number. Then, considering the relaxed sparsity of speech sources, we propose a dynamic threshold-based separation approach of sparse components where the threshold is determined by the inter-channel correlation among the recording signals. After conducting a statistical analysis of the number of active sources at each TF instant, a form of relaxed sparsity called the half-K assumption is proposed so that the active source number in a certain TF bin does not exceed half the total number of simultaneously occurring sources. By applying the half-K assumption, the non-sparse components are recovered by regarding the extracted sparse components as a guide, combined with vector decomposition and matrix factorization. Eventually, the final TF coefficients of each source are recovered by the synthesis of sparse and non-sparse components. The proposed method has been evaluated using up to six simultaneous speech sources under both anechoic and reverberant conditions. Both objective and subjective evaluations validated that the perceptual quality of the separated speech by the proposed approach outperforms existing blind source separation (BSS approaches. Besides, it is robust to different speeches whilst confirming all the separated speeches with similar perceptual quality.

  9. Microparticle Separation by Cyclonic Separation

    Science.gov (United States)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  10. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the ...

  11. Spectrometer Baseline Control Via Spatial Filtering

    Science.gov (United States)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  12. Extinction threshold of a population in spatial and stochastic model

    OpenAIRE

    Soroka, Yevheniia; Rublyov, Bogdan

    2016-01-01

    In this study, spatial stochastic and logistic model (SSLM) describing dynamics of a population of a certain species was analysed. The behaviour of the extinction threshold as a function of model parameters was studied. More specifically, we studied how the critical values for the model parameters that separate the cases of extinction and persistence depend on the spatial scales of the competition and dispersal kernels. We compared the simulations and analytical results to examine if and how ...

  13. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    Science.gov (United States)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  14. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

  15. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  16. Does age matter? Controls on the spatial organization of age and life expectancy in hillslopes, and implications for transport parameterization using rSAS

    Science.gov (United States)

    Kim, M.; Harman, C. J.; Troch, P. A. A.

    2017-12-01

    Hillslopes have been extensively explored as a natural fundamental unit for spatially-integrated hydrologic models. Much of this attention has focused on their use in predicting the quantity of discharge, but hillslope-based models can potentially be used to predict the composition of discharge (in terms of age and chemistry) if they can be parameterized terms of measurable physical properties. Here we present advances in the use of rank StorAge Selection (rSAS) functions to parameterize transport through hillslopes. These functions provide a mapping between the distribution of water ages in storage and in outfluxes in terms of a probability distribution over storage. It has previously been shown that rSAS functions are related to the relative partitioning and arrangement of flow pathways (and variabilities in that arrangement), while separating out the effect of changes in the overall rate of fluxes in and out. This suggests that rSAS functions should have a connection to the internal organization of flow paths in a hillslope.Using a combination of numerical modeling and theoretical analysis we examined: first, the controls of physical properties on internal spatial organization of age (time since entry), life expectancy (time to exit), and the emergent transit time distribution and rSAS functions; second, the possible parameterization of the rSAS function using the physical properties. The numerical modeling results showed the clear dependence of the rSAS function forms on the physical properties and relations between the internal organization and the rSAS functions. For the different rates of the exponential saturated hydraulic conductivity decline with depth the spatial organization of life expectancy varied dramatically and determined the rSAS function forms, while the organizaiton of the age showed less qualitative differences. Analytical solutions predicting this spatial organization and the resulting rSAS function were derived for simplified systems. These

  17. Wind energy and spatial planning procedures; La programmation spatiale des projects eoliens

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Wind turbines projects have been increasing, but some are very conflicted. May be it is a reason why some local authorities have to deal with different point of view, above the only energy question and including local specificity. To give local authorities the possibility to be implicated and to be in control of wind projects in their territory, wind spatial planning should permit to choose suitable areas and to optimize wind power development. In this context this synthesis presents the wind spatial planning in Finistere (France), the french regulation, some international experiences (Danish, Flemish, Walloon region, Dutch) and the different approaches of spatial planning. (A.L.B.)

  18. Visual perception of spatial subjects

    International Nuclear Information System (INIS)

    Osterloh, K.R.S.; Ewert, U.

    2007-01-01

    Principally, any imaging technology consists of two consecutive, though strictly separated processes: data acquisition and subsequent processing to generate an image that can be looked at, either on a monitor screen or printed on paper. Likewise, the physiological process of viewing can be separated into vision and perception, though these processes are much more overlapping. Understanding the appearance of a subject requires the entire sequence from receiving the information carried e.g. by photons up to an appropriate processing leading to the perception of the subject shown. As a consequence, the imagination of a subject is a result of both, technological and physiological processes. Whenever an evaluation of an image is critical, also the physiological part of the processing should be considered. However, an image has two dimensions in the first place and reality is spatial, it has three dimensions. This problem has been tackled on a philosophical level at least since Platon's famous discussion on the shadow image in a dark cave. The mere practical point is which structural details can be perceived and what may remain undetected depending on the mode of presentation. This problem cannot be resolved without considering each single step of visual perception. Physiologically, there are three 'tools' available to understanding the spatial structure of a subject: binocular viewing, following the course of perspective projection and motion to collect multiple aspects. Artificially, an object may be cut in various ways to display the interior or covering parts could be made transparent within a model. Samples will be shown how certain details of a subject can be emphasised or hidden depending on the way of presentation. It needs to be discussed what might help to perceive the true spatial structure of a subject with all relevant details and what could be misleading. (authors)

  19. Visual perception of spatial subjects

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K.R.S.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany)

    2007-07-01

    Principally, any imaging technology consists of two consecutive, though strictly separated processes: data acquisition and subsequent processing to generate an image that can be looked at, either on a monitor screen or printed on paper. Likewise, the physiological process of viewing can be separated into vision and perception, though these processes are much more overlapping. Understanding the appearance of a subject requires the entire sequence from receiving the information carried e.g. by photons up to an appropriate processing leading to the perception of the subject shown. As a consequence, the imagination of a subject is a result of both, technological and physiological processes. Whenever an evaluation of an image is critical, also the physiological part of the processing should be considered. However, an image has two dimensions in the first place and reality is spatial, it has three dimensions. This problem has been tackled on a philosophical level at least since Platon's famous discussion on the shadow image in a dark cave. The mere practical point is which structural details can be perceived and what may remain undetected depending on the mode of presentation. This problem cannot be resolved without considering each single step of visual perception. Physiologically, there are three 'tools' available to understanding the spatial structure of a subject: binocular viewing, following the course of perspective projection and motion to collect multiple aspects. Artificially, an object may be cut in various ways to display the interior or covering parts could be made transparent within a model. Samples will be shown how certain details of a subject can be emphasised or hidden depending on the way of presentation. It needs to be discussed what might help to perceive the true spatial structure of a subject with all relevant details and what could be misleading. (authors)

  20. The trade-off between spatial and temporal variabilities in reciprocal upper-limb aiming movements of different durations.

    Directory of Open Access Journals (Sweden)

    Frederic Danion

    Full Text Available The spatial and temporal aspects of movement variability have typically been studied separately. As a result the relationship between spatial and temporal variabilities remains largely unknown. In two experiments we examined the evolution and covariation of spatial and temporal variabilities over variations in the duration of reciprocal aiming movements. Experiments differed in settings: In Experiment 1 participants moved unperturbed whereas in Experiment 2 they were confronted with an elastic force field. Different movement durations-for a constant inter-target distance-were either evoked by imposing spatial accuracy constraints while requiring participants to move as fast as possible, or prescribed by means of an auditory metronome while requiring participants to maximize spatial accuracy. Analyses focused on absolute and relative variabilities, respectively captured by the standard deviation (SD and the coefficient of variation (CV = SD/mean. Spatial variability (both SDspace and CVspace decreased with movement duration, while temporal variability (both SDtime and CVtime increased with movement duration. We found strong negative correlations between spatial and temporal variabilities over variations in movement duration, whether the variability examined was absolute or relative. These findings observed at the level of the full movement contrasted with the findings observed at the level of the separate acceleration and deceleration phases of movement. During the separate acceleration and deceleration phases both spatial and temporal variabilities (SD and CV were found to increase with their respective durations, leading to positive correlations between them. Moreover, variability was generally larger at the level of the constituent movement phases than at the level of the full movement. The general pattern of results was robust, as it emerged in both tasks in each of the two experiments. We conclude that feedback mechanisms operating to

  1. Separation of a light additive gas by separation nozzle cascades. Verfahren zur Abtrennung von leichtem Zusatzgas bei Trennduesenkaskaden

    Energy Technology Data Exchange (ETDEWEB)

    Becker, E.; Bley, P.; Ehrfeld, W.; Fritz, W.; Steinhaus, H.

