WorldWideScience

Sample records for controlled release properties

  1. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    International Nuclear Information System (INIS)

    Meerod, Siraprapa; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2015-01-01

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown

  2. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  3. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    Science.gov (United States)

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.

  4. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    International Nuclear Information System (INIS)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-01-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties. (papers)

  5. Montmorillonite/Poly (L-Lactide microcomposite spheres as reservoirs of antidepressant drugs and their controlled release property

    Directory of Open Access Journals (Sweden)

    Shalini Rajkumar

    2015-10-01

    Full Text Available This work evaluates intercalation of Nortriptyline (NT and Venlafaxine (VFX in an interlayer gallery of Na+-MMT (Montmorillonite, which was further compounded with Poly (L-Lactide (PLLA to form microcomposite spheres (MPs for oral controlled drug delivery. The XRD patterns, thermal and spectroscopic analyses indicated intercalation of drugs into the MMT interlayer that was stabilized by electrostatic interaction. No significant changes in structural and functional properties of drugs were found in the MMT layers. In vitro drug release studies showed controlled release pattern.

  6. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  7. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  8. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  9. Controlled Pesticide Release from Porous Composite Hydrogels Based on Lignin and Polyacrylic Acid

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2016-01-01

    Full Text Available For the controlled release of pesticides, a novel composite porous hydrogel (LBPAA was prepared based on lignin and polyacrylic acid for use as the support frame of a pore structure for water delivery. The LBPAA was analyzed to determine its water-swelling and slow release properties. The controlled release properties of LBPAA were evaluated through experiments in relation to the cumulative release of pesticides, with particular emphasis on environmental effects and release models. The porous LBPAA hydrogel showed improved properties compared to polyacrylic acid, and could therefore be considered an efficient material for application in controlled release systems in agriculture.

  10. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xin Hua

    Full Text Available Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF. An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  11. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Science.gov (United States)

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  12. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  13. Model-based computer-aided design for controlled release of pesticides

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Gani, Rafiqul; Bell, G.

    2005-01-01

    In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available, ...... extended models have been developed and implemented into a computer-aided system. The total model consisting of the property models embedded into the release models are then employed to study the release of different combinations of AIs and polymer-based microcapsules.......In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available...

  14. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  15. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2016-05-01

    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  16. Predictive property models for use in design of controlled release of pesticides

    DEFF Research Database (Denmark)

    Suné, Nuria Muro; Gani, Rafiqul; Bell, G.

    2005-01-01

    A model capable of predicting the release of an Active Ingredient (AI) from a specific device would be very useful in the field of pesticide controlled release technology for design purposes. For the release of an AI from a microcapsule a mathematical model is briefly presented here, as an introd...

  17. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie [State Key Laboratory of Coordination Chemistry, MOE Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)], E-mail: wangzl@nju.edu.cn, E-mail: jjzhu@nju.edu.cn

    2009-04-22

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe{sub 3}O{sub 4} nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  18. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    International Nuclear Information System (INIS)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie

    2009-01-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe 3 O 4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  19. Controlled release and angiotensin-converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine-layered double hydroxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Hussein Al Ali SH

    2012-04-01

    Full Text Available Samer Hasan Hussein Al Ali1, Mothanna Al-Qubaisi2, Mohd Zobir Hussein1,3, Maznah Ismail2,4, Zulkarnain Zainal1, Muhammad Nazrul Hakim51Department of Chemistry, Faculty of Science, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 4Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, 5Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaBackground: The intercalation of perindopril erbumine into Zn/Al-NO3-layered double hydroxide resulted in the formation of a host-guest type of material. By virtue of the ion-exchange properties of layered double hydroxide, perindopril erbumine was released in a sustained manner. Therefore, this intercalated material can be used as a controlled-release formulation.Results: Perindopril was intercalated into the interlayers and formed a well ordered, layered organic-inorganic nanocomposite. The basal spacing of the products was expanded to 21.7 Å and 19.9 Å by the ion-exchange and coprecipitation methods, respectively, in a bilayer and a monolayer arrangement, respectively. The release of perindopril from the nanocomposite synthesized by the coprecipitation method was slower than that of its counterpart synthesized by the ion-exchange method. The rate of release was governed by pseudo-second order kinetics. An in vitro antihypertensive assay showed that the intercalation process results in effectiveness similar to that of the antihypertensive properties of perindopril.Conclusion: Intercalated perindopril showed better thermal stability than its free counterpart. The resulting material showed sustained-release properties and can therefore be used as a controlled-release formulation.Keywords: perindopril erbumine, layered double hydroxides, ion-exchange, coprecipitation, sustained release, angiotensin-converting enzyme

  20. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles.

    Science.gov (United States)

    Thauvin, Cédric; Schwarz, Bettina; Delie, Florence; Allémann, Eric

    2017-11-15

    Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans ® ) or polysorbates (Tweens ® ), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  3. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-04-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  4. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  5. Controlled release of diuron from an alginate-bentonite formulation: water release kinetics and soil mobility study.

    Science.gov (United States)

    Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E; Flores-Céspedes, F

    1999-02-01

    The herbicide diuron was incorporated in alginate-based granules to obtain controlled release (CR) properties. The standard formulation (alginate-herbicide-water) was modified by the addition of different sorbents. The effect on diuron release rate caused by incorporation of natural and acid-treated bentonites in alginate formulation was studied by immersion of the granules in water under static conditions. The release of diuron was diffusion-controlled. The time taken for 50% release of active ingredient to be released into water, T(50), was calculated for the comparison of formulations. The addition of bentonite to the alginate-based formulation produced the higher T(50) values, indicating slower release of the diuron. The mobility of technical and formulated diuron was compared by using soil columns. The use of alginate-based CR formulations containing bentonite produced a less vertical distribution of the active ingredient as compared to the technical product and commercial formulation. Sorption capacities of the various soil constituents for diuron were also determined using batch experiments.

  6. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    Science.gov (United States)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  7. Production and Investigation of Controlled Drug Release Properties of Tamoxifen Loaded Alginate-Gum Arabic Microbeads

    Directory of Open Access Journals (Sweden)

    Rukiye Yavaşer

    2016-08-01

    Full Text Available The entrapment of tamoxifen onto alginate-gum arabic beads and the production of controlled drug release was investigated in this study. The polymeric system that would provide the controlled release of tamoxifen was formed using alginate and gum arabic. In the first phase of the study, the optimization of the alginate-gum arabic beads production was conducted; then the study continued with drug entrapment experiments. Tamoxifen entrapment yield was found to be approximately 90% of initial tamoxifen concentration. In vitro drug release experiments were performed in simulated gastric juice and intestinal fluid where the tamoxifen release was 20% and 53% of the initial drug present, respectively. As a result of this study, it is expected that a valuable contribution to the field of controlled drug release system production is realized.

  8. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    Science.gov (United States)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  9. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  10. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-01-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  11. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  12. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    Science.gov (United States)

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Release process for non-real property containing residual radioactive material

    International Nuclear Information System (INIS)

    Ranek, N.L.; Chen, S.Y.; Kamboj, S.; Hensley, J.; Burns, D.; Fleming, R.; Warren, S.; Wallo, A.

    1997-01-01

    It is DOE's objective to operate its facilities and to conduct its activities so that radiation exposures to members of the public are maintained within acceptable limits and exposures to residual radioactive materials are controlled. To accomplish this, DOE has adopted Order DOE 5400.51 'Radiation Protection of the Public and the Environment', and will be promulgating IO CR Part 834 to codify and clarify the requirements of DOE 5400.5. Under both DOE 5400.5 and 10 CR Part 834, radioactively contaminated DOE property is prohibited from release unless specific actions have been completed prior to the release. This paper outlines a ten-step process that, if followed, will assist DOE Operations and contractor personnel in ensuring that the required actions established by Order DOE 5400.5 and 10 CR Part 834 have been appropriately completed prior to the release for reuse or recycle of non-real property (e.g., office furniture, computers, hand tools, machinery, vehicles and scrap metal). Following the process will assist in ensuring that radiological doses to the public from the released materials will meet applicable regulatory standards and be as low as reasonably achievable (ALARA)

  14. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    Science.gov (United States)

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  15. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The release behaviour of a drug from flat circular capsules obtained by radiation-induced polymerization at low temperatures and with different hydrophilic properties has been studied. The effect of various factors on release property was investigated. The release process could be divided into three parts, an initial quick release stage, stationary state release stage and a retarded release stage. Release behaviour in the stationary state was examined using Noyes-Whitney and Higuchi equations. It was shown that the hydrophilic property of polymer matrix expressed by water content was the most important effect on diffusion and release rate. Rigidity of the polymer may also affect diffusivity. The first quick release step could be attributed to rapid dissolution of drug in the matrix surface due to polymer swelling. (author)

  16. Antimicrobial beeswax coated polylactide films with silver control release capacity.

    Science.gov (United States)

    Martínez-Abad, Antonio; Lagarón, Jose Maria; Ocio, María Jose

    2014-03-17

    Although the application of silver based antimicrobial systems is a widespread technology, its implementation in areas such as food packaging is still challenging. The present paper describes the fabrication of poly(lactic acid) (PLA) coated with beeswax with controlled release properties for sustained antimicrobial performance. Release of silver ions from the polymers was monitored voltammetrically under various conditions (surface contact, immersion in various liquid media and at different pH values) throughout at least 7days. A higher release was noted with decreasing pH while surface release was much slower than the release when immersed in liquid medium. While uncoated films demonstrated a high burst release which in some instances implied surpassing some current migration restrictions (food), the addition of a beeswax layer allowed a sustained release of the antimicrobial compound. Increasing the thickness of the beeswax layer resulted in an increase in the water barrier properties of the films while reducing the relatively constant values of sustained release. Antimicrobial performance was correlated with the release of silver ions, indicating threshold concentrations for biocide action of films displayed a strong bactericidal effect against Salmonella enterica. The application of this functional barrier thus offers the possibility of tuning the release profiles of the films to suit a specific application and puts forth the possible suitability of these materials for food packaging or other migration sensitive applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Controlled-release tablet formulation of isoniazid.

    Science.gov (United States)

    Jain, N K; Kulkarni, K; Talwar, N

    1992-04-01

    Guar (GG) and Karaya gums (KG) alone and in combination with hydroxy-propylmethylcellulose (HPMC) were evaluated as release retarding materials to formulate a controlled-release tablet dosage form of isoniazid (1). In vitro release of 1 from tablets followed non-Fickian release profile with rapid initial release. Urinary excretion studies in normal subjects showed steady-state levels of 1 for 13 h. In vitro and in vivo data correlated (r = 0.9794). The studies suggested the potentiality of GG and KG as release retarding materials in formulating controlled-release tablet dosage forms of 1.

  18. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  19. Release Properties and Cellular Uptake in Caco-2 Cells of Size-Controlled Chitosan Nanoparticles.

    Science.gov (United States)

    Je, Hyun Jeong; Kim, Eun Suh; Lee, Ji-Soo; Lee, Hyeon Gyu

    2017-12-20

    The influences of particle size on the physicochemical, release, and cellular uptake properties of chitosan nanoparticles (CSNPs) were investigated. Ionotropic CSNPs of different sizes (200-1000 nm) loaded with two model core materials (resveratrol or coumarin-6) were prepared using tripolyphosphate and carrageenan as cross-linkers. With an increase of particle size, zeta potential (34.6 ± 0.5 to 51.1 ± 0.9) and entrapment efficiency (14.9 ± 1.4 to 40.9 ± 1.9) of the CSNPs were significantly (p cellular uptake of CSNPs were significantly increased from 3.70 ± 0.03 to 5.24 ± 0.20 with an increase of particle size from 200 to 600 nm, whereas those significantly decreased from 5.24 ± 0.20 to 4.55 ± 0.2 for particles larger than 600 nm in transwell assay. Moreover, much the same uptake patterns were also observed in confocal microscopy and flow cytometry. Investigation of cellular uptake of CSNPs revealed positive correlations between ZP and EE and indicated the effects of complex factors of nanoparticles other than size. These results provide a better understanding of CSNPs absorption and raises the possibility of controlling alternative nanoparticle properties to enhance bioavailability.

  20. Workload Control with Continuous Release

    NARCIS (Netherlands)

    Phan, B. S. Nguyen; Land, M. J.; Gaalman, G. J. C.

    2009-01-01

    Workload Control (WLC) is a production planning and control concept which is suitable for the needs of make-to-order job shops. Release decisions based on the workload norms form the core of the concept. This paper develops continuous time WLC release variants and investigates their due date

  1. Controlled antiseptic release by alginate polymer films and beads.

    Science.gov (United States)

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  3. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang; Li, Shunbo; Wang, Limu; Yi, Xin; Hui, Yu Sanna; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  4. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  5. 14 CFR 155.5 - Property and releases covered by this part.

    Science.gov (United States)

    2010-01-01

    ... national emergency, to facilitate financing the operation and maintenance or further development of a... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Property and releases covered by this part... TRANSPORTATION (CONTINUED) AIRPORTS RELEASE OF AIRPORT PROPERTY FROM SURPLUS PROPERTY DISPOSAL RESTRICTIONS § 155...

  6. Meticulous Overview on the Controlled Release Fertilizers

    Directory of Open Access Journals (Sweden)

    Siafu Ibahati Sempeho

    2014-01-01

    Full Text Available Owing to the high demand for fertilizer formulations that will exhaust the possibilities of nutrient use efficiency (NUE, regulate fertilizer consumption, and lessen agrophysicochemical properties and environmental adverse effects instigated by conventional nutrient supply to crops, this review recapitulates controlled release fertilizers (CRFs as a cutting-edge and safe way to supply crops’ nutrients over the conventional ways. Essentially, CRFs entail fertilizer particles intercalated within excipients aiming at reducing the frequency of fertilizer application thereby abating potential adverse effects linked with conventional fertilizer use. Application of nanotechnology and materials engineering in agriculture particularly in the design of CRFs, the distinctions and classification of CRFs, and the economical, agronomical, and environmental aspects of CRFs has been revised putting into account the development and synthesis of CRFs, laboratory CRFs syntheses and testing, and both linear and sigmoid release features of CRF formulations. Methodical account on the mechanism of nutrient release centring on the empirical and mechanistic approaches of predicting nutrient release is given in view of selected mathematical models. Compositions and laboratory preparations of CRFs basing on in situ and graft polymerization are provided alongside the physical methods used in CRFs encapsulation, with an emphasis on the natural polymers, modified clays, and superabsorbent nanocomposite excipients.

  7. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release.

    Science.gov (United States)

    Hamed, Rania; Al Baraghthi, Tamadur; Sunoqrot, Suhair

    2016-11-21

    Drug release from hydroxypropyl methylcellulose (HPMC) hydrophilic matrix tablets is controlled by drug diffusion through the gel layer of the matrix-forming polymer upon hydration, matrix erosion or combination of diffusion and erosion mechanisms. In this study, the relationship between viscoelastic properties of the gel layer of swollen intact matrix tablets and drug release was investigated. Two sets of quetiapine fumarate (QF) matrix tablets were prepared using the high viscosity grade HPMC K4M at low (70 mg/tablet) and high (170 mg/tablet) polymer concentrations. Viscoelastic studies using a controlled stress rheometer were performed on swollen matrices following hydration in the dissolution medium for predetermined time intervals. The gel layer of swollen tablets exhibited predominantly elastic behavior. Results from the in vitro release study showed that drug release was strongly influenced by the viscoelastic properties of the gel layer of K4M tablets, which was further corroborated by results from water uptake studies conducted on intact tablets. The results provide evidence that the viscoelastic properties of the gel layer can be exploited to guide the selection of an appropriate matrix-forming polymer, to better understand the rate of drug release from matrix tablets in vitro and to develop hydrophilic controlled-release formulations.

  8. Controlling Object Heat Release Rate using Geometrical Features

    OpenAIRE

    Kraft, Stefan Marc

    2017-01-01

    An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for obj...

  9. Controlled release systems containing solid dispersions: strategies and mechanisms.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin

    2011-10-01

    In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

  10. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.

    Science.gov (United States)

    Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A

    2018-03-15

    Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for

  11. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  13. Preparation and properties of a drug sustained-release hydrogel film

    International Nuclear Information System (INIS)

    Yue Ling; Yang Zhanshan; Yang Shuqin; Li Qinghua

    2009-01-01

    A hydrogel film of drug sustained-release was prepared to accelerate wound healing. The hydrogel films containing drug or not were prepared by the freezing and thawing process. Their properties such as the physicochemical property and the drug release behavior in vitro were studied. Effect of the freezing and thawing process on antimicrobial efficacy of the gentamicin was evaluated by diffusion method. The results indicate that swelling ratio of the hydrogel films freezed for 4h is 841.21% and their gel fraction, tensile strength and elongation at break is 96.10%, 0.222 MPa and 673.50% respectively. The antimicrobial efficacy of the gentamicin has no change. The hydrogel film contained gentamicin releases the antibiotic to peak during 6 h with the cumulative drug release rate of 59.57%. The drug releases continually up to the 5th day. The drug delivery conforms to Higuchi kinetic equation, and mechanism of the drug release is matrix diffusion. The results show that the hydrogel film prepared by the freezing and thawing process display satisfactory physicochemical properties and can be used as a drug delivery system. (authors)

  14. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide Hydrogels for Transdermal Delivery

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2017-07-01

    Full Text Available Novel poly (ethylene oxide (PEO hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID, diclofenac sodium (DIC and ibuprofen (IBU via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM, swelling studies, differential scanning calorimetry (DSC, fourier transform infrared spectroscopy (FT-IR, tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.

  15. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  16. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  17. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Science.gov (United States)

    Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.

    2016-05-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic

  18. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, G.; La Carta, S.; Rapisarda, M.; Carbone, D.; Recca, G.; Rizzarelli, P., E-mail: paola.rizzarelli@cnr.it [Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche Via P. Gaifami 18, 95129 Catania (Italy); Mazzotti, G.; Giorgini, L. [Dipartimento di Chimica Industriale «Toso Montanari», Università di Bologna Via Risorgimento 4, 40136 Bologna (Italy); Perna, S. [ST Microelectronics Srl, Stradale Primosole, 50–95121 Catania (Italy); Di Gesù, R. [Merck Serono S.p.A., Via L. Einaudi, 11–00012 Guidonia Montecelio, Rome (Italy)

    2016-05-18

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ({sup 1}H-NMR, {sup 13}C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of

  19. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    International Nuclear Information System (INIS)

    Valenti, G.; La Carta, S.; Rapisarda, M.; Carbone, D.; Recca, G.; Rizzarelli, P.; Mazzotti, G.; Giorgini, L.; Perna, S.; Di Gesù, R.

    2016-01-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ("1H-NMR, "1"3C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different

  20. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy

    Directory of Open Access Journals (Sweden)

    Fu X

    2017-05-01

    Full Text Available Xudong Fu,1 Xinjun Wang,1 Shaolong Zhou,1 Yanyan Zhang2 1The Fifth Affiliated Hospital of Zhengzhou University, 2School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Despite advances in controlled drug delivery, drug delivery systems (DDSs with controlled activated drug release and high spatial and temporal resolution are still required. Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. In this study, a near-infrared light-controlled “off–on” DDS with magnetic resonance imaging and magnetic targeting properties was developed using a hybrid nanoplatform (carbon nanotubes [CNTs]-iron oxide nanoparticle. Doxorubicin (DOX and distearoyl-sn-glycero-3-phosphoethanolamine-PEG were adsorbed onto CNTs-iron oxide nanoparticle, and then to avoid the unexpected drug release during circulation, 1-myristyl alcohol was used to encapsulate the CNTs–drug complex. Herein, multifunctional DOX-loaded nanoparticles (NPs with “off–on” state were developed. DOX-NPs showed an obvious “off–on” effect (temperature increase, drug release controlled by near-infrared light in vitro and in vivo. In the in vivo and in vitro studies, DOX-NPs exhibited excellent magnetic resonance imaging ability, magnetic targeting property, high biosafety, and high antitumor combined therapeutic efficacy (hyperthermia combined with chemotherapy. These results highlight the great potential of DOX-NPs in the treatment of cancer. Keywords: controlled drug release, magnetic targeting, MRI, combination therapy

  1. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  2. Sustained release nimesulide microparticles: evaluation of release modifying property of ethy

    International Nuclear Information System (INIS)

    Khan, S.A.; Ahmed, M.; Nisar-ur-Rehman; Madni, A.U.; Aamir, M.N.; Murtaza, G.

    2011-01-01

    Microencapsulated controlled-release preparations of nimesulide were formulated. Microparticles were prepared by modified phase separation (non-solvent addition) technique using different ratios of ethylcellulose. The microparticles (M/sub 1/, M/sub 2/, and M/sub 3/) were yellow, free flowing and spherical in shape with the particle size varying from 93.62 +- 14.15 to 104.19 +- 18.15 mu m. The t/sub 60%/of nimesulide release from microparticles was found to be 3 +- 0.6, 5 +- 0.6 and 8 +- 0.8 h for formulations M/sub 1/, M/sub 2/, and M/sub 3/, respectively. FT-IR, XRD, and thermal analysis were done which showed that there is no interaction between the polymer and drug. The mechanism of drug release from nimesulide microparticles was studied by using Higuchi and Korsmeyer-Peppas models. The value of coefficient of determination (R/sup 2/) for M/sub 1/, M/sub 2/, and M/sub 3/ indicates anomalous and case-II transport release mechanism. The dissolution data of designed system verified its ability to maintain plasma concentration without the need of frequent dosing. The Nimesulide microparticles prolonged drug release for 12 hours or longer. Based on the results of release studies, M/sub 3/ was opted as a suitable microparticulate formulation allowing the controlled release of nimesulide over a prolonged period of time. Moreover, its encapsulation efficiency was also comparable to the other two formulations (M/sub 1/ and M/sub 2/). In conclusion, the influence of polymer concentration should be considered during formulation development. (author)

  3. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.

    Science.gov (United States)

    Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D

    2010-06-22

    Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.

  4. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. 26 CFR 301.6325-1 - Release of lien or discharge of property.

    Science.gov (United States)

    2010-04-01

    ... sale before satisfaction of any Federal tax liens or claims of the United States. (4) Right of... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Release of lien or discharge of property. 301....6325-1 Release of lien or discharge of property. (a) Release of lien—(1) Liability satisfied or...

  6. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  7. Chitosan/alginate based multilayers to control drug release from ophthalmic lens.

    Science.gov (United States)

    Silva, Diana; Pinto, Luís F V; Bozukova, Dimitriya; Santos, Luís F; Serro, Ana Paula; Saramago, Benilde

    2016-11-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparative study of some mechanical and release properties of ...

    African Journals Online (AJOL)

    The mechanical and release properties of paracetamol tablets formulated with cashew gum (CAG), povidone (PVP) and gelatin (GEL) as binders were studied and compared. The parameters studied were tensile strength (TS), brittle fracture index (BFI), friability (F), disintegration time (DT) and percentage drug released ...

  9. Pebble fabrication and tritium release properties of an advanced tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Edao, Yuki [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) pebble as an advanced tritium breeders was fabricated using emulsion method. • Grain size of Li{sub 2+x}TiO{sub 3+y} pebbles was controlled to be less than 5 μm. • Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to that of Li{sub 2}TiO{sub 3} pebbles. - Abstract: Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) has been developed as an advanced tritium breeder. With respect to the tritium release characteristics of the blanket, the optimum grain size after sintering was less than 5 μm. Therefore, an emulsion method was developed to fabricate pebbles with this target grain size. The predominant factor affecting grain growth was assumed to be the presence of binder in the gel particles; this remaining binder was hypothesized to react with the excess Li, thereby generating Li{sub 2}CO{sub 3}, which promotes grain growth. To inhibit the generation of Li{sub 2}CO{sub 3}, calcined Li{sub 2+x}TiO{sub 3+y} pebbles were sintered under vacuum and subsequently under a 1% H{sub 2}–He atmosphere. The average grain size of the sintered Li{sub 2+x}TiO{sub 3+y} pebbles was less than 5 μm. Furthermore, the tritium release properties of Li{sub 2+x}TiO{sub 3+y} pebbles were evaluated, and deuterium–tritium (DT) neutron irradiation experiments were performed at the Fusion Neutronics Source facility in the Japan Atomic Energy Agency. To remove the tritium produced by neutron irradiation, 1% H{sub 2}–He purge gas was passed through the Li{sub 2+x}TiO{sub 3+y} pebbles. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties, similar to those of Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of tritiated hydrogen gas for easier tritium handling was greater than the released amount of tritiated water.

  10. Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release

    Directory of Open Access Journals (Sweden)

    Sharad S. Darandale

    2012-10-01

    Full Text Available The aim of the present study was to develop and characterize a gastroretentive dosage form suitable for controlled drug release. It consists of a drug loaded polymeric film made up of a bilayer of immediate (IR and controlled release (CR layers folded into a hard gelatin capsule. Gastroretention results from unfolding and swelling of the film and its bioadhesion to the gastric mucosa. Furosemide, a drug with a narrow absorption window, was selected as the model drug. Inclusion of hydroxypropyl β-cyclodextrin in both layers and Carbopol® 971P NF in the CR layer of the bilayer film resulted in optimum drug release, bioadhesion and mechanical properties. The film with zig-zag folding in the capsule was shown to unfold and swell under acidic conditions and provide IR of drug over 1 h and CR for up to 12 h in acidic medium. X-ray diffraction, differential scanning calorimetry and scanning electron microscopy revealed uniform dispersion of furosemide in the polymeric matrices. The results indicate the dosage form is gastroretentive and can provide controlled release of drugs with narrow therapeutic windows.

  11. Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release.

    Science.gov (United States)

    García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio

    2018-07-01

    In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release.

    Science.gov (United States)

    Sun, Bin; Lynn, David M

    2010-11-20

    We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that

  13. Preparation and Characterization of Controlled-Release Avermectin/Castor Oil-Based Polyurethane Nanoemulsions.

    Science.gov (United States)

    Zhang, Hong; Qin, He; Li, Lingxiao; Zhou, Xiaoteng; Wang, Wei; Kan, Chengyou

    2017-06-12

    Avermectin (AVM) is a low-toxic and high-active biopesticide, but it can be easily degraded by UV light. In this paper, biodegradable castor oil-based polyurethanes (CO-PU) are synthesized and used as carriers to fabricate a new kind of AVM/CO-PU nanoemulsion through an emulsion solvent evaporation method, and the chemical structure, colloidal property, AVM loading capacity, controlled-release behavior, foliar adhesion, and photostability of the AVM/CO-PU drug delivery systems are investigated. Results show that AVM is physically encapsulated in the CO-PU carrier nanospheres, the diameter of the AVM/CO-PU nanoparticles is 85%. The release profiles indicate that the release rate is relatively high at the early stage and then slows, which can be adjusted by loaded AVM content, temperature, and pH of the release medium. The foliar pesticide retention of the AVM/CO-PU nanoemulsions is improved, and the photolysis rate of AVM in the AVM/CO-PU nanoparticles is significantly slower than that of the free AVM. A release mechanism of the AVM/CO-PU nanoemulsions is proposed, which is controlled by both diffusion and matrix erosion.

  14. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. SOL-Gel microspheres and nanospheres for controlled release applications

    International Nuclear Information System (INIS)

    Barbe, C.; Beyer, R.; Kong, L.; Blackford, M.; Trautman, R.; Bartlett, J.

    2002-01-01

    We present a novel approach to the synthesis of inorganic sol-gel microspheres for encapsulating organic and bioactive molecules, and controlling their subsequent release kinetics. The bioactive species are incorporated, at ambient temperature, into the inorganic particles using an emulsion gelation process. Independent control of the release rate (by adapting the nanostructure of the internal pore network to the physico-chemical properties of the bioactive molecules) and particle size (by tailoring the emulsion chemistry) is demonstrated. Sol-gel chemistry has been shown to be a flexible technique for producing inorganic silica matrices with tailored microstructures, which can be used for the encapsulation and controlled release of organic and bioactive molecules. The present paper extends this concept by combining sol-gel chemistry with an emulsion approach for producing inorganic particles with controlled dimensions, and demonstrates how the particle size and microstructure can be independently controlled. Sol-Gel Chemistry and Encapsulation of Model Compounds. A stock solution of 4-(2-hydroxy-l-naphthylazo) benzene sulfonic acid (Orange II) was produced by dissolving Orange II in water (0.1 wt%), and adjusting the pH to the required value. Sol-gel solutions were subsequently prepared by mixing the aqueous solution with tetramethylorthosilicate (TMOS) and methanol (MeOH), to achieve H 2 O:TMOS (W] and MeOH:TMOS mole ratios (D) of four. The resulting solution was stirred and left to age at ambient temperature for one day. A transparent emulsion was prepared by mixing selected surfactants and organic solvents. The surfactants used included sorbitan monooleate, sorbitan monolaurate and bis-2-ethylhexylsulfo-succinate (AOT), while the organic phase was typically chosen from the group consisting of kerosene, hexane, heptane, octane, decane, dodecane and cyclohexane. The sol-gel solution was added to the emulsion, and the resulting mixture was stirred at 500 rpm for

  16. How controlled release technology can aid gene delivery.

    Science.gov (United States)

    Jo, Jun-Ichiro; Tabata, Yasuhiko

    2015-01-01

    Many types of gene delivery systems have been developed to enhance the level of gene expression. Controlled release technology is a feasible gene delivery system which enables genes to extend the expression duration by maintaining and releasing them at the injection site in a controlled manner. This technology can reduce the adverse effects by the bolus dose administration and avoid the repeated administration. Biodegradable biomaterials are useful as materials for the controlled release-based gene delivery technology and various biodegradable biomaterials have been developed. Controlled release-based gene delivery plays a critical role in a conventional gene therapy and genetic engineering. In the gene therapy, the therapeutic gene is released from biodegradable biomaterial matrices around the tissue to be treated. On the other hand, the intracellular controlled release of gene from the sub-micro-sized matrices is required for genetic engineering. Genetic engineering is feasible for cell transplantation as well as research of stem cells biology and medicine. DNA hydrogel containing a sequence of therapeutic gene and the exosome including the individual specific nucleic acids may become candidates for controlled release carriers. Technologies to deliver genes to cell aggregates will play an important role in the promotion of regenerative research and therapy.

  17. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam); Tran, Van-Thanh [Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City (Viet Nam); Duan, Wei [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Phuong Ha-Lien, E-mail: phuong.tran1@deakin.edu.au [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Thao Truong-Dinh, E-mail: ttdthao@hcmiu.edu.vn [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-10-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  18. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    International Nuclear Information System (INIS)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi; Tran, Van-Thanh; Duan, Wei; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-01-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  19. Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.

    Science.gov (United States)

    Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da

    2017-10-02

    Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Release properties of UC sub x and molten U targets

    CERN Document Server

    Roussière, B; Sauvage, J; Bajeat, O; Barre, N; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Lau, C; Lefort, H; Liang, C F; Le Blanc, F; Müller, A C; Obert, J; Pauwels, N; Potier, J C; Pougheon, F; Proust, J; Sorlin, O; Verney, D; Wojtasiewicz, A

    2002-01-01

    The release properties of UC sub x and molten U thick targets associated with a Nier-Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe.

  1. 28 CFR 541.50 - Release from a control unit.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Release from a control unit. 541.50... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.50 Release from a control unit. (a) Only the Executive Panel may release an inmate from a control unit. The following factors are...

  2. A modified SILCS contraceptive diaphragm for long-term controlled release of the HIV microbicide dapivirine.

    Science.gov (United States)

    Major, Ian; Boyd, Peter; Kilbourne-Brook, Maggie; Saxon, Gene; Cohen, Jessica; Malcolm, R Karl

    2013-07-01

    There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine. Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices. A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm. The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Development and evaluation of controlled-release buccoadhesive verapamil hydrochloride tablets

    Directory of Open Access Journals (Sweden)

    Emami J.