    1984-02-02

    Double-turn separation nozzles, in comparison with single-turn separation nozzles, offer much greater advantages in the separation of UF6 and H2 than in the separation of the U isotopes, for which the double-turn separation nozzles were conceived. By using a double-turn separation-nozzle stage as a preseparation stage in combination with a low-temperature separator, one can reduce the ratio of the buffer input stream to the product stream, in contrast with the solution used up to this time, with only a slight increase in cost of about an order of magnitude. The control program in the case of return feeding of the UF6 from the buffer and the danger of production losses connected with it are thereby correspondingly diminished. An example is given of the enrichment of 235U using the title facility with UF6.

  2. Numerical Study of Water Control with Downhole Oil-Water Separation Technology

    Directory of Open Access Journals (Sweden)

    Yin Khor Yin

    2014-07-01

    Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.

  3. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  4. Using neuronal populations to study the mechanisms underlying spatial and feature attention

    Science.gov (United States)

    Cohen, Marlene R.; Maunsell, John H.R.

    2012-01-01

    Summary Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and non-spatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can co-modulate local neuronal populations, while feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, while spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons. PMID:21689604

  5. Spatial synchrony in cisco recruitment

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  6. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks

    Science.gov (United States)

    Hoos, Anne B.; McMahon, Gerard

    2009-01-01

    Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.

  7. Facility to separate water and steam

    International Nuclear Information System (INIS)

    Loesel, G.

    1977-01-01

    The water/steam mixture from the pressure vessel e.g. of a BWR is separated by means of centrifugal separators untilizing the natural separation of steam. The steam is supplied to a steam drying vessel and the water to a water collecting tank. These vessels may be combined to a common vessel or connected through additional pipes. From the water collecting tank, arranged below the steam dryer, a feedwater pipe runs back to the pressure vessel. By construction out of individual components cleaning, decontamination, and operating control are essentially simplified. (RW) 891 RW [de

  8. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    Science.gov (United States)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2018-02-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  9. Analysis of spatial temporal plantar pressure pattern during gait in Parkinson's disease.

    Science.gov (United States)

    Okuno, Ryuhei; Fujimoto, Satoshi; Akazawa, Jun; Yokoe, Masaru; Sakoda, Saburo; Akazawa, Kenzo

    2008-01-01

    Spatial temporal plantar pressure patterns measured with sheet-shaped pressure sensor were investigated to extract features of gait in Parkinson's disease. Both six subjects of Parkinson's disease (PD) and elderly fourteen normal control subjects were asked to execute usual walking on the pressure sensor sheets. Candidate features were step length, step time, gait velocity and transition of center of pressure to foot axis direction. The step length and gait velocity were smaller in PD subjects than those in normal subjects. Time of step cycle in three PD subjects were longer than that in normal subjects while the times of other PD subjects were similar to those of control subjects. The length from heel contact to toe off within one footprint was small in the subjects with short step length. Such possibility was indicated that Parkinson's disease in gait could be separated from normal subjects by these features.

  10. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  11. A separation theorem for the stochastic sampled-data LQG problem. [control of continuous linear plant disturbed by white noise

    Science.gov (United States)

    Halyo, N.; Caglayan, A. K.

    1976-01-01

    This paper considers the control of a continuous linear plant disturbed by white plant noise when the control is constrained to be a piecewise constant function of time; i.e. a stochastic sampled-data system. The cost function is the integral of quadratic error terms in the state and control, thus penalizing errors at every instant of time while the plant noise disturbs the system continuously. The problem is solved by reducing the constrained continuous problem to an unconstrained discrete one. It is shown that the separation principle for estimation and control still holds for this problem when the plant disturbance and measurement noise are Gaussian.

  12. Psychological distress following marital separation interacts with a polymorphism in the serotonin transporter gene to predict cardiac vagal control in the laboratory.

    Science.gov (United States)

    Hasselmo, Karen; Sbarra, David A; O'Connor, Mary-Frances; Moreno, Francisco A

    2015-06-01

    Marital separation is linked to negative mental and physical health; however, the strength of this link may vary across people. This study examined changes in respiratory sinus arrhythmia (RSA), used to assess cardiac vagal control, in recently separated adults (N = 79; M time since separation = 3.5 months). When reflecting on the separation, self-reported psychological distress following the separation interacted with a polymorphism in the serotonin transporter gene (5-HTTLPR) and a relevant single nucleotide polymorphism (SNP), rs25531, to predict RSA. Among people reporting emotional difficulties after the separation, those who were homozygous for the short allele had lower RSA levels while reflecting on their relationship than other genotypes. The findings, although limited by the relatively small sample size, are discussed in terms of how higher-sensitivity genotypes may interact with psychological responses to stress to alter physiology. © 2015 Society for Psychophysiological Research.

  13. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    Science.gov (United States)

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  14. Independent control strategy of two DC-link voltages for separate MPPTs in transformerless photovoltaic systems using neutral-point-clamped inverters

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Lee, Kyo-Beum

    2014-01-01

    To improve the efficiency of the photovoltaic (PV) system, the centralized topology using three-level inverters are widely used. In this system, PV modules are separately connected to the split DC-links. This causes a decrease of maximum power point tracking (MPPT) efficiency under the partial...... shading condition. This paper proposes an independent control of two DC-link voltages for separate MPPT of each PV module in three-level inverters. The proposed method is simply implemented by adding or subtracting the time-offset to the three-phase turn-on times and modifying the reference voltages...

  15. The Simultaneous Effects of Spatial and Social Networks on Cholera Transmission

    Directory of Open Access Journals (Sweden)

    Sophia Giebultowicz

    2011-01-01

    Full Text Available This study uses social network and spatial analytical methods simultaneously to understand cholera transmission in rural Bangladesh. Both have been used separately to incorporate context into health studies, but using them together is a new and recent approach. Data include a spatially referenced longitudinal demographic database consisting of approximately 200,000 people and a database of all laboratory-confirmed cholera cases from 1983 to 2003. A complete kinship-based network linking households is created, and distance matrices are also constructed to model spatial relationships. A spatial error-social effects model tested for cholera clustering in socially linked households while accounting for spatial factors. Results show that there was social clustering in five out of twenty-one years while accounting for both known and unknown environmental variables. This suggests that environmental cholera transmission is significant and social networks also influence transmission, but not as consistently. Simultaneous spatial and social network analysis may improve understanding of disease transmission.

  16. Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior

    Science.gov (United States)

    Meco, Edi; Lampe, Kyle J.

    2018-02-01

    Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  17. Control of xenon spatial oscillations during load follow of nuclear reactor via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Yada, Yukihiro; Iwazumi, Tetsuo; Morita, Yoshifumi.

    1990-01-01

    This paper investigates the control problem of xenon spatial oscillations in the axial direction during load following operations of a nuclear reactor. The system model is described by a one-group diffusion equation with xenon and power feedbacks and iodine-xenon dynamic equations and controlled by full-length and part-length control rods. In order to achieve the control purpose we formulate the control model as the design problem of robust servo systems for distributed parameter reactor systems. Hence the total thermal power and the axial offset are chosen as outputs to be controlled. The control law is designed based upon finite-dimensional systems which are constructed by linearizing around steady states, approximating by the Galerkin approximate method and reducing dimensions via the singular perturbation method. From a computational point of view a simple computational algorithm to obtain an approximate solution of the steady state neutron balance is developed via the perturbation method. Some results of numerical simulations are represented to show effectiveness of the theory developed in this paper. Particularly it is shown that the designed servo systems are robust against model errors with the linearization and the model truncation. (author)

  18. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields

    Science.gov (United States)

    Ernesto Trujillo; Jorge A. Ramirez; Kelly J. Elder

    2007-01-01

    In this study, LIDAR snow depths, bare ground elevations (topography), and elevations filtered to the top of vegetation (topography + vegetation) in five 1-km2 areas are used to determine whether the spatial distribution of snow depth exhibits scale invariance, and the control that vegetation, topography, and winds exert on such behavior. The one-dimensional and mean...

  19. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Central executive involvement in children's spatial memory.

    Science.gov (United States)

    Ang, Su Yin; Lee, Kerry

    2008-11-01

    Previous research with adults found that spatial short-term and working memory tasks impose similar demands on executive resources. We administered spatial short-term and working memory tasks to 8- and 11-year-olds in three separate experiments. In Experiments 1 and 2 an executive suppression task (random number generation) was found to impair performances on a short-term memory task (Corsi blocks), a working memory task (letter rotation), and a spatial visualisation task (paper folding). In Experiment 3 an articulatory suppression task only impaired performance on the working memory task. These results suggest that short-term and working memory performances are dependent on executive resources. The degree to which the short-term memory task was dependent on executive resources was expected to be related to the amount of experience children have had with such tasks. Yet we found no significant age-related suppression effects. This was attributed to differences in employment of cognitive strategies by the older children.

  1. Dipping-interface mapping using mode-separated Rayleigh waves

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  2. Leidenfrost Driven Waste-Water Separator

    Data.gov (United States)

    National Aeronautics and Space Administration — A Leidenfrost Driven Waste-Water Separator (LDS) is proposed in response to TA 6.1: Environmental Control and Life Support Systems and Habitation Systems. The LDS...

  3. Physical Property Control on the Cellular Uptake Pathway and Spatial Distribution of Nanoparticles in Cells.

    Science.gov (United States)

    Ahn, Sungsook; Seo, Eunseok; Kim, Ki Hean; Lee, Sang Joon

    2015-06-01

    Nanoparticles have been developed in broad biomedical research in terms of effective cellular interactions to treat and visualize diseased cells. Considering the charge and polar functional groups of proteins that are embedded in cellular membranes, charged nanoparticles have been strategically developed to enhance electrostatic cellular interactions. In this study, we show that cellular uptake efficiency, pathway, and spatial distribution of gold nanoparticles in a cell are significantly modulated based on the surface condition of gold nanoparticles and human cancer cells that were tuned by controlling the pH of the medium and by introducing an electron beam. Cellular uptake efficiency is increased when electrostatic attraction is induced between the cells and the gold nanoparticles. Cell surface modification changes the cellular uptake pathways of the gold nanoparticles and concentrates the gold nanoparticles at the membrane region. Surface modification of the gold nanoparticles also contributes to deep penetration and homogeneous spatial distributions in a cell.

  4. Analysis of the spatial rates dose rates during dental panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jong Kyung [Dept. of Radiation Safety Management Commission, Daegu Health College, Daegu (Korea, Republic of); Park, Myeong Hwan [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of); Kim, Yong Min [Dept. of Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2016-12-15

    A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a 45°, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is 3,840 μSv/h, which is four times higher than the lowest level 778 μSv/h. Furthermore, the spatial dose rate was 408 μSv/h on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

  5. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors

    Directory of Open Access Journals (Sweden)

    Z. Zomlot

    2015-09-01

    New hydrological insights for the region: The average resulting recharge is 235 mm/year and occurs mainly in winter. The overall moderate correlation between base flow estimates and modeled recharge rates indicates that base flow is a reasonable proxy of recharge. Groundwater recharge variation was explained in order of importance by precipitation, soil texture and vegetation cover; while base flow variation was strongly controlled by vegetation cover and groundwater depth. The results of this study highlight the important role of spatial variables in estimation of recharge and base flow. In addition, the prominent role of vegetation makes clear the potential importance of land-use changes on recharge and hence the need to include a proper strategy for land-use change in sustainable management of groundwater resources.

  6. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    Directory of Open Access Journals (Sweden)

    Ozonoff Al

    2010-07-01

    Full Text Available Abstract Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM

  7. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    Science.gov (United States)

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression

  8. Abiotic and biotic controls of spatial pattern at alpine treeline

    Science.gov (United States)

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  9. Phase separation in fluids exposed to spatially periodic external fields.

    Science.gov (United States)

    Vink, R L C; Archer, A J

    2012-03-01

    When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.

  10. Spatial patterns of persistent neural activity vary with the behavioral context of short-term memory.

    Science.gov (United States)

    Daie, Kayvon; Goldman, Mark S; Aksay, Emre R F

    2015-02-18

    A short-term memory can be evoked by different inputs and control separate targets in different behavioral contexts. To address the circuit mechanisms underlying context-dependent memory function, we determined through optical imaging how memory is encoded at the whole-network level in two behavioral settings. Persistent neural activity maintaining a memory of desired eye position was imaged throughout the oculomotor integrator after saccadic or optokinetic stimulation. While eye position was encoded by the amplitude of network activity, the spatial patterns of firing were context dependent: cells located caudally generally were most persistent following saccadic input, whereas cells located rostrally were most persistent following optokinetic input. To explain these data, we computationally identified four independent modes of network activity and found these were differentially accessed by saccadic and optokinetic inputs. These results show how a circuit can simultaneously encode memory value and behavioral context, respectively, in its amplitude and spatial pattern of persistent firing. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Controlling Microstructure-Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design.

    Science.gov (United States)

    Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine

    2017-01-18

    Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.

  12. Central insulin administration improves odor-cued reactivation of spatial memory in young men.

    Science.gov (United States)

    Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica

    2015-01-01

    Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.

  13. Distributed systems design using separable communications

    International Nuclear Information System (INIS)

    Capel, A.C.; Yan, G.

    1980-01-01

    One of the promises of distributed systems is the ability to design each process function largely independently of the others, and in many cases locate the resulting hardware in close proximity to the application. The communications architecture for such systems should be approached in the same way, using separable communications facilities to meet individual sets of requirements while at the same time reducing the interactions between functions. Where complete physical separation is not feasible and hardware resource sharing is required, the protocols should be designed emphasizing the logical separation of communication paths. This paper discusses the different types of communications for process control applictions and the parameters which need to be characterized in designing separable communications for distributed systems. (auth)

  14. METHOD FOR DETERMINING THE SPATIAL COORDINATES IN THE ACTIVE STEREOSCOPIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Valery V. Korotaev

    2014-11-01

    Full Text Available The paper deals with the structural scheme of active stereoscopic system and algorithm of its operation, providing the fast calculation of the spatial coordinates. The system includes two identical cameras, forming a stereo pair, and a laser scanner, which provides vertical scanning of the space before the system by the laser beam. A separate synchronizer provides synchronous operation of the two cameras. The developed algorithm of the system operation is implemented in MATLAB. In the proposed algorithm, the influence of background light is eliminated by interframe processing. The algorithm is based on precomputation of coordinates for epipolar lines and corresponding points in stereoscopic image. These data are used to quick calculation of the three-dimensional coordinates of points that form the three-dimensional images of objects. Experiment description on a physical model is given. Experimental results confirm the efficiency of the proposed active stereoscopic system and its operation algorithm. The proposed scheme of active stereoscopic system and calculating method for the spatial coordinates can be recommended for creation of stereoscopic systems, operating in real time and at high processing speed: devices for face recognition, systems for the position control of railway track, automobile active safety systems.

  15. Separation of replication and transcription domains in nucleoli.

    Science.gov (United States)

    Smirnov, E; Borkovec, J; Kováčik, L; Svidenská, S; Schröfel, A; Skalníková, M; Švindrych, Z; Křížek, P; Ovesný, M; Hagen, G M; Juda, P; Michalová, K; Cardoso, M C; Cmarko, D; Raška, I

    2014-12-01

    In mammalian cells, active ribosomal genes produce the 18S, 5.8S and 28S RNAs of ribosomal particles. Transcription levels of these genes are very high throughout interphase, and the cell needs a special strategy to avoid collision of the DNA polymerase and RNA polymerase machineries. To investigate this problem, we measured the correlation of various replication and transcription signals in the nucleoli of HeLa, HT-1080 and NIH 3T3 cells using a specially devised software for analysis of confocal images. Additionally, to follow the relationship between nucleolar replication and transcription in living cells, we produced a stable cell line expressing GFP-RPA43 (subunit of RNA polymerase I, pol I) and RFP-PCNA (the sliding clamp protein) based on human fibrosarcoma HT-1080 cells. We found that replication and transcription signals are more efficiently separated in nucleoli than in the nucleoplasm. In the course of S phase, separation of PCNA and pol I signals gradually increased. During the same period, separation of pol I and incorporated Cy5-dUTP signals decreased. Analysis of single molecule localization microscopy (SMLM) images indicated that transcriptionally active FC/DFC units (i.e. fibrillar centers with adjacent dense fibrillar components) did not incorporate DNA nucleotides. Taken together, our data show that replication of the ribosomal genes is spatially separated from their transcription, and FC/DFC units may provide a structural basis for that separation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Focal plane scanner with reciprocating spatial window

    Science.gov (United States)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  17. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes.