    2008-05-01

    Full Text Available Background and purpose of the study: Verapamil hydrochloride is a calcium channel blocker which is used in the control of supraventricular arrhythmia, hypertension and myocardial infraction. There are considerable inter-individual variations in serum concencentration of verpamil due to variation in the extent of hepatic metabolism. In this study controlled-release buccoadhesive tablets of verapamil hydrochloride (VPH were prepared in order to achieve constant plasma concentrations, to improve the bioavailability by the avoidance of hepatic first-pass metabolism, and to prevent frequent administration. Materials and methods: Tablets containing fixed amount of VPH were prepared by direct compression method using polymers like carbomer (CP, hydroxypropylmethyl cellulose (HPMC and sodium carboxymethyl cellulose (NaCMC in various combination and ratios and evaluated for thickness, weight variation, hardness, drug content uniformity, swelling, mucoadhesive strength, drug release and possible interaction between ingredients. Results: All tablets were acceptable with regard to thickness, weight variation, hardness, and drug content. The maximum bioadhesive strength was observed in tablets formulated with a combination of CP-NaCMC followed by CP-HPMC and NaCMC-HPMC.  Decreasing the content of CP in CP-HPMC tablets or NaCMC in CP-NaCMC or NaCMC-HPMC systems resulted in decrease in detachment forces. Lower release rates were observed by lowering the content of CP in CP-HPMC containing formulations or NaCMC in tablets which contained CP-NaCMC or NaCMC-HPMC. The release behavior was non-Fickian controlled by a combination of diffusion and chain relaxation mechanisms and best fitted zero-order kinetics. Conclusion: The buccoadhesive VPH tablets containing 53% CP and 13.3% HPMC showed suitable release kinetics (n = 0.78, K0 zero order release = 4.11 mg/h, MDT = 5.66 h and adhesive properties and did not show any interaction between polymers and drug based on

  4. EPICS application source/release control

    International Nuclear Information System (INIS)

    Zieman, B.; Anderson, J.; Kraimer, M.

    1995-01-01

    This manual describes a set of Application Source/Release Control tools (appSR) that can be used to develop software for EPICS based control systems. The Application Source/Release Control System (appSR) has been unbundled from base EPICS and is now available as an EPICS extension. Due to this unbundling, two new directories must be added to a user's path (see section ''Environment'' on page 3 for more information) and a new command getapp must be issued after the getrel command to get a specific version of appSR (see section ''Creating The Initial Application System Area'' on page 7 for more information). It is now required that GNU make version 3.71 or later be used for makes instead of SUN make. Users should now type gmake instead of make

  5. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Chenxin [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Zhixin [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Liu Xinye; Li Yao; Shi Yang; Zhang Di [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2011-03-15

    Research highlights: {yields} A responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. {yields} A combination of surface modification of CMK-3 and in situ internal polymerization of PNIPAM was used. {yields} The system exhibited a pronounced transition at around 20-25 deg. C. - Abstract: A novel responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. The polymer-functionalized CMK-3 was obtained by a combination of simple surface modification of CMK-3 and in situ internal polymerization of PNIPAM. The formation of the PNIPAM inside the CMK-3 was confirmed by thermal gravimetric analysis, Fourier transform-infrared spectroscopy, scanning and transmission electron microscopy and N{sub 2} adsorption/desorption measurements. Controlled drug release tests through the porous network of the PNIPAM functionalized CMK-3 were carried out by measuring the uptake and release of ibuprofen in vitro. The release profiles exhibited a pronounced transition at around 20-25 deg. C. This thermo-sensitive release property of this delivery system was further confirmed by temperature-variable hydrogen nuclear magnetic resonance analysis. The internal PNIPAM layers acted as a storage gate as well as a release switch in response to the stimuli of environment.

  6. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  7. Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers

    Directory of Open Access Journals (Sweden)

    A. Bah

    2014-01-01

    Full Text Available Controlled-release fertilizers are expected to minimize nutrient loss from crop fields due to their potential to supply plant-available nutrients in synchrony with crop requirements. The evaluation of the efficiency of these fertilizers in tropical oil palm agroecological conditions is not yet fully explored. In this study, a one-year field trial was conducted to determine the impact of fertilization with water soluble conventional mixture and controlled-release fertilizers on runoff loss of nutrients from an immature oil palm field. Soil and nutrient loss were monitored for one year in 2012/2013 under erosion plots of 16 m2 on 10% slope gradient. Mean sediments concentration in runoff amounted to about 6.41 t ha−1. Conventional mixture fertilizer posed the greatest risk of nutrient loss in runoff following fertilization due to elevated nitrogen (6.97%, potassium (13.37%, and magnesium (14.76% as percentage of applied nutrients. In contrast, this risk decreased with the application of controlled-release fertilizers, representing 0.75–2.44% N, 3.55–5.09% K, and 4.35–5.43% Mg loss. Meanwhile, nutrient loss via eroded sediments was minimal compared with loss through runoff. This research demonstrates that the addition of controlled-release fertilizers reduced the runoff risks of nutrient loss possibly due to their slow-release properties.

  8. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  9. Overview study of LNG release prevention and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  10. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.

    Science.gov (United States)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mesoporous hydroxyapatite: Preparation, drug adsorption, and release properties

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    2014-11-14

    Mesoporous hydroxyapatite (HA) was synthesized through gas–liquid chemical precipitation method at ambient temperature without any template. Structure, morphology and pore size distribution of HA were analyzed via X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution electron microscopy and N{sub 2} adsorption/desorption. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug adsorption and release behavior of HA. The kinetics of DOX adsorption on HA followed the pseudo-second-order rate expression. Adsorption isotherms at various temperatures were obtained, and the equilibrium data fitted the Langmuir model. The values of thermodynamic parameters (Gibbs free energy, entropy, and enthalpy changes) demonstrated that the adsorption process was spontaneous and endothermic. In vitro pH-responsive (pH = 7.4, 5.8) controlled release was investigated. DOX-loaded HA showed a slow, long-term, and steady release rate. The release rate at pH5.8 was larger than that at pH7.4. Consequently, the as-prepared mesoporous HA has potential applications in controlled drug delivery systems. - Highlights: • Mesoporous HA was synthesized by a simple precipitation method without any template. • The kinetics of adsorption followed the pseudo-second-order rate expression. • Thermodynamics investigation showed that adsorption was spontaneous and endothermic. • DOX-loaded HA showed a long-term, steady, and pH-controlled release rate.

  12. Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations.

    Science.gov (United States)

    Garrido-Herrera, F J; Gonzalez-Pradas, E; Fernandez-Pérez, M

    2006-12-27

    Different alginate-based systems of isoproturon, imidacloprid, and cyromazine have been investigated in order to obtain controlled release (CR) properties. The basic formulation [sodium alginate (1.50%), pesticide (0.30%), and water] was modified using different amounts of bentonite and activated carbon. The higher values of encapsulation efficiency corresponded to those formulations prepared with higher percentages of activated carbon, showing higher encapsulation efficiency values for isoproturon and imidacloprid than for cyromazine, which has a higher water solubility. The kinetic experiments of imidacloprid/isoproturon release in water have shown us that the release rate is higher in imidacloprid systems than in those prepared with isoproturon. Moreover, it can be deduced that the use of bentonite and/or activated carbon sorbents reduces the release rate of the isoproturon and imidacloprid in comparison with the technical product and with alginate formulation without modifying agents. The highest decrease in release rate corresponds to the formulations prepared with the highest percentage of activated carbon. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T50, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the pesticide release data, the release of isoproturon and imidacloprid from the various formulations into water is controlled by a diffusion mechanism. The sorption capacity of the sorbents and the permeability of the formulations were the most important factors modulating pesticide release. Finally, a linear correlation of the T50 values and the content of activated carbon in formulations were obtained.

  13. Controlled release studies of calcium alginate hydrogels

    International Nuclear Information System (INIS)

    Rendevski, S.; Andonovski, A.; Mahmudi, N.

    2012-01-01

    Controlled release of substances in many cases may be achieved from calcium alginate hydrogels. In this research, the time dependence of the mass of released model substance bovine serum albumin (BSA) from calcium alginate spherical hydrogels of three different types (G/M ratio) have been investigated. The hydrogels were prepared with the drop-wise method of sodium alginate aqueous solutions with concentration of 0.02 g/cm 3 with 0.01 g/cm 3 BSA and a gelling water bath of chitosan in 0.2 M CH 3 COOH/0.4 M CH 3 COONa with added 0.2 M CaCl 2 .The hydrogel structures were characterized by dynamic light scattering and scanning electron microscopy. The controlled release studies were conducted by UV-Vis spectrophotometry of the released medium with p H=7 at 37 °C. The results showed that the model of osmotic pumping is the dominant mechanism of the release. Also, large dependences of the release profile on the homogeneity of the hydrogels were found. (Author)

  14. Inclusion of cefalexin in SBA-15 mesoporus material and release property

    International Nuclear Information System (INIS)

    Zhai, Qing-Zhou

    2012-01-01

    SBA-15 (Santa Barbara Amorphous-15) is a high ordered mesoporous material. It has the advantages of a non-toxic property, good hydrothermal stability and thermal stability, etc. Inside inner surface a lot of silanols exist. Pore diameter size is uniform and pore size distribution is narrow. This structural feature makes SBA-15 have a higher loading drug amount and be able to effectively extend the drug release cycle. In this paper, polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol was used as template and tetraethyl orthosilicate was used as silica source to prepare SBA-15 by hydrothermal synthesis method. Cefalexin was included in SBA-15 and the included cefalexin drug content was 158.72 mg/g. The composite materials were characterized by using chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared (IR) spectroscopy, and low temperature nitrogen adsorption–desorption. The results showed that cefalexin had been successfully included in host SBA-15 pore channels. Rational analyses of the release processes of cefalexin drug from the pores of SBA-15 to the simulated body fluid, simulated gastric juice and simulated intestinal fluid were made and sustained-release effects of the drug in complex system were studied. The results showed that in simulated body fluid within 1–5 h cefalexin was fast released and the cumulative release reached 50.00% at 5 h. In 15–20 h, the sustained release speed of cefalexin drug in the composite material decreased and the sustained-release cumulative amount reached 99.87% at 20 h. The release of cefalexin was basically complete. In simulated gastric fluid, composite material sustained-release ended at 4 h, the cumulative sustained release ratio reaching 26.10%. In simulated gastric fluid, the sustained-release was complete at 7 h, the cumulative sustained release ratio reaching 32.46%. The composite material of SBA-15 and cefalexin

  15. Design of a controlled release liquid formulation of lamotrigine

    Directory of Open Access Journals (Sweden)

    V Kumar

    2011-05-01

    Full Text Available "n  "n  Background and the purpose of the study: Lamotrigine is a broad spectrum anticonvulsant drug widely used as mono- or adjunct- therapy in adults and children. The aim of this study was to develop controlled release liquid formulation of lamotrigine to improve bioavailability and compliance of pediatric and geriatric epileptic patients. "n  Methods: Multiple (w/o/w emulsion was prepared using one step emulsification technique. It was evaluated for entrapment efficiency (EE, morphology, zeta potential (ZP, polydispersity index (PI, rheology, thermal property, in vitro drug release behavior and stability. In vivo studies in albino mice were carried out using maximal electroshock seizure (MES test and strychnine induced seizure (SIS pattern test and results were compared with marketed formulation. "n  Results: The EE of the formulations varied from 84.37% to 98.11%. The ZP and PI values of the prepared batches were in the range of +23.46 to +28.07 and 0.256 and 0.365, respectively. Microscopic observation clearly indicated the stability of the emulsions during the storage period. All batches exhibited controlled in vitro drug release up to 12 hrs. Batch C11 exhibited significantly longer duration of protection of seizure in mice against MES and exhibited comparable efficacy in SIS as compared to the marketed formulation. "n  Major Conclusion: Multiple emulsion of lamotrigine compared to the marketed tablet showed plasma drug concentration within therapeutic range for longer time and comparable efficacy.

  16. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations

    Directory of Open Access Journals (Sweden)

    Adedokun Musiliu O.

    2014-09-01

    Full Text Available The binding properties of Eucalyptus gum obtained from the incised trunk of Eucalyptus tereticornis, were evaluated in paracetamol tablet formulations, in comparison with that of Gelatin B.P. In so doing, the compression properties were analyzed using density measurements and the compression equations of Heckel, Kawakita and Gurham. In our work, the mechanical properties of the tablets were assessed using the crushing strength and friability of the tablets, while the drug release properties of the tablets were assessed using disintegration and dissolution times. The results of the study reveal that tablet formulations incorporating Eucalyptus gum as binder, exhibited faster onset and higher amount of plastic deformation during compression than those containing gelatin. What is more, the Gurnham equation could be used as a substitute for the Kawakita equation in describing the compression properties of pharmaceutical tablets. Furthermore, the crushing strength, disintegration and dissolution times of the tablets increased with binder concentration, while friability values decreased. We noted that no significant differences in properties exist between formulations derived from the two binders (p > 0.05 exist. While tablets incorporating gelatin exhibited higher values for mechanical properties, Eucalyptus gum tablets had better balance between mechanical and release properties - as seen from the CSFR/Dt values. Tablets of good mechanical and release properties were prepared using Eucalyptus gum as a binder, and, therefore, it could serve as an alternative binder in producing tablets with good mechanical strength and fast drug release.

  18. Birth control - slow release methods

    Science.gov (United States)

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  19. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  20. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  1. Controlled release of ibuprofen by meso–macroporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Santamaría, E., E-mail: esthersantamaria@ub.edu; Maestro, A.; Porras, M.; Gutiérrez, J.M.; González, C.

    2014-02-15

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO{sub 19}PO{sub 39}EO{sub 19}) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84{sub m}eso (black diamonds), P84{sub 2}0% (white squares), P84{sub 5

  2. Controlled release of ibuprofen by meso–macroporous silica

    International Nuclear Information System (INIS)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J.M.; González, C.

    2014-01-01

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO 19 PO 39 EO 19 ) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84 m eso (black diamonds), P84 2 0% (white squares), P84 5 0% (black triangles), P84 7

  3. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes.

    Science.gov (United States)

    Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing

    2013-06-19

    This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did.

  4. Protein Nanocage-Based Photo-Controlled Nitric Oxide Releasing Platform.

    Science.gov (United States)

    Li, Xiao; Zhang, Yajie; Sun, Jian; Chen, Weijian; Wang, Xuewei; Shao, Fenli; Zhu, Yuyu; Feng, Fude; Sun, Yang

    2017-06-14

    A photoactive NO releasing system was constructed by incorporation of NO-bound Fe-S clusters into horse spleen apoferritin cavities with high loading efficacy. The composites retained intact core-shell structure and indicated advantages such as enhanced stability, reduced cytotoxicity, efficient cellular uptake, and photocontrolled NO releasing property.

  5. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients

    NARCIS (Netherlands)

    Li, Y.; Vries, R. de; Slaghek, T.; Timmermans, J.; Cohen Stuart, M.A.; Norde, W.

    2009-01-01

    A novel biocompatible and biodegradable microgel system has been developed for controlled uptake and release of especially proteins. It contains TEMPO-oxidized potato starch polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). Physical chemical properties have been

  6. Controlled release of ibuprofen by meso-macroporous silica

    Science.gov (United States)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.

    2014-02-01

    Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.

  7. Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs

    Energy Technology Data Exchange (ETDEWEB)

    Aldana, Ana Agustina, E-mail: aaldana@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Gonzalez, Agustin, E-mail: agustingonzalez@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Strumia, Miriam C., E-mail: mcs@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Martinelli, Marisa, E-mail: mmartinelli@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Cross-linked chitosan films using genipin and/or PVP. Black-Right-Pointing-Pointer Propranolol hydrochloride was used like a model drug to release studies. Black-Right-Pointing-Pointer Incorporating PVP improves mechanical and diffusion properties. Black-Right-Pointing-Pointer Ch-Gen 0.10% and Ch-Gen 0.10%-PVP have optimal behavior. - Abstract: The study of the physicochemical and functional properties of chitosan films cross-linked with genipin and poly(N-vinyl-2-pyrrolidone) (PVP) was performed in this work. Cross-linked films were prepared by casting method from acetic acid solutions. The structure and physical properties of the films were analyzed by infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ({sup 13}C NMR), differential scanning calorimetry (DSC) and mechanical testings. Propranolol hydrochloride was used like a model drug to determine the behavior of drug release from films. The drug release capacity was measured and compared with the degree of cross-linking, mechanical properties and swelling index. There was an appropriate balance of hydrophilicity, mechanical properties and diffusion by the incorporation of PVP into the networks cross-linked with genipin. The combination of both cross-linkers allows obtaining a soft and tough material potentially applicable as a controlled release. This research represents the first report where both cross-linkers, chemical and ionic agents, are used for obtaining films. These studies suggest that the chitosan films prepared here are promising drug delivery systems for buccal application, with thermal stability and acceptable mechanical properties. Buccal films may be preferred in terms of flexibility and comfort.

  8. Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs

    International Nuclear Information System (INIS)

    Aldana, Ana Agustina; González, Agustín; Strumia, Miriam C.; Martinelli, Marisa

    2012-01-01

    Highlights: ► Cross-linked chitosan films using genipin and/or PVP. ► Propranolol hydrochloride was used like a model drug to release studies. ► Incorporating PVP improves mechanical and diffusion properties. ► Ch–Gen 0.10% and Ch–Gen 0.10%–PVP have optimal behavior. - Abstract: The study of the physicochemical and functional properties of chitosan films cross-linked with genipin and poly(N-vinyl-2-pyrrolidone) (PVP) was performed in this work. Cross-linked films were prepared by casting method from acetic acid solutions. The structure and physical properties of the films were analyzed by infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 13 C NMR), differential scanning calorimetry (DSC) and mechanical testings. Propranolol hydrochloride was used like a model drug to determine the behavior of drug release from films. The drug release capacity was measured and compared with the degree of cross-linking, mechanical properties and swelling index. There was an appropriate balance of hydrophilicity, mechanical properties and diffusion by the incorporation of PVP into the networks cross-linked with genipin. The combination of both cross-linkers allows obtaining a soft and tough material potentially applicable as a controlled release. This research represents the first report where both cross-linkers, chemical and ionic agents, are used for obtaining films. These studies suggest that the chitosan films prepared here are promising drug delivery systems for buccal application, with thermal stability and acceptable mechanical properties. Buccal films may be preferred in terms of flexibility and comfort.

  9. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.

    Science.gov (United States)

    Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj

    2009-01-01

    Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.

  10. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements.

    Science.gov (United States)

    Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C

    2015-12-01

    This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.

  11. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    Science.gov (United States)

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  12. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.

    Science.gov (United States)

    Wang, Qin; Xie, Xiaoling; Zhang, Xiaowei; Zhang, Junping; Wang, Aiqin

    2010-04-01

    A series of pH-sensitive composite hydrogel beads, chitosan-g-poly (acrylic acid)/vermiculite/sodium alginate (CTS-g-PAA/VMT/SA), was prepared using CTS-g-PAA/VMT composite and SA by Ca(2+) as the crosslinking agent. The structure and morphologies of the developed composite hydrogel beads were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling properties and pH-sensitivity of the beads were investigated. In addition, the drug loading and controlled release behaviors of the beads were also evaluated using diclofenac sodium (DS) as the model drug in stimulated gastric fluids (pH 2.1) and intestinal fluids (pH 6.8). The results indicate that the composite hydrogel beads showed good pH-sensitivity. The release rate of the drug from the composite hydrogel beads is remarkably slowed down, which indicated that incorporating VMT into the composite hydrogel beads can improve the burst release effect of the drug. Copyright 2010 Elsevier B.V. All rights reserved.

  13. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

    Science.gov (United States)

    Keshavarz, M; Kaffashi, B

    2014-12-01

    The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations.

  14. 77 FR 4394 - Release of Airport Property: Orlando Executive Airport, Orlando, FL

    Science.gov (United States)

    2012-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Release of Airport Property: Orlando Executive Airport, Orlando, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Request for... 12.4 acres at the Orlando Executive Airport, Orlando, FL from the conditions, release certain...

  15. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.

    Science.gov (United States)

    Wilpiszewska, Katarzyna; Spychaj, Tadeusz; Paździoch, Waldemar

    2016-01-20

    Preparation of novel high substituted carboxymethyl starch-based microparticles containing sodium montmorillonite (MMT) by crosslinking with Al(3+) was described. For preparing nanocomposite granules carboxymethyl starch (CMS) from native potato starch as well as CMS from amylopectin has been used. The hydrophilic CMS/MMT composite systems were used for herbicide, i.e. isoproturon encapsulation (ca. 75% encapsulation efficiency). The herbicide release rate from CMS/MMT composites in water was significantly reduced when compared to commercial isoproturon: 95% released after ca. 700 h and ca. 24h, respectively. Leaching in soil from composite systems was relatively slower than release in water. After a series of eight irrigations leached about 10% of isoproturon loaded. The CMS/MMT carriers could reduce the potential leaching of herbicide and beneficially reduce pollution of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  17. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization

    NARCIS (Netherlands)

    Bezemer, J.M.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    1999-01-01

    The properties of a series of multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(butylene terephthalate) (PBT) blocks were investigated with respect to their application as a matrix for controlled release of proteins. The degree of swelling, Q, of the

  18. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides

    Science.gov (United States)

    Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo

    2017-12-01

    This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong

  19. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2012-11-01

    Preparing for a nuclear accident implies understanding potential consequences. While many specialized experts have been working on different particular aspects, surprisingly little effort has been dedicated to establishing the big picture and providing a global and balanced image of all major consequences. IRSN has been working on the cost of nuclear accidents, an exercise which must strive to be as comprehensive as possible since any omission obviously underestimates the cost. It therefore provides (ideally) an estimate of all cost components, thus revealing the structure of accident costs, and hence sketching a global picture. On a French PWR, it appears that controlled releases would cause an 'economical' accident with limited radiological consequences when compared to other costs; in contrast, massive releases would trigger a major crisis with strong radiological consequences. The two types of crises would confront managers with different types of challenges. (authors)

  20. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    Science.gov (United States)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  1. Synthesis of Thiolated Alginate and Evaluation of Mucoadhesiveness, Cytotoxicity and Release Retardant Properties

    Science.gov (United States)

    Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.

    2010-01-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  2. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  3. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  4. Nitrogen mineralization and volatilization from controlled release urea fertilizers in selected malaysian soils

    International Nuclear Information System (INIS)

    Singh, K.J.K.A.; Yusop, M.K.; Oad, F.C.

    2017-01-01

    Controlled release urea fertilizers are usually used for extended duration in supplying nitrogen. The rate of urea hydrolysis could be efficiently minimized through these fertilizers. Various controlled released fertilizers i.e Uber-10 (30%N), Meister-20 (40%N), Meister-27 (40%N), Humate Coated Urea (45%N), Duration Polymer Coated Urea Type-V (43%N), Gold-N-Sulfur Coated Urea (41%N) and common urea (46%N) were applied to inland soil series of Malaysia. The soil series investigated were: Serdang (Typic Paleudult), Munchong (Typic Hapludox), Segamat (Typic Hapludox), Selangor (Typic Tropaquept), Rengam (Typic Kandiudult) and Holyrood (Typic Kandiudult). The maximum release of ammonium (NH/sub 4/-N) was noted in Gold-N-Sulfur Coated Urea, Humate Coated Urea and common Urea over 8 weeks of incubation. However, the release of NH4-N under the influence of Duration Type-V and Uber-10 took 2nd place. The Meister-20 and Meister-27 had minimum release of NH4-N. Munchong series was efficient in releasing higher NH4-N compared to rest of soils during 8th week of incubation due to higher soil total carbon, low /sub 4/-N and total nitrogen. Ammonia (NH/sub 3/-N) loss progressively increased with unit increase in incubation week and was higher during 6th week of fertilizer application. The higher loss of NH3-N was found in common Urea. However, Meister-20, Meister-27, Duration Polymer Coated Urea Type-V and Uber-10 had lower loss of NH/sub 3/-N due to slow release property and this character could be beneficial for supplying nutrients to next season crop. (author)

  5. Meltable magnetic biocomposites for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Müller, R., E-mail: robert.mueller@ipht-jena.de [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Zhou, M. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany); Dellith, A. [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Liebert, T.; Heinze, T. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany)

    2017-06-01

    New biocompatible composites with adjustable melting point in the range of 30–140 °C, consisting of magnetite nanoparticles embedded into a matrix of meltable dextran fatty acid ester are presented which can be softened under an induced alternating magnetic field (AMF). The chosen thermoplastic magnetic composites have a melting range close to human body temperature and can be easily shaped into disk or coating film under melting. The composite disks were loaded with green fluorescent protein (GFP) as a model protein. Controlled release of the protein was realized with high frequent alternating magnetic field of 20 kA/m at 400 kHz. These results showed that under an AMF the release of GFP from magnetic composite was accelerated compared to the control sample without exposure to AMF. Furthermore a texturing of particles in the polymer matrix by a static magnetic field was investigated. - Highlights: • Thermoplastic biocomposite are prepared from dextran ester and magnetite particles. • The composite can be heated by an AC magnetic field above the melting temperature. • In molten state texturing of particles is possible and improves the heating ability. • The biopolymer could be used as a remote controlled matrix for protein release.

  6. Controlled Release Formulation of Indomethacin Prepared With Bee ...

    African Journals Online (AJOL)

    Erah

    2010-12-27

    Dec 27, 2010 ... Results: The results show that, although the release rate of formulations F1 - F7 did not show any ... Keywords: Propolis (bee glue), Indomethacin, Controlled release, Zero order kinetics, Waxy materials ... focus of interest.

  7. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  8. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    International Nuclear Information System (INIS)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-01-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications

  9. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    Science.gov (United States)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-02-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications.

  10. Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2014-12-01

    Full Text Available The aim of this work was to design a controlled-release drug-delivery system for the angiotensin-II receptor antagonist drug telmisartan. Telmisartan was encapsulated with different EUDRAGIT polymers by an emulsion solvent evaporation technique and the physicochemical properties of the formulations were characterized. Using a solvent evaporation method, white spherical microspheres with particle sizes of 629.9–792.1 μm were produced. The in vitro drug release was studied in three different pH media (pH 1.2 for 2 hours, pH 6.8 for 4 hours, and pH 7.4 for 18 hours. The formulations were then evaluated for their pharmacokinetic parameters. The entrapment efficiency of these microspheres was between 58.6% and 90.56%. The obtained microspheres showed good flow properties, which were evaluated in terms of angle of repose (15.29–26.32, bulk and tapped densities (0.37–0.53 and 0.43–0.64, respectively, Carr indices and Hausner ratio (12.94–19.14% and 1.14–1.23, respectively. No drug release was observed in the simulated gastric medium up to 2 hours; however, a change in pH from 1.2 to 6.8 increased the drug release. At pH 7.4, formulations with EUDRAGIT RS 100 showed a steady drug release. The microsphere formulation TMRS-3 (i.e., microspheres containing 2-mg telmisartan gave the highest Cmax value (6.8641 μg/mL at 6 hours, which was three times higher than Cmax for telmisartan oral suspension (TOS. Correspondingly, the area under the curve for TMRS-3 was 8.5 times higher than TOS. Particle size and drug release depended on the nature and content of polymer used. The drug release mechanism of the TMRS-3 formulation can be explained using the Higuchi model. The controlled release of drug from TMRS-3 also provides for higher plasma drug content and improved bioavailability.

  11. Development of controlled release spheroids using Buchananiacochinchinesis gum

    Directory of Open Access Journals (Sweden)

    Narayan Babulal Gaikwad

    2013-03-01

    Full Text Available Chirauli nut gum was isolated from the bark of Buchanania cochinchinesis (fam. Anacadiacea and was used as a release modifier for the preparation of Diclofenac sodium spheroids using the extrusion spheronization technique. The process was studied for the effects on variables when making spheroids with satisfactory particle shape, size and size distribution. The prepared spheroids were characterized for surface morphology, qualitative surface porosity, friability, bulk density and flow properties. In vitro studies demonstrated that the release exhibited Fickian diffusion kinetics which was confirmed by the Higuchi and the Korsmeyer-Peppas models. The physico-chemical parameters of the gum could be correlated to the in vitro dissolution profile of the spheroids. The spheroids were not able to sustain the drug releases over 12 hours. A greater concentration of Chirauli nut gum and a process that can accommodate such greater concentrations may produce a formulation capable of significant sustained release.

  12. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  13. Effect of PPG-PEG-PPG on the tocopherol-controlled release from films intended for food-packaging applications.

    Science.gov (United States)

    Castro López, María del Mar; Dopico García, Sonia; Ares Pernas, Ana; López Vilariño, José Manuel; González Rodríguez, María Victoria

    2012-08-22

    The feasibility of novel controlled release systems for the delivery of active substances from films intended for food packaging was investigated. Because polyolefins are used highly for food-packaging applications, the reported high retention degree of antioxidants has limited their use for active packaging. Thus, in this study, PP films modified with different chain extenders have been developed to favor and control the release rates of the low molecular weight antioxidant tocopherol. The use of different chain extenders as polymer modifiers (PE-PEG M(w), 575; and PPG-PEG-PPG M(w), 2000) has caused significant changes in tocopherol-specific release properties. High-performance liquid chromatography coupled to PDA-FL and PDA-MS was used to test tocopherol and chain extender migration, respectively. The release of tocopherol from the prepared films with two chain extenders into two food simulants was studied. Different temperatures and storage times were also tested. Varying the structural features of the films with the incorporation of different levels of PPG-PEG-PPG, the release of tocopherol (food-packaging additive) into different ethanolic simulants could be clearly controlled. The effect of the temperature and storage time on the release of the antioxidant has been outstanding as their values increased. The migration of the chain extender, also tested, was well below the limits set by European legislation.

  14. Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zi Gu

    2014-05-01

    Full Text Available The synthesis method of layered double hydroxides (LDHs determines nanoparticles’ performance in biomedical applications. In this study, hydrothermal treatment as an important synthesis technique has been examined for its influence on the physicochemical properties and the drug release rate from drug-containing LDHs. We synthesised MgAl–LDHs intercalated with non-steroidal anti-inflammatory drugs (i.e., naproxen, diclofenac and ibuprofen using a co-precipitation method with or without hydrothermal treatment (150 °C, 4 h. After being hydrothermally treated, LDH–drug crystallites increased in particle size and crystallinity, but did not change in the interlayer anion orientation, gallery height and chemical composition. The drug release patterns of all studied LDH–drug hybrids were biphasic and sustained. LDHs loaded with diclofenac had a quicker drug release rate compared with those with naproxen and ibuprofen, and the drug release from the hydrothermally-treated LDH–drug was slower than the freshly precipitated LDH–drug. These results suggest that the drug release of LDH–drugs is influenced by the crystallite size of LDHs, which can be controlled by hydrothermal treatment, as well as by the drug molecular physicochemical properties.

  15. Modified gum Arabic hydrogels as matrices for controlled release of curcumin supramolecular complexes

    International Nuclear Information System (INIS)

    Gerola, Adriana P.; Silva, Danielle C.; Rubira, Adley F.; Muniz, Edvani C.

    2015-01-01

    Modified gum Arabic (GA) hydrogels show a pH-responsive behavior making them excellent matrices to be used for oral administration of drugs. Our goal is to study the behavior of those matrices in simulated gastric and intestinal fluids. In this work we will present how the methacrylation degree of GA, by using glycidyl methacrylate, can affect the properties of these hydrogels for controlled release. The drug used in this work is the curcumin (Cur). Cur is associated with numerous pharmacological activities, but their application is limited by the low water solubility. We will present some studies involving the formation of host-guest complexes between Cur and natural cyclodextrins. Both modified GA and hydrogels were characterized by different techniques. The kinetics release of Cur complex-containing modified GA hydrogels was studied to have an insight on the release mechanism and rate constants. Toxicity studies on undifferentiated and differentiated Caco-2 were also carried out. (author)

  16. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    Science.gov (United States)

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Critical review of controlled release packaging to improve food safety and quality.