    Directory of Open Access Journals (Sweden)

    Marko Panic

    2015-05-01

    Full Text Available The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm. Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.

  18. Paradoxical effect of spatially homogenous transparent fields on simultaneous contrast illusions.

    Science.gov (United States)

    Dixon, Erica; Shapiro, Arthur G

    2014-04-01

    In simultaneous brightness contrast (SBC) demonstrations, identical mid-luminance disks appear different from each other when one is placed on a black background while the other is placed on a white background. The strength of SBC effects can be enhanced by placing a semi-transparent layer on top of the display (Meyer's effect). Here, we try to separate the causes of Meyer's effect by placing a spatially homogenous transparent layer over a standard SBC display, and systematically varying the transmission level (alpha=0, clear; alpha=1, opaque) and color (black, gray, white) of the semi-transparent layer. Spatially homogenous transparent layers, which lack spatial cues, cannot be unambiguously interpreted as transparent fields. We measure SBC strength with both matching and ranking procedures. Paradoxically, with black layers, increasing alpha level weakens SBC when measured with a ranking procedure (no Meyer's effect) and strengthens SBC when measured with a matching procedure (Meyer's effect). With white and gray layers, neither procedure produces Meyer's effect. We account for the differences between white and black layers by positing that the visual system separates luminance from contrast. The results suggest that observers attend to different information in the matching and ranking procedures.

  19. The spatial profile of visual attention in mental curve tracing

    NARCIS (Netherlands)

    Scholte, H. S.; Spekreijse, H.; Roelfsema, P. R.

    2001-01-01

    In a curve-tracing task, subjects have to judge whether items are located on a single, continuous curve. Spatially separate segments of such a curve are related to each other through grouping criteria, like collinearity and connectedness. These grouping cues need to be exploited during curve

  20. Decision Fusion With Multiple Spatial Supports by Conditional Random Fields

    NARCIS (Netherlands)

    Tuia, Devis; Volpi, Michele; Moser, Gabriele

    2018-01-01

    Classification of remotely sensed images into land cover or land use is highly dependent on geographical information at least at two levels. First, land cover classes are observed in a spatially smooth domain separated by sharp region boundaries. Second, land classes and observation scale are also

  1. Spatial displacement of numbers on a vertical number line in spatial neglect

    Directory of Open Access Journals (Sweden)

    Urszula eMihulowicz

    2015-04-01

    Full Text Available Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual versus representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli.

  2. Model for spatial synthesis of automated control system of the GCR type reactor; Model za prostornu sintezu sistema automatskog upravljanja reaktora GCR tipa

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, B; Matausek, M [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This paper describes the model which was developed for synthesis of spatial distribution of automated control elements in the reactor. It represents a general reliable mathematical model for analyzing transition states and synthesis of the automated control and regulation systems of GCR type reactors. One-dimensional system was defined under assumption that the time dependence of parameters of the neutron diffusion equation are identical in the total volume of the reactor and that spatial distribution of neutrons is time independent. It is shown that this assumption is satisfactory in case of short term variations which are relevant for safety analysis.

  3. Analysis of spatial distribution of land cover maps accuracy

    Science.gov (United States)

    Khatami, R.; Mountrakis, G.; Stehman, S. V.

    2017-12-01

    Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain

  4. In Search of the Sources of Psychologically Controlling Parenting: The Role of Parental Separation Anxiety and Parental Maladaptive Perfectionism

    Science.gov (United States)

    Soenens, Bart; Vansteenkiste, Maarten; Duriez, Bart; Goossens, Luc

    2006-01-01

    This study investigated the role of two dimensions of parental separation anxiety--Anxiety about Adolescent Distancing (AAD) and Comfort with Secure Base Role (CSBR)--and parental maladaptive perfectionism in the prediction of psychologically controlling parenting. In a sample of middle adolescents and their parents (N=677), it was found that…

  5. Spatial Modulation in the Underwater Acoustic Communication Channel

    National Research Council Canada - National Science Library

    Kilfoyle, Daniel

    2000-01-01

    .... The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that multiple parallel communication channels are supported by the single, physical ocean channel...

  6. Spatial Release From Masking in Children: Effects of Simulated Unilateral Hearing Loss.

    Science.gov (United States)

    Corbin, Nicole E; Buss, Emily; Leibold, Lori J

    The purpose of this study was twofold: (1) to determine the effect of an acute simulated unilateral hearing loss on children's spatial release from masking in two-talker speech and speech-shaped noise, and (2) to develop a procedure to be used in future studies that will assess spatial release from masking in children who have permanent unilateral hearing loss. There were three main predictions. First, spatial release from masking was expected to be larger in two-talker speech than in speech-shaped noise. Second, simulated unilateral hearing loss was expected to worsen performance in all listening conditions, but particularly in the spatially separated two-talker speech masker. Third, spatial release from masking was expected to be smaller for children than for adults in the two-talker masker. Participants were 12 children (8.7 to 10.9 years) and 11 adults (18.5 to 30.4 years) with normal bilateral hearing. Thresholds for 50%-correct recognition of Bamford-Kowal-Bench sentences were measured adaptively in continuous two-talker speech or speech-shaped noise. Target sentences were always presented from a loudspeaker at 0° azimuth. The masker stimulus was either co-located with the target or spatially separated to +90° or -90° azimuth. Spatial release from masking was quantified as the difference between thresholds obtained when the target and masker were co-located and thresholds obtained when the masker was presented from +90° or -90° azimuth. Testing was completed both with and without a moderate simulated unilateral hearing loss, created with a foam earplug and supra-aural earmuff. A repeated-measures design was used to compare performance between children and adults, and performance in the no-plug and simulated-unilateral-hearing-loss conditions. All listeners benefited from spatial separation of target and masker stimuli on the azimuth plane in the no-plug listening conditions; this benefit was larger in two-talker speech than in speech-shaped noise. In the

  7. Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation

    Science.gov (United States)

    Wang, Qian; Wu, Jianning; Meng, Guihua; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-06-01

    The wetting materials with the ability of controllable oil/water separation have drawn more and more public attention. In this article, the novel cotton fabric (CF) with pH controlled wettability transition was designed by a simple, environmentally friendly coating copolymer/SiO2 nanoparticles, poly(heptadecafluorodecyl methacrylate- co-3-trimethoxysilylpropyl methacrylate- co-2-vinilpiridine) (PHDFDMA- co-PTMSPMA- co-P2VP). Furthermore, the structures and morphologies of coated CF were confirmed by Fourier transform infrared spectroscopy (FTIR), NMR, GPC, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The coated CF exhibits switchable wettability between superhydrophobicity and superhydrophilicity via adjusting pH value. When the coated CF is placed in the neutral aqueous (pH = 7.0), it is superhydrophobic in the air and superoleophilic. It allows oil to go through but blocking water. However, in acidic aqueous environment (pH = 3.0), it turns superhydrophilic and underwater superoleophobic, which allows water to penetrate but blocking oil. Therefore, the coated CF could be applied to separate oil/water mixtures, ternary oil/water/water mixtures continuously and different surfactant stabilized emulsions (oil-in-water, water-in-oil) and displays the superior separation capacity for oil-water mixtures with a high efficiency of 99.8%. Moreover, the cycling tests demonstrate that the coated CF possesses excellent recyclability and durability. Such an eminent, controllable water/oil permeation feature makes coated CF could be selected as an ideal candidate for oil/water separation.

  8. Passive Flap Actuation by Reversing Flow in Laminar Boundary Layer Separation

    Science.gov (United States)

    Parsons, Chase; Lang, Amy; Santos, Leo; Bonacci, Andrew

    2017-11-01

    Reducing the flow separation is of great interest in the field of fluid mechanics in order to reduce drag and improve the overall efficiency of aircraft. This project seeks to investigate passive flow control using shark inspired microflaps in laminar boundary layer separation. This study aims to show that whether a flow is laminar or turbulent, laminar and 2D or turbulent and 3D, microflaps actuated by reversing flow is a robust means of controlling flow separation. In order to generate a controlled adverse pressure gradient, a rotating cylinder induces separation at a chosen location on a flat plate boundary layer with Re above 10000. Within this thick boundary layer, digital particle image velocimetry is used to map the flow. This research can be used in the future to better understand the nature of the bristling shark scales and its ability to passively control separation. Results show that microflaps successfully actuated due to backflow and that this altered the formation of flow separation. I would like to thank the NSF for REU Grant EEC 1659710 and the Army Research Office for funding this project.

  9. Application of Decomposition Methodology to Solve Integrated Process Design and Controller Design Problems for Reactor-Separator-Recycle System

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul

    2010-01-01

    This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre...... the design of a RSR system involving consecutive reactions, A B -> C and shown to provide effective solutions that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights......-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification. The methodology makes use of thermodynamic-process insights and the reverse design approach to arrive at the final process-controller design decisions. The developed methodology is illustrated through...

  10. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution.

    Science.gov (United States)

    Etoc, Fred; Vicario, Chiara; Lisse, Domenik; Siaugue, Jean-Michel; Piehler, Jacob; Coppey, Mathieu; Dahan, Maxime

    2015-05-13

    Tools for controlling the spatial organization of proteins are a major prerequisite for deciphering mechanisms governing the dynamic architecture of living cells. Here, we have developed a generic approach for inducing and maintaining protein gradients inside living cells by means of biofunctionalized magnetic nanoparticles (MNPs). For this purpose, we tailored the size and surface properties of MNPs in order to ensure unhindered mobility in the cytosol. These MNPs with a core diameter below 50 nm could be rapidly relocalized in living cells by exploiting biased diffusion at weak magnetic forces in the femto-Newton range. In combination with MNP surface functionalization for specific in situ capturing of target proteins as well as efficient delivery into the cytosplasm, we here present a comprehensive technology for controlling intracellular protein gradients with a temporal resolution of a few tens of seconds.

  11. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  12. Multiple spatial frequency channels in human visual perceptual memory.

    Science.gov (United States)

    Nemes, V A; Whitaker, D; Heron, J; McKeefry, D J

    2011-12-08

    Current models of short-term visual perceptual memory invoke mechanisms that are closely allied to low-level perceptual discrimination mechanisms. The purpose of this study was to investigate the extent to which human visual perceptual memory for spatial frequency is based upon multiple, spatially tuned channels similar to those found in the earliest stages of visual processing. To this end we measured how performance on a delayed spatial frequency discrimination paradigm was affected by the introduction of interfering or 'memory masking' stimuli of variable spatial frequency during the delay period. Masking stimuli were shown to induce shifts in the points of subjective equality (PSE) when their spatial frequencies were within a bandwidth of 1.2 octaves of the reference spatial frequency. When mask spatial frequencies differed by more than this value, there was no change in the PSE from baseline levels. This selective pattern of masking was observed for different spatial frequencies and demonstrates the existence of multiple, spatially tuned mechanisms in visual perceptual memory. Memory masking effects were also found to occur for horizontal separations of up to 6 deg between the masking and test stimuli and lacked any orientation selectivity. These findings add further support to the view that low-level sensory processing mechanisms form the basis for the retention of spatial frequency information in perceptual memory. However, the broad range of transfer of memory masking effects across spatial location and other dimensions indicates more long range, long duration interactions between spatial frequency channels that are likely to rely contributions from neural processes located in higher visual areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: Toward controllable oil/water separation

    KAUST Repository

    Zhang, L.

    2012-02-01

    Advanced materials with surfaces that have controllable oil wettability when submerged in aqueous media have great potential for various underwater applications. Here we have developed smart surfaces on commonly used materials, including non-woven textiles and polyurethane sponges, which are able to switch between superoleophilicity and superoleophobicity in aqueous media. The smart surfaces are obtained by grafting a block copolymer, comprising blocks of pH-responsive poly(2-vinylpyridine) and oleophilic/hydrophobic polydimethylsiloxane (i.e., P2VP-b-PDMS) on these materials. The P2VP block can alter its wettability and its conformation via protonation and deprotonation in response to the pH of the aqueous media, which provides controllable and switchable access of oil by the PDMS block, resulting in the switchable surface oil wettability in the aqueous media. On the other hand, the high flexibility of the PDMS block facilitates the reversible switching of the surface oil wettability. As a proof of concept, we also demonstrate that materials functionalized with our smart surfaces can be used for highly controllable oil/water separation processes.

  14. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  15. Predicting family health and well-being after separation from an abusive partner: role of coercive control, mother's depression and social support.

    Science.gov (United States)

    Broughton, Sharon; Ford-Gilboe, Marilyn

    2017-08-01

    Drawing on the Strengthening Capacity to Limit Intrusion theory, we tested whether intrusion (i.e. unwanted interference from coercive control, custody and access difficulties and mother's depressive symptoms) predicted family health and well-being after separation from an abusive partner/father, and whether social support moderated intrusion effects on family health and well-being. Experiences of coercive control and the negative consequences related to those experiences have been documented among women who have separated from an abusive partner. We conducted a secondary analysis of data from 154 adult, Canadian mothers of dependent children who had separated from an abusive partner and who participated in Wave 2 of the Women's Health Effects Study. We used hierarchical multiple regression to test whether intrusion predicts family health and well-being as well as whether social support moderated this relationship. Families were found to experience considerable intrusion, yet their health and well-being was similar to population norms. Intrusion predicted 11·4% of the variance in family health and well-being, with mother's depressive symptoms as the only unique predictor. Social support accounted for an additional 9% of explained variance, but did not buffer intrusion effects on family health and well-being. Although women had been separated from their abusive partners for an average of 2·5 years, the majority continued to experience coercive control. On average, levels of social support and family functioning were relatively high, contrary to public and academic discourse. In working with these families postseparation, nurses should approach care from a strength-based perspective, and integrate tailored assessment and intervention options for women and families that address both depression and social support. © 2016 John Wiley & Sons Ltd.

  16. Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling.

    Science.gov (United States)

    Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L

    2017-11-07

    Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.

  17. A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil

    KAUST Repository

    Zhang, Wei

    2015-05-05

    We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U 0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F + = feC/U 0 = 0.5, the medium frequency (MF) F + = 1.0, and the high frequency (HF) F + = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F + = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and

  18. A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil

    KAUST Repository

    Zhang, Wei; Samtaney, Ravi

    2015-01-01

    We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U 0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F + = feC/U 0 = 0.5, the medium frequency (MF) F + = 1.0, and the high frequency (HF) F + = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F + = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and

  19. ViSA: a neurodynamic model for visuo-spatial working memory, attentional blink, and conscious access.

    Science.gov (United States)

    Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2012-10-01

    Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Spectral light separator based on deep-subwavelength resonant apertures in a metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Büyükalp, Yasin; Catrysse, Peter B., E-mail: pcatryss@stanford.edu; Shin, Wonseok; Fan, Shanhui, E-mail: shanhui@stanford.edu [E. L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-07-07

    We propose to funnel, select, and collect light spectrally by exploiting the unique properties of deep-subwavelength resonant apertures in a metallic film. In our approach, each aperture has an electromagnetic cross section that is much larger than its physical size while the frequency of the collected light is controlled by its height through the Fabry-Pérot resonance mechanism. The electromagnetic crosstalk between apertures remains low despite physical separations in the deep-subwavelength range. The resulting device enables an extremely efficient, subwavelength way to decompose light into its spectral components without the loss of photons and spatial coregistration errors. As a specific example, we show a subwavelength-size structure with three deep-subwavelength slits in a metallic film designed to operate in the mid-wave infrared range between 3 and 5.5 μm.