    Science.gov (United States)

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  18. Emulsion-based encapsulation and delivery of nanoparticles for the controlled release of alkalinity within the subsurface environment

    Science.gov (United States)

    Ramsburg, C. A.; Muller, K.; Gill, J.

    2012-12-01

    Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites

  19. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2013-01-01

    In this article, the authors report identification and assessment of different types of costs associated with nuclear accidents. They first outline that these cost assessments must be as exhaustive or comprehensive as possible. While referring to past accidents, they define the different categories of costs: on-site costs (decontamination and dismantling, electricity not produced on the site), off-site costs (health costs, psychological costs, farming losses), image-related costs (impact on food and farm product exports, decrease of other exports), costs related to energy production, costs related to contaminated areas (refugees, lands). They give an assessment of a severe nuclear accident (i.e. an accident with important but controlled radiological releases) in France and outline that it would be a national catastrophe which could be however managed. They discuss the possible variations of the estimated costs. Then, they show that a major accident (i.e. an accident with massive radiological releases) in France would be an unmanageable European catastrophe because of the radiological consequences, of high economic costs, and of huge losses

  20. Design and characterization of controlled release tablet of metoprolol

    Directory of Open Access Journals (Sweden)

    Gautam Singhvi

    2012-01-01

    Full Text Available Metoprolol succinate is a selective beta-adrenergic receptor blocker useful in treatment of hypertension, angina and heart failure. The purpose of the present work was to design and evaluate controlled release matrix type tablet of Metoprolo succinate using HPMC K15M and Eudragit (RLPO and RSPO as a matrix forming agents. Effect of various polymer alone and combinations were studied in pH 1.2 buffer using USP type II paddle at 50 rpm. HPMC was used to form firm gel with Eudragit polymer. Formulation with Equal proportion (1:1 of Eudragit RSPO and RLPO showed optimum drug release t50 =7 hrs and t100 =16 hrs indicate optimum permeability for drug release from matrix. The drug release mechanism was predominantly found to be Non-Fickian diffusion controlled.

  1. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers.

    Science.gov (United States)

    Zhong, Kang; Lin, Zuan-Tao; Zheng, Xi-Liang; Jiang, Gang-Biao; Fang, Yu-Sheng; Mao, Xiao-Yun; Liao, Zong-Wen

    2013-02-15

    Phosphate rock (PHR), a traditional fertilizer, is abundant, but is hard to be utilized by plants. To improve the utilization of PHR, and to integrate water-retaining and controlled-release fertilizers, an agricultural superabsorbent polymer based on sulfonated corn starch/poly (acrylic acid) embedding phosphate rock (SCS/PAA/PHR) was prepared. PHR can be suspended and well-dispersed in SCS/PAA by sulfonated corn starch (SCS). PHR and KOH were mixed in acrylic acid solution to provide phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent were investigated. The maximum swelling capacity in distilled water or 0.9 wt.% (weight percent) NaCl solution reached 498 g g(-1) and 65 g g(-1) (water/prepared dry superabsorbent) respectively. Moreover, release behaviours of P and K in SCS/PAA/PHR were also investigated. The results showed that SCS/PAA/PHR possessed excellent sustained-release property of plant nutrient, and the SCS/PAA could improve the P release greatly. Besides, the XPS analysis was employed to study the relationship between PHR and superabsorbent polymer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evaluation of olibanum and its resin as rate controlling matrix for controlled release of diclofenac

    OpenAIRE

    Chowdary KPR; Mohapatra P; Murali Krishna M

    2006-01-01

    Olibanum and its resin and carbohydrate fractions were evaluated as rate controlling matrix materials in tablets for controlled release of diclofenac. Diclofenac matrix tablets were formulated employing olibanum and its resin and carbohydrate fractions in different concentrations and the tablets were evaluated for various tablet characters including drug release kinetics and mechanism. Olibanum and its resin component exhibited excellent retarding effect on drug release from the matrix tablet...

  3. Controlled release of potassium chloride from radiation-polymerized copolymer matrices

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1979-01-01

    Release behavior of potassium chloride (KCl) from the flat circular copolymer composites, obtained by radiation-induced polymerization at low temperatures, was studied. The release rate agreed with the first-order kinetics based on the Noyes-Whitney equation in relation to the swelling of the composites. Release profiles of KCl from copolymer composites was affected by monomer composition between hydroxyethyl acrylate (HEA) and polyfunctional glass-forming monomers such as 2-hydroxyethyl methacrylate (HEMA), diethylene glycol dimethacrylate (DGDA), and trimethylolpropane trimethacrylate (TMPT) owing to change of swelling property of copolymers. The release rate decreased at HEA-poor composition in any system. In the case of hydrophobic comonomer system such as glycidyl methacrylate (GMA) and DGDA, release profile of KCl showed a minimum at 50% GMA-50% DGDA monomer composition. (author)

  4. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties.

    Science.gov (United States)

    Frutos, Gloria; Pastor, José Ygnacio; Martínez, Noelia; Virto, María Rosa; Torrado, Susana

    2010-03-01

    The purpose of this study was to characterize a poly(methyl methacrylate) bone cement that was loaded with the antibiotic gentamicin sulphate (GS) and lactose, which served to modulate the release of GS from cement specimens. The release of GS when the cement specimens were immersed in phosphate-buffered saline at 37 degrees Celsius was determined spectrophotometrically. The microstructure, porosity, density, tensile properties and flexural properties of the cements were determined before and after release of GS. A kinetics model of the release of GS from the cement that involved a coupled mechanism based on dissolution/diffusion processes and an initial burst effect was proposed. Dissolution assay results showed that drug elution was controlled by a diffusion mechanism which can be modulated by lactose addition. Density values and mechanical properties (tensile strength, flexural strength, elastic modulus and fracture toughness) were reduced by the increased porosity resulting from lactose addition, but maintained acceptable values for the structural functions of bone cement. The present results suggest that lactose-modified, gentamicin-loaded acrylic bone cements are potential candidates for use in various orthopaedic and dental applications. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Leach resistance properties and release processes for salt-occluded zeolite A

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

    1992-01-01

    The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl 2 . For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m 2 for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m 2 , respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t 0.5 kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt

  6. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application.

    Science.gov (United States)

    Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang

    2018-03-01

    A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    Science.gov (United States)

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  8. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  10. Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.

    Science.gov (United States)

    Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook

    2011-02-14

    The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Controlled release of curcumin from poly(HEMA-MAPA) membrane.

    Science.gov (United States)

    Caka, Müşerref; Türkcan, Ceren; Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2017-05-01

    In this work, poly(HEMA-MAPA) membranes were prepared by UV-polymerization technique. These membranes were characterized by SEM, FTIR, and swelling studies. Synthesized membranes had high porous structure. These membranes were used for controlled release of curcumin which is already used as folk remedy and used as drug for some certain diseases and cancers. Curcumin release was investigated for various pHs and temperatures. Optimum drug release yield was found to be as 70% at pH 7.4 and 37 °C within 2 h period. Time-depended release of curcumin was also investigated and its slow release from the membrane demonstrated within 48 h.

  12. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device

    International Nuclear Information System (INIS)

    Song, Wei; Shi, Tong; Ren, Weiping; Yu, Xiaowei; Markel, David C

    2013-01-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL Col /PVA HA ). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL Col /PVA HA NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL Col /PVA HA NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL Col /PVA HA NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL Col /PVA HA NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL Col /PVA HA NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection. (paper)

  13. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device.

    Science.gov (United States)

    Song, Wei; Yu, Xiaowei; Markel, David C; Shi, Tong; Ren, Weiping

    2013-09-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL(Col)/PVA(HA)). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL(Col)/PVA(HA) NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL(Col)/PVA(HA) NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL(Col)/PVA(HA) NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL(Col)/PVA(HA) NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL(Col)/PVA(HA) NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection.

  14. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release

    Science.gov (United States)

    Khalid, Asma; Mitropoulos, Alexander N.; Marelli, Benedetto; Tomljenovic-Hanic, Snjezana; Omenetto, Fiorenzo G.

    2015-01-01

    Nanoparticle (NP) based technologies have proved to be considerably beneficial for advances in biomedicine especially in the areas of disease detection, drug delivery and bioimaging. Over the last few decades, NPs have garnered interest for their exemplary impacts on the detection, treatment, and prevention of cancer. The full potential of these technologies are yet to be employed for clinical use. The ongoing research and development in this field demands single multifunctional composite materials that can be employed simultaneously for drug delivery and biomedical imaging. In this manuscript, a unique combination of silk fibroin (SF) and nanodiamonds (NDs) in the form of nanospheres are fabricated and investigated. The spheres were loaded with the anthracyline Doxorubicin (DoX) and the drug release kinetics for these ND-SF-DoX (NDSX) spheres were studied. NDs provided the fluorescence modality for imaging while the degradable SF spheres stabilized and released the drug in a controlled manner. The emission and structural properties of the spheres were characterized during drug release. The degradability of SF and the subsequent release of DoX from the spheres were monitored through fluorescence of NDs inside the spheres. This research demonstrates the enormous potential of the ND-SF nanocomposite platforms for diagnostic and therapeutic purposes, which are both important for pharmaceutical research and clinical settings. PMID:26819823

  15. Pectin/anhydrous dibasic calcium phosphate matrix tablets for in vitro controlled release of water-soluble drug.

    Science.gov (United States)

    Mamani, Pseidy Luz; Ruiz-Caro, Roberto; Veiga, María Dolores

    2015-10-15

    Different pectin/anhydrous dibasic calcium phosphate (ADCP) matrix tablets have been developed in order to obtain controlled release of a water-soluble drug (theophylline). Swelling, buoyancy and dissolution studies have been carried out in different aqueous media (demineralized water, progressive pH medium, simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid), to characterize the matrix tablets. When the pectin/ADCP ratio was ≥0.26 (P1, P2, P3 and P4 tablets) a continuous swelling and low theophylline dissolution rate from the matrices were observed. So, pectin gel forming feature predominated over the ADCP properties, yielding pH-independent drug release behavior from these matrices. On the contrary, pectin/ADCP ratios ≤0.11 (P5 and P6 tablets) allowed to achieve drug dissolution pH dependent. Consequently, the suitable selection of the pectin/ADCP ratio will allow to tailor matrix tablets for controlled release of water-soluble drugs in a specific manner in the gastrointestinal tract. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films.

    Science.gov (United States)

    Chen, Xi; Lee, Dong Sun; Zhu, Xuntao; Yam, Kit L

    2012-04-04

    This paper investigated the feasibility of manipulating packaging polymers with various degrees of hydrophobicity to release two antioxidants, tocopherol and quercetin, at rates suitable for long-term inhibition of lipid oxidation in food. For example, one antioxidant can be released at a fast rate to provide short-term/intermediate protection, whereas the other antioxidant can be released at a slower rate to provide intermediate/long-term protection of lipid oxidation. Controlled-release packaging films containing tocopherol and quercetin were produced using ethylene vinyl alcohol (EVOH), ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), and polypropylene (PP) polymers; the release of these antioxidants to 95% ethanol (a fatty food simulant) was measured using UV-vis spectrophotometry, and Fickian diffusion models with appropriate initial and boundary conditions were used to fit the data. For films containing only quercetin, the results show that the release of quercetin was much faster but lasted for a much shorter time for hydrophilic polymers (EVOH and EVA) than for hydrophobic polymers (LDPE and PP). For binary antioxidant films containing tocopherol and quercetin, the results show that tocopherol released more rapidly but for a shorter period of time than quercetin in LDPE and EVOH films, and the difference is more pronounced for LDPE films than EVOH films. The results also show the presence of tocopherol can accelerate the release of quercetin. Although none of the films produced is acceptable for long-term lipid oxidation inhibition, the study provides encouraging results suggesting that acceptable films may be produced in the future using polymer blend films.

  17. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  18. Immobilization and controlled release of drug using plasma polymerized thin film

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung-Woon [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Sunchon 540-742 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of)

    2015-06-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release.

  19. Immobilization and controlled release of drug using plasma polymerized thin film

    International Nuclear Information System (INIS)

    Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release

  20. A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties.

    Science.gov (United States)

    Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil

    2014-10-01

    To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. 77 FR 25012 - Notice of Intent To Rule on Request To Release Airport Property at the South Texas Regional...

    Science.gov (United States)

    2012-04-26

    ... To Release Airport Property at the South Texas Regional Airport at Hondo (formerly Hondo Municipal... Release Airport Property. SUMMARY: The FAA proposes to rule and invite public comment on the release of.... Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be received on...

  2. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  3. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    Science.gov (United States)

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  4. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued

  5. Controlled release from drug microparticles via solventless dry-polymer coating.

    Science.gov (United States)

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Use of fibrin sealants for the localized, controlled release of cefazolin

    Science.gov (United States)

    Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.

    2006-01-01

    Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573

  7. Improvement of waste release control in French NPP

    International Nuclear Information System (INIS)

    Samson, T.; Lucquin, E.; Dupin, M.; Florence, D.; Grisot, M.

    2002-01-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  8. Improvement of waste release control in French NPP

    Energy Technology Data Exchange (ETDEWEB)

    Samson, T.; Lucquin, E.; Dupin, M. [EDF/GDL (France); Florence, D. [EDF/GENV (France); Grisot, M. [EDF/CNPE Saint Laurent (France)

    2002-07-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  9. RELEASE AND MUCOADHESION PROPERTIES OF DICLOFENAC MATRIX TABLETS FROM NATURAL AND SYNTHETIC POLYMER BLENDS.

    Science.gov (United States)

    Odeniyi, Michael A; Khan, Nasir H; Peh, Kok K

    2015-01-01

    The delayed release and mucoadhesive properties of Cedrela gum and hydroxypropylmethylcellulose blend in diclofenac sodium tablet formulations were evaluated. Tablets were prepared by direct compression and the crushing strength and detachment force were found to increase from 74.49 ± 1.22 to 147.25 ± 2.57 N and 0.302 ± 0.36 to 1.141 ± 0.05 N from low to high level of polymers, respectively. The release kinetics followed Korsmeyer-Peppas release and the n varied between 0.834 and 1.273, indicating that the release mechanism shifts from Fickian to super case I (anomalous release). The drug release profile fits a pulsatile-release pattern characterized by a lag time followed by a more or less rapid and complete drug release. The Cedrela gum-hydroxypropylmethylcelluse blend tablets delayed diclofenac release for 2 h and sustained the release for 12 h. The polymer blend delayed drug release in the 0.1 M HCl simulating gastric environment and subsequent release pH 6.8 phosphate buffer.

  10. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    International Nuclear Information System (INIS)

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-01-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and 1 H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  11. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jalvandi, Javid, E-mail: Javid.jlv@gmail.com [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); White, Max, E-mail: tamrak@bigpond.com [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Gao, Yuan, E-mail: Yuan.Gao@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Truong, Yen Bach, E-mail: Yen.truong@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Padhye, Rajiv, E-mail: rajiv.padhye@rmit.edu.au [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Kyratzis, Ilias Louis, E-mail: Louis.kyratzis@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and {sup 1}H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  12. 77 FR 3324 - Release of Airport Property: Page Field, Fort Myers, FL

    Science.gov (United States)

    2012-01-23

    ... released of its federal obligations to sell the property at Fair Market Value to Lee County for municipal purposes. The appraised Fair Market Value of the parcel is $64,628. Documents reflecting the Sponsor's...

  13. Effect of food on the pharmacokinetic properties of the oral sarpogrelate hydrochloride controlled-release tablet in healthy male Korean subjects.

    Science.gov (United States)

    Jung, Jin Ah; Kim, Jung-Ryul; Kim, Tae-Eun; Lee, Soo-Youn; Huh, Wooseong; Lee, Jae Won; Jun, Hun; Ko, Jae-Wook

    2013-07-01

    A new controlled-release formulation of sarpogrelate, a 5-hydroxytryptamine receptor subtype 2 antagonist that blocks serotonin-induced platelet aggregation, has been developed for once-daily administration. This study evaluated the effect of food on the pharmacokinetic properties of controlled-release sarpogrelate (sarpogrelate CR) in healthy volunteers. A randomized, open-label, two-period, two-treatment crossover study was performed in healthy male Korean subjects. Following an overnight fast, a single dose of sarpogrelate CR 300 mg was administered either in the fasted condition or immediately after a high-fat breakfast. Pharmacokinetic parameters were calculated using a noncompartmental analysis. Tolerability was determined using clinical laboratory testing and physical examination, including vital sign measurements, electrocardiography, and interviews with the volunteers regarding adverse events (AEs). A total of 24 healthy subjects were enrolled, 23 of whom completed the study (mean [range] age, 26 years [21-45]; weight, 68.1 kg [56.0-79.9]; body mass index, 22.1 kg/m(2) [18.8-25.0]). Sarpogrelate C(max) and AUC(last) were decreased In the fed condition compared with those in the fasted condition, with geometric mean ratios (90% CI) of 0.4868 (0.4041-0.5864) and 0.7394 (0.6809-0.8028), respectively. T(max) was delayed from 0.75 to 4.0 hours after a high-fat meal, but the fed condition exhibited a similar elimination profile to that of the fasted condition. The most commonly reported AE was headache (n = 2), and other AEs were reported in 1 subject each. All of the AEs were considered mild in intensity, and the participants recovered without treatment. Compared with the administration of sarpogrelate CR 300 mg in the fasted condition, administration with food was associated with a decreased rate and extent of absorption, as assessed by C(max) and AUC(last), respectively. The drug was well-tolerated by the healthy subjects in this study. Copyright © 2013

  14. QSPR Study of the Retention/release Property of Odorant Molecules in Water Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Assia Belhassan

    2017-10-01

    Full Text Available An integrated approach physicochemistry and structures property relationships has been carried out to study the odorant molecules retention/release phenomenon in the water. This study aimed to identify the molecular properties (molecular descriptors that govern this phenomenon assuming that modifying the structure leads automatically to a change in the retention/release property of odorant molecules. ACD/ChemSketch, MarvinSketch, and ChemOffice programs were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters. A total of 37 molecules (2/3 of the data set were placed in the training set to build the QSPR models, whereas the remaining, 14 molecules (1/3 of the data set constitute the test set. The best descriptors were selected to establish the quantitative structure property relationship (QSPR of the retention/release property of odorant molecules in water using multiple linear regression (MLR, multiple non-linear regression (MNLR and an artificial neural network (ANN methods. We propose a quantitative model according to these analyses. The models were used to predict the retention/release property of the test set compounds, and agreement between the experimental and predicted values was verified. The descriptors showed by QSPR study are used for study and designing of new compounds. The statistical results indicate that the predicted values are in good agreement with the experimental results. To validate the predictive power of the resulting models, external validation multiple correlation coefficient was calculated and has both in addition to a performant prediction power, a favorable estimation of stability. DOI: http://dx.doi.org/10.17807/orbital.v9i4.978 

  15. Controlled drug release from bifunctionalized mesoporous silica

    Science.gov (United States)

    Xu, Wujun; Gao, Qiang; Xu, Yao; Wu, Dong; Sun, Yuhan; Shen, Wanling; Deng, Feng

    2008-10-01

    Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.

  16. HABIT, Toxic and Radioactive Release Hazards in Reactor Control Room

    International Nuclear Information System (INIS)

    Stage, S.A.

    2005-01-01

    1 - Description of program or function: HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. 2 - Methods: Given information about the design of a nuclear power plant, a scenario for the release of toxic or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel

  17. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  18. 78 FR 7852 - Notice of Intent To Rule on Request To Release Airport Property at the Rocky Mountain...

    Science.gov (United States)

    2013-02-04

    ... To Release Airport Property at the Rocky Mountain Metropolitan Airport, Broomfield, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY... Metropolitan Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  19. 77 FR 64838 - Notice of Intent To Rule on Request To Release Airport Property at the Seattle-Tacoma...

    Science.gov (United States)

    2012-10-23

    ... To Release Airport Property at the Seattle-Tacoma International Airport, Seattle, Washington AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY... International Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  20. 78 FR 15112 - Notice of Intent To Rule on Request To Release Airport Property at the Seattle-Tacoma...

    Science.gov (United States)

    2013-03-08

    ... To Release Airport Property at the Seattle-Tacoma International Airport, Seattle, Washington AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Request to Release Airport Property. SUMMARY... International Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  1. Sintering of wax for controlling release from pellets

    OpenAIRE

    Singh, Reena; Poddar, S. S.; Chivate, Amit

    2007-01-01

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%–20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusio...

  2. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent.

    Science.gov (United States)

    Jin, Shuping; Yue, Guoren; Feng, Lei; Han, Yuqi; Yu, Xinghai; Zhang, Zenghu

    2011-01-12

    In this investigation, a novel water-insoluble slow-release fertilizer, biuret polyphosphoramide (BPAM), was formulated and synthesized from urea, phosphoric acid (H(3)PO(4)), and ferric oxide (Fe(2)O(3)). The structure of BPAM was characterized by Fourier transform infrared (FTIR) spectroscopy. Subsequently, a coated slow-release BPAM fertilizer with superabsorbent was prepared by ionic cross-linked carboxymethylchitosan (the core), acrylic acid, acrylamide, and active carbon (the coating). The variable influences on the water absorbency were investigated and optimized. Component analysis results showed that the coated slow-release BPAM contained 5.66% nitrogen and 11.7% phosphorus. The property of water retention, the behavior of slow release of phosphorus, and the capacity of adsorption of cations were evaluated, and the results revealed that the product not only had good slow-release property and excellent water retention capacity but also higher adsorption capacities of cations in saline soil.

  3. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    Science.gov (United States)

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. FERLENT - a controlled release fertilizer produced from a polymer material

    International Nuclear Information System (INIS)

    Gonzalez, Mayra; Arces, Milagros; Cuesta, Ernesto; Corredera, Pilar; Sardina, Carmen; Rieumont, Jacques; Quintana, Patricia; Bartolo, Pascual; Guenther, Bluma

    2011-01-01

    The possibility to use release controlled fertilizers in the agriculture of the tropical countries is more important than in the agriculture of the countries of the template regions. In this context, this work purpose the development of a new Fertilizer of Controlled Release named FERLENT, which was obtained starting from a polymeric material, under controlled conditions which allowed to corroborate the adjustment of the synthesis parameters under the modulate of nutrients liberation. It was characterized by, Scanning Microscopy Electron (SEM), Thermogravimetric analysis (TGA), Nuclear Magnetic Resonance (NMR) and infrared spectroscopy (FTIR). (author)

  5. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  6. Bioadhesive Controlled Release Clotrimazole Vaginal Tablets | Bhat ...

    African Journals Online (AJOL)

    Conclusion: This study indicates the possible use of suitable mixtures of natural and semi-synthetic cellulosic polymers for the preparation of clotrimazole mucoadhesive tablets for application as a vaginal controlled delivery system. Keywords: Clotrimazole, Swelling, Cellulosic polymers, Guar gum, Bioadhesion, Release ...

  7. Nanostructured Diclofenac Sodium Releasing Material

    Science.gov (United States)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  8. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    Science.gov (United States)

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  9. Preparation and drug controlled release of porous octyl-dextran microspheres.

    Science.gov (United States)

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  10. An electro-conductive fluid as a responsive implant for the controlled stimuli-release of diclofenac sodium.

    Science.gov (United States)

    Bijukumar, Divya; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-01

    The purpose of this study was to develop an electro-responsive co-polymeric (ERP) implantable gel from polyethylene glycol (PEG), sodium polystyrene sulphonate (NaPss), polyvinyl alcohol (PVA), and diethyl acetomidomalonate (DAA) for electro-liberation of the model drug diclofenac sodium. Various physicochemical and physicomechanical characterization tests were undertaken on the synthesized drug-free gel (ERP G1) and drug-loaded gel (ERP G2). The ability of the gel to release diclofenac sodium following electrical stimulation was evaluated using a galvanostat while Molecular Mechanics (MM) simulations were performed to elucidate the experimental mechanisms. A stable electro-active gel exhibiting superior cycling stability was produced with desirable rheological properties, rigidity (BHN = 35.4 N ± 0.33 N/mm 2 ; resilience = 10.91 ± 0.11%), thermal properties (T g  ≈ 70 °C; T c  ≈ 200 °C) and homogeneous morphology. "ON-OFF" pursatile gradual drug release (37-94% from t 30 min -t 180   min ) kinetics was observed upon applying electric stimulation intermittently, indicating that drug release from the gel was electrically controlled. Overall, the galvanometric and MM evaluation ascertained the suitability of the PEG/NaPss/PVA ERP-Gel for application as a subcutaneously injectable drug delivery implant.

  11. Control of accidental releases of hydrogen selenide in vented storage cabinets

    Science.gov (United States)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  12. 76 FR 12408 - Notice of Intent to Rule on Request To Release Airport Property at Ellington Field Airport...

    Science.gov (United States)

    2011-03-07

    ... To Release Airport Property at Ellington Field Airport, Houston, Texas AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  13. 77 FR 39793 - Notice of Intent To Rule on Request To Release Airport Property at Portland-Hillsboro Airport...

    Science.gov (United States)

    2012-07-05

    ... To Release Airport Property at Portland--Hillsboro Airport, Hillsboro, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Proposal to Release Airport Property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  14. Review of processes for the release of DOE real and non-real property for reuse and recycle

    International Nuclear Information System (INIS)

    Ranek, N.L.; Kamboj, S.; Hensley, J.; Chen, S.Y.; Blunt, D.

    1997-11-01

    This report summarizes the underlying historical and regulatory framework supporting the concept of authorizing release for restricted or unrestricted reuse or recycle of real and non-real U.S. Department of Energy (DOE) properties containing residual radioactive material. Basic radiation protection principles as recommended by the International Commission on Radiological Protection are reviewed, and international initiatives to investigate radiological clearance criteria are reported. Applicable requirements of the U.S. Nuclear Regulatory Commission, the Environmental Protection Agency, DOE, and the State of Washington are discussed. Several processes that have been developed for establishing cleanup and release criteria for real and non-real DOE property containing residual radioactive material are presented. Examples of DOE real property for which radiological cleanup criteria were established to support unrestricted release are provided. Properties discussed include Formerly Utilized Sites Remedial Action Project sites, Uranium Mill Tailings Remedial Action Project sites, the Shippingport decommissioning project, the south-middle and south-east vaults in the 317 area at Argonne National Laboratory, the Heavy Water Components Test Reactor at DOE's Savannah River Site, the Experimental Boiling Water Reactor at Argonne National Laboratory, and the Weldon Spring site. Some examples of non-real property for which DOE sites have established criteria to support unrestricted release are also furnished. 10 figs., 4 tabs

  15. QSPR study of the retention/release property of odorant molecules in pectin gels using statistical methods

    Directory of Open Access Journals (Sweden)

    Assia Belhassan

    2017-11-01

    Full Text Available The ACD/ChemSketch, MarvinSketch, and ChemOffice programmes were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters. The best descriptors were selected to establish the Quantitative Structure-Property Relationship (QSPR of the retention/release property of odorant molecules in pectin gels using Principal Components Analysis (PCA, Multiple Linear Regression (MLR, Multiple Non-linear Regression (MNLR and Artificial Neural Network (ANN methods We propose a quantitative model based on these analyses. PCA has been used to select descriptors that exhibit high correlation with the retention/release property. The MLR method yielded correlation coefficients of 0.960 and 0.958 for PG-0.4 (pectin concentration: 0.4% w/w and PG-0.8 (pectin concentration: 0.8% w/w media, respectively. Internal and external validations were used to determine the statistical quality of the QSPR of the two MLR models. The MNLR method, considering the relevant descriptors obtained from the MLR, yielded correlation coefficients of 0.978 and 0.975 for PG-0.4 and PG-0.8 media, respectively. The applicability domain of MLR models was investigated using simple and leverage approaches to detect outliers and outside compounds. The effects of different descriptors on the retention/release property are described, and these descriptors were used to study and design new compounds with higher and lower values of the property than the existing ones. Keywords: Odorant Molecules, Retention/Release, Pectin Gels, Quantitative Structure Property Relationship, Multiple Linear Regression, Artificial Neural Network

  16. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release

    International Nuclear Information System (INIS)

    Yuan Peng; Southon, Peter D; Kepert, Cameron J; Liu Zongwen

    2012-01-01

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release. (paper)

  17. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release.

    Science.gov (United States)

    Yuan, Peng; Southon, Peter D; Liu, Zongwen; Kepert, Cameron J

    2012-09-21

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release.

  18. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  19. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  20. The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent.

    Science.gov (United States)

    Kim, Seong Min; Park, Sung-Bin; Bedair, Tarek M; Kim, Man-Ho; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2017-09-01

    Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    Science.gov (United States)

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  2. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  3. Method and apparatus for controlling accidental releases of tritium

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1980-01-01

    An improvement in a tritium control system based on a catalytic oxidation reactor is provided wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release

  4. Method and apparatus for controlling accidental releases of tritium

    Science.gov (United States)

    Galloway, Terry R. [Berkeley, CA

    1980-04-01

    An improvement in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release.

  5. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  6. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    Science.gov (United States)

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to plain chitosan membrane. The information obtained in this study will facilitate the design and preparation of composite membrane based on chitosan and could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical (biodegradable soft porous scaffolds for enhance the surrounding tissue regeneration), pharmaceutical and cosmetics industries.

  7. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  8. A comparative histological study of alginate beads as a promising controlled release delivery for mefenamic acid.

    Science.gov (United States)

    Sevgi, Ferhan; Kaynarsoy, Buket; Ozyazici, Mine; Pekcetin, Cetin; Ozyurt, Dogan

    2008-01-01

    The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 x 2(2) factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 +/- 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t(50) % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg(-1)), blank and MA (100 mgkg(-1)) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.

  9. A review of mathematical modeling and simulation of controlled-release fertilizers.

    Science.gov (United States)

    Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N

    2018-02-10

    Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    Science.gov (United States)

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  11. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2013-11-01

    Full Text Available Bullo Saifullah,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi3,41Materials Synthesis and Characterization Laboratory, 2Laboratory of Molecular Biomedicine, 3Laboratory of Vaccines and Immunotherapeutics, 4Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: We report the intercalation and characterization of para-amino salicylic acid (PASA into zinc/aluminum-layered double hydroxides (ZLDHs by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D and PASA nanocomposite prepared by an indirect method (PASA-I. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.Keywords: drug-delivery system, slow-release nanocarrier, tuberculosis, biocompatible nanocomposites

  12. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  13. 78 FR 6401 - Public Notice for Release of Aeronautical Property at the Wilkes-Barre/Scranton International...

    Science.gov (United States)

    2013-01-30

    ... listed above. SUPPLEMENTARY INFORMATION: The FAA invites public comment on the release of land and right... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Public Notice for Release of Aeronautical Property at the Wilkes- Barre/Scranton International Airport (AVP), Avoca, PA AGENCY: Federal...

  14. 76 FR 30422 - Notice of Intent To Rule on Request To Release Airport Property at the Helena Regional Airport...

    Science.gov (United States)

    2011-05-25

    ... To Release Airport Property at the Helena Regional Airport, Helena, Montana AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of Request to Release Airport Property... Airport (HLN) under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  15. 76 FR 18622 - Notice of Intent To Rule on Request To Release Airport Property at the Helena Regional Airport...

    Science.gov (United States)

    2011-04-04

    ... To Release Airport Property at the Helena Regional Airport, Helena, MT AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of request to release airport property... Airport (HLN) under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  16. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  17. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  18. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  19. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-10-01

    The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.