  1. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    Science.gov (United States)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  2. Near or far: The effect of spatial distance and vocabulary knowledge on word learning.

    Science.gov (United States)

    Axelsson, Emma L; Perry, Lynn K; Scott, Emilly J; Horst, Jessica S

    2016-01-01

    The current study investigated the role of spatial distance in word learning. Two-year-old children saw three novel objects named while the objects were either in close proximity to each other or spatially separated. Children were then tested on their retention for the name-object associations. Keeping the objects spatially separated from each other during naming was associated with increased retention for children with larger vocabularies. Children with a lower vocabulary size demonstrated better retention if they saw objects in close proximity to each other during naming. This demonstrates that keeping a clear view of objects during naming improves word learning for children who have already learned many words, but keeping objects within close proximal range is better for children at earlier stages of vocabulary acquisition. The effect of distance is therefore not equal across varying vocabulary sizes. The influences of visual crowding, cognitive load, and vocabulary size on word learning are discussed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  4. Yersinia pseudotuberculosis Spatially Controls Activation and Misregulation of Host Cell Rac1.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Yersinia pseudotuberculosis binds host cells and modulates the mammalian Rac1 guanosine triphosphatase (GTPase at two levels. Activation of Rac1 results from integrin receptor engagement, while misregulation is promoted by translocation of YopE and YopT proteins into target cells. Little is known regarding how these various factors interplay to control Rac1 dynamics. To investigate these competing processes, the localization of Rac1 activation was imaged microscopically using fluorescence resonance energy transfer. In the absence of translocated effectors, bacteria induced activation of the GTPase at the site of bacterial binding. In contrast, the entire cellular pool of Rac1 was inactivated shortly after translocation of YopE RhoGAP. Inactivation required membrane localization of Rac1. The translocated protease YopT had very different effects on Rac1. This protein, which removes the membrane localization site of Rac1, did not inactivate Rac1, but promoted entry of cleaved activated Rac1 molecules into the host cell nucleus, allowing Rac1 to localize with nuclear guanosine nucleotide exchange factors. As was true for YopE, membrane-associated Rac1 was the target for YopT, indicating that the two translocated effectors may compete for the same pool of target protein. Consistent with the observation that YopE inactivation requires membrane localization of Rac1, the presence of YopT in the cell interfered with the action of the YopE RhoGAP. As a result, interaction of target cells with a strain that produces both YopT and YopE resulted in two spatially distinct pools of Rac1: an inactive cytoplasmic pool and an activated nuclear pool. These studies demonstrate that competition between bacterial virulence factors for access to host substrates is controlled by the spatial arrangement of a target protein. In turn, the combined effects of translocated bacterial proteins are to generate pools of a single signaling molecule with distinct localization and

  5. Effect of harmonicity on the detection of a signal in a complex masker and on spatial release from masking.

    Directory of Open Access Journals (Sweden)

    Astrid Klinge

    Full Text Available The amount of masking of sounds from one source (signals by sounds from a competing source (maskers heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz, two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth, and five different masker types (four complex multi-tone stimuli, one noise masker. A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.

  6. Knowledge base expert system control of spatial xenon oscillations in pressurized water reactors

    International Nuclear Information System (INIS)

    Alten, S.

    1992-01-01

    Nuclear reactor operators are required to pay special attention to spatial xenon oscillations during the load-follow operation of pressurized water reactors. They are expected to observe the axial offset of the core, and to estimate the correct time and amount of necessary control action based on heuristic rules given in axial xenon oscillations are knowledge intensive, and heuristic in nature. An expert system, ACES (Axial offset Control using Expert Systems) is developed to implement a heuristic constant axial offset control procedure to aid reactor operators in increasing the plant reliability by reducing the human error component of the failure probability. ACES is written in a production system language, OPS5, based on the forward chaining algorithm. It samples reactor data with a certain time interval in terms of measurable parameters, such as the power, period, and the axial offset of the core. It then processes the core status utilizing a set of equations which are used in a back of the envelope calculations by domain experts. Heuristic rules of ACES identify the control variable to be used among the full and part length control rods and boron concentration, while a knowledge base is used to determine the amount of control. ACES is designed as a set of generic rules to avoid reducing the system into a set of patterns. Instead ACES evaluates the system, determines the necessary corrective actions in terms of reactivity insertion, and provides this reactivity insertion using the control variables. The amount of control action is determined using a knowledge base which consists of the differential rod worth curves, and the boron reactivity worth of a given reactor. Having the reactor dependent parameters in its knowledge base, ACES is applicable to an arbitrary reactor for axial offset control purposes

  7. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe

    2016-01-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)

  8. An internet-based self-help intervention for older adults after marital bereavement, separation or divorce: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Brodbeck, Jeannette; Berger, Thomas; Znoj, Hans Joerg

    2017-01-13

    Marital bereavement and separation or divorce are among the most stressful critical life events in later life. These events require a dissolution of social and emotional ties, adjustments in daily routine and changes in identity and perspectives for the future. After a normative grief or distress reaction, most individuals cope well with the loss. However, some develop a prolonged grief reaction. Internet-based self-help interventions have proved beneficial for a broad range of disorders, including complicated grief. Based on the task model and the dual-process model of coping with bereavement, we developed a guided internet-based self-help intervention for individuals who experienced marital bereavement, separation or divorce at least 6 months prior to enrolment. The intervention consists of 10 text-based self-help sessions and one supportive email a week. The primary purpose of this study is the evaluation of the feasibility and efficacy of the intervention compared with a waiting control group. The secondary purpose is to compare the effects in bereaved and separated participants. Furthermore, we aim to analyze other predictors, moderators and mediators of the outcome, such as age, psychological distress and intensity of use of the intervention. The design is a randomized controlled trial with a waiting control condition of 12 weeks and a 24-weeks follow-up. At least 72 widowed or separated participants will be recruited via our study website and internet forums. Primary outcomes are reductions in grief symptoms, depression and psychological distress. Secondary outcome measures are related to loneliness, satisfaction with life, embitterment and the sessions. The trial will provide insights into the acceptance and efficacy of internet-based interventions among adults experiencing grief symptoms, psychological distress and adaptation problems in daily life after spousal bereavement, separation or divorce. Findings will add to existing knowledge by (1) evaluating

  9. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.

    Science.gov (United States)

    Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling

    2017-07-01

    Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.

  10. Electro/powder separation process

    International Nuclear Information System (INIS)

    Dunn, J.P.

    1977-01-01

    A report is presented to introduce the ELECTRO/POWDER process to the P/M Industry. The process effectively uses electrostatic forces to convey, sort, meter, and blend fine powders. The major advantages of this separating process consist of the processing of primary particles, low particle energy due to particle velocity control and the pattern of particle movement over the sieve (vertical oscillation of particles above the sieve aperture). The report briefly describes the forces involved in both mechanical and sieving devices, with major emphasis on the operating principles of this process. Sieve separation of particulates is basically the result of two physical separating processes which occur simultaneously or independently; separation (dispersion) of particulates from each other and the size separation by passage through fixed apertures. In order to accomplish this goal, mechanical sieving devices utilize various motions to induce shear forces between the sieve surface and the particulates, and between the particulates themselves. It is noted that the ELECTRO/POWDER process is making steady progress in becoming an industrial tool for sieving and feeding of fine particles. Its potential extends into both the blending and admixing of powders, either by incorporating two opposing feeders, one being charged with the opposite polarity or by modifying the ELECTRO/SIEVE to incorporate more than one input and a solid electrode to replace the sieve electrode

  11. Simulation and control synthesis for a pulse column separation system for plutonium--uranium recovery

    International Nuclear Information System (INIS)

    McCutcheon, E.B.

    1975-05-01

    Control of a plutonium-uranium partitioning column was studied using a mathematical model developed to simulate the dynamic response and to test postulated separation mechanisms. The column is part of a plutonium recycle flowsheet developed for the recovery of plutonium and uranium from metallurgical scrap. In the first step of the process, decontamination from impurities is achieved by coextracting plutonium and uranium in their higher oxidation states. In the second step, reduction of the plutonium to a lower oxidation state allows partitioning of the plutonium and uranium. The use of hydroxylamine for the plutonium reduction in this partitioning column is a unique feature of the process. The extraction operations are carried out in pulse columns. (U.S.)

  12. Separation of Flame and Nonflame-retardant Plastics Utilizing Magneto-Archimedes Method

    International Nuclear Information System (INIS)

    Misawa, Kohei; Kobayashi, Takayuki; Mori, Tatsuya; Akiyama, Yoko; Nishijima, Shigehiro; Mishima, Fumihito

    2017-01-01

    In physical recycling process, the quality of recycled plastics becomes usually poor in case various kinds of plastic materials are mixed. In order to solve the problem, we tried to separate flame and nonflame-retardant plastics used for toner cartridges as one example of mixed plastics by using magneto-Archimedes method. By using this method, we can control levitation and settlement of the particles in the medium by controlling the density and magnetic susceptibility of the medium and the magnetic field. In this study, we introduced the separation system of plastics by the combination of wet type specific gravity separation and magneto-Archimedes separation. In addition, we examined continuous and massive separation by introducing the system which can separate the plastics continuously in the flowing fluid. (paper)

  13. Visual Statistical Learning Works after Binding the Temporal Sequences of Shapes and Spatial Positions

    Directory of Open Access Journals (Sweden)

    Osamu Watanabe

    2011-05-01

    Full Text Available The human visual system can acquire the statistical structures in temporal sequences of object feature changes, such as changes in shape, color, and its combination. Here we investigate whether the statistical learning for spatial position and shape changes operates separately or not. It is known that the visual system processes these two types of information separately; the spatial information is processed in the parietal cortex, whereas object shapes and colors are detected in the temporal pathway, and, after that, we perceive bound information in the two streams. We examined whether the statistical learning operates before or after binding the shape and the spatial information by using the “re-paired triplet” paradigm proposed by Turk-Browne, Isola, Scholl, and Treat (2008. The result showed that observers acquired combined sequences of shape and position changes, but no statistical information in individual sequence was obtained. This finding suggests that the visual statistical learning works after binding the temporal sequences of shapes and spatial structures and would operate in the higher-order visual system; this is consistent with recent ERP (Abla & Okanoya, 2009 and fMRI (Turk-Browne, Scholl, Chun, & Johnson, 2009 studies.

  14. Comparison of the efficacy of ibuprofen and belladonna in the control of orthodontic separator pain

    Directory of Open Access Journals (Sweden)

    Harshal Ashok Patil

    2018-01-01

    Full Text Available Background: The purpose of this study was to compare the efficacy of ibuprofen and Belladonna in the control of orthodontic pain and to ascertain the pain relief by Belladonna in comparison with ibuprofen during orthodontic separation. Materials and Methods: Patients, between 20 and 35 years of age, 51 females and 21 males, were included in this study. Patients were randomly divided into two groups; one group was assigned to ibuprofen 400 mg and second group was allocated to Belladonna 6C group. Patients were given two doses of medication of their respective groups, 1 h before placement of elastomeric separators (Ormco Separators, Ormco Corporation, CA, USA which was administered in the department and one dose 6 h after the placement. Pain scores recorded on visual analogue scale (VAS. VAS was a 10 cm scale with millimetre calibration to record their pain at the following intervals, 2 h after placement, 6 h after placement, bedtime, day 1 morning, day 2 morning, day 3 morning and day 5 morning. Results: Post hoc comparisons indicated that there was no difference between the two groups at 2 h (P = 0.77, 6 h (0.073, 1 day (P = 0.120, 2 days (P = 0.283, 3 days (P = 0.363, 5 days (P = 0.622 and 7 days. Conclusion: Ibuprofen and Belladonna 6C are effective and provide adequate analgesia with no statistically significant difference. Lack of adverse effects with Belladonna 6C makes it an effective and viable alternative.

  15. Spatial Targeting for Bovine Tuberculosis Control: Can the Locations of Infected Cattle Be Used to Find Infected Badgers?

    Directory of Open Access Journals (Sweden)

    Catherine M Smith

    Full Text Available Bovine tuberculosis is a disease of historical importance to human health in the UK that remains a major animal health and economic issue. Control of the disease in cattle is complicated by the presence of a reservoir species, the Eurasian badger. In spite of uncertainty in the degree to which cattle disease results from transmission from badgers, and opposition from environmental groups, culling of badgers has been licenced in two large areas in England. Methods to limit culls to smaller areas that target badgers infected with TB whilst minimising the number of uninfected badgers culled is therefore of considerable interest. Here, we use historical data from a large-scale field trial of badger culling to assess two alternative hypothetical methods of targeting TB-infected badgers based on the distribution of cattle TB incidents: (i a simple circular 'ring cull'; and (ii geographic profiling, a novel technique for spatial targeting of infectious disease control that predicts the locations of sources of infection based on the distribution of linked cases. Our results showed that both methods required coverage of very large areas to ensure a substantial proportion of infected badgers were removed, and would result in many uninfected badgers being culled. Geographic profiling, which accounts for clustering of infections in badger and cattle populations, produced a small but non-significant increase in the proportion of setts with TB-infected compared to uninfected badgers included in a cull. It also provided no overall improvement at targeting setts with infected badgers compared to the ring cull. Cattle TB incidents in this study were therefore insufficiently clustered around TB-infected badger setts to design an efficient spatially targeted cull; and this analysis provided no evidence to support a move towards spatially targeted badger culling policies for bovine TB control.

  16. Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior

    Directory of Open Access Journals (Sweden)

    Edi Meco

    2018-02-01

    Full Text Available Biomaterial scaffolds mimic aspects of the native central nervous system (CNS extracellular matrix (ECM and have been extensively utilized to influence neural cell (NC behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and three-dimensional (3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  17. Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director

    International Nuclear Information System (INIS)

    Peng, Chenhui; Turiv, Taras; Guo, Yubing; Shiyanovskii, Sergij V; Wei, Qi-Huo; Lavrentovich, Oleg D; Zhang, Rui; De Pablo, Juan

    2017-01-01

    Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices. (paper)

  18. Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director

    Science.gov (United States)

    Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D.

    2017-01-01

    Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

  19. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities.

    Science.gov (United States)

    Bull, James J; Christensen, Kelly A; Scott, Carly; Jack, Benjamin R; Crandall, Cameron J; Krone, Stephen M

    2018-01-29

    Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here.

  20. Modeling spin magnetization transport in a spatially varying magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Picone, Rico A.R., E-mail: rpicone@stmartin.edu [Department of Mechanical Engineering, University of Washington, Seattle (United States); Garbini, Joseph L. [Department of Mechanical Engineering, University of Washington, Seattle (United States); Sidles, John A. [Department of Orthopædics, University of Washington, Seattle (United States)

    2015-01-15

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of

  1. Modeling spin magnetization transport in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Picone, Rico A.R.; Garbini, Joseph L.; Sidles, John A.

    2015-01-01

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of

  2. Enabling Concise and Modular Specifications in Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal

    2014-01-01

    logics and examples of using these logics to verify challenging programs. The article Modular Verification of Linked Lists with Views via Separation Logic reports on verification of a practical data structure with separation logic. The challenges identified in this work has served as motivation for later...... unstructured control flow and the lack of basic facilities in the language such as memory allocation and procedure calls. Finally, the chapter Techniques for Model Construction in Separation Logic surveys the mathematical techniques used to develop the previous separation logics and many other logics...

  3. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  4. Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil

    Science.gov (United States)

    Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi

    2002-01-01

    Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.

  5. Audio Source Separation in Reverberant Environments Using β-Divergence-Based Nonnegative Factorization

    DEFF Research Database (Denmark)

    Fakhry, Mahmoud; Svaizer, Piergiorgio; Omologo, Maurizio

    2017-01-01

    -maximization algorithm and used to separate the signals by means of multichannel Wiener filtering. We propose to estimate these parameters by applying nonnegative factorization based on prior information on source variances. In the nonnegative factorization, spectral basis matrices can be defined as the prior...... information. The matrices can be either extracted or indirectly made available through a redundant library that is trained in advance. In a separate step, applying nonnegative tensor factorization, two algorithms are proposed in order to either extract or detect the basis matrices that best represent......In Gaussian model-based multichannel audio source separation, the likelihood of observed mixtures of source signals is parametrized by source spectral variances and by associated spatial covariance matrices. These parameters are estimated by maximizing the likelihood through an expectation...