  20. Effects of Sediment Chemical Properties on Phosphorus Release Rates in the Sediment-Water Interface of the Steppe Wetlands.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Xie, Jingjie; Luo, Yan

    2017-11-22

    Rising temperature causes a process of phosphorus release, which can be characterized well using phosphorus release rates (V P ). The objective of the present study was to investigate the major factors affecting sediment phosphorus release rates through a wetland habitat simulation experiment. The results showed that the V P of different wetland sediments were different and changed with the order of W-R (river wetland) > W-L (lake wetland) > W-M (grassy marsh wetland) > W-A (reservoir wetland). The main driving factors which influenced sediment phosphorus flux velocity in the sediment-water interface were sediment B-SO₄ 2- , B-MBN and A-MBP content. Path analysis and determination coefficient analysis indicated the standard multiple regression equation for sediment phosphorus release rates in the sediment-water interface, and each main factor was Y = -0.105 + 0.096X₁ + 0.275X₂ - 0.010X₃ ( r = 0.416, p phosphorus release rates; X₁ is sediment B-SO₄ 2- content; X₂ is sediment B-MBN; and X₃ is sediment A-MBP content. Sediment B-SO₄ 2- , B-MBN and A-MBP content and the interaction between them were the main factors affecting sediment phosphorus release rates in the sediment-water interface. Therefore, these results suggest that soil chemical properties and microbial activities likely play an important role in phosphorus release rates in the sediment-water interface. We hope to provide effective scientific management and control methods for relevant environmental protection departments.

  1. Electrochemically controlled release of anticancer drug methotrexate using nanostructured polypyrrole modified with cetylpyridinium: Release kinetics investigation

    International Nuclear Information System (INIS)

    Alizadeh, Naader; Shamaeli, Ehsan

    2014-01-01

    A new simple strategy for direct electrochemical incorporation of chemotherapeutic methotrexate (MTX) into conductive polypyrrole (PPy) has been suggested for an electrochemically controlled loading and release system. Electropolymerization of MTX doped polypyrrole yielded poor quality with low efficiency of doping, but a well-doped, nanostructure and increased capacity of drug loading (24.5 mg g −1 ) has been obtained in the presence of cetylpyridinium (CP) as a modifier. When CP was preloaded onto PPy, the hydrophobic surface of the PPy serves as a backbone to which the hydrophobic chain of the CP can be attached. Electrostatic interaction between cationic CP with anionic MTX and aromatic interaction between pyridinium head of CP with pyrimidine and pyrazine rings of MTX increases drug doping. Then release kinetics were investigated at various applied potentials and temperatures. Kinetics analysis based on Avrami's equation showed that the drug release was controlled and accelerated by increasing temperature and negative potential and sustained by increasing positive potential. At open circuit condition, the release parameter (n) represented a diffusive mechanism and at applying electrochemical potentials, a first-order mode. Activation energy parameters (E a , ΔG ≠ , ΔH ≠ and ΔS ≠ ) and half-life time (t 1/2 ) of drug release are also analyzed as a function of applied potential. The nanostructured polymer films (PPy/CP/MTX) were characterized by several techniques: scanning electron microscopy, Furrier transforms Infrared, UV-vis spectroscopy. Overall, our results demonstrate that the PPy/CP/MTX films, combined with electrical stimulation, permit a programmable release of MTX by altering the interaction strength between the PPy/CP and MTX

  2. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  3. Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns.

    Science.gov (United States)

    Shah, Shefaat Ullah; Shah, Kifayat Ullah; Rehman, Asimur; Khan, Gul Majid

    2011-04-01

    The objective of the study was to formulate and evaluate controlled release polymeric tablets of Diclofenac Potassium for the release rate, release patterns and the mechanism involved in the release process of the drug. Formulations with different types and grades of Ethyl Cellulose Ether derivatives in several drug-to-polymer ratios (D:P) were compressed into tablets using the direct compression method. In vitro drug release studies were performed in phosphate buffer (pH 7.4) as dissolution medium by using USP Method-1 (Rotating Basket Method). Similarity factor f2 and dissimilarity factor f1 were applied for checking the similarities and dissimilarities of the release profiles of different formulations. For the determination of the release mechanism and drug release kinetics various mathematical/kinetic models were employed. It was found that all of the Ethocel polymers could significantly slow down the drug release rate with Ethocel FP polymers being the most efficient, especially at D:P ratios of 10:03 which lead towards the achievement of zero or near zero order release kinetics.

  4. Multi-unit dosage formulations of theophylline for controlled release applications.

    Science.gov (United States)

    Uhumwangho, Michael U; Okor, Roland S

    2007-01-01

    The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The

  5. 78 FR 20168 - Notice of Intent To Rule on Request To Release Airport Property at the Boulder Municipal Airport...

    Science.gov (United States)

    2013-04-03

    ... To Release Airport Property at the Boulder Municipal Airport, Boulder, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  6. [Influence of polymer type on the physical properties and the release study of papaverine hydrochloride from tablets].

    Science.gov (United States)

    Kasperek, Regina; Polski, Andrzej; Sobótka-Polska, Karolina; Poleszak, Ewa

    2014-01-01

    Polymers are widely used in drug manufacturing. Researchers studied their impact on the bioavailability of active substances or on physical properties of tablets for many years. To study the influence of polymer excipients, such as microcrystalline cellulose (Avicel PH 101, Avicel PH 102), croscarmellose sodium, crospovidone or polyvinylpyrrolidone, on the release profile of papaverine hydrochloride from tablets and on the physical properties of tablets. Six series of uncoated tablets were prepared by indirect method, with previous wet granulation. Tablets contained papaverine hydrochloride and various excipients. The physical properties of the prepared granules, tablets and the release profile of papaverine hydrochloride from tablets were examined. The content of papaverine hydrochloride from the release study were determined spectrophotometrically. All tablets met the pharmacopoeia requirements during following tests: the disintegration time of tablets, uncoated tablets resistance to abrasion, the weight uniformity and dose formulations, their dimensions, the resistance to crushing of tablets and the drug substance content in the tablet. In four cases more than 80% of papaverine was released up to 2 min, in one formula it was up to 5 min, and in last one up to 10 min. Tablets containing crospovidone disintegrated faster than tablets with croscarmellose sodium. Adding gelatinized starch to the tablet composition increased the disintegration time, hardness and delayed the release of papaverine. During the wet granulation process, granules containing polyvinylpyrrolidone were characterized by a suitable flow properties and slightly prolonged disintegration time. Tablets containing Avicel PH 102 compared to tablets with Avicel PH 101 had less weight loss during the test of mechanical resistance, improved hardness and faster release profile of papaverine from tablets.

  7. 75 FR 58019 - Notice of Intent to Rule on Request to Release Airport Property at the Kearney Municipal Airport...

    Science.gov (United States)

    2010-09-23

    ... to Release Airport Property at the Kearney Municipal Airport, Kearney, NE AGENCY: Federal Aviation Administration, (FAA), DOT. ACTION: Notice of Request to Release Airport Property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  8. 75 FR 20879 - Notice of Intent To Rule on Request To Release Airport Property at the Eagle County Regional...

    Science.gov (United States)

    2010-04-21

    ... To Release Airport Property at the Eagle County Regional Airport, Eagle, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Request to Release Airport Property. SUMMARY: The FAA proposes to... provisions of section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  9. 76 FR 20071 - Notice of Intent To Rule on Request To Release Airport Property at the Burnet Municipal Airport...

    Science.gov (United States)

    2011-04-11

    ... To Release Airport Property at the Burnet Municipal Airport, Burnet, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Request To Release Airport Property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  10. 75 FR 76778 - Notice of Intent To Rule on Request To Release Airport Property at the Kearney Municipal Airport...

    Science.gov (United States)

    2010-12-09

    ... To Release Airport Property at the Kearney Municipal Airport, Kearney, NE AGENCY: Federal Aviation Administration, (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  11. Fabrication of ketoprofen controlled-release tablets using biopolymeric hydrophilic matrices: in-vitro studies

    International Nuclear Information System (INIS)

    Rashid, S.; Khan, B.A.; Khan, G.M.

    2017-01-01

    Ketoprofen is propionic acid derivative and belongs to the Non-Steroidal anti-inflammatory group of drugs. Due to the short half-life, dosage frequency, patient non-compliance and side effects such as gastrointestinal disturbance, peptic ulceration and gastro intest inal bleeding, it is considered to be good candidate for formulation into controlled release dosage forms. Directly compressed controlled released ( CR) tablets using Acrylic acid derivatives were prepared and evaluated. In-Vitro Physicochemical assessment of the formulated tablets were performed using different physicochemical, dimensional and quality control tests such as weight variation, thickness and diameter, hardness test, friability test, content uniformity, disintegration and dissolution testing. Results of all these tests were formed within acceptable range. The effect of carbomer polymers on the tablet characteristics, drug release rates, release patterns and release kinetics were investigated. The F2-metric technique was applied to compare dissolution profiles of ketoprofen and carbopol tablets with ketoprofen SR - tablets taken as standard preparation. Acrylic acid derivatives when used as polymers resulted in an extended release profile of about 12 h. Using Higuchi's model and the Korsmeyer equation, the drug release mechanism from the tablets was found to be an anomalous type involving diffusion and erosion. Controlled- release Ketoprofen tablets appear to be a good choice for the symptomatic treatment of rheumatoid arthritis and osteoarthritis. Convenient once-daily administration may help improve patient's compliance. (author)

  12. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs

    Directory of Open Access Journals (Sweden)

    Ortega Ryan A

    2011-02-01

    Full Text Available Abstract Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs that sense enzymatic activity for applications in magnetic resonance imaging (MRI. To achieve this goal, we utilize amphiphilic poly(propylene sulfide-bl-poly(ethylene glycol (PPS-b-PEG copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that

  13. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs).

    Science.gov (United States)

    Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D

    2011-02-27

    Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative

  14. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  15. Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology

    Directory of Open Access Journals (Sweden)

    Bingna Huang

    2018-02-01

    Full Text Available Pesticides are the basis for defending against major biological disasters and important for ensuring national food security. Biocompatible, biodegradable, intelligent, and responsive materials are currently an emerging area of interest in the field of efficient, safe, and green pesticide formulation. Using nanotechnology to design and prepare targeted pesticides with environmentally responsive controlled release via compound and chemical modifications has also shown great potential in creating novel formulations. In this review, special attention has been paid to intelligent pesticides with precise controlled release modes that can respond to micro-ecological environment changes such as light-sensitivity, thermo-sensitivity, humidity sensitivity, soil pH, and enzyme activity. Moreover, establishing intelligent and controlled pesticide release technologies using nanomaterials are reported. These technologies could increase pesticide-loading, improve the dispersibility and stability of active ingredients, and promote target ability.

  16. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jü rgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  17. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  18. Rectal absorption of morphine from controlled release suppositories

    NARCIS (Netherlands)

    Moolenaar, Frits; Meyler, Pim; Frijlink, Erik; Jauw, Tjoe Hang; Visser, Jan; Proost, Johannes

    1995-01-01

    The absorption profiles and bioavailability of morphine in human volunteers (n = 13) were described after oral administration of MS Contin tablets and rectal administration of a newly developed controlled release suppository. By manipulating the viscosity of fatty suppository base an entirely

  19. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    Science.gov (United States)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  1. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Chakkarapani, Prabu [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Subbiah, Latha, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Palanisamy, Selvamani; Bibiana, Arputha [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO{sub 3}-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO{sub 3}-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy.

  2. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions....... The proposed scheme adjusts the two loop gains in a DFIG controller depending on its rotor speed so that a DFIG operating at a higher rotor speed releases more KE. The performance of the proposed scheme was investigated under various wind conditions. The results clearly indicate that the proposed scheme...

  3. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The present status of rare gas release control

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1974-01-01

    Of the rare gases Ar, Kr and Xe released from nuclear facilities, the problem of release control can be confined to 41 Ar, 85 Kr and 133 Xe. The cases of the latter two are described, as 41 Ar is not much significant. 133 Xe, having relatively short half-life, can be dealt sufficiently by holding-up in case of light water reactors. 85 Kr of long half-life must be removed : the methods are low temperature adsorption, liquefaction distillation, absorption and diaphragm method. As for future problem, there is disposal of concentrated rare gas. (Mori, K.)

  5. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  6. Effects of Sediment Chemical Properties on Phosphorus Release Rates in the Sediment-Water Interface of the Steppe Wetlands

    Directory of Open Access Journals (Sweden)

    Jing He

    2017-11-01

    Full Text Available Rising temperature causes a process of phosphorus release, which can be characterized well using phosphorus release rates (VP. The objective of the present study was to investigate the major factors affecting sediment phosphorus release rates through a wetland habitat simulation experiment. The results showed that the VP of different wetland sediments were different and changed with the order of W–R (river wetland > W–L (lake wetland > W–M (grassy marsh wetland > W–A (reservoir wetland. The main driving factors which influenced sediment phosphorus flux velocity in the sediment–water interface were sediment B-SO42−, B-MBN and A-MBP content. Path analysis and determination coefficient analysis indicated the standard multiple regression equation for sediment phosphorus release rates in the sediment–water interface, and each main factor was Y = −0.105 + 0.096X1 + 0.275X2 − 0.010X3 (r = 0.416, p < 0.01, n = 144, where Y is sediment phosphorus release rates; X1 is sediment B-SO42− content; X2 is sediment B-MBN; and X3 is sediment A-MBP content. Sediment B-SO42−, B-MBN and A-MBP content and the interaction between them were the main factors affecting sediment phosphorus release rates in the sediment–water interface. Therefore, these results suggest that soil chemical properties and microbial activities likely play an important role in phosphorus release rates in the sediment–water interface. We hope to provide effective scientific management and control methods for relevant environmental protection departments.

  7. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Controlled release of tetracycline-HCl from halloysite-polymer composite films.

    Science.gov (United States)

    Ward, Christopher J; Song, Shang; Davis, Edward W

    2010-10-01

    The first direct comparison between two common methods for loading halloysite with a small molecule for controlled release is presented. While the methods differ in the degree of simplicity, they provide essentially the same level of loading and release kinetics. A tentative explanation of the "burst" effect often seen in the release of low molecular weight molecules from halloysite is provided. The ability of halloysite to mediate the release rate of a water soluble drug, tetracycline, from solution cast polyvinyl alcohol and polymethyl methacrylate films was evaluated. In some films, montmorillonite was also incorporated. The addition of montmorillonite to solutions used to cast tetracycline containing films significantly reduced the release rate from the dried films. The same overall effect was seen when the drug was loaded into halloysite prior to preparation of the films. In both cases, the release was best fit with the simple Higuchi model. However, when montmorillonite was added to solutions of polyvinyl alcohol and drug loaded halloysite the release profiles were better fit by the Ritgar-Peppas model for anomalous transport. Release from polymethyl methacrylate was reduced by a factor of three by incorporating the drug in halloysite prior to producing the films.

  9. Morphologic characterization and properties of a nanocomposite matrix of polyvinylpyrrolidone and sodium bentonite for hydrophilic drug controlled release

    International Nuclear Information System (INIS)

    Almeida, Dario B.R. de; Tavares, Maria I.B.; Iulianelli, Gisele C.V.

    2015-01-01

    For several years, research in drug formulation field have been focused in seeking systems that enable a more efficient release of drug and greater time of acting. Aiming to bring numerous benefits to the patient and advantages for the pharmaceutical industry. Leading to greater acceptance and use by society. In this study polymer nanocomposites based on PVP and bentonite clay will be obtained with the drug Metformin, a known hydrophilic hypoglycemiating drug, in order to improve its properties and pharmacokinetics. This mixture will be obtained through spray drying, especially suited for administration of tablets. The characteristics of these materials are being studied by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). (author)

  10. pH-controlled drug loading and release from biodegradable microcapsules.

    Science.gov (United States)

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  11. Effect of controlled release formulations of diuron and alachlor herbicides on the biochemical activity of agricultural soils.

    Science.gov (United States)

    Tejada, Manuel; Morillo, Esmeralda; Gómez, Isidoro; Madrid, Fernando; Undabeytia, Tomás

    2017-01-15

    The use of pesticides in agriculture is essential because it reduces the economic losses caused by pests, improving crop yields. In spite of the growing number of studies concerning the development and application of controlled release formulations (CRFs) of pesticides in agricultural soils, there are no studies about the effects of such formulations on the biochemical properties. In this paper the dissipation of diuron and alachlor in three agricultural soils for 127days, applied either as commercial or CRFs, was determined as well as their concomitant effects on soil biochemical properties. Dehydrogenase, urease, β-glucosidase and phosphatase activities were measured thought the experimental period. The application of alachlor as CRF increases its half-life time in soils, whereas no differences were noticed between diuron formulations due to its slower degradation, which takes longer than its release from the CRF. At the end of the incubation period, the enzymatic activities were the same after the use of diuron either as commercial or CRF, recovering the soil previous status. For alachlor formulations, no differences in enzymatic activities were again observed between both formulations, but their levels in soils were enhanced. Therefore, the use of these CRFs does not adversely affect the soil biochemical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 78 FR 32699 - Notice of Intent To Rule on Request to Release Airport Property at the Fort Worth Spinks Airport...

    Science.gov (United States)

    2013-05-31

    ... to Release Airport Property at the Fort Worth Spinks Airport, Fort Worth, Texas AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA... the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st...

  13. Controlled release of simvastatin from biomimetic β-TCP drug delivery system.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.

  14. Comparative In Vitro Controlled Release Studies on the Chronobiotic Hormone Melatonin from Cyclodextrins-Containing Matrices and Cyclodextrin: Melatonin Complexes.

    Science.gov (United States)

    Vlachou, Marilena; Papamichael, Marianna; Siamidi, Angeliki; Fragouli, Irene; Afroudakis, Pandelis A; Kompogennitaki, Rodanthi; Dotsikas, Yannis

    2017-07-28

    A series of hydrophilic matrix tablets was prepared and tested with respect to their ability to release the hormone melatonin in a controlled manner, in order to alleviate sleep onset and sleep maintenance dysfunctions. Besides the active ingredient, the tablets were comprised of combinations of the following: HPMC K 15M, low viscosity sodium alginate, microcrystalline cellulose (Avicel PH 102), magnesium stearate, and the cyclodextrins, α-CD, β-CD, γ-CD, HP-β-CD, sulfated β-CD, HP-α-CD and HP-γ-CD, and MLT (guest):CD (host) complexes of the above cyclodextrins, in 1:1 ratio. The controlled release studies were conducted in two aqueous dissolution media at pH 1.2 and 7.4. The stoichiometry of the formed complexes was examined by applying the continuous variation method (Job plot), while the stability constants were calculated by monitoring the spectrophotometric properties of free and CD-encapsulated melatonin (UV-Vis). Host-guest interactions were studied by Nuclear Magnetic Resonance (NMR) spectroscopy. The dissolution data suggest that melatonin is released faster from the MLT:CD complexes than from the rest matrix systems. This enhancement in the dissolution rate and the % release of melatonin from the complexes is due to the increased solubility of the MLT:CD complexes.

  15. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.

    Science.gov (United States)

    El-Aassar, M R; El Fawal, G F; Kamoun, Elbadawy A; Fouda, Moustafa M G

    2015-01-01

    In this work, hydrogel membrane composed of; kappa carrageenan (κC) and hyaluronic acid (HA) crosslinked with epichlorohydrine is produced. The optimum condition has been established based on their water absorption properties. Tensile strength (TS) and elongation (E%) for the formed films are evaluated. The obtained films were characterized by FTIR, scanning electron microscopy (SEM) and thermal analysis. All membranes were loaded with l-carnosine as a drug model. The swelling properties and kinetics of the release of the model drug from the crosslinked hydrogel membrane were monitored in buffer medium at 37°C. The equilibrium swelling of films showed fair dependency on the high presence of HA in the hydrogel. Moreover, the cumulative release profile increased significantly and ranged from 28% to 93%, as HA increases. SEM explored that, the porosity increased by increasing HA content; consequently, drug release into the pores and channels of the membranes is facilitated. In addition, water uptake % increased as well. A slight change in TS occurred by increasing the HA% to κC, while the highest value of strain for κC membrane was 498.38% by using 3% HA. The thermal stability of the κC/HA was higher than that of HA. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 75 FR 79079 - Notice of Intent to Rule on Request to Release Airport Property at New Century AirCenter, New...

    Science.gov (United States)

    2010-12-17

    ... to Release Airport Property at New Century AirCenter, New Century, Kansas AGENCY: Federal Aviation Administration, (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES...

  17. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies.

    Science.gov (United States)

    Tavakoli, Javad; Tang, Youhong

    2017-08-01

    Hydrogel/honey hybrids manifest an attractive design with an exclusive therapeutic property that promotes wound healing process. The greater the concentration of honey within the formulation, the better the biomedical properties that will be achieved. However, an increase in the percentage of honey can negatively affect the physico-chemical and mechanical properties of hybrid hydrogels. The need exists, therefore, to prepare wound dressings that contain high honey density with optimal biomedical, mechanical and physicochemical properties. In this study, a simple method for the preparation of a highly concentrated honey/PVA hybrid hydrogel with borax as the crosslinking agent is reported. Comprehensive evaluations of the morphology, swelling kinetics, permeability, bio-adhesion, mechanical characteristics, cytotoxicity, antibacterial property, cell proliferation ability and their controlling release properties were conducted as a function of crosslinking density. All the borax-induced hydrogels showed acceptable biocompatibility, and the incorporation of 1% borax in the hydrogel formulation produced optimal behaviours for wound addressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  19. Initial substrate moisture content and storage temperature affects chemical properties of bagged substrates containing controlled release fertilizer at two different temperatures

    Science.gov (United States)

    Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with controlled release fertilizers (CRF). The objective of this research was to observe how initial substrate moisture content and storage temperature affect the chemical p...

  20. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased.

    Science.gov (United States)

    Ikegawa, Yusuke; Himuro, Chihiro

    2017-05-21

    The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Physicochemical properties and drug release behavior of biguanidino and O-carboxymethyl chitosan microcapsules.

    Science.gov (United States)

    Huo, Weiqiang; Zhang, Weixin; Wang, Wei; Zhou, Xiaohua

    2014-09-01

    Two types of microcapsules (MCs) were prepared by the emulsion cross-linking method, where biguanidino chitosan (BGCS)and O-carboxymethyl chitosan (O-CMCS) served as the wall materials, and the antibacterial agent 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine (PyTNH) served as a model water-soluble drug. The physicochemical performance of the MCs and their drug release behavior were investigated by Fourier transform infrared spectroscopy, thermogravimetric analysis/derivative thermogravimetric analysis, scanning electron microscopy, and swelling and in vitro drug release studies of the two MCs with unmodified chitosan-MCs (CS-MCs) used as the control. The results indicated that the degree of cross-linking, encapsulation efficiency, and thermal stability of the shell wall of the BGCS-microcapsules (BGCS-MCs) were much higher than those of the control and the O-CMCS-microcapsules (CMCS-MCs), owing to the reduction of steric hindrance and development of the conjugation effect in the cross-linking process. Studies on the swelling and in vitro drug-release behavior revealed a sustained release effect of the BGCS-MCs. Moreover, the CMCS-MCs were found to exhibit a pH-dependent drug release behavior, which can be attributed to the successive formation of H-bonds and repulsive forces with the change in the pH of the medium. Based on these results, the swelling-release models and the drug release kinetics of BGCS-MCs and CMCS-MCs are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nanocomposites Based on PCL and Halloysite Nanotubes Filled with Lysozyme: Effect of Draw Ratio on the Physical Properties and Release Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Bugatti

    2017-08-01

    Full Text Available Halloysite nanotubes (HNTs were loaded with lsozyme, as antimicrobial molecule, at a HNTs/lysozyme ratio of 1:1. Such a nano-hybrid was incorporated into a poly (ε-caprolactone (PCL matrix at 10 wt % and films were obtained. The nano-composites were submitted to a cold drawn process at three different draw ratios, λ = 3, 4, and 5, where λ is l(final length/l0(initial length. Morphology, physical, and barrier properties of the starting nanocomposite and drawn samples were studied, and correlated to the release of the lysozyme molecule. It was demonstrated that with a simple mechanical treatment it is possible to obtain controlled release systems for specific active packaging requirements.

  3. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  4. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    Science.gov (United States)

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  5. Acoustically Triggered Disassembly of Multilayered Polyelectrolyte Thin Films through Gigahertz Resonators for Controlled Drug Release Applications

    Directory of Open Access Journals (Sweden)

    Zhixin Zhang

    2016-11-01

    Full Text Available Controlled drug release has a high priority for the development of modern medicine and biochemistry. To develop a versatile method for controlled release, a miniaturized acoustic gigahertz (GHz resonator is designed and fabricated which can transfer electric supply to mechanical vibrations. By contacting with liquid, the GHz resonator directly excites streaming flows and induces physical shear stress to tear the multilayered polyelectrolyte (PET thin films. Due to the ultra-high working frequency, the shear stress is greatly intensified, which results in a controlled disassembling of the PET thin films. This technique is demonstrated as an effective method to trigger and control the drug release. Both theory analysis and controlled release experiments prove the thin film destruction and the drug release.

  6. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    Science.gov (United States)

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    Science.gov (United States)

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Nanoscale architectural tuning of parylene patch devices to control therapeutic release rates

    International Nuclear Information System (INIS)

    Pierstorff, Erik; Lam, Robert; Ho, Dean

    2008-01-01

    The advent of therapeutic functionalized implant coatings has significantly impacted the medical device field by enabling prolonged device functionality for enhanced patient treatment. Incorporation of drug release from a stable, biocompatible surface is instrumental in decreasing systemic application of toxic therapeutics and increasing the lifespan of implants by the incorporation of antibiotics and anti-inflammatories. In this study, we have developed a parylene C-based device for controlled release of Doxorubicin, an anti-cancer chemotherapy and definitive read-out for preserved drug functionality, and further characterized the parylene deposition condition-dependent tunability of drug release. Drug release is controlled by the deposition of a layer of 20-200 nm thick parylene over the drug layer. This places a porous layer above the Doxorubicin, limiting drug elution based on drug accessibility to solvent and the solvent used. An increase in the thickness of the porous top layer prolongs the elution of active drug from the device from, in the conditions tested, the order of 10 min to the order of 2 d in water and from the order of 10 min to no elution in PBS. Thus, the controlled release of an anti-cancer therapeutic has been achieved via scalably fabricated, parylene C-encapsulated drug delivery devices.

  9. 75 FR 77939 - Notice of Intent To Release Certain Properties From Federal Obligations

    Science.gov (United States)

    2010-12-14

    ... on 23.45 acres at the Orlando International Airport, Orlando, FL from the conditions, reservations... the City of Orlando, dated September 28, 2000. The release of property will allow the Greater Orlando.... Documents reflecting the Sponsor's request are available, by appointment only, for inspection at the Orlando...

  10. Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-01-01

    The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.

  11. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    International Nuclear Information System (INIS)

    Zhao, Guili; Chen, Wei Ning

    2017-01-01

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  12. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guili [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Chen, Wei Ning, E-mail: WNChen@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2017-03-15

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  13. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    Science.gov (United States)

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  14. CONTROLLED-RELEASE OF PARACETAMOL FROM AMYLODEXTRIN TABLETS - IN-VITRO AND IN-VIVO RESULTS

    NARCIS (Netherlands)

    VANDERVEEN, J; EISSENS, AC; LERK, CF

    Amylodextrin is a suitable excipient for the design of solid controlled-release systems. The release of paracetamol from tablets containing 30% drug and 70% amylodextrin was studied in vitro and in vivo. In vitro dissolution profiles showed almost-constant drug release rates during 8 hr, when

  15. Characterization of a poly(ether urethane)-based controlled release membrane system for delivery of ketoprofen

    International Nuclear Information System (INIS)

    Macocinschi, Doina; Filip, Daniela; Vlad, Stelian; Oprea, Ana Maria; Gafitanu, Carmen Anatolia

    2012-01-01

    Highlights: ► Ketoprofen incorporation in poly(ether urethane) microporous membrane. ► Moisture sorption properties of as-cast membrane. ► Drug release mechanisms in function of pH and composition of membranes. - Abstract: A poly(ether urethane) based on polytetrahydrofuran containing hydroxypropyl cellulose for biomedical applications was tested for its biocompatibility. Ketoprofen was incorporated (3% and 6%) in the polyurethane matrix as an anti-inflammatory drug. Kinetic and drug release mechanisms were studied. The pore size and pore size distribution of the polyurethane membranes were investigated by scanning electron microscopy. Surface tension characteristics as well as moisture sorption properties such as diffusion coefficients and equilibrium moisture contents of the membrane material were studied. It was found that kinetics and release mechanisms are in function of medium pH, composition of polymer–drug system, pore morphology and pore size distribution. Prolonged nature of release of ketoprofen is assured by low amount of drug in polyurethane membrane and physiological pH.

  16. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  17. Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation

    Directory of Open Access Journals (Sweden)

    Lee JM

    2014-09-01

    Full Text Available Jongman Lee, Hui-suk YunPowder and Ceramics Division, Korea Institute of Materials Science, Changwon, Republic of KoreaAbstract: The functionality of porous three-dimensional (3D magnesium phosphate (MgP scaffold was investigated for the development of a novel protein delivery system and biomimetic bone tissue engineering scaffold. This enhancement can be achieved by incorporation of hydroxyapatite (HA-containing polymeric microspheres (MSs into a bulk MgP matrix, and a paste-extruding deposition (PED system. In this work, the amount of MS and HA was precisely controlled when manufacturing MS-embedded MgP (MS/MgP composite scaffolds. The main influence was researched in terms of in vitro lysozyme-release, in vitro biodegradation, mechanical properties, and in vitro calcification. The controlled release of lysozyme was indicated, while showing graded release patterns according to HA content. The composite scaffolds degraded gradually with MS content and degradation time. Due to the effect of HA inclusion, the higher HA-containing MS/MgP scaffolds could, not only delay the biodegradation process but also, compensate for the possible loss of mechanical properties. In this regard, it is reasonable to confirm the inverse relationship between biodegradation and corresponding compressive properties. In order to encourage bioactivity and osteoconductivity, the MS/MgP composite scaffolds were subjected to simulated body fluid treatment. Calcium deposition was, in turn, improved with increasing MS and HA content over time. This quantitative result was also proved using morphological and elemental analysis. In summary, a significant transformation of a monolithic MgP scaffold was directed toward a multifunctional bone tissue engineering scaffold equipped with controlled protein delivery, biodegradability, and bioactivity.Keywords: protein delivery, bone tissue engineering

  18. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams.

    Science.gov (United States)

    Zhao, Yanjun; Brown, Marc B; Jones, Stuart A

    2010-01-04

    Nanocarriers may act as useful tools to deliver therapeutic agents to the skin. However, balancing the drug-particle interactions; to ensure adequate drug loading, with the drug-vehicle interactions; to allow efficient drug release, presents a significant challenge using traditional semi-solid vehicles. The aim of this study was to determine how the physicochemical properties of nanoparticles influenced minoxidil release pre and post dose application when formulated as a simple aqueous suspension compared to dynamic hydrofluoroalkane (HFA) foams. Minoxidil loaded lipid nanoparticles (LN, 1.4 mg/ml, 50 nm) and polymeric nanoparticles with a lipid core (PN, 0.6 mg/ml, 260 nm) were produced and suspended in water to produce the aqueous suspensions. These aqueous suspensions were emulsified with HFA using pluronic surfactant to generate the foams. Approximately 60% of the minoxidil loaded into the PN and 80% of the minoxidil loaded into the LN was released into the external aqueous phase 24h after production. Drug permeation was superior from the PN, i.e. it was the particle that retained the most drugs, irrespective of the formulation method. Premature drug release, i.e. during storage, resulted in the performance of the topical formulation being dictated by the thermodynamic activity of the solubilised drug not the particle properties.

  19. 75 FR 77938 - Notice of Intent To Release Certain Properties From Federal Obligations

    Science.gov (United States)

    2010-12-14

    ....71 acres at the Orlando Executive Airport, Orlando, FL from the conditions, reservations, and restrictions as contained in a Quitclaim Deed agreement between the FAA and the City of Orlando, dated September 30, 1955. The release of property will allow the Greater Orlando Aviation Authority to dispose of...

  20. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    Science.gov (United States)

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  1. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  2. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    Science.gov (United States)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  3. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  4. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    Science.gov (United States)

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  5. Effects of process variables on micromeritic properties and drug release of non-degradable microparticles

    Directory of Open Access Journals (Sweden)

    Mitra Jelvehgari

    2011-06-01

    Full Text Available Introduction: The purpose of this investigation was to evaluate microencapsulated controlled release preparation of theophylline using Eudragit RS 100 as the retardant material with high entrapment efficiency. Methods: Microspheres were prepared by the emulsion-solvent evaporation method. A mixed solvent system consisting of methanol and acetone and light liquid paraffin as oily phase were chosen. Sucrose stearate was used as the surfactant to stabilize the emulsification process. The prepared microspheres were characterized by drug loading, Fourier-transform infrared spectroscopy (FTIR, differential scanning colorimetry (DSC and scanning electron microscopy (SEM. The in vitro release studies were performed at pH 1.2 and 7.4 aqueous medium. Results: Increasing the concentration of emulsifier, sucrose fatty acid ester F-70, decreased the particle size which contributed to increased drug release rate. The drug loading microparticle Eudragit RS100 (1:6 showed 60-75% of entrapment and mean particle size 205.93-352.76 µm. The results showed that, an increase in the ratio of polymer: drug (F5, 6: 1 resulted in a reduction in the release rate of the drug which may be attributed to the hydrophobic nature of the polymer. Conclusion: The release of theophylline is influenced by the drug to polymer ratio and particle size. Drug release is controlled by diffusion and the best-fit release kinetic is Higuchi model.

  6. Effects of process variables on micromeritic properties and drug release of non-degradable microparticles.

    Science.gov (United States)

    Jelvehgari, Mitra; Barar, Jaleh; Nokhodchi, Ali; Shadrou, Sanam; Valizadeh, Hadi

    2011-01-01

    The purpose of this investigation was to evaluate microencapsulated controlled release preparation of theophylline using Eudragit RS 100 as the retardant material with high entrapment efficiency. Microspheres were prepared by the emulsion-solvent evaporation method. A mixed solvent system consisting of methanol and acetone and light liquid paraffin as oily phase were chosen. Sucrose stearate was used as the surfactant to stabilize the emulsification process. The prepared microspheres were characterized by drug loading, Fourier-transform infrared spectroscopy (FTIR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in vitro release studies were performed at pH 1.2 and 7.4 aqueous medium. Increasing the concentration of emulsifier, sucrose fatty acid ester F-70, decreased the particle size which contributed to increased drug release rate. The drug loading microparticle Eudragit RS100(1:6) showed 60-75% of entrapment and mean particle size 205.93-352.76 μm.The results showed that, an increase in the ratio of polymer: drug (F5, 6: 1) resulted in a reduction in the release rate of the drug which may be attributed to the hydrophobic nature of the polymer. The release of theophylline is influenced by the drug to polymer ratio and particle size. Drug release is controlled by diffusion and the best-fit release kinetic is Higuchi model.

  7. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  8. Controlled Release of Lysozyme from Double-Walled Poly(Lactide-Co-Glycolide (PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Rezaul H. Ansary

    2017-10-01

    Full Text Available Double-walled microspheres based on poly(lactide-co-glycolide (PLGA are potential delivery systems for reducing a very high initial burst release of encapsulated protein and peptide drugs. In this study, double-walled microspheres made of glucose core, hydroxyl-terminated poly(lactide-co-glycolide (Glu-PLGA, and carboxyl-terminated PLGA were fabricated using a modified water-in-oil-in-oil-in-water (w1/o/o/w2 emulsion solvent evaporation technique for the controlled release of a model protein, lysozyme. Microspheres size, morphology, encapsulation efficiency, lysozyme in vitro release profiles, bioactivity, and structural integrity, were evaluated. Scanning electron microscopy (SEM images revealed that double-walled microspheres comprising of Glu-PLGA and PLGA with a mass ratio of 1:1 have a spherical shape and smooth surfaces. A statistically significant increase in the encapsulation efficiency (82.52% ± 3.28% was achieved when 1% (w/v polyvinyl alcohol (PVA and 2.5% (w/v trehalose were incorporated in the internal and external aqueous phase, respectively, during emulsification. Double-walled microspheres prepared together with excipients (PVA and trehalose showed a better control release of lysozyme. The released lysozyme was fully bioactive, and its structural integrity was slightly affected during microspheres fabrication and in vitro release studies. Therefore, double-walled microspheres made of Glu-PLGA and PLGA together with excipients (PVA and trehalose provide a controlled and sustained release for lysozyme.

  9. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Wang, Zhicheng; Nong, Jia; Nix, Camilla A; Zhong, Yinghui; Ji, Hai-Feng

    2015-01-01

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  10. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug.

    Science.gov (United States)

    Surwase, Sachin S; Munot, Neha M; Idage, Bhaskar B; Idage, Susheela B

    2017-06-01

    Gemcitabine is used as a first-line drug for treating many solid tumours. However, it suffers from a major drawback of strong side effects and short plasma half-life because of degradation by enzyme when administered intravenously. Polyesters and copolyesters are the most widely used and preferred class of biodegradable polymer. In the present work, efforts have been made to prepare poly(ethylene glycol) monomethoxy ether-poly(L-lactide) (mPEG-PLLA), a biodegradable amphiphilic copolymer with a view to improve the entrapment and tuned release of hydrophilic drug gemcitabine. The different mPEG-PLLA copolymers were synthesized with the varying ratios of mPEG and characterized by different techniques namely FTIR and 1 H NMR spectroscopy, solution viscosity, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). Gemcitabine-loaded nanoparticles were prepared using mPEG-PLLA copolymers by two methods i.e. nanoprecipitation and double emulsion solvent evaporation. The nanoprecipitation method showed very less entrapment and polymer solubility in the acetone-water mixture leading to uncontrolled polymer precipitation. The difficulties encountered in the nanoprecipitation method were overcome with the help of the double emulsion (w/o/w) solvent evaporation technique. It has been observed from the results that biodegradable copolymer nanoparticles protect the drug from degradation and also help in controlling the release of encapsulated drug. The properties of nanoparticles can be tailored by varying the composition of mPEG in order to get improved entrapment efficiency and desired drug release. The nanoparticles were assessed for their in vitro cytotoxicity (MTT and FACS) and cellular uptake (fluorescence microscopy) study which showed very promising results. Nanoparticles were also studied for their in vivo release after intravenous administration to Wistar albino rats, which successfully showed controlled drug release for more than 14 days.

  11. Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses.

    Science.gov (United States)

    Cabezas, Carolina; Buño, Washington

    2006-05-01

    Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these differences. We have investigated the transmitter release properties of functional and silent Schaffer collateral synapses and show that on the average functional synapses displayed a lower percentage of failures and higher excitatory postsynaptic current (EPSC) amplitudes than silent synapses at +60 mV. Moreover, functional but not silent synapses show paired-pulse facilitation (PPF) at +60 mV and thus presynaptic short-term plasticity will be distinct in the two types of synapse. We examined whether intraterminal endoplasmic reticulum Ca2+ stores influenced the release properties of these synapses. Ryanodine (100 microM) and thapsigargin (1 microM) increased the percentage of failures and decreased both the EPSC amplitude and PPF in functional synapses. Caffeine (10 mM) had the opposite effects. In contrast, silent synapses were insensitive to both ryanodine and caffeine. Hence we have identified differences in the release properties of functional and silent synapses, suggesting that synaptic terminals of functional synapses express regulatory molecular mechanisms that are absent in silent synapses.

  12. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins.

    Science.gov (United States)

    Drapala, Pawel W; Jiang, Bin; Chiu, Yu-Chieh; Mieler, William F; Brey, Eric M; Kang-Mieler, Jennifer J; Pérez-Luna, Victor H

    2014-03-01

    To control degradation and protein release using thermo-responsive hydrogels for localized delivery of anti-angiogenic proteins. Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and crosslinked with poly(ethylene glycol)-co-(L-lactic acid) diacrylate (Acry-PLLA-b-PEG-b-PLLA-Acry) were synthesized via free radical polymerization in the presence of glutathione, a chain transfer agent (CTA) added to modulate their degradation and release properties. Immunoglobulin G (IgG) and the recombinant proteins Avastin® and Lucentis® were encapsulated in these hydrogels and their release was studied. The encapsulation efficiency of IgG was high (75-87%) and decreased with CTA concentration. The transition temperature of these hydrogels was below physiological temperature, which is important for minimally invasive therapies involving these materials. The toxicity from unreacted monomers and free radical initiators was eliminated with a minimum of three buffer extractions. Addition of CTA accelerated degradation and resulted in complete protein release. Glutathione caused the degradation products to become solubilized even at 37°C. Hydrogels prepared without glutathione did not disintegrate nor released protein completely after 3 weeks at 37°C. PEGylation of IgG postponed the burst release effect. Avastin® and Lucentis® released from degraded hydrogels retained their biological activity. These systems offer a promising platform for the localized delivery of proteins.

  13. Control of drug releasing from biodegradable polymer drug delivery system by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo

    1999-01-01

    In order to introduce the drug to the target organ, we developed a gel to control the drug releasing velocity by response to change of temperature by means of γ-ray irradiation to gelatin-GMA modified dextran mixture aqueous solution. A certain level of molecular weight of drug is necessary. The response to the temperature (change of drug releasing velocity) was affected by the concentration of gelatin and the modification rate of GMA. The Higuchi equation was applied to the releasing of β-galactosidase from gelatin-dextran gel and the releasing velocity was calculated. The releasing velocity decreased with increasing GMA modification rate at 37degC and 15degC. The releasing velocity of β-galactosidase decreased with increasing the concentration of gelatin at 15degC, but the velocity increased with increasing the concentration at 37degC. These results indicated that the good drug releasing conditions are obtained by controlling the GMA modification rate and the concentration of gelatin. (S.Y.)

  14. 77 FR 12837 - Notice of Release of the Exposure Draft, Accounting for Impairment of General Property, Plant...

    Science.gov (United States)

    2012-03-02

    ... FEDERAL ACCOUNTING STANDARDS ADVISORY BOARD Notice of Release of the Exposure Draft, Accounting for Impairment of General Property, Plant, and Equipment Remaining in Use AGENCY: Federal Accounting... Exposure Draft, Accounting for Impairment of General Property, Plant, and Equipment Remaining in Use. The...

  15. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  16. A sequential vesicle pool model with a single release sensor and a ca(2+)-dependent priming catalyst effectively explains ca(2+)-dependent properties of neurosecretion

    DEFF Research Database (Denmark)

    Walter, Alexander M; da Silva Pinheiro, Paulo César; Verhage, Matthijs

    2013-01-01

    identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1...... the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+)-dependent fusion from the NRP. We conclude...... that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent properties of secretion without assuming parallel pools or sensors....

  17. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.

    Science.gov (United States)

    Zhang, Jiaxiang; Feng, Xin; Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2017-03-15

    The main objective of this work was to explore the potential of coupling fused deposition modeling in three-dimensional (3D) printing with hot-melt extrusion (HME) technology to facilitate additive manufacturing, in order to fabricate tablets with enhanced extended release properties. Acetaminophen was used as the model drug and different grades and ratios of polymers were used to formulate tablets. Three-point bending and hardness tests were performed to determine the mechanical properties of the filaments and tablets. 3D-printed tablets, directly compressed mill-extruded tablets, and tablets prepared from a physical mixture were evaluated for drug release rates using a USP-II dissolution apparatus. The surface and cross-sectional morphology of the 3D-printed tablets were assessed by scanning electron microscopy. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the crystal states and thermal properties of materials, respectively. The 3D-printed tablets had smooth surfaces and tight structures; therefore, they showed better extended drug release rates than the directly compressed tablets did. Further, this study clearly demonstrated the feasibility of coupling HME with 3D printing technology, which allows for the formulation of drug delivery systems using different grades and ratios of pharmaceutical polymers. In addition, formulations can be made based on the personal needs of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Experiment of Carbofuran Controlled Release Formulation Insecticide Application on Rice Plants

    International Nuclear Information System (INIS)

    Sulistyati, M.; Ulfa TS; Sofnie M Ch; Kuswadi AN

    2004-01-01

    Field test of carbofuran insecticide (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methylcarbamate) controlled release formulation on rice plants of IR-64 variety was carried out in Pusakanegara, West Java. This insecticide formulation was made by using the mixture of activated charcoal, tapioca, kaolin, Na-alginate as a filler matrix. Insecticide formulation was applied one week after transplanting. The observations were conducted on the number of tillers, damage level caused by Orseolia oryzae (Wood/Mason), Chilo suppressalis (Walker), and Cnaphalocrosis medinalis (Guen) on new young plants. The observation were carried out on three weeks after application of carbofuran insecticide formulation then every two weeks until harvest. The number of tillers were occurred at the treatments of controlled release formulation of 20kg/ha, 30kg/ha, and 40kg/ha dose rate on the third weeks, it was showed significant difference compared with commercial carbofuran, and the following weeks were no significant difference between the treatments. The attack of Orseolia oryzae was occurred at the treatments of controlled release formulation with dose rate of 30 kg/ha and 40 kg/ha on the seventh weeks, ninth weeks, and eleventh weeks, those attacks were significantly difference found compared with commercial carbofuran. The attack of Chilo suppressalis was occurred at the treatments of controlled release formulation of 40kg/ha dose rate on the fifth weeks, it was showed significant difference which was compared to untreated carbofuran. The attack of Cnaphalocrosis medinalis was occurred on the ninth weeks, three dose rate of controlled released formulation were showed significant differences which compared with commercial carbofuran and were showed 50% less than commercial carbofuran, while the grains dry weight were no significant difference between the treatments. (author)

  19. Chitosan/alginate based multilayers to control drug release fromophthalmic lens

    OpenAIRE

    Silva, Diana; Pinto, Luís F. V.; Bozukova, Dimitriya; Santos, Luís F.; Serro, Ana Paula; Saramago, Benilde

    2016-01-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (algin...

  20. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  1. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    Science.gov (United States)

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    swelling and erosion within this matrix at lower fat-wax level which is also supported by release exponent values and Fickian fraction release against time profile of this agent. The results generated in this study showed that proper selection of these hydrophobic materials based on their physico-chemical properties is important in designing wax matrix tablets with desired dissolution profile.

  2. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation

    International Nuclear Information System (INIS)

    Elbarbary, Ahmed M.; Ghobashy, Mohamed Mohamady

    2017-01-01

    Superabsorbent hydrogels (PVP/CMC) based on polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose (CMC) of different copolymer compositions were prepared by gamma radiation. Factors affecting the gel content (%) and the swelling ratio (g/g) of hydrogel such as irradiation dose as well as copolymer composition were investigated. With increasing the CMC content in PVP/CMC hydrogels, increases the swelling and improves the water retention capability. The high swelling ratio was observed at copolymer composition of PVP/CMC (60/40). Fast swelling of the hydrogels was obtained after 20 min. The effect of different fertilizers and buffers of different pH's on equilibrium swelling of hydrogels was investigated. Fertilizers such as urea, monopotassium-phosphate (MPK), and nitrogen-phosphate-potassium (NPK) were loaded onto the hydrogel to supply nitrogen, potassium and phosphorous nutrients. PVP/CMC hydrogels retained 28-36% after 72 h and slow retention was noticed up to 9 days. The swelling of hydrogel in fertilizer solutions is lower than that in water. The hydrogels showed adsorption desorption of fertilizers which governs by slow release property. The release rate of urea is much higher 10 times than that of phosphate. After 3 days, urea released 60%, while phosphate released 10-12%. The applicability of PVP/CMC hydrogels in the agricultural fields shows greater growth effect on zea maize plants. The growth of zea maize plant in soil mixed with PVP/CMC hydrogels loaded fertilizers is greater than untreated soil. The slow release fertilize, the high swelling and the slow water retention behaviors of PVP/CMC hydrogels encourage their use as safer release systems for fertilizers and as soil conditioner in agricultural applications.

  3. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Elbarbary, Ahmed M.; Ghobashy, Mohamed Mohamady [Atomic Energy Authority, Nasr City (Egypt). National Center for Radiation Research and Technology (NCRTT)

    2017-07-01

    Superabsorbent hydrogels (PVP/CMC) based on polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose (CMC) of different copolymer compositions were prepared by gamma radiation. Factors affecting the gel content (%) and the swelling ratio (g/g) of hydrogel such as irradiation dose as well as copolymer composition were investigated. With increasing the CMC content in PVP/CMC hydrogels, increases the swelling and improves the water retention capability. The high swelling ratio was observed at copolymer composition of PVP/CMC (60/40). Fast swelling of the hydrogels was obtained after 20 min. The effect of different fertilizers and buffers of different pH's on equilibrium swelling of hydrogels was investigated. Fertilizers such as urea, monopotassium-phosphate (MPK), and nitrogen-phosphate-potassium (NPK) were loaded onto the hydrogel to supply nitrogen, potassium and phosphorous nutrients. PVP/CMC hydrogels retained 28-36% after 72 h and slow retention was noticed up to 9 days. The swelling of hydrogel in fertilizer solutions is lower than that in water. The hydrogels showed adsorption desorption of fertilizers which governs by slow release property. The release rate of urea is much higher 10 times than that of phosphate. After 3 days, urea released 60%, while phosphate released 10-12%. The applicability of PVP/CMC hydrogels in the agricultural fields shows greater growth effect on zea maize plants. The growth of zea maize plant in soil mixed with PVP/CMC hydrogels loaded fertilizers is greater than untreated soil. The slow release fertilize, the high swelling and the slow water retention behaviors of PVP/CMC hydrogels encourage their use as safer release systems for fertilizers and as soil conditioner in agricultural applications.

  4. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.

    Science.gov (United States)

    Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik

    2015-07-15

    The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Experimental Physics and Industrial Control System (EPICS): Application source/release control for EPICS R3.11.6

    International Nuclear Information System (INIS)

    Zieman, B.; Kraimer, M.

    1994-01-01

    This manual describes a set of tools that can be used to develop software for EPICS based control systems. It provides the following features: Multiple applications; the entire system is composed of an arbitrary number of applications: Source/Release Control; all files created or modified by the applications developers can be put under sccs (a UNIX Source/Release control utility): Multiple Developers; it allows a number of applications developers to work separately during the development phase but combine their applications for system testing and for a production system; Makefiles: makefiles are provided to automatically rebuild various application components. For C and state notation programs, Imagefiles are provided

  6. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  7. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    International Nuclear Information System (INIS)

    Li Fengxia; Li Xiaoli; Li Bin

    2011-01-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3 O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  8. 77 FR 30047 - Notice of Opportunity for Public Comment on Surplus Property Release at Michael J Smith Field...

    Science.gov (United States)

    2012-05-21

    ... Comment on Surplus Property Release at Michael J Smith Field, Beaufort, NC AGENCY: Federal Aviation... J Smith Field, be used for aeronautical purposes. DATES: Comments must be received on or before June... property at the Michael J Smith Field. The property consists of one parcel located on the north side of...

  9. Release from control of inactive material from decommissioning the ASTRA research reactor

    International Nuclear Information System (INIS)

    Brandl, A.; Hrnecek, E.; Steger, F.; Kurz, H.; Meyer, F.; Karacson, P.

    2003-01-01

    The Austrian Research Centers Seibersdorf have been operating a 10 MW ASTRA research reactor from 1960 until 1999. After that date, a submission of the intention to decommission the reactor has been provided to the Competent Authorities. After completion of an Environmental Impact Study by the Competent Authorities and modification of the Permissions for Site Use, the reactor finally entered the decommissioning phase in 2003. Inactive materials from the decommissioning site are expected to be released from control. The procedure for such a release from control agreed upon between the Competent Authorities and ARC Seibersdorf involves a four-step measurement, verification, and certification process detailed in this paper. By September 2003, this four-step procedure has been completed for 16500 kg of steel re-enforced concrete and for 5500 kg of other materials; the release from control of 3000 kg of paraffin and 10000 kg of graphite from the thermal column are planned for the near future. (author)

  10. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions.

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Zhang, Shuyuan; Guo, Sai; Lin, Junjie; Lin, Jinxin

    2015-03-01

    In the study, the microstructure, mechanical property and metal release behavior of selective laser melted CoCrW alloys under different solution treatment conditions were systemically investigated to assess their potential use in orthopedic implants. The effects of the solution treatment on the microstructure, mechanical properties and metal release were systematically studied by OM, SEM, XRD, tensile test, and ICP-AES, respectively. The XRD indicated that during the solution treatment the alloy underwent the transformation of γ-fcc to ε-hcp phase; the ε-hcp phase nearly dominated in the alloy when treated at 1200°C following the water quenching; the results from OM, SEM showed that the microstructural change was occurred under different solution treatments; solution at 1150°C with furnace cooling contributed to the formation of larger precipitates at the grain boundary regions, while the size and number of the precipitates was decreased as heated above 1100°C with the water quenching; moreover, the diamond-like structure was invisible at higher solution temperature over 1150°C following water quenching; compared with the furnace cooling, the alloy quenched by water showed excellent mechanical properties and low amount of metal release; as the alloy heated at 1200°C, the mechanical properties of the alloy reached their optimum combination at UTS=1113.6MPa, 0.2%YS=639.5MPa, and E%=20.1%, whilst showed the lower total quantity of metal release. It is suggested that a proper solution treatment is an efficient strategy for improving the mechanical properties and corrosion resistance of As-SLM CoCrW alloy that show acceptable tensile ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent

    Directory of Open Access Journals (Sweden)

    Hussein MZ

    2011-07-01

    Full Text Available Mohd Zobir Hussein1,2, Samer Hasan Al Ali2, Zulkarnain Zainal2, Muhammad Nazrul Hakim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, 2Department of Chemistry, Faculty of Science, 3Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: An ellagic acid (EA–zinc layered hydroxide (ZLH nanohybrid (EAN was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8′ position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host–guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.Keywords: ellagic acid, nonaqueous solution, ZnO, zinc-layered hydroxide, viability test

  12. Formulation and in-vitro evaluation of directly compressed controlled release matrices of Losartan Potassium using Ethocel Grade 100 as rate retarding agent.

    Science.gov (United States)

    Khan, Kamran Ahmad; Khan, Gul Majid; Zeeshan Danish, Muhammad; Akhlaq; Khan, Haroon; Rehman, Fazal; Mehsud, Saifullah

    2015-12-30

    Current study was aimed to develop 200mg controlled release matrix tablets of Losartan Potassium using Ethocel 100 Premium and Ethocel 100 FP Premium as rate controlling polymer. In-vitro studies were performed according to USP Method-I in phosphate buffer (PH 6.8) using pharma test dissolution apparatus. The temperature of the dissolution medium was kept constant at 37±0.5°C at 100rpm. Flow properties, physical quality control tests, effect of polymer size and drug-to-polymers ratios were studied using different kinetics models such as 1st-order, zero-order, Hixon Crowell model, Highuchi model and Power law. Difference factor f1 and similarity factor f2 were applied for dissolution profiles against Cardaktin® tablets used as a reference formulation. The matrices with polymer ethocel 100 FP Premiums have prolonged the drug release rate as compared to polymer ethocel 100 Premiums. The n values matrices with polymer ethocel grade 100 ranged from 0.603 to 0.857 indicating that the drug release occurred by anomalous non fickian diffusion kinetics while then value of reference Cardaktin® tablet was measured as 0.125 indicating that these tablets do not follow power law. The dissolution profiles of test formulations were different than that of reference Cardaktin®. This suggests the polymer Ethocel grade 100 can be proficiently incorporated in fabrication and development of once a day controlled release matrix tablets. Copyright © 2015. Published by Elsevier B.V.

  13. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    Science.gov (United States)

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Directory of Open Access Journals (Sweden)

    Stephen Majoni

    2014-01-01

    Full Text Available Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs and hydroxy double salts (HDSs can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.

  15. Using polymer-coated controlled-release fertilizers in the nursery and after outplanting

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese

    2009-01-01

    Controlled-release fertilizers (CRF) are the newest and most technically advanced way of supplying mineral nutrients to nursery crops. Compared to conventional fertilizers, their gradual pattern of nutrient release better meets plant needs, minimizes leaching, and therefore improves fertilizer use efficiency. In our review of the literature, we found many terms used...

  16. Newly developed controlled release subcutaneous formulation for tramadol hydrochloride

    Directory of Open Access Journals (Sweden)

    Mostafa Mabrouk

    2018-05-01

    Full Text Available This study presents a drug delivery system of poly (Ɛ-caprolactone (PCL ribbons to optimize the pharmaceutical action of tramadol for the first time according to our knowledge. PCL ribbons were fabricated and loaded with tramadol HCl. Ribbons were prepared by slip casting technique and coated with dipping technique with β-cyclodextrin. The chemical integrity and surface morphology of the ribbons were confirmed using FTIR and SEM coupled with EDX. In addition, thermodynamic behavior of the fabricated ribbons was investigated using DSC/TGA. Tramadol loading into PCL ribbons, biodegradation of ribbons and tramadol release kinetics were studied in PBS.The results revealed that the formulated composition did not affect the chemical integrity of the drug. Furthermore, SEM/EDX confirmed the inclusion of tramadol into the PCL matrix in homogenous distribution pattern without any observation of porous structure. The particle size of loaded tramadol was found to be in the range of (2–4 nm. The formulated composition did not affect the chemical integrity of the drug and should be further investigated for bioavailability. Tramadol exhibited controlled release behavior from PCL ribbons up to 45 days governed mainly by diffusion mechanism. The fabricated ribbons have a great potentiality to be implemented in the long term subcutaneous delivery of tramadol. Keywords: Tramadol, Polycaprolcatone, Subcutaneous membrane, Ribbons, β-Cyclodextrin, Controlled release

  17. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    Science.gov (United States)

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  18. Tunable controlled release of molecular species from Halloysite nanotubes

    Science.gov (United States)

    Elumalai, Divya Narayan

    Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, drugs, or proteins, allowing for a sustained release of these agents for hours. The release times can be further tuned for days and months by the addition of tube end-stoppers. In this work a three-dimensional, time-quantified Monte Carlo model that efficiently describes diffusion through and from nanotubes is implemented. Controlled delivery from Halloysite Nanotubes (HNT) is modeled based on interactions between the HNT's inner wall and the nanoparticles (NP) and among NPs themselves. The model was validated using experimental data published in the literature. The validated model is then used to study the effect of multiple parameters like HNT diameter and length, particle charge, ambient temperature and the creation of smart caps at the tube ends on the release of encapsulated NPs. The results show that release profiles depend on the size distribution of the HNT batch used for the experiment, as delivery is sensitive to HNT lumen and length. The effect of the addition of end-caps to the HNTs, on the rate of release of encapsulated NPs is also studied here. The results show that the release profiles are significantly affected by the addition of end caps to the HNTs and is sensitive to the end-cap pore lumen. A very good agreement with the experiment is observed when a weight

  19. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    Science.gov (United States)

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dual turn-on fluorescence signal-based controlled release system for real-time monitoring of drug release dynamics in living cells and tumor tissues.

    Science.gov (United States)

    Kong, Xiuqi; Dong, Baoli; Song, Xuezhen; Wang, Chao; Zhang, Nan; Lin, Weiying

    2018-01-01

    Controlled release systems with capabilities for direct and real-time monitoring of the release and dynamics of drugs in living systems are of great value for cancer chemotherapy. Herein, we describe a novel dual turn-on fluorescence signal-based controlled release system ( CDox ), in which the chemotherapy drug doxorubicin ( Dox ) and the fluorescent dye ( CH ) are conjugated by a hydrazone moiety, a pH-responsive cleavable linker. CDox itself shows nearly no fluorescence as the fluorescence of CH and Dox is essentially quenched by the C=N isomerization and N-N free rotation. However, when activated under acidic conditions, CDox could be hydrolyzed to afford Dox and CH , resulting in dual turn-on signals with emission peaks at 595 nm and 488 nm, respectively. Notably, CDox exhibits a desirable controlled release feature as the hydrolysis rate is limited by the steric hindrance effect from both the Dox and CH moieties. Cytotoxicity assays indicate that CDox shows much lower cytotoxicity relative to Dox , and displays higher cell inhibition rate to cancer than normal cells. With the aid of the dual turn-on fluorescence at different wavelengths, the drug release dynamics of CDox in living HepG2 and 4T-1 cells was monitored in double channels in a real-time fashion. Importantly, two-photon fluorescence imaging of CDox in living tumor tissues was also successfully performed by high-definition 3D imaging. We expect that the unique controlled release system illustrated herein could provide a powerful means to investigate modes of action of drugs, which is critical for development of much more robust and effective chemotherapy drugs.

  1. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  2. Methodology for performing measurements to release material from radiological control

    International Nuclear Information System (INIS)

    Durham, J.S.; Gardner, D.L.

    1993-09-01

    This report describes the existing and proposed methodologies for performing measurements of contamination prior to releasing material for uncontrolled use at the Hanford Site. The technical basis for the proposed methodology, a modification to the existing contamination survey protocol, is also described. The modified methodology, which includes a large-area swipe followed by a statistical survey, can be used to survey material that is unlikely to be contaminated for release to controlled and uncontrolled areas. The material evaluation procedure that is used to determine the likelihood of contamination is also described

  3. On–off switch-controlled doxorubicin release from thermo- and pH-responsive coated bimagnetic nanocarriers

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, Mohaned; Nica, Valentin; Hempelmann, Rolf, E-mail: r.hempelmann@mx.uni-saarland.de [Saarland University, Department of Physical Chemistry (Germany)

    2016-08-15

    A switch-controlled drug release system is designed by coating of core/shell bimagnetic nanoparticles with a pH- and thermo-responsive polymer shell, which can be used as hyperthermic agent, drug carrier, and for controlled release. Doxorubicin is loaded onto the surface of the last coating layer, and a high loading efficiency of 90.5 % is obtained. The nanocarriers are characterized by FTIR, dynamic light scattering, Zeta potential, TEM, In vitro hyperthermia, and vibrating sample magnetometry. The core/shell magnetic nanoparticles (Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4}) exhibit a superparamagnetic behavior with a saturation magnetization around 45.6 emu/g and a high specific absorption rate of up to 360 W/g. The in vitro drug release experiments confirm that only a small amount of doxorubicin is released at body temperature and physiological pH, whereas a high drug release is obtained at acidic tumor pH under hyperthermia conditions (43 °C). The functionalized core/shell bimagnetic nanocarriers facilitate controllable release of doxorubicin as an effect of induced thermo- and pH-responsiveness of the polymer when are subjected to a high-frequency alternating magnetic field at acidic pH; thereby the drug release rate is controlled using on–off cycles of the applied field.Graphical Abstract.

  4. Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability

    KAUST Repository

    Nappini, Silvia; Bonini, Massimo; Bombelli, Francesca Baldelli; Pineider, Francesco; Sangregorio, Claudio; Baglioni, Piero; Nordè n, Bengt

    2011-01-01

    The paper describes the effect of a low-frequency alternating magnetic field (LF-AMF) on the permeability and release properties of large (LUVs) and giant (GUVs) unilamellar vesicles loaded with citrate coated cobalt ferrite nanoparticles (NPs). The citrate shell allows a high loading of NPs in lipid vesicles without modifying their magnetic properties. The increase of magnetic LUVs permeability upon exposure to LF-AMF has been evaluated as the fluorescence self-quenching of carboxyfluorescein (CF) entrapped inside the liposome aqueous pool. Liposome leakage has been monitored as a function of field frequency, time exposure and concentration of the citrate coated NPs. Confocal Laser Scanning Microscopy (CLSM) experiments performed on magnetic GUVs labeled with the fluorescent probe DiIC18 and loaded with Alexa 488-C5-maleimide fluorescent dye provided insights on the release mechanism induced by LF-AMF. The results show that LF-AMF strongly affects vesicles permeability, suggesting the formation of pores in the lipid bilayer due to both hyperthermic effects and nanoparticle oscillations in the vesicles pool at the applied frequency. The behaviour of these magnetic vesicles in the presence of LF-AMF makes this system a good candidate for controlled drug delivery. © 2011 The Royal Society of Chemistry.