  6. A Pressure Controlled Pinched Flow Fractionation Device for Continuous Particle Separation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Trosborg, Jacqueline; Tanzi, Simone

    2012-01-01

    In this work the problem of separating small particles of di↵erent sizes is solved by developing a simple microfluidic device using pinched flow fractionation (PFF), a technique originally presented by Yamada et al. in 2004 [1]. The present work takes the concept of PFF to the next level by makin...... Polymers GmbH) using a micro machined silicon master. The functionality of the device was confirmed using polymer beads, and by adjusting the pressure accordingly a complete separation of 2 μm and 4.5 μm beads was demonstrated....

  7. Blind Separation of Two Users Based on User Delays and Optimal Pulse-Shape Design

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2010-01-01

    Full Text Available A wireless network is considered, in which two spatially distributed users transmit narrow-band signals simultaneously over the same channel using the same power. User separation is achieved by oversampling the received signal and formulating a virtual multiple-input multiple-output (MIMO system based on the resulting polyphase components. Because of oversampling, high correlations can occur between the columns of the virtual MIMO system matrix which can be detrimental to user separation. A novel pulse-shape waveform design is proposed that results in low correlation between the columns of the system matrix, while it exploits all available bandwidth as dictated by a spectral mask. It is also shown that the use of successive interference cancelation in combination with blind source separation further improves the separation performance.

  8. EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression

    KAUST Repository

    Tian, Tian Siva

    2013-07-11

    In this work, we propose a spatial-temporal two-way regularized regression method for reconstructing neural source signals from EEG/MEG time course measurements. The proposed method estimates the dipole locations and amplitudes simultaneously through minimizing a single penalized least squares criterion. The novelty of our methodology is the simultaneous consideration of three desirable properties of the reconstructed source signals, that is, spatial focality, spatial smoothness, and temporal smoothness. The desirable properties are achieved by using three separate penalty functions in the penalized regression framework. Specifically, we impose a roughness penalty in the temporal domain for temporal smoothness, and a sparsity-inducing penalty and a graph Laplacian penalty in the spatial domain for spatial focality and smoothness. We develop a computational efficient multilevel block coordinate descent algorithm to implement the method. Using a simulation study with several settings of different spatial complexity and two real MEG examples, we show that the proposed method outperforms existing methods that use only a subset of the three penalty functions. © 2013 Springer Science+Business Media New York.

  9. Separation of irradiance and reflectance from observed color images by logarithmical nonlinear diffusion process

    Science.gov (United States)

    Saito, Takahiro; Takahashi, Hiromi; Komatsu, Takashi

    2006-02-01

    The Retinex theory was first proposed by Land, and deals with separation of irradiance from reflectance in an observed image. The separation problem is an ill-posed problem. Land and others proposed various Retinex separation algorithms. Recently, Kimmel and others proposed a variational framework that unifies the previous Retinex algorithms such as the Poisson-equation-type Retinex algorithms developed by Horn and others, and presented a Retinex separation algorithm with the time-evolution of a linear diffusion process. However, the Kimmel's separation algorithm cannot achieve physically rational separation, if true irradiance varies among color channels. To cope with this problem, we introduce a nonlinear diffusion process into the time-evolution. Moreover, as to its extension to color images, we present two approaches to treat color channels: the independent approach to treat each color channel separately and the collective approach to treat all color channels collectively. The latter approach outperforms the former. Furthermore, we apply our separation algorithm to a high quality chroma key in which before combining a foreground frame and a background frame into an output image a color of each pixel in the foreground frame are spatially adaptively corrected through transformation of the separated irradiance. Experiments demonstrate superiority of our separation algorithm over the Kimmel's separation algorithm.

  10. Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Yangwei Liu

    2014-11-01

    Full Text Available Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exit loss coefficient, passage blockage and flow turning angle have been given and compared systematically over a range of operation incidence angles. Distributions of significant loss removal, blade loading, exit deviation and total pressure loss at 3 degree and 7 degree incidence have also been studied. Under the same suction mass flows of 0.7% of the inlet mass flows, the pitchwise suction slot on the endwall shows a better optimal performance over the whole operation incidence among single suction slots. By using of the new proposed compound slot configuration with one spanwise slot on the blade suction side and one pitchwise slot on the endwall, the maximum reduction of total pressure loss at 7 degree incidence can be 39.4%.

  11. Role of density modulation in the spatially resolved dynamics of strongly confined liquids.

    Science.gov (United States)

    Saw, Shibu; Dasgupta, Chandan

    2016-08-07

    Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can be quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.

  12. Pair and triplet approximation of a spatial lattice population model with multiscale dispersal using Markov chains for estimating spatial autocorrelation.

    Science.gov (United States)

    Hiebeler, David E; Millett, Nicholas E

    2011-06-21

    We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Statistics of spatially integrated speckle intensity difference

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Yura, Harold

    2009-01-01

    We consider the statistics of the spatially integrated speckle intensity difference obtained from two separated finite collecting apertures. For fully developed speckle, closed-form analytic solutions for both the probability density function and the cumulative distribution function are derived...... here for both arbitrary values of the mean number of speckles contained within an aperture and the degree of coherence of the optical field. Additionally, closed-form expressions are obtained for the corresponding nth statistical moments....

  14. Spatial and temporal variations in net carbon flux during HAPEX-Sahel.

    NARCIS (Netherlands)

    Moncrieff, J.B.; Monteny, B.; Verhoef, A.; Friborg, Th.; Elbers, J.; Kabat, P.; DeBruin, H.; Soegaard, H.; Jarvis, P.G.; Taupin, J.D.

    1997-01-01

    Micrometeorological measurements of the surface flux of carbon dioxide were made at a number of spatially separate sites within the HAPEX-Sahel experimental area. Differences in the timing of plant development caused by differences in rainfall (both quantity and frequency) over the experimental area

  15. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  16. The Spatial Influence of Apartheid on the South African City

    Science.gov (United States)

    Schoeman, Thea

    2018-01-01

    Maps and satellite images can be used effectively to identify and compare settlement patterns. Spatial cognition and interpretation are important to further map literacy (Larangeira and Van der Merwe 2016). Although Apartheid ended in 1994 in South Africa, the legacy of this "separate development" system is still very noticeable in South…

  17. Vegetation-induced spatial variability of soil redox properties in wetlands

    Science.gov (United States)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in

  18. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    Science.gov (United States)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  19. Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps

    Energy Technology Data Exchange (ETDEWEB)

    Suchowski, H; Natan, A; Bruner, B D; Silberberg, Y [Physics of Complex Systems, Weizmann Institute of Science, Rehovot (Israel)], E-mail: haim.suchowski@weizmann.ac.il

    2008-04-14

    Coherent control of resonant and non-resonant two-photon absorption processes was examined using a spatio-temporal pulse-shaping technique. By utilizing a combination of temporal focusing and femtosecond pulse-shaping techniques, we spatially control multiphoton absorption processes in a completely deterministic manner. Distinctive symmetry properties emerge through two-dimensional mapping of spatio-temporal data. These symmetries break down in the transition to strong fields, revealing details of strong-field effects such as power broadenings and dynamic Stark shifts. We also present demonstrations of chirp-dependent population transfer in atomic rubidium, as well as the spatial separation of resonant and non-resonant excitation pathways in atomic caesium.

  20. Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps

    International Nuclear Information System (INIS)

    Suchowski, H; Natan, A; Bruner, B D; Silberberg, Y

    2008-01-01

    Coherent control of resonant and non-resonant two-photon absorption processes was examined using a spatio-temporal pulse-shaping technique. By utilizing a combination of temporal focusing and femtosecond pulse-shaping techniques, we spatially control multiphoton absorption processes in a completely deterministic manner. Distinctive symmetry properties emerge through two-dimensional mapping of spatio-temporal data. These symmetries break down in the transition to strong fields, revealing details of strong-field effects such as power broadenings and dynamic Stark shifts. We also present demonstrations of chirp-dependent population transfer in atomic rubidium, as well as the spatial separation of resonant and non-resonant excitation pathways in atomic caesium