  5. The Physico-Mechanical Properties and Release Kinetics of Eugenol in Chitosan-Alginate Polyelectrolyte Complex Films as Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Baiq Amelia Riyandari

    2018-02-01

    Full Text Available A study of eugenol release and its kinetics model from chitosan-alginate polyelectrolyte complex (PEC films has been conducted. Some factors that affected the eugenol release were also studied, including the composition of chitosan-alginate PEC and the concentration of eugenol. The chitosan-alginate-eugenol PEC films were synthesized at pH ± 4.0, then the PEC films were characterized using a Fourier-transform infrared spectroscopy (FTIR spectrophotometer. An investigation of the films’ properties was also conducted, including morphology analysis using a scanning electron microscope (SEM, differential thermal analysis (DTA / thermogravimetric analysis (TGA, mechanical strength, transparency testing, water absorption, and water vapor permeability. The release of eugenol was investigated through in vitro assay in ethanol 96% (v/v for four days, and the concentration of eugenol was measured using an ultraviolet-visible (UV-Vis spectrophotometer. The characterization of the films using FTIR showed that the formation of PEC occurred through ionic interaction between the amine groups (–NH3+of the chitosan and the carboxylate groups (–COO– of the alginate. The result showed that the composition of chitosan-alginate PEC and the concentration of eugenol can affect the release of eugenol from PEC films. A higher concentration of alginate and eugenol could increase the concentration of eugenol that was released from the films. The mechanism for the release of eugenol from chitosan-alginate PEC films followed the Korsmeyer-Peppas model with an n value of < 0.5, which means the release mechanism for eugenol was controlled by a Fickian diffusion process. The antioxidant activity assay of the films using the 2,2-diphenyl-1-picrylhydrazyl (DPPH method resulted in a high radical scavenging activity (RSA value of 55.99% in four days.

  6. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    Science.gov (United States)

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  7. Doses of controlled-release fertilizer for production of rubber tree rootstocks

    Directory of Open Access Journals (Sweden)

    Renato Luis Grisi Macedo

    2012-06-01

    Full Text Available This experimental study aimed to evaluate the effects of doses of controlled-release fertilizer (ALL on the development of rubber tree rootstocks. The fertilizer used was Osmocote®, scheduled to be released for 8-9 months and with the following composition: N (15%, P2O5 (9%, K2O (12%, Mg (1%, S (2.3%, B (0.02%, Cu (0.05%, Fe (1%, Mn (0.06%, Mo (0.02% and Zn (0.05%. A randomized block design was used, with four treatments and eight replicates of 20 plants per plot. The controlled-release fertilizer was added to Rendimax Floreira® substrate at doses of 0, 3, 6 and 9 g per liter, and rootstocks were produced in plastic containers with a capacity of two liters of substrate. Three seeds of clone GT 1 were scattered in each container and thinning was performed on day 60, leaving the most vigorous plant only. After the fourth leaf shot from each rootstock, the containers of each treatment were topped, due to compaction, with 300 mL of the relevant fertilizer and substrate mixture. The rootstocks were evaluated at eight months of age as to height, stem diameter (DC 5 cm above root collar, total dry matter, shoot and root dry matter, leaf nutrient levels and percentage of plants suitable for grafting (DC≥1.0 cm. Results revealed that adequate development and nutrition of rootstocks was achieved by using 6 g of controlled-release fertilizer per liter of substrate.

  8. Simulation and parametric study of a film-coated controlled-release pharmaceutical.

    Science.gov (United States)

    Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders

    2002-04-23

    Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.

  9. 75 FR 41922 - Notice of Intent To Rule on Request To Release Airport Property at Fort Smith Regional Airport...

    Science.gov (United States)

    2010-07-19

    ... To Release Airport Property at Fort Smith Regional Airport, Fort Smith, AR AGENCY: Federal Aviation... rule and invites public comment on the release of land at Fort Smith Regional Airport under the.... John Parker, Airport Director, Fort Smith Regional Airport, at the following address: Fort Smith...

  10. Modelling approach for biological control of insect pest by releasing infected pest

    International Nuclear Information System (INIS)

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  11. Studies for improvement of regulatory control on the radioactive effluent released from nuclear facilities

    International Nuclear Information System (INIS)

    Cheong, Jae Hak; Park, H. M.; Song, M. C.; Lee, K. H.; Jang, J. K.; Chun, J. K.; Jeong, K. H.

    2005-05-01

    This report contains the second-year results of the research project titled 'Studies for Improvement of Regulatory Control on the Radioactive Effluent Released from Nuclear Facilities' and mainly provides technical and strategic approaches to improve performance of regulatory control on the gaseous effluent released from domestic nuclear facilities. The main result contained here includes overview and technical bases of radioactive gaseous effluent control (Chapter 1), reconsideration of the sensitivity requirements for measurement of radioactivity in gaseous effluent sample (Chapter 2), uncertainty analysis of the calculated radioactivity in gaseous effluent (Chapter 3), and improvement of quantification method of noble gas releases (Chapter 4). In addition, analysis of the impact due to combined sampling of particulate from multiple release points (Chapter 5), comparison of domestic nuclear reactors gaseous effluent data to foreign PWRs (Chapter 6), standardized sampling technique for collection of gaseous tritium (Chapter 7), and application of Xe-133 equivalent concept to gaseous effluent control (Chapter 8) are also provided. As a whole, this report provides a generic approach to improve the performance of regulatory control on the gaseous effluent. Therefore, actual enforcement of the recommendations should be preceded by establishment of a series of action plans reflecting on the site- and facility-specific design and operational features

  12. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  13. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Piergiorgio [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield (United Kingdom); Nandagiri, Vijay Kumar [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland); Daly, Jacqueline [Division of Biology, Department of Anatomy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland); Chiono, Valeria; Mattu, Clara; Tonda-Turo, Chiara; Ciardelli, Gianluca [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Ramtoola, Zebunnissa, E-mail: zramtoola@rcsi.ie [School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland)

    2016-02-01

    Localised controlled release of simvastatin from porous freeze-dried chitosan–gelatin (CH–G) scaffolds was investigated by incorporating simvastatin loaded poly-(DL-lactide-co-glycolide) acid (PLGA) microparticles (MSIMs) into the scaffolds. MSIMs at 10% w/w simvastatin loading were prepared using a single emulsion-solvent evaporation method. The MSIM optimal amount to be incorporated into the scaffolds was selected by analysing the effect of embedding increasing amounts of blank PLGA microparticles (BL-MPs) on the scaffold physical properties and on the in vitro cell viability using a clonal human osteoblastic cell line (hFOB). Increasing the BL-MP content from 0% to 33.3% w/w showed a significant decrease in swelling degree (from 1245 ± 56% to 570 ± 35%). Scaffold pore size and distribution changed significantly as a function of BL-MP loading. Compressive modulus of scaffolds increased with increasing BL-MP amount up to 16.6% w/w (23.0 ± 1.0 kPa). No significant difference in cell viability was observed with increasing BL-MP loading. Based on these results, a content of 16.6% w/w MSIM particles was incorporated successfully in CH–G scaffolds, showing a controlled localised release of simvastatin able to influence the hFOB cell proliferation and the osteoblastic differentiation after 11 days. - Highlights: • Simvastatin loaded PLGA microparticle engrafted porous CH–G scaffolds were produced. • The microparticle optimal amount to be incorporated into the scaffolds was studied. • Physical properties of scaffolds changed as a function of microparticle loading. • The level of simvastatin released enhanced cell proliferation and mineralisation.

  14. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application

    International Nuclear Information System (INIS)

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Daly, Jacqueline; Chiono, Valeria; Mattu, Clara; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2016-01-01

    Localised controlled release of simvastatin from porous freeze-dried chitosan–gelatin (CH–G) scaffolds was investigated by incorporating simvastatin loaded poly-(DL-lactide-co-glycolide) acid (PLGA) microparticles (MSIMs) into the scaffolds. MSIMs at 10% w/w simvastatin loading were prepared using a single emulsion-solvent evaporation method. The MSIM optimal amount to be incorporated into the scaffolds was selected by analysing the effect of embedding increasing amounts of blank PLGA microparticles (BL-MPs) on the scaffold physical properties and on the in vitro cell viability using a clonal human osteoblastic cell line (hFOB). Increasing the BL-MP content from 0% to 33.3% w/w showed a significant decrease in swelling degree (from 1245 ± 56% to 570 ± 35%). Scaffold pore size and distribution changed significantly as a function of BL-MP loading. Compressive modulus of scaffolds increased with increasing BL-MP amount up to 16.6% w/w (23.0 ± 1.0 kPa). No significant difference in cell viability was observed with increasing BL-MP loading. Based on these results, a content of 16.6% w/w MSIM particles was incorporated successfully in CH–G scaffolds, showing a controlled localised release of simvastatin able to influence the hFOB cell proliferation and the osteoblastic differentiation after 11 days. - Highlights: • Simvastatin loaded PLGA microparticle engrafted porous CH–G scaffolds were produced. • The microparticle optimal amount to be incorporated into the scaffolds was studied. • Physical properties of scaffolds changed as a function of microparticle loading. • The level of simvastatin released enhanced cell proliferation and mineralisation.

  15. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  16. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  17. Field study of the long-term release of block copolymers from fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, A.; Hvilsted, Søren

    2017-01-01

    The addition of block copolymers (i.e. oils) is a common technique to enhance the biofouling-resistance properties of poly(dimethylsiloxane) (PDMS)-based fouling-release coatings. These copolymers diffuse from the bulk to the surface of the coating, thus modifying the properties of the surface an...... fouling-release coatings. Finally, the potential of long-term field-studies is discussed, as compared to short-term laboratory experiments usually performed within fouling-release coatings studies....

  18. Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films : Antibacterial application

    NARCIS (Netherlands)

    Calderon, S.; Ferreri, I.; Henriques, M.; De Hosson, J. T. M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The antibacterial properties of materials developed for medical devices with embedded silver nanoparticles are enhanced by controlling the release of silver ions. In this study, a simple experimental procedure for the augmentation of the silver ion release from ZrCN-Ag coatings is described. The

  19. Nanostructural control of the release of macromolecules from silica sol–gels

    Science.gov (United States)

    Radin, Shula; Bhattacharyya, Sanjib; Ducheyne, Paul

    2013-01-01

    The therapeutic use of biological molecules such as growth factors and monoclonal antibodies is challenging in view of their limited half-life in vivo. This has elicited the interest in delivery materials that can protect these molecules until released over extended periods of time. Although previous studies have shown controlled release of biologically functional BMP-2 and TGF-β from silica sol–gels, more versatile release conditions are desirable. This study focuses on the relationship between room temperature processed silica sol–gel synthesis conditions and the nanopore size and size distribution of the sol–gels. Furthermore, the effect on release of large molecules with a size up to 70 kDa is determined. Dextran, a hydrophilic polysaccharide, was selected as a large model molecule at molecular sizes of 10, 40 and 70 kDa, as it enabled us to determine a size effect uniquely without possible confounding chemical effects arising from the various molecules used. Previously, acid catalysis was performed at a pH value of 1.8 below the isoelectric point of silica. Herein the silica synthesis was pursued using acid catalysis at either pH 1.8 or 3.05 first, followed by catalysis at higher values by adding base. This results in a mesoporous structure with an abundance of pores around 3.5 nm. The data show that all molecular sizes can be released in a controlled manner. The data also reveal a unique in vivo approach to enable release of large biological molecules: the use more labile sol–gel structures by acid catalyzing above the pH value of the isoelectric point of silica; upon immersion in a physiological fluid the pores expand to reach an average size of 3.5 nm, thereby facilitating molecular out-diffusion. PMID:23643607

  20. Results of ten years study of Chernobyl NPP release fallout properties and behaviour in soils

    International Nuclear Information System (INIS)

    Ivanov, Yu.; Kashparov, V.A.; Levchuk, S.; Protsak, V.; Zvaritch, S.; Khomutinin, Yu.; Oreshich, L.

    1997-01-01

    Radioactive contamination of territories of Ukrainian and Byelorussian Polesye as a result of ChNPP accidental release is characterized by high level of un-homogenity of fallout properties (physico-chemical properties, radionuclide composition etc.), density of the territory contamination by long-lived radionuclides. On the other hand, the soil-plant cover of contaminated territory is presented by large set of soils, characterized by contrast physico-chemical and water-physical properties. Peculiarities of the behavior of different radionuclides, represented initially by various components of radioactive fallout, in soils, as a first link of migration chains are considered

  1. CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING

    Science.gov (United States)

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pileisolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPLremediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...

  2. Effluent release limits, sources and control

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1977-01-01

    Objectives of radiation protection in relation to releases. Environmental transfer models for radionuclides. Relationship between releases, environmental levels and doses to persons. Establishment of release limits: Limits based on critical population group concept critical pathway analysis and identification of critical group. Limits based on optimization of radiation protection individual dose limits, collective doses and dose commitments 1) differential cost benefit analysis 2) authorized and operational limits taking account of future exposures. Monitoring of releases to the environment: Objectives of effluent monitoring. Typical sources and composition of effluents; design and operation of monitoring programmes; recording and reporting of monitoring results; complementary environmental monitoring. (orig.) [de

  3. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties.

    Science.gov (United States)

    Liu, Fei; Antoniou, John; Li, Yue; Yi, Jiang; Yokoyama, Wallace; Ma, Jianguo; Zhong, Fang

    2015-04-22

    Gelatin films incorporated with chitosan nanoparticles in various free/encapsulated tea polyphenol (TP) ratios were prepared in order to investigate the influence of different ratios on the physicochemical and antioxidant properties of films. The TP-containing nanoparticles were prepared by cross-linking chitosan hydrochloride (CSH) with sulfobutyl ether-β-cyclodextrin sodium (SBE-β-CD) at three different encapsulation efficiencies (EE; ∼50%, ∼80%, and ∼100%) of TP. The stability of TP-loaded nanoparticles was maintained during the film drying process from the analysis of free TP content in the redissolved film solutions. Composite films showed no significant difference in visual aspects, while the light transmittance (250-550 nm) was decreased with incorporation of TP. Nanoparticles appeared to be homogeneously dispersed within the film matrix by microstructure analysis (SEM and AFM). TP-loaded films had ferric reducing and DPPH radical scavenging power that corresponded to the EEs. Sunflower oil packaged in bags made of gelatin films embedded with nanoparticles of 80% EE showed the best oxidation inhibitory effect, followed by 100% EE, 50% EE, and free TP, over 6 weeks of storage. However, when the gelatin film was placed over the headspace and was not in contact with the oil, the free TP showed the best effect. The results indicate that sustained release of TP in the contacting surface can ensure the protective effects, which vary with free/encapsulated mass ratios, thus improving antioxidant activities instead of increasing the dosage.

  4. Research and development of controlled release technology for agrochemicals using isotopes

    International Nuclear Information System (INIS)

    1986-01-01

    In recent years, increasing investment has been made into development of measures to reduce pesticide contamination of food and the environment while at the same time protecting crops and livestock from pest attack. Studies to develop controlled-release technology are frequently carried out with labelled compounds. Radiotracer techniques provide a unique tool in measuring the release rate of the chemical, the stability of the chemical within the formulation and evaluating the effect of environmental factors on the release rate. These technologies and pesticide residue problems were the theme of the Seminar. The Seminar has illustrated the potential value of isotope techniques and has reviewed information on current developments in this field and their relevance to agriculture in developing countries

  5. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  6. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system.

    Science.gov (United States)

    Park, Yong-Lak; Gururajan, Srikanth; Thistle, Harold; Chandran, Rakesh; Reardon, Richard

    2018-01-01

    Rhinoncomimus latipes (Coleoptera: Curculionidae) is a major biological control agent against the invasive plant Persicaria perfoliata. Release of R. latipes is challenging with the current visit-and-hand release approach because P. perfoliata shows a high degree of patchiness in the landscape, possesses recurved barbs on its stems, and often spreads into hard-to-access areas. This 3-year study developed and evaluated unmanned aerial systems (UAS) for precise aerial release of R. latipes to control P. perfoliata. We have developed two UAS (i.e. quad-rotor and tri-rotor) and an aerial release system to disseminate R. latipes. These include pods containing R. latipes and a dispenser to accommodate eight pods. Results of field tests to evaluate the systems showed no significant (P > 0.05) effects on survivorship and feeding ability of R. latipes after aerial release. Our study demonstrates the potential of UAS for precision aerial release of biological control agents to control invasive plants. The aerial deployment systems we have developed, including both pods and a dispenser, are low cost, logistically practical, and effective with no negative effects on aerially released R. latipes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. 75 FR 65705 - Notice of Intent To Rule on Request To Release Airport Property at the Tri-Cities Regional...

    Science.gov (United States)

    2010-10-26

    ... To Release Airport Property at the Tri-Cities Regional Airport, Blountville, TN. AGENCY: Federal... of Blountville, Tennessee. This property, approximately 2.413 acres in Tract 45 and .0324 acres in... 125 of the Wendell H. Ford Aviation [[Page 65706

  8. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    Science.gov (United States)

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Release behavior of drugs from various natural gums and polymers.

    Science.gov (United States)

    Singh, Anupama; Sharma, Pramod Kumar; Malviya, Rishabha

    2011-01-01

    Polymers are the high molecular weight compounds of natural or synthetic origin, widely used in drug delivery of formulations. These polymers are further classified as hydrophilic or hydrophobic in nature. Depending upon this characteristic, polymers exhibit different release behavior in different media. This property plays an important role in the selection of polymers for controlled, sustained or immediate release formulations. The review highlights the literatures related to the research made on several polymers regarding the release kinetics which made them a novel approach for modifying the action of the particular formulation.

  10. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  11. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression.

    Science.gov (United States)

    Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis

    2018-02-01

    Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2  = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2  = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2  = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.

  12. 75 FR 16900 - Notice of Intent To Rule on Request To Release Airport Property at the Cincinnati/Northern...

    Science.gov (United States)

    2010-04-02

    ... To Release Airport Property at the Cincinnati/Northern Kentucky International Airport, Hebron, KY.../Northern Kentucky International Airport in the city of Hebron, Kentucky. This property, approximately 75.88... Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be received on or before May 3...

  13. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.

    Science.gov (United States)

    Lan, Shih-Feng; Kehinde, Timilehin; Zhang, Xiangming; Khajotia, Sharukh; Schmidtke, David W; Starly, Binil

    2013-06-01

    Dental implants provide support for dental crowns and bridges by serving as abutments for the replacement of missing teeth. To prevent bacterial accumulation and growth at the site of implantation, solutions such as systemic antibiotics and localized delivery of bactericidal agents are often employed. The objective of this study was to demonstrate a novel method of controlled localized delivery of antibacterial agents to an implant site using a biodegradable custom fabricated ring. The study involved incorporating a model antibacterial agent (metronidazole) into custom designed poly-ε-caprolactone/alginate (PCL/alginate) composite rings to produce the intended controlled release profile. The rings can be designed to fit around the body of any root form dental implants of various diameters, shapes and sizes. In vitro release studies indicate that pure (100%) alginate rings exhibited an expected burst release of metronidazole in the first few hours, whereas Alginate/PCL composite rings produced a medium burst release followed by a sustained release for a period greater than 4 weeks. By varying the PCL/alginate weight ratios, we have shown that we can control the amount of antibacterial agents released to provide the minimal inhibitory concentration (MIC) needed for adequate protection. The fabricated composite rings have achieved a 50% antibacterial agent release profile over the first 48 h and the remaining amount slowly released over the remainder of the study period. The PCL/alginate agent release characteristic fits the Ritger-Peppas model indicating a diffusion-based mechanism during the 30-day study period. The developed system demonstrates a controllable drug release profile and the potential for the ring to inhibit bacterial biofilm growth for the prevention of diseases such as peri-implantitis resulting from bacterial infection at the implant site. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Xin; Li, Chang; Fan, Na; Li, Jing; He, Zhonggui; Sun, Jin

    2017-09-01

    The purpose of this study was to develop amino modified multimodal nanoporous silica nanoparticles (M-NSNs-NH 2 ) loaded with doxorubicin hydrochloride (DOX), intended to enhance the drug loading capacity and to achieve controlled release effect. M-NSNs were functionalized with aminopropyl groups through post-synthesis. The contribution of large pore sizes and surface chemical groups on DOX loading and release were systemically studied using transmission electron microscope (TEM), nitrogen adsorption/desorption measurement, Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, X-ray photoelectron spectroscopy (XPS) and ultraviolet spectrophotometer (UV). The results demonstrated that the NSNs were functionalized with aminopropyl successfully and the DOX molecules were adsorbed inside the nanopores by the hydrogen bonding. The release performance indicated that DOX loaded M-NSNs significantly controlled DOX release, furthermore DOX loaded M-NSNs-NH 2 performed slower controlled release, which was mainly attributed to its stronger hydrogen bonding forces. As expected, we developed a novel carrier with high drug loading capacity and controlled release for DOX. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  16. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1992-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks mission from 2 to 15 April 1991, and continued it from the 9 to 22 November 1991 at the Center for Application of Isotopes and Radiation (CAIR) of the National Atomic Energy Agency, BATAN in Jakarta. Expert discussed the project and carried out experiments together with the staff of the center, introducing shellac (description in part II) as a candidate for controlled release formulations. Formulations of carbofuran, butachlor, 2,4-D and diazinon were carried out, using sand and cocconut shells as carriers. Release rates of a.i. into water have been checked and further work has been discussed. Expert assessed further needs for supply of instruments, accessories and chemicals. (author)

  17. Absorption of controlled-release iron

    International Nuclear Information System (INIS)

    Cook, J.D.; Lipschitz, D.A.; Skikne, B.S.

    1982-01-01

    A multiple-dose double radioiron technic was used to compare absorption of iron administered as a controlled release (CR) capsule and as an elixir; both formulations contained 50 mg elemental iron as ferrous sulfate. When taken by normal subjects in the fasting state, mean absorption from the elixir and CR capsule averaged 4.92% and 4.38%, which gave a CR capsule:elixir ratio of 0.89. This difference was not significant, but when taken with meals that inhibit absorption of dietary iron by different degrees, absorption of the CR formulation was superior. CR capsule:elixir absorption ratios averaged 1.70 from a meal that is mildly inhibitory and 3.13 from a meal that causes more marked inhibition. It is concluded that CR iron formulations may offer a therapeutic advantage to patients who take oral iron with meals to avoid gastrointestinal side effects

  18. New cellulose–lignin hydrogels and their application in controlled release of polyphenols

    International Nuclear Information System (INIS)

    Ciolacu, Diana; Oprea, Ana Maria; Anghel, Narcis; Cazacu, Georgeta; Cazacu, Maria

    2012-01-01

    Novel superabsorbant cellulose–lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose–lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV–VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (E H ), the asymmetric index (a/b) and the enthalpy of H-bond formation (ΔH). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: ► A unique method to obtain cellulose–lignin hydrogels. ► The application of these hydrogels as controlled release systems was tested. ► Polyphenols from grapes seed as active ingredient.

  19. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  20. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release.

    Science.gov (United States)

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J; Murphy, William L

    2012-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO(3)) concentration in mSBF of 4.2 mm, 25 mm, and 100 mm. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO(3) concentrations. Mineral coatings with increased HCO(3) substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

    International Nuclear Information System (INIS)

    Tan Zhonghua

    2003-01-01

    Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

  2. Order release strategies to control outsourced operations in a supply chain

    NARCIS (Netherlands)

    Boulaksil, Y.; Fransoo, J.C.

    2007-01-01

    In this paper, we propose and compare three different order release strategies to plan and control outsourced operations in a supply chian where the contract manfacturer is producing different variants of a certain product.

  3. Development of novel diclofenac potassium controlled release tablets by wet granulation technique and the effect of co-excipients on in vitro drug release rates.

    Science.gov (United States)

    Shah, Shefaatullah; Khan, Gul Majid; Jan, Syed Umer; Shah, Kifayatullah; Hussain, Abid; Khan, Haroon; Khan, Haroon; Khan, Haroon; Khan, Kamran Ahmad

    2012-01-01

    The aim of the present study was the formulation and evaluation of controlled release polymeric tablets of Diclofenac Potassium by wet granulation method for the release rate, release pattern and the mechanism involved in drug release. Formulations having three grades of polymer Ethocel (7P; 7FP, 10P, 10FP, 100P, 100FP) in several drugs to polymer ratios (10:3 and 10:1) were compressed into tablets using wet granulation method. Co-excipients were added to some selected formulations to investigate their enhancement effect on in vitro drug release patterns. In vitro drug release studies were performed using USP Method-1 (Rotating Basket method) and Phosphate buffer (pH 7.4) was used as a dissolution medium. The similarities and dissimilarities of release profiles of test formulations with reference standard were checked using f2 similarity factor and f1 dissimilarity factor. Mathematical/Kinetic models were employed to determine the release mechanism and drug release kinetics.

  4. Synthesis, recognition and evaluation of molecularly imprinted polymer nanoparticle using miniemulsion polymerization for controlled release and analysis of risperidone in human plasma samples

    International Nuclear Information System (INIS)

    Asadi, Ebadullah; Azodi-Deilami, Saman; Abdouss, Majid; Kordestani, Davood; Rahimi, Alireza; Asadi, Somayeh

    2014-01-01

    We prepared high selective imprinted nanoparticle polymers by a miniemulsion polymerization technique, using risperidone as the template, MAA as the functional monomers, and TRIM as the cross-linker in acetonitrile as solvent. The morphology of the nanoparticles determined by scanning electron microscopy (SEM) images and drug release, binding properties and dynamic light scattering (DLS) of molecularly imprinted polymers (MIPs) were studied. Controlled release of risperidone from nanoparticles was investigated through in 1% wt sodium dodecyl sulfate aqueous solution and by measuring the absorbance by HPLC-UV. The results showed that the imprinted nanoparticles exhibited a higher binding level and slower release rate than non-imprinted nanoparticles, which contributed to interaction of risperidone with imprinted cavities within nanoparticles. Furthermore, the results from HPLC showed good precision (5% for 50.0 µg L -1 ) and recoveries (between 86-91) using MIP from human plasma samples

  5. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants.

    Science.gov (United States)

    Wang, Yan; Wang, Anqi; Wang, Chunxin; Cui, Bo; Sun, Changjiao; Zhao, Xiang; Zeng, Zhanghua; Shen, Yue; Gao, Fei; Liu, Guoqiang; Cui, Haixin

    2017-10-06

    Pesticide slow-release formulations provide a way to increase the efficiency of active components by reducing the amount of pesticide that needs to be applied. Slow-release formulations also increase the stability and prolong the control effect of photosensitive pesticides. Surfactants are an indispensable part of pesticide formulations, and the choice of surfactant can strongly affect formulation performance. In this study, emamectin-benzoate (EMB) slow-release microspheres were prepared by the microemulsion polymerization method. We explored the effect of different surfactants on the particle size and dispersity of EMB in slow-release microspheres. The results indicated that the samples had uniform spherical shapes with an average diameter of 320.5 ±5.24 nm and good dispersity in the optimal formulation with the polymeric stabilizer polyvinyl alcohol (PVA) and composite non-ionic surfactant polyoxyethylene castor oil (EL-40). The optimal EMB pesticide slow-release microspheres had excellent anti-photolysis performance, stability, controlled release properties, and good leaf distribution. These results demonstrated that EMB slow-release microspheres are an attractive candidate for improving pesticide efficacy and prolonging the control effect of EMB in the environment.

  6. Mechanical properties and modeling of drug release from chlorhexidine-containing etch-and-rinse adhesives.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Reis, Alessandra; Malaquias, Pamela; Pereira, Fabiane; Farago, Paulo Vitor; Meier, Marcia Margarete; Loguercio, Alessandro D

    2014-04-01

    To evaluate the effects of chlorhexidine (CHX) addition in different concentrations into simplified etch-and-rinse adhesives on the ultimate tensile strength (UTS), water sorption (WS), solubility (SO) and the rate of CHX release over time. We added CHX diacetate to Ambar [AM] (FGM) and XP Bond [XP] (Dentsply) in concentrations of 0, 0.01, 0.05, 0.1 and 0.2 wt%. For UTS (n=10 for each group), adhesive specimens were constructed in an hourglass shape metallic matrix with cross-sectional area of 0.8 mm(2). Half of specimens were tested after 24 h and the other half after 28 days of water storage in tension of 0.5 mm/min. For WS and SO (n=10 for each group), adhesive discs (5.8 mm×1.0 mm) were prepared into a mold. After desiccation, we weighed and stored the cured adhesive specimens in distilled water for evaluation of the WS, SO and the cumulative release of CHX over a 28-day period. For CHX release (n=10 for each group), spectrophotometric measurements of storage solution were performed to examine the release kinetics of CHX. We subjected data from each test to ANOVA and Tukey' test (α=0.05). XP Bond adhesive showed significantly more WS and SO and lower UTS than Ambar. In general, the addition of CHX did not alter WS, SO and UTS of the adhesives. XP showed a higher CHX release than AM (p<0.05) in all concentrations and the final amount of CHX release was directly proportional to the initial CHX concentration added to the adhesives. After 28 days of water storage, approximately 20% of CHX was released from XP and 8.0-12.0% from AM. Addition of CHX to commercial adhesive is a feasible method to provide a controlled release of CHX over time without jeopardizing WS, SO and UTS of the adhesives. Manufacturers should consider adding CHX to commercial adhesives to provide a controlled release of CHX over time. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent

    Directory of Open Access Journals (Sweden)

    Kura AU

    2013-03-01

    Full Text Available Aminu Umar Kura,1 Samer Hasan Hussein Al Ali,2 Mohd Zobir Hussein,3 Sharida Fakurazi,1,4 Palanisamy Arulselvan11Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 4Faculty of Medicine and Health Science, Pharmacology Unit, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: A new layered organic–inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl alanine (levodopa, intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nanocomposite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w. A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.Keywords: levodopa, layered double hydroxides, coprecipitation, sustained release

  8. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    International Nuclear Information System (INIS)

    Xia Shengjie; Ni Zheming; Xu Qian; Hu Baoxiang; Hu Jun

    2008-01-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena - , Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena - , Lis - were much longer compared with Cap - , Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented. - Graphical abstract: A series of antihypertensive drugs including Enalpril, Lisinopril, Captopril and Ramipril were intercalated into Zn/Al-NO 3 -LDHs successfully by coprecipitation or ion-exchange technique. We focus on the structure, thermal property and low/controlled release property of as-synthesized drug-LDH composite intended for the possibility of applying these LDH-antihypertensive nanohybrids in drug delivery and controlled release systems

  9. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of phosphorus (P) removal properties of materials proposed for the control of sediment P release in UK lakes.

    Science.gov (United States)

    Spears, Bryan M; Meis, Sebastian; Anderson, Amy; Kellou, Myriam

    2013-01-01

    Of growing interest in the control of sediment phosphorus (P) release in lakes is the use of solid phase P-sorbing products (PSPs) including industrial by-products and naturally occurring or modified mineral complexes. However, there is a need to report on novel PSPs proposed by suppliers for use in lake remediation projects at the national scale. We comparatively assessed the elemental composition and P sorption properties of six industrial waste-products (waste-products from treatment of abandoned mine waters - 'red ochre' and 'black ochre'; waste products from building practices: 'gypsum', 'sander dust', 'mag dust' and 'vermiculite') and one commercially available modified lanthanum (La) bentonite product (Phoslock®), all of which have been proposed for use in remediation projects in UK lakes. P sorption was well described (r(2)>0.70) by Langmuir isotherms for all products with the exception of 'gypsum' for which no significant P sorption was reported. P sorption capacities ranged from 4 mgPg(-1) dry weight (d.w.) PSP ('black ochre') to 63 mgg(-1) d.w. ('sander dust'), with products composed mainly of calcium oxide (CaO) and silicon dioxide (SiO(2)) (i.e. 'vermiculite', 'mag dust' and 'sander dust' PSPs) having significantly higher sorption capacities than all other PSPs. Estimates of the equilibrium P concentration (EPC(0)) from Langmuir isotherms indicated that all PSPs, with the exception of 'gypsum', were capable of reducing soluble reactive P (SRP) concentrations to <5.1 μgL(-1). Further research and development required to underpin regulatory policy decisions regarding the use of PSPs is discussed. Dose estimates for each PSP required to treat a eutrophic shallow loch (40.6 ha) with persistent internal loading issues are reported. Copyright © 2012. Published by Elsevier B.V.

  11. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    Science.gov (United States)

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  12. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    Science.gov (United States)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  13. POLYCAPROLACTONE-POLY (ETHYLENE GLYCOL) BLOCK COPOLYMER Ⅲ DRUG RELEASE BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    BEI Jianzhong; WANG Zhifeng; WANG Shenguo

    1995-01-01

    The drug release behavior of degradable polymer - polycaprolactone-poly (ethylene glycol)block copolymer(PCE) in vitro was investigated by using 5-Fluoro-uracil (5-Fu) as a model drug under a condition of pH 7.4 at 37℃. It is found that the release rate of 5-Fu from PCE increased with increasing polyether content of the copolymer. The results show that the increasing polyether content of the copolymer caused increasing hydrophilicity and decreasing crystallinity of the PCE copolymer. Thus, the drug release behavior and the degradable property of the PCE can be controlled by adjusting the composition of the copolymer.

  14. The performance of workload control concepts in job shops : Improving the release method

    NARCIS (Netherlands)

    Land, MJ; Gaalman, GJC

    1998-01-01

    A specific class of production control concepts for jobs shops is based on the principles of workload control. Practitioners emphasise the importance of workload control. However, order release methods that reduce the workload on the shop floor show poor due date performance in job shop simulations.

  15. 77 FR 59035 - Notice of Intent To Rule on Request To Release Airport Property at the St. George Airport, St...

    Science.gov (United States)

    2012-09-25

    ... To Release Airport Property at the St. George Airport, St. George, UT AGENCY: Federal Aviation... rule and invite public comment on the release of land at St. George Airport under the provisions of..., City of St. George, Utah, at the following address: Mr. Gary Esplin, City Manager, City of St. George...

  16. Nanocapsule@xerogel microparticles containing sodium diclofenac: a new strategy to control the release of drugs.

    Science.gov (United States)

    da Fonseca, Letícia Sias; Silveira, Rodrigo Paulo; Deboni, Alberto Marçal; Benvenutti, Edilson Valmir; Costa, Tânia M H; Guterres, Sílvia S; Pohlmann, Adriana R

    2008-06-24

    The aim of this work was to evaluate the potentiality to control the drug release of a new architecture of microparticles organized at the nanoscopic scale by assembling polymeric nanocapsules at the surface of drug-loaded xerogels. Xerogel was prepared by sol-gel method using sodium diclofenac, as hydrophilic drug model, and coated by spray-drying. After coating, the surface areas decreased from 82 to 28 m(2)/g, the encapsulation efficiency was 71% and SEM analysis showed irregular microparticles coated by the nanocapsules. Formulation showed satisfactory gastro-resistance presenting drug release lower than 3% (60 min) in acid medium. In water, the pure drug dissolved 92% after 5 min, uncoated drug-loaded xerogel released 60% and nanocapsule coated drug-loaded xerogel 36%. After 60 min, uncoated drug-loaded xerogel released 82% and nanocapsule coated drug-loaded xerogel 62%. In conclusion, the new system was able to control the release of the hydrophilic drug model.

  17. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent.

    Science.gov (United States)

    Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong

    2015-07-15

    To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Development of DOE complexwide authorized release protocols for radioactive scrap metals

    International Nuclear Information System (INIS)

    Chen, S. Y.

    1998-01-01

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D and D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D and D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities

  19. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  20. 75 FR 55401 - Notice of Intent To Rule on Request To Release Airport Property at the Dallas/Fort Worth...

    Science.gov (United States)

    2010-09-10

    ... To Release Airport Property at the Dallas/Fort Worth International Airport, DFW Airport, TX AGENCY... airport property. SUMMARY: The FAA proposes to rule and invite public comment on the request for permanent... H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be...

  1. 78 FR 9105 - Notice of Intent To Rule on Request To Release Airport Property at the Dallas/Fort Worth...

    Science.gov (United States)

    2013-02-07

    ... To Release Airport Property at the Dallas/Fort Worth International Airport, DFW Airport, TX AGENCY... Airport Property. SUMMARY: The FAA proposes to rule and invite public comment on the request for permanent... H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be...

  2. A simple, cost-effective emitter for controlled release of fish pheromones: development, testing, and application to management of the invasive sea lamprey

    Science.gov (United States)

    Wagner, Michael C.; Hanson, James E.; Meckley, Trevor D.; Johnson, Nicholas; Bals, Jason D.

    2018-01-01

    Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.

  3. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  4. Multiple Property Cross Direction Control of Paper Machines

    Directory of Open Access Journals (Sweden)

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  5. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release.

    Science.gov (United States)

    Metin-Gürsoy, Gamze; Taner, Lale; Akca, Gülçin

    2017-02-01

    Silver nanoparticles are currently utilized in the fields of dentistry. The aim of this study was to evaluate the antibacterial properties and ion release of nanosilver coated orthodontic brackets compared to conventional brackets. Nanosilver coating process was applied to standard orthodontic brackets placed on the mandibular incisors of Wistar Albino rats in the study group and conventional brackets in the control group. Dental plaque, mucosal vestibular smears, saliva, and blood samples were collected from rats at various days. The amounts of nanosilver ions in blood and saliva were measured and microbiological evaluation was made for Streptococcus mutans. For testing cariogenicity, all rats were sacrificed at the end of 75 days under anaesthesia. Teeth were stained using a caries indicator, then the caries ratio was assessed. Nanosilver coated orthodontic bracket favoured the inhibition of S.mutans on Day 30 and reduction of caries on the smooth surfaces. The nanosilver amounts in the saliva and serum samples were significantly higher in the study group on Day 7. It is suggested that nanosilver coated orthodontic brackets, as an antibacterial agent without patient compliance, could be helpful for the prevention of white spot lesions during fixed orthodontic treatment. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  7. 38 CFR 36.4277 - Release of security.

    Science.gov (United States)

    2010-07-01

    ... payment of the indebtedness the holder shall not release a lien or other right in or to property held as..., the holder shall not release a lien under paragraph (a) of this section unless the consideration... released it shall be the holder's duty to acquire such lien on property of substantially equal value which...

  8. Controlled release of volatiles under mild reaction conditions: from nature to everyday products.

    Science.gov (United States)

    Herrmann, Andreas

    2007-01-01

    Volatile organic compounds serve in nature as semiochemicals for communication between species, and are often used as flavors and fragrances in our everyday life. The quite limited longevity of olfactive perception has led to the development of pro-perfumes or pro-fragrances--ideally nonvolatile and odorless fragrance precursors which release the active volatiles by bond cleavage. Only a limited amount of reaction conditions, such as hydrolysis, temperature changes, as well as the action of light, oxygen, enzymes, or microorganisms, can be used to liberate the many different chemical functionalities. This Review describes the controlled chemical release of fragrances and discusses additional challenges such as precursor stability during product storage as well as some aspects concerning toxicity and biodegradability. As the same systems can be applied in different areas of research, the scope of this Review covers fragrance delivery as well as the controlled release of volatiles in general.

  9. A double-blind placebo-controlled study of controlled release fluvoxamine for the treatment of generalized social anxiety disorder

    NARCIS (Netherlands)

    Westenberg, HGM; Stein, DJ; Yang, HC; Li, D; Barbato, LM

    This was a randomized double-blind placebo-controlled multicenter study to assess the efficacy, safety, and tolerability of fluvoxamine in a controlled release (CR) formulation for treatment of generalized social anxiety disorder (GSAD). A total of 300 subjects with GSAD were randomly assigned to

  10. Controlling the release of active compounds from the inorganic carrier halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M. [National Research Council - Institute of Composites and Biomedical Materials, P.le E. Fermi, 1 80055 Portici (Naples) (Italy)

    2014-05-15

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  11. Controlling the release of active compounds from the inorganic carrier halloysite

    International Nuclear Information System (INIS)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-01-01

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles

  12. Physical properties and caffeine release from creams prepared with different oils

    Directory of Open Access Journals (Sweden)

    Wojciechowska Katarzyna

    2014-12-01

    Full Text Available Caffeine is a methylxanthine typically found in the Coffee Arabica L plant. Generally, caffeine is well-known as a orally administered mild stimulant of the central nervous system. However, for cosmetic purpose, caffeine is an active compound ingredient, at 7% concentration, in several anticellulite products. The efficiency of this mode of delivery is not fully understood. Hence, the aim of the study was to ascertain the effectiveness of particular carriers to release this ingredient. In so doing, we prepared six creams based upon different oils (Sesame oil, Rice oil, Walnut oil, Coconut oil, Sweet almond oil and Jojoba oil, containing 5% of caffeine, and compared the release of the substance from the obtained preparations. Initially, all of the creams were subjected to a variety of physical tests, among these being for slippage and spreadability. Furthermore, their rheological properties were evaluated. Subsequently, the creams were tested for caffeine release. In the slippage and spreadability tests, the coconut oil-based cream was revealed as having the best parameters. However, the rheological tests showed that all of the preparations had the pseudoplastic character of flowing according to the Ostwald de Waele power law model. The power low index (n for all the preparations was from 0.2467-0.3179 at 20°C and 0.2821-0.3754 at 32°C. At 20°C, the Sesame oil-, Walnut oil-, Sweet almond oil- and Jojoba oil-based creams were thixotropic, but at 32°C, thixotropy appeared only in the Walnut oil-based creams.

  13. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    International Nuclear Information System (INIS)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na; Lee, Jae Yung; Park, Se Yeon

    2016-01-01

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX

  14. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na [Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul (Korea, Republic of); Lee, Jae Yung [Dept. Biological Science, Mokpo National University, Mokpo (Korea, Republic of); Park, Se Yeon [Dept. Applied Chemistry, Dongduk Women' s University, Seoul (Korea, Republic of)

    2016-12-15

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX.

  15. Silicone Doped Chitosan-Acrylamide Coencapsulated Urea Fertilizer: An Approach to Controlled Release Fertilizers

    Directory of Open Access Journals (Sweden)

    Sempeho Ibahati Siafu

    2017-01-01

    Full Text Available In the absence of special management practices, urea is known to undergo chemical transformations resulting in severe losses (≈60–70% of total fertilizer applied. In an attempt to design urea controlled release fertilizers in order to counterbalance the 60–70% loss, urea was cross-linked with chitosan and acrylamide under refluxed in situ copolymerization technique; the procedures were repeated with silicone doping prior cross-linking with MBA. The particles were characterized with FTIR/ATR, EDX, XRD, and SEM. The IR bands observed within 3426–409 cm−1 revealed the formation of new bands after coencapsulation for the νγN-H, νβN-H, νOH, νsNH2, νCH2, νC=O, δ′NH2, νC=C, δNH2, νC-N, βCH3, $C-N, γNH2, νC=O, and $CH2. Crystallinity indices for urea with and without silicone doping were found to be 50.9% and 72.1%, respectively, with a distinctive split peak at (d 12.30°. The formation of Microdunes and Microballs 3D network sized 0.64 μm was noted. Release profiles demonstrated that 80% N was released in a period of 30 days at RT and pH 7. The release patterns exhibited linear and deformed sigmoid release models. Empirically, the findings demonstrated that it is possible to design urea controlled release fertilizers with varying particle sizes and morphologies by using chitosan-acrylamide coencapsulation.

  16. Effective control of modified palygorskite to NH4+-N release from sediment.

    Science.gov (United States)

    Chen, Lei; Zheng, Tianyuan; Zhang, Junjie; Liu, Jie; Zheng, Xilai

    2014-01-01

    Sediment capping is an in situ treatment technology that can effectively restrain nutrient and pollutant release from the sediment in lakes and reservoirs. Research on sediment capping has focused on the search for effective, non-polluting and affordable capping materials. The efficiency and mechanism of sediment capping with modified palygorskite in preventing sediment ammonia nitrogen (NH4+-N) release to surface water were investigated through a series of batch and sediment capping experiments. Purified palygorskite and different types of modified palygorskite (i.e. heated, acid-modified and NaCI-modified palygorskite) were used in this investigation. Factors affecting control efficiency, including the temperature, thickness and grain size of the capping layer, were also analysed. The batch tests showed that the adsorption of NH4+-N on modified palygorskite achieved an equilibration in the initial 45 min, and the adsorption isotherm followed the Freundlich equation. Sediment capping experiments showed that compared with non-capped condition, covering the sediment with modified palygorskite and sand both inhibited NH4+-N release to the overlying water. Given its excellent chemical stability and strong adsorption, heated palygorskite, which has a NH4+-N release inhibition ratio of 41.3%, is a more effective sediment capping material compared with sand. The controlling effectiveness of the modified palygorskite increases with thicker capping layer, lower temperature and smaller grain size of the capping material.

  17. Munc13 controls the location and efficiency of dense-core vesicle release in neurons.

    Science.gov (United States)

    van de Bospoort, Rhea; Farina, Margherita; Schmitz, Sabine K; de Jong, Arthur; de Wit, Heidi; Verhage, Matthijs; Toonen, Ruud F

    2012-12-10

    Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2-null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.

  18. Preparation of venlafaxine hydrochloride sustained-release tablets

    Directory of Open Access Journals (Sweden)

    GUO Lingling

    2013-08-01

    Full Text Available To prepare venlafxine hydrochloride sustained-release tablets.Hydroxypropylmethyl cellulose(HPMC and methyl cellulose(MC were used as main materials to prepare sustained-release tablets of velafaxine hydrochloride and the influence of important factors on in vitro release curves of venlafaxine hydrochloride sustained-release tablets was investigated.Results:The optimal prescription included 100 mg HPMC,25 mg MC,and 2.5% glidant in one tablet prepared with 30kN.The tablets were prepared with the method of wet granulation by NO.16 mesh sieve.The tablets exhibited good sustained-release property in phosphate buffered solution (pH=6.8.The as-prepared venlafxine hydrochloride sustained-release tablets have good sustained-release property.

  19. Membrane properties involved in calcium-stimulated microparticle release from the plasma membranes of S49 lymphoma cells.

    Science.gov (United States)

    Campbell, Lauryl E; Nelson, Jennifer; Gibbons, Elizabeth; Judd, Allan M; Bell, John D

    2014-01-01

    This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32-42°C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  20. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  1. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  2. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo; Zheng, Lixia

    2016-01-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH 5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. - Highlights: • Chitosan and hyaluronan modified single-walled carbon nanotubes (SWNTs) were prepared for delivery of Paclitaxel (PTX). • Morphology, drug loading efficiency and drug release amount of the nanotubes were studied. • Cell viability, LDH, intracellular ROS levels and western blotting were evaluated. • The drug delivery system could effectively inhibit A549 cells proliferation.

  3. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo, E-mail: tanhuo.2008@163.com; Zheng, Lixia, E-mail: 66593953@qq.com

    2016-11-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH 5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. - Highlights: • Chitosan and hyaluronan modified single-walled carbon nanotubes (SWNTs) were prepared for delivery of Paclitaxel (PTX). • Morphology, drug loading efficiency and drug release amount of the nanotubes were studied. • Cell viability, LDH, intracellular ROS levels and western blotting were evaluated. • The drug delivery system could effectively inhibit A549 cells proliferation.

  4. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  5. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  6. Do CAD/CAM dentures really release less monomer than conventional dentures?

    Science.gov (United States)

    Steinmassl, Patricia-Anca; Wiedemair, Verena; Huck, Christian; Klaunzer, Florian; Steinmassl, Otto; Grunert, Ingrid; Dumfahrt, Herbert

    2017-06-01

    Computer-aided design (CAD)/computer-aided manufacturing (CAM) dentures are assumed to have more favourable material properties than conventionally fabricated dentures, among them a lower methacrylate monomer release. The aim of this study was to test this hypothesis. CAD/CAM dentures were generated from ten different master casts by using four different CAD/CAM systems. Conventional, heat-polymerised dentures served as control group. Denture weight and volume were measured; the density was calculated, and the denture surface area was assessed digitally. The monomer release after 7 days of water storage was measured by high-performance liquid chromatography. Whole You Nexteeth and Wieland Digital Dentures had significantly lower mean volume and weight than conventional dentures. Baltic Denture System and Whole You Nexteeth had a significantly increased density. Baltic Denture System had a significantly smaller surface area. None of the CAD/CAM dentures released significantly less monomer than the control group. All tested dentures released very low amounts of methacrylate monomer, but not significantly less than conventional dentures. A statistically significant difference might nevertheless exist in comparison to other, less recommendable denture base materials, such as the frequently used autopolymerising resins. CAD/CAM denture fabrication has numerous advantages. It enables the fabrication of dentures with lower resin volume and lower denture weight. Both could increase the patient comfort. Dentures with higher density might exhibit more favourable mechanical properties. The hypothesis that CAD/CAM dentures release less monomer than conventional dentures could, however, not be verified.

  7. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.

    Science.gov (United States)

    Castagnola, Elisa; Carli, Stefano; Vomero, Maria; Scarpellini, Alice; Prato, Mirko; Goshi, Noah; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide

    2017-07-13

    The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 10 6 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.

  8. Slow-release fluoride devices for the control of dental decay.

    Science.gov (United States)

    Chong, Lee-Yee; Clarkson, Jan E; Dobbyn-Ross, Lorna; Bhakta, Smriti

    2018-03-01

    Slow-release fluoride devices have been investigated as a potentially cost-effective method of reducing dental caries in people with high risk of disease. This is the second update of the Cochrane Review first published in 2006 and previously updated in 2014. To evaluate the effectiveness and safety of different types of slow-release fluoride devices on preventing, arresting, or reversing the progression of carious lesions on all surface types of primary (deciduous) and permanent teeth. Cochrane Oral Health's Information Specialist searched the following electronic databases: Cochrane Oral Health's Trials Register (to 23 January 2018); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 12) in the Cochrane Library (searched 23 January 2018); MEDLINE Ovid (1946 to 23 January 2018); and Embase Ovid (1980 to 23 January 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials (23 January 2018). We placed no restrictions on the language or date of publication when searching the electronic databases. Parallel randomised controlled trials (RCTs) comparing slow-release fluoride devices with an alternative fluoride treatment, placebo, or no intervention in all age groups. The main outcome measures sought were changes in numbers of decayed, missing, and filled teeth or surfaces (DMFT/DMFS in permanent teeth or dmft/dmfs in primary teeth), and progression of carious lesions through enamel and into dentine. We conducted data collection and analysis using standard Cochrane review methods. At least two review authors independently performed all the key steps in the review such as screening of abstracts, application of inclusion criteria, data extraction, and risk of bias assessment. We resolved discrepancies through discussions or arbitration by a third or fourth review author. We found no evidence comparing slow-release

  9. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    OpenAIRE

    Gonçalves,Vanessa L.; Laranjeira,Mauro C. M.; Fávere,Valfredo T.; Pedrosa,Rozângela C.

    2005-01-01

    In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS), and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree ...

  10. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  11. Fluxgate magnetorelaxometry: a new approach to study the release properties of hydrogel cylinders and microspheres.

    Science.gov (United States)

    Wöhl-Bruhn, S; Heim, E; Schwoerer, A; Bertz, A; Harling, S; Menzel, H; Schilling, M; Ludwig, F; Bunjes, H

    2012-10-15

    Hydrogels are under investigation as long term delivery systems for biomacromolecules as active pharmaceutical ingredients. The release behavior of hydrogels can be tailored during the fabrication process. This study investigates the applicability of fluxgate magnetorelaxometry (MRX) as a tool to characterize the release properties of such long term drug delivery depots. MRX is based on the use of superparamagnetic core-shell nanoparticles as model substances. The feasibility of using superparamagnetic nanoparticles to study the degradation of and the associated release from hydrogel cylinders and hydrogel microspheres was a major point of interest. Gels prepared from two types of photo crosslinkable polymers based on modified hydroxyethylstarch, specifically hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA) and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA), were analyzed. MRX analysis of the incorporated nanoparticles allowed to evaluate the influence of different crosslinking conditions during hydrogel production as well as to follow the increase in nanoparticle mobility as a result of hydrogel degradation during release studies. Conventional release studies with fluorescent markers (half-change method) were performed for comparison. MRX with superparamagnetic nanoparticles as model substances is a promising method to analyze pharmaceutically relevant processes such as the degradation of hydrogel drug carrier systems. In contrast to conventional release experiments MRX allows measurements in closed vials (reducing loss of sample and sampling errors), in opaque media and at low magnetic nanoparticle concentrations. Magnetic markers possess a better long-term stability than fluorescent ones and are thus also promising for the use in in vivo studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  13. Releases of natural enemies in Hawaii since 1980 for classical biological control of weeds

    Science.gov (United States)

    P. Conant; J. N. Garcia; M. T. Johnson; W. T. Nagamine; C. K. Hirayama; G. P. Markin; R. L. Hill

    2013-01-01

    A comprehensive review of biological control of weeds in Hawaii was last published in 1992, covering 74 natural enemy species released from 1902 through 1980. The present review summarizes releases of 21 natural enemies targeting seven invasive weeds from 1981 to 2010. These projects were carried out by Hawaii Department of Agriculture (HDOA), USDA Forest Service (USFS...

  14. Environmental Release Prevention and Control Plan

    International Nuclear Information System (INIS)

    Mamatey, A.; Arnett, M.

    1997-01-01

    During the history of SRS, continual improvements in facilities, process, and operations, and changes in the site''s mission have reduced the amount of radioactive liquid releases. In the early years of SRS (1958 to 1965), the amount of tritium discharged to the Savannah River averaged approximately 61,000 curies a year. During the mid-1980''s (1983 to 1988), liquid releases of tritium averaged 27,000 curies a year. By 1996, liquid releases of tritium are projected to be just 3000 curies for the year. This large projected decrease is the result of the planned shut-down of all reactors and the anticipated significant decline in the amount of tritium migrating from the site seepage basins and the Solid Waste Disposal Facility

  15. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  16. A multifunctional β-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release

    International Nuclear Information System (INIS)

    Peng, Hongxia; Cui, Bin; Li, Guangming; Wang, Yingsai; Li, Nini; Chang, Zhuguo; Wang, Yaoyu

    2015-01-01

    We constructed a novel core–shell structured Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ @(β-CD) nanoparticles used as drug carrier to investigate the loading and controllable release properties of the chemotherapeutic drug etoposide (VP-16). The cavity of β-cyclodextrin is chemically inert, it can store etoposide molecules by means of hydrophobic interactions. The Fe 3 O 4 core and ZnO:Er 3+ ,Yb 3+ shell functioned successfully for magnetic targeting and up-conversion fluorescence imaging, respectively. In addition, the ZnO:Er 3+ ,Yb 3+ shell acts as a good microwave absorber with excellent microwave thermal response property for microwave triggered drug release (the VP-16 release of 18% under microwave irradiation for 15 min outclass the 2% within 6 h without microwave irradiation release). The release profile could be controlled by the duration and number of cycles of microwave application. This material therefore promises to be a useful noninvasive, externally controlled drug-delivery system in cancer therapy. - Graphical abstract: We functionalized a multifunctional core–shell Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ nanocarriers by adding β-cyclodextrin, which is capable of carrying drug molecules and triggered release of the drug by microwave treatment. - Highlights: • We constructed Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ @(β-CD) nanoparticles used as a drug carrier. • The nanoparticles have magnetic and up-conversion fluorescence properties. • The nanoparticles have excellent microwave thermal response property. • The nanocomposite could be a controllable drug release triggered by microwave

  17. Synthesis and characterization of a HAp-based biomarker with controlled drug release for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    González, Maykel [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico); Merino, Ulises [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico); University of the Valley of Mexico (UVM), Boulevard Villas del Mesón 1000, Juriquilla, Santiago de Querétaro, Querétaro 76320 (Mexico); Vargas, Susana [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico); Quintanilla, Francisco [University of the Valley of Mexico (UVM), Boulevard Villas del Mesón 1000, Juriquilla, Santiago de Querétaro, Querétaro 76320 (Mexico); Rodríguez, Rogelio, E-mail: rogelior@unam.mx [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico)

    2016-04-01

    A biocompatible hybrid porous polymer–ceramic material was synthesized to be used as a biomarker in the treatment of breast cancer. This device was equipped with the capacity to release medicaments locally in a controlled manner. The biomaterial was Hydroxyapatite(HAp)-based and had a controlled pore size and pore volume fraction. It was implemented externally using a sharp end and a pair of barbed rings placed opposite each other to prevent relative movement once implanted. The biomarker was impregnated with cis-diamine dichloride platinum (II) [Cl{sub 2}-Pt-(NH{sub 3}){sub 2}]; the rate of release was obtained using inductively coupled plasma atomic emission spectroscopy (ICP-AES), and release occurred over the course of three months. Different release profiles were obtained as a function of the pore volume fraction. The biomaterial was characterized using scanning electron microscopy (SEM) and Raman spectroscopy. - Highlights: • A novel biocompatible hybrid porous polymer–ceramic material was synthesized. • The polymer–ceramic (HAp-based) material was used to prepare a biomarker. • The biomarker was impregnated with cis-diamine dichloride platinum (II). • The rate of cisplatin release was determined using inductively coupled plasma. • The kinetics of the cisplatin release was studied varying the biomarker porosity.

  18. Synthesis and characterization of a HAp-based biomarker with controlled drug release for breast cancer

    International Nuclear Information System (INIS)

    González, Maykel; Merino, Ulises; Vargas, Susana; Quintanilla, Francisco; Rodríguez, Rogelio

    2016-01-01

    A biocompatible hybrid porous polymer–ceramic material was synthesized to be used as a biomarker in the treatment of breast cancer. This device was equipped with the capacity to release medicaments locally in a controlled manner. The biomaterial was Hydroxyapatite(HAp)-based and had a controlled pore size and pore volume fraction. It was implemented externally using a sharp end and a pair of barbed rings placed opposite each other to prevent relative movement once implanted. The biomarker was impregnated with cis-diamine dichloride platinum (II) [Cl_2-Pt-(NH_3)_2]; the rate of release was obtained using inductively coupled plasma atomic emission spectroscopy (ICP-AES), and release occurred over the course of three months. Different release profiles were obtained as a function of the pore volume fraction. The biomaterial was characterized using scanning electron microscopy (SEM) and Raman spectroscopy. - Highlights: • A novel biocompatible hybrid porous polymer–ceramic material was synthesized. • The polymer–ceramic (HAp-based) material was used to prepare a biomarker. • The biomarker was impregnated with cis-diamine dichloride platinum (II). • The rate of cisplatin release was determined using inductively coupled plasma. • The kinetics of the cisplatin release was studied varying the biomarker porosity.

  19. Workload control and order release : A lean solution for make-to-order companies

    NARCIS (Netherlands)

    Thurer, M.; Stevenson, M.; Silva, C.; Land, M.J.; Fredendall, L.D.

    2012-01-01

    Protecting throughput from variance is the key to achieving lean. Workload control (WLC) accomplishes this in complex make-to-order job shops by controlling lead times, capacity, and work-in-process (WIP). However, the concept has been dismissed by many authors who believe its order release

  20. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension

    Directory of Open Access Journals (Sweden)

    Subhashree Sahoo

    2011-01-01

    Full Text Available Mucoadhesive polymeric (carbopol 934 suspension of ciprofloxacin was prepared by ultrasonication and optimized with the aim of developing an oral controlled release gastro-retentive dosage form. The qualitative analysis of the formulation was performed by fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, X-ray powder diffraction (XRD, and scanning electron microscopy (SEM analyses. FTIR (400 cm-1 to 4000 cm-1 region and Raman (140 to 2400 cm-1 region Spectroscopic studies were carried out and the spectra were used for interpretation. XRD data of pure drug, polymer and the formulation were obtained using a powder diffractometer scanned from a Bragg′s angle (2q of 10° to 70°. The dispersion of the particle was observed using SEM techniques. The particle size distribution and aspect ratio of particles in the polymeric suspension were obtained from SEM image analysis. The results from FTIR and Raman spectroscopic analyses suggested that, in formulation, the carboxylic groups of ciprofloxacin and hydroxyl groups of C934 undergo a chemical interaction leading to esterification and hydrogen bonding. The XRD data suggested that the retention of crystalline nature of ciprofloxacin in the formulation would lead to increase in stability and drug loading; decrease in solubility; and delay in release of the drug from polymeric suspension with better bioavailability and penetration capacity. The SEM image analysis indicated that, in the formulation maximum particles were having aspect ratio from 2 to 4 and standard deviation was very less which provided supporting evidences for homogeneous, uniformly dispersed, stable controlled release ciprofloxacin suspension which would be pharmaceutically acceptable.

  1. 78 FR 22024 - Request To Release Airport Property at the Oakley Municipal Airport (OEL), Oakley, Kansas

    Science.gov (United States)

    2013-04-12

    ... application may be mailed or delivered to the FAA at the following address: Lynn D. Martin, Airports... property be released for sale to Matt Mildenberger of Mitten's, Inc. for a restaurant. On March 5, 2013... application, notice and other documents determined by the FAA to be related to the application in person at...

  2. Synthesis and controlled release properties of 2,4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid

    International Nuclear Information System (INIS)

    Bashi, Abbas M.; Hussein, Mohd Zobir; Zainal, Zulkarnain; Tichit, Didier

    2013-01-01

    Direct reaction of ZnO with 2,4-dichlorophenoxyacetic acid (24D) solutions of different concentrations allows obtaining new organic–inorganic nanohybrid materials formed by intercalation of 24D into interlayers of zinc layered hydroxide (ZLH). XRD patterns show a progressive evolution of the structure as 24D concentration increases. The nanohybrid obtained at higher 24D concentration (24D–ZLH(0.4)) reveals a well ordered layered structure with two different basal spacings at 25.2 Å and 24 Å. The FTIR spectrum showing the vibrations bands of the functional groups of 24D and of the ZLH confirms the intercalation. SEM images are in agreement with the structural evolution observed by XRD and reveal the ribbon morphology of the nanohybrids. The release studies of 24D showed a rapid release of 94% for the first 100 min governed by the pseudo-second order kinetic model. - Graphical abstract: The phenomenon indicates that the optical energy gap is enlarged with the increase of molar concentrations in 2,4-dichlorophenoxy acetate anion content into ZnO to create a ZLH–24D nanohybrid. - Highlights: • Nanohybrid was synthesized from 2,4-dichlorophenoxy acetate with-Zinc LHD, using wet chemistry. • Characterized using SEM, TEM, EDX, FTIR, XRD and TGA. • Ribbon-shaped 24D–Zn-layered hydroxide nanoparticles with (003) diffractions of 2.5 nm phase were synthesized

  3. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release.

    Science.gov (United States)

    Yang, Dan-Xia; Chen, Xiao-Wei; Yang, Xiao-Quan

    2018-01-01

    Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. Microscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v 0 ), maximum headspace concentrations (C max ) and partition coefficients (k a/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  5. A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing.

    Science.gov (United States)

    Li, Mi; Li, Haichang; Li, Xiangguang; Zhu, Hua; Xu, Zihui; Liu, Lianqing; Ma, Jianjie; Zhang, Mingjun

    2017-07-12

    Biopolymeric hydrogels have drawn increasing research interest in biomaterials due to their tunable physical and chemical properties for both creating bioactive cellular microenvironment and serving as sustainable therapeutic reagents. Inspired by a naturally occurring hydrogel secreted from the carnivorous Sundew plant for trapping insects, here we have developed a bioinspired hydrogel to deliver mitsugumin 53 (MG53), an important protein in cell membrane repair, for chronic wound healing. Both chemical compositions and micro-/nanomorphological properties inherent from the natural Sundew hydrogel were mimicked using sodium alginate and gum arabic with calcium ion-mediated cross-linking. On the basis of atomic force microscopy (AFM) force measurements, an optimal sticky hydrogel scaffold was obtained through orthogonal experimental design. Imaging and mechanical analysis showed the distinct correlation between structural morphology, adhesion characteristics, and mechanical properties of the Sundew-inspired hydrogel. Combined characterization and biochemistry techniques were utilized to uncover the underlying molecular composition involved in the interactions between hydrogel and protein. In vitro drug release experiments confirmed that the Sundew-inspired hydrogel had a biphasic-kinetics release, which can facilitate both fast delivery of MG53 for improving the reepithelization process of the wounds and sustained release of the protein for treating chronic wounds. In vivo experiments showed that the Sundew-inspired hydrogel encapsulating with rhMG53 could facilitate dermal wound healing in mouse model. Together, these studies confirmed that the Sundew-inspired hydrogel has both tunable micro-/nanostructures and physicochemical properties, which enable it as a delivery vehicle for chronic wounding healing. The research may provide a new way to develop biocompatible and tunable biomaterials for sustainable drug release to meet the needs of biological activities.

  6. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release

    International Nuclear Information System (INIS)

    García, Mónica C.; Cuggino, Julio C.; Rosset, Clarisa I.; Páez, Paulina L.; Strumia, Miriam C.

    2016-01-01

    The development and characterization of a novel, gel-type material based on a dendronized polymer (DP) loaded with ciprofloxacin (CIP), and the evaluation of its possible use for controlled drug release, are presented in this work. DP showed biocompatible and non-toxic behaviors in cultured cells, both of which are considered optimal properties for the design of a final material for biomedical applications. These results were encouraging for the use of the polymer loaded with CIP (as a drug model), under gel form, in the development of a new controlled-release system to be evaluated for topical administration. First, DP-CIP ionic complexes were obtained by an acid-base reaction using the high density of carboxylic acid groups of the DP and the amine groups of the CIP. The complexes obtained in the solid state were broadly characterized using FTIR spectroscopy, XRP diffraction, DSC-TG analysis and optical microscopy techniques. Gels based on the DP-CIP complexes were easily prepared and presented excellent mechanical behaviors. In addition, optimal properties for application on mucosal membranes and skin were achieved due to their high biocompatibility and acute skin non-irritation. Slow and sustained release of CIP toward simulated physiological fluids was observed in the assays (in vitro), attributed to ion exchange phenomenon and to the drug reservoir effect. An in vitro bacterial growth inhibition assay showed significant CIP activity, corresponding to 38 and 58% of that exhibited by a CIP hydrochloride solution at similar CIP concentrations, against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. However, CIP delivery was appropriate, both in terms of magnitude and velocity to allow for a bactericidal effect. In conclusion, the final product showed promising behavior, which could be exploited for the treatment of topical and mucosal opportunistic infections in human or veterinary applications. - Highlights: • A novel hydrogel based on

  9. A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release

    Energy Technology Data Exchange (ETDEWEB)

    García, Mónica C. [Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Cuggino, Julio C. [Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Colectora Ruta Nac. N° 168, km. 0, Pje. El Pozo, 3000 Santa Fe (Argentina); Rosset, Clarisa I.; Páez, Paulina L. [Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Strumia, Miriam C. [Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Laboratorio de Materiales Poliméricos (LAMAP), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); and others

    2016-12-01

    The development and characterization of a novel, gel-type material based on a dendronized polymer (DP) loaded with ciprofloxacin (CIP), and the evaluation of its possible use for controlled drug release, are presented in this work. DP showed biocompatible and non-toxic behaviors in cultured cells, both of which are considered optimal properties for the design of a final material for biomedical applications. These results were encouraging for the use of the polymer loaded with CIP (as a drug model), under gel form, in the development of a new controlled-release system to be evaluated for topical administration. First, DP-CIP ionic complexes were obtained by an acid-base reaction using the high density of carboxylic acid groups of the DP and the amine groups of the CIP. The complexes obtained in the solid state were broadly characterized using FTIR spectroscopy, XRP diffraction, DSC-TG analysis and optical microscopy techniques. Gels based on the DP-CIP complexes were easily prepared and presented excellent mechanical behaviors. In addition, optimal properties for application on mucosal membranes and skin were achieved due to their high biocompatibility and acute skin non-irritation. Slow and sustained release of CIP toward simulated physiological fluids was observed in the assays (in vitro), attributed to ion exchange phenomenon and to the drug reservoir effect. An in vitro bacterial growth inhibition assay showed significant CIP activity, corresponding to 38 and 58% of that exhibited by a CIP hydrochloride solution at similar CIP concentrations, against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. However, CIP delivery was appropriate, both in terms of magnitude and velocity to allow for a bactericidal effect. In conclusion, the final product showed promising behavior, which could be exploited for the treatment of topical and mucosal opportunistic infections in human or veterinary applications. - Highlights: • A novel hydrogel based on

  10. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    Directory of Open Access Journals (Sweden)

    Vanessa L. Gonçalves

    2005-03-01

    Full Text Available In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS, and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree of swelling varied with the pH for glutaraldehyde chitosan microspheres (GCM and epichlorhydrin chitosan microspheres (ECM. Partial acid and basic hydrolysis affected the swelling behavior of the GCM matrix. Release kinetics of diclofenac sodium from these matrices were investigated at pH 1.2, 6.8 and 9.0, simulating the gastrointestinal tract conditions. The results indicated that the release mechanism deviated slightly from Fickian transport.

  11. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling propertiesControlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  12. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    International Nuclear Information System (INIS)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2016-01-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling propertiesControlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  13. The Antimicrobial Properties of Zinc-Releasing Bioceramics

    Science.gov (United States)

    He, Xin

    Up to 80% of nosocomial infections are caused by biofilm-producing bacteria such as Staphylococci and Pseudomonas aeruginosa. These types of microorganisms can become resistant to antibiotics and are difficult to eliminate. As such, there is tremendous interest in developing bioactive implant materials that can help to minimize these post- operative infections. Using water-based chemistry, we developed an economical, biodegradable and biocompatible orthopedic implant material consisting of zinc- doped hydroxyapatite (HA), which mimics the main inorganic component of the bone. Because the crystallinity of HA is typically too compact for efficient drug release, we substituted calcium ions in HA with zinc during the synthesis step to perturb the crystal structure. An added benefit is that zinc itself is a microelement of the human body with anti-inflammatory property, and we hypothesized that Zn-doped HA is an inherently antibacterial material. All HA samples were synthesized by a co-precipitation method using aqueous solutions of Zinc nitrate, Calcium Nitrate, and Ammonium Phosphate. XRD data showed that Zn was successfully incorporated into the HA. The effectiveness of Zn-doped HA against a model biofilm-forming bacterium is currently being evaluated using a wild-type strain and a streptomycin- resistant strain of Pseudomonas syringae pv. papulans (Psp) which is a plant pathogen isolated from diseased apples. Key words: Hydroxyapatite, Zinc, Citrate, Pseudomonas, Antibacterial.

  14. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  15. Preparation of microspheres for slow release drug by radiation-induced suspension polymerization and their properties

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Kaetsu, Isao

    1982-01-01

    The polymer microspheres containing drugs as drug delivery system were made by means of suspension-polymerization by radiation at low temperature by using glass-forming monomers which have stable supercooling properties and large polymerizability at low temperature. The particle distribution depended on the kind of monomer. It was found that the entrapping yield of drug in polymer microspheres increased with increasing viscosity of monomer and that the maximum value on the particle size distribution curve was also shifted to large particle diameter side. In the case of trimethylolpropane trimethacrylate monomer (43 cps), TMPT, the entrapping yield of drug reached 74% and the maximum value in particle size distribution curve appeared in the neighborhood of 105 to 210 mu m ranges. On the other hand, those values in neopentyl glycol dimethacrylate monomer (4 cps) were 12% in former and 44 -- 105 mu m in the latter. The release phenomenon of drugs from polymer microspheres was investigated. for example, the cumulative amount of mitomycin C (water soluble drug) released from TMPT polymer microsphere was about 90% after 30-day dissolution, while in the case of water-insoluble drug such as testosterone the amount of release was about 49% after 40-day dissolution. In all cases, the release rate is constant during the experimental period. Therefore, it was concluded that the release of drugs from polymer microspheres obtained in this study is possible over the long periods. (author)

  16. Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China

    Directory of Open Access Journals (Sweden)

    Xin Tong

    2018-01-01

    Full Text Available Controlled release urea (CRU is considered to enhance crop yields while alleviating negative environmental problems caused by the hazardous gas emissions that are associated with high concentrations of ammonium (NH4+ and nitrate (NO3− in black soils. Short-term effects of sulfur-coated urea (SCU and polyurethane-coated urea (PCU, compared with conventional urea, on NO3− and NH4+ in black soils were studied through the buried bag experiment conducted in an artificial climate chamber. We also investigated nitrogen (N release kinetics of CRU and correlations between the cumulative N release rate and concentrations of NO3− and NH4+. CRU can reduce concentrations of NO3− and NH4+, and PCU was more effective in maintaining lower soil NO3−/NH4+ ratios than SCU and U. Parabolic equation could describe the kinetics of NO3− and NH4+ treated with PCU. The Elovich equation could describe the kinetics of NO3− and NH4+ treated with SCU. The binary linear regression model was established to predict N release from PCU because of significant correlations between the cumulative N release rate and concentrations of NO3− and NH4+. These results provided a methodology and data support for characterizing and predicting the N release from PCU in black soils.

  17. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.

    Science.gov (United States)

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326°C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Water - The radiological health of rivers: releases are very much controlled downstream power plants. What do hospital releases represent? The Seine reserves a surprise

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    After a brief presentation of the role of the IRSN in the control of the radioactivity present in waters and in the control and follow-up of all sources of radioactivity, a first article briefly present the hydro-collector network, indicates that some point samplings of sediment and aquatic species are performed, that a national network of beacons for a continuous radioactivity measurement is installed in the main French rivers, downstream nuclear installations, and that advanced measurement techniques are used to detect very small level of tritium. Maps giving a brief indication of the radiological condition of the Loire and Rhone are provided. A second article addresses the control of releases downstream power plants, and evokes the legal context and the associated objectives and produced documents. The third article discusses the risk associated with hospital wastes and releases (liquid and solid effluents), how radioactivity is controlled between the hospital and tap water distribution. The last article reports and comments the results obtained by an analysis of historical pollutions trapped in the sediments of the Seine: 40 year-old traces of plutonium have been discovered, due to an accidental release from a CEA installation in Fontenay-aux-Roses, with no detrimental impact on population or on sewer workers

  19. Characterization of physicochemical properties of hydroxypropyl methylcellulose (HPMC) type 2208 and their influence on prolonged drug release from matrix tablets

    OpenAIRE

    Devjak Novak, Sabina; Šporar, Elena; Vrečer, Franc; Baumgartner, Saša

    2015-01-01

    The key physicochemical properties of functional excipients should be identified, and the influence of their variability on the properties of the final dosage form should be evaluated during the development phase. Excipients produced by different manufacturers and/or by differentb manufacturing processes should have comparable properties. Hydroxypropyl methylcellulose (HPMC) with a high molecular weight is a functional excipient often used in solid matrix systems with prolonged release of act...

  20. Synthesis of hydrogels of alginate for system controlled release of progesterone

    International Nuclear Information System (INIS)

    Abreu, Marlon de F.; Rodriguez, Ruben J.S.; Silva, Ester C.C. da; Barreto, Gabriela N.S.

    2015-01-01

    The chemical modifications of natural polymers like alginate, has allowed the development of new formulations for controlled release systems. In this work we report the synthesis of a derivative of the amidic alginate with alkyl chain. The polymer was characterized by spectroscopic techniques: Nuclear Magnetic Resonance and Fourier Transform Infrared. (author)

  1. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    Science.gov (United States)

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride-releasing

  2. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs).

    Science.gov (United States)

    Tran, Vy Anh; Lee, Sang-Wha

    2018-01-15

    This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  4. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    Science.gov (United States)

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  5. Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Kingshuk, Poddar; Shi, Zhilong; Wang, Wilson; Tan, Reginald B H

    2017-08-01

    The influence of mesoporous silica nanoparticles (MSNs) loaded with antibiotics on the mechanical properties of functional poly(methyl methacrylate)-(PMMA) based bone cements is investigated. The incorporation of MSNs to the bone cements (8.15wt%) shows no detrimental effects on the biomechanical properties of the freshly solidified bone cements. Importantly, there are no significant changes in the compression strength and bending modulus up to 6 months of aging in PBS buffer solution. The preserved mechanical properties of MSN-functionalized bone cements is attributed to the unchanged microstructures of the cements, as more than 96% of MSNs remains in the bone cement matrix to support the cement structures after 6 months of aging. In addition, the MSN-functionalized bone cements are able to increase the drug release of gentamicin (GTMC) significantly as compared with commercially available antibiotic-loaded bone cements. It can be attributed to the loaded nano-sized MSNs with uniform pore channels which build up an effective nano-network path enable the diffusion and extended release of GTMC. The combination of excellent mechanical properties and sustainable drug delivery efficiency demonstrates the potential applicability of MSN-functionalized PMMA bone cements for orthopedic surgery to prevent post-surgery infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  7. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  8. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  9. Release of CFC-11 from disposal of polyurethane foam waste

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Jensen, M.H.

    2001-01-01

    The halocarbon CFC-11 has extensively been used as a blowing agent for polyurethane (PUR) insulation foams in home appliances and for residential and industrial construction. Release of CFCs is an important factor in the depletion of the ozone layer. For CFC-11 the future atmospheric concentrations...... will mainly depend on the continued release from PUR foams. Little is known about rates and time frames of the CFC release from foams especially after treatment and disposal of foam containing waste products. The CFC release is mainly controlled by slow diffusion out through the PUR. From the literature...... and by reevaluation of an old reported experiment, diffusion coefficients in the range of 0.05-1.7.10(-14) m(2) s(-1) were found reflecting differences in foam properties and experimental designs. Laboratory experiments studying the distribution of CFC in the foam and the short-term releases after shredding showed...

  10. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  11. Timing of insertion of levonorgestrel-releasing intrauterine system : a randomised controlled trial

    NARCIS (Netherlands)

    van der Heijden, Pahh; Geomini, Pmaj; Herman, M C; Veersema, S; Bongers, M Y

    OBJECTIVE: The objective was to assess whether patient-perceived pain during the insertion of the levonorgestrel-releasing intrauterine system (LNG-IUS) depends on the timing during the menstrual cycle. DESIGN: A stratified two-armed non-inferiority randomised controlled trial. SETTING: Large

  12. Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention.

    Science.gov (United States)

    Xiang, Yang; Ru, Xudong; Shi, Jinguo; Song, Jiang; Zhao, Haidong; Liu, Yaqing; Guo, Dongdong; Lu, Xin

    2017-12-20

    A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g -1 in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.

  13. Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug.

    Science.gov (United States)

    Zhai, Qing-Zhou

    2013-01-01

    This article used MCM-41 as a carrier for the assembly of propranolol hydrochloride by the impregnation method. By means of chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and low-temperature N(2) adsorption-desorption at 77 K, the characterization was made for the prepared materials. The propranolol hydrochloride guest assembly capacity was 316.20 ± 0.31 mg/g (drug/MCM-41). Powder XRD test results indicated that during the process of incorporation, the frameworks of the MCM-41 were not destroyed and the crystalline degrees of the host-guest nanocomposite materials prepared still remained highly ordered. Characterization by SEM and TEM showed that the composite material presented spherical particle and the average particle size of composite material was 186 nm. FT-IR spectra showed that the MCM-41 framework existed well in the (MCM-41)-propranolol hydrochloride composite. Low-temperature nitrogen adsorption-desorption results at 77 K showed that the guest partially occupied the channels of the molecular sieves. Results of the release of the prepared composite drug in simulated body fluid indicated that the drug can release up to 32 h and its maximum released amount was 99.20 ± 0.11%. In the simulated gastric juice release pattern of drug, the maximum time for the drug release was discovered to be 6 h and the maximum cumulative released amount of propranolol hydrochloride was 45.13 ± 0.23%. The drug sustained-release time was 10 h in simulated intestinal fluid and the maximum cumulative released amount was 62.05 ± 0.13%. The prepared MCM-41 is a well-controlled drug delivery carrier.

  14. 48 CFR 1245.511 - Audit of property control system.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Audit of property control... 1245.511 Audit of property control system. (a) The property administrator (or other Government official authorized by the contracting officer) shall audit the contractor's property control system whenever there...

  15. Controlled release of free-falling test models

    Science.gov (United States)

    Fife, W. J.; Holway, H. P.

    1970-01-01

    Releasing device, powered by a drill motor through an adjustable speed reducer, has a spinning release head with three retractable spring-loaded fingers. The fingers are retracted by manual triggering of a cable at the motor end of the unit.

  16. Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Vinícius Müller

    2011-01-01

    Full Text Available Biomaterials applied as carriers for controlled drug delivery offer many advantages over the conventional systems. Among them, the increase of treatment effectiveness and also a significant reduction of toxicity, due to their biodegradability property, are some special features. In this work, microspheres based on the protein Zein (ZN and ZN associated to the natural polymer Chitosan (CHI were prepared and characterized. The microspheres of ZN and ZN/CHI were characterized by FT-IR spectroscopy and thermal analysis, and the morphology was analyzed by SEM images. The results confirmed the incorporation of CHI within the ZN-based microspheres. The morphological analysis showed that the CHI added increased the microspheres porosity when compared to the ZN microspheres. The chemical and physical characterization and the morphological analysis allow inferring that ZN/CHI microspheres are good candidates to act as a carrier for controlled drug release.

  17. Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug.

    Science.gov (United States)

    Basar, A O; Castro, S; Torres-Giner, S; Lagaron, J M; Turkoglu Sasmazel, H

    2017-12-01

    In the present study, a single and binary Ketoprofen-loaded mats of ultrathin fibers were developed by electrospinning and their physical properties and drug release capacity was analyzed. The single mat was prepared by solution electrospinning of poly(ε-caprolactone) (PCL) with Ketoprofen at a weight ratio of 5wt%. This Ketoprofen-containing PCL solution was also used as the oil phase in a 7:3 (wt/wt) emulsion with gelatin dissolved in acidified water. The resultant stable oil-in-water (O/W) emulsion of PCL-in-gelatin, also containing Ketoprofen at 5wt%, was electrospun to produce the binary mat. Cross-linking process was performed by means of glutaraldehyde vapor on the electrospun binary mat to prevent dissolution of the hydrophilic gelatin phase. The performed characterization indicated that Ketoprofen was successfully embedded in the single and binary electrospun mats, i.e. PCL and PCL/gelatin, and both mats showed high hydrophobicity but poor thermal resistance. In vitro release studies interestingly revealed that, in comparison to the single PCL electrospun mat, the binary PCL/gelatin mat significantly hindered Ketoprofen burst release and exhibited a sustained release capacity of the drug for up to 4days. In addition, the electrospun Ketoprofen-loaded mats showed enhanced attachment and proliferation of L929 mouse fibroblast cells, presenting the binary mat the highest cell growth yield due to its improved porosity. The here-developed electrospun materials clearly show a great deal of potential as novel wound dressings with an outstanding controlled capacity to release drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 76 FR 37874 - Notice of Intent To Rule on Request To Release Airport Property at Lehigh Valley International...

    Science.gov (United States)

    2011-06-28

    ... land, under agricultural production, and is maintained to protect airspace surfaces of 14 CFR 77.19... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of Intent To Rule on Request... Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The...

  19. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  20. A REVIEW ON CONTROLLED DRUG RELEASE FORMULATION: SPANSULES

    OpenAIRE

    Rinky Maurya; Dr. Pramod Kumar Sharma; Rishabha Malviya

    2014-01-01

    Spansules are a dosage form which was considered as one of the Advanced Drug Delivery System. Multidrug preparations can be delivered easily by spansules or granules in capsule technology. This type of delivery system designed to release a drug or a medicament at two or more different rates or in different span of time. A quick/slow release system provides an initial release of drug followed by a constant rate of drug release over a extended period or a defined period of time and in slow/quic...

  1. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  2. Effects of Controlled-Release Urea on Grain Yield of Spring Maize, Nitrogen Use Efficiency and Nitrogen Balance

    Directory of Open Access Journals (Sweden)

    JI Jing-hong

    2017-03-01

    Full Text Available The effects of mixing controlled-released urea (CRU (release period of resin coated urea is 90 days and urea (U on maize yield, nitrogen use efficiency and nitrogen balance were studied by 4 plot experiments (site:Shuangcheng, Binxian, Harbin and Zhaoyuan in two years (from year 2011 to 2012 to clarify the effect of controlled release urea on spring maize and soil nitrogen balance. Results were as follow:Spring maize yield and nitrogen absorption were increased with the increasing nitrogen fertilizer. Compared with applying urea treatment, applying CRU could increase yield, nitrogen absorption, nitrogen use efficiency, agriculture efficiency of nitrogen and nitrogen contribution rate. Under the same amount of nitrogen (100%, 75%, 50%, compared with 100% U as basic fertilizer treatment, maize yield of 100% CRU treatment increased 391, 427, 291 kg·hm-2, nitrogen use efficiency increased by 5.9%,4.9% and 5.1%, agriculture efficiency of nitrogen increased 2.0, 2.6, 2.6 kg·kg-1, and nitrogen contribution rate increased 2.7%, 3.1% and 2.4%, respectively. The value of maize yield, nitrogen absorption, nitrogen use efficiency and agriculture efficiency of nitrogen between the treatment four (40% urea as basic fertilizer+60% urea as topdressing and treatment five (40% urea plus 60% controlled release urea as basic fertilizer were similar. Apparent profit and loss of nitrogen decreased with the increase of nitrogen nitrogen fertilizer. Nitrogen apparent loss by applying 100% controlled release urea was reduced of 15.0 kg·hm-2 than applying 100% U treatment;Nitrogen apparent loss amount was decreased of 23.9 kg·hm-2 under treatment five. The method of mixing 40% urea and 60% controlled release urea should be applied in maize production in Heilongjiang Province.

  3. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers.

    Science.gov (United States)

    Nair, Madhavan; Guduru, Rakesh; Liang, Ping; Hong, Jeongmin; Sagar, Vidya; Khizroev, Sakhrat

    2013-01-01

    Although highly active anti-retroviral therapy has resulted in remarkable decline in the morbidity and mortality in AIDS patients, inadequately low delivery of anti-retroviral drugs across the blood-brain barrier results in virus persistence. The capability of high-efficacy-targeted drug delivery and on-demand release remains a formidable task. Here we report an in vitro study to demonstrate the on-demand release of azidothymidine 5'-triphosphate, an anti-human immunodeficiency virus drug, from 30 nm CoFe2O4@BaTiO3 magneto-electric nanoparticles by applying a low alternating current magnetic field. Magneto-electric nanoparticles as field-controlled drug carriers offer a unique capability of field-triggered release after crossing the blood-brain barrier. Owing to the intrinsic magnetoelectricity, these nanoparticles can couple external magnetic fields with the electric forces in drug-carrier bonds to enable remotely controlled delivery without exploiting heat. Functional and structural integrity of the drug after the release was confirmed in in vitro experiments with human immunodeficiency virus-infected cells and through atomic force microscopy, spectrophotometry, Fourier transform infrared and mass spectrometry studies.

  4. Regulating the path from legacy recognition, through recovery to release from regulatory control.

    Science.gov (United States)

    Sneve, Malgorzata Karpow; Smith, Graham

    2015-04-01

    Past development of processes and technologies using radioactive material led to construction of many facilities worldwide. Some of these facilities were built and operated before the regulatory infrastructure was in place to ensure adequate control of radioactive material during operation and decommissioning. In other cases, controls were in place but did not meet modern standards, leading to what is now considered to have been inadequate control. Accidents and other events have occurred resulting in loss of control of radioactive material and unplanned releases to the environment. The legacy from these circumstances is that many countries have areas or facilities at which abnormal radiation conditions exist at levels that give rise to concerns about environmental and human health of potential interest to regulatory authorities. Regulation of these legacy situations is complex. This paper examines the regulatory challenges associated with such legacy management and brings forward suggestions for finding the path from: legacy recognition; implementation, as necessary, of urgent mitigation measures; development of a longer-term management strategy, through to release from regulatory control. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    The effect of several formulation variables on in ... The in vivo pharmacokinetics of the optimized formulation was compared ... Results: The core tablets exhibited extended release consisting of drug release from the embedded ... important factor in medical treatment with respect ... The solvents for high-performance liquid.

  6. Controlled antiseptic/eosin release from chitosan-based hydrogel modified fibrous substrates.

    Science.gov (United States)

    Romano, Ilaria; Ayadi, Farouk; Rizzello, Loris; Summa, Maria; Bertorelli, Rosalia; Pompa, Pier Paolo; Brandi, Fernando; Bayer, Ilker S; Athanassiou, Athanassia

    2015-10-20

    Fibers of cellulose networks were stably coated with N-methacrylate glycol chitosan (MGC) shells using subsequent steps of dip coating and photo-curing. The photo-crosslinked MGC-coated cellulose networks preserved their fibrous structure. A model hydrophilic antiseptic solution containing eosin, chloroxylenol and propylene glycol was incorporated into the shells to study the drug release dynamics. Detailed drug release mechanism into phosphate buffered saline (PBS) solutions from coated and pristine fibers loaded with the antiseptic was investigated. The results show that the MGC-coated cellulose fibers enable the controlled gradual release of the drug for four days, as opposed to fast, instantaneous release from eosin coated pristine fibers. This release behavior was found to affect the antibacterial efficiency of the fibrous cellulose sheets significantly against Staphylococcus aureus and Candida albicans. In the case of the MGC-eosin functionalized system the antibacterial efficiency was as high as 85% and 90%, respectively, while for the eosin coated pristine cellulose system the efficiency was negative, indicating bacterial proliferation. Furthermore, the MGC-eosin system was shown to be efficacious in a model of wound healing in mice, reducing the levels of various pro-inflammatory cytokines that modulate early inflammatory phase responses. The results demonstrate good potential of these coated fibers for wound dressing and healing applications. Due to its easy application on common passive commercial fibrous dressings such as gauzes and cotton fibers, the method can render them active dressings in a cost effective way. Copyright © 2015. Published by Elsevier Ltd.

  7. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  8. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  9. Controlled-release oxycodone-induced seizures.

    Science.gov (United States)

    Klein, Moti; Rudich, Zvia; Gurevich, Boris; Lifshitz, Matityahu; Brill, Silviu; Lottan, Michael; Weksler, Natan

    2005-11-01

    The use of the opioid oxycodone hydrochloride in the management of chronic pain is gaining popularity principally because of its tolerability. However, opioid-related seizure in patients with epilepsy or other conditions that may decrease seizure threshold has been described in the literature; in particular, oxycodone has been associated with seizure in a patient with acute renal failure. The aim of this article was to report a patient with a history of seizures but normal renal and hepatic function who developed seizure on 2 occasions after oxycodone ingestion. A 54-year-old male patient presented with a history of tonic-clonic seizures that developed immediately after intracranial surgery. Long-term treatment with carbamazepine 400 mg QD was started, and the patient was free of convulsions for approximately 7 years. The patient presented to us with severe headache that was nonresponsive to an NSAID and the opiate agonist tramadol. Treatment with controlled-release (CR) oxycodone and tramadol drops (50 mg QID if necessary) was started, and tonic-clonic seizures developed 3 days later. Based on laboratory analysis, the patient had normal renal and hepatic function. On discontinuation of oxycodone treatment, the seizures resolved. However, due to effective pain relief with oxycodone, the patient decided to continue treatment, and seizures recurred. Carbamazepine was then administered 4 hours before oxycodone dosing, which allowed continuation of treatment without seizure. A patient with a history of seizures controlled with long-term carbamazepine therapy developed seizures when he started treatment with oxycodone CR at recommended doses. Oxycodone CR should be used with extreme caution in patients with epilepsy or other conditions that may decrease seizure threshold.

  10. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight

    Science.gov (United States)

    Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...

  11. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  12. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  13. Halloysite Nanotubes: Controlled Access and Release by Smart Gates.

    Science.gov (United States)

    Cavallaro, Giuseppe; Danilushkina, Anna A; Evtugyn, Vladimir G; Lazzara, Giuseppe; Milioto, Stefana; Parisi, Filippo; Rozhina, Elvira V; Fakhrullin, Rawil F

    2017-07-28

    Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH)₂ into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO₂ gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We prove that adding halloysite filled with Ca(OH)₂ to paper can reduce the impact of acid exposure on both the mechanical performance and pH alteration. The end-stoppers have a double effect: they preserve the calcium hydroxide from carbonation, and they prevent from the formation of highly basic pH and trigger the response to acid exposure minimizing the pH drop-down. These features are promising for a composite nanoadditive in the smart protection of cellulose-based materials.

  14. Contact lenses as drug controlled release systems: a narrative review

    Directory of Open Access Journals (Sweden)

    Helena Prior Filipe

    2016-06-01

    Full Text Available ABSTRACT Topically applied therapy is the most common way to treat ocular diseases, however given the anatomical and physiological constraints of the eye, frequent dosing is required with possible repercussions in terms of patient compliance. Beyond refractive error correction, contact lenses (CLs have, in the last few decades emerged as a potential ophthalmic drug controlled release system (DCRS. Extensive research is underway to understand how to best modify CLs to increase residence time and bioavailability of drugs within therapeutic levels on the ocular surface.These devices may simultaneously correct ametropia and have a role in managing ophthalmic disorders that can hinder CL wear such as dry eye, glaucoma, ocular allergy and cornea infection and injury. In this narrative review the authors explain how the ocular surface structures determine drug diffusion in the eye and summarize the strategies to enhance drug residence time and bioavailability. They synthesize findings and clinical applications of drug soaked CLs as DCRS combined with delivery diffusion barriers, incorporation of functional monomers, ion related controlled release, molecular imprinting, nanoparticles and layering. The authors draw conclusions about the impact of these novel ophthalmic agents delivery systems in improving drug transport in the target tissue and patient compliance, in reducing systemic absorption and undesired side effects, and discuss future perspectives.

  15. A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release

    Directory of Open Access Journals (Sweden)

    Xiling Li

    2018-05-01

    Full Text Available Summary: We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ. We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment. : Homeostatic mechanisms stabilize synaptic strength, but the signaling systems remain enigmatic. Li et al. suggest the existence of a homeostat operating at the Drosophila neuromuscular junction that responds to excess glutamate through an autocrine mechanism to adaptively inhibit presynaptic neurotransmitter release. This system parallels forms of plasticity at central synapses. Keywords: homeostatic synaptic plasticity, glutamate homeostasis, synaptic depression, Drosophila neuromuscular junction

  16. Effect of fluoride addition on the properties of dental alginate impression materials.

    Science.gov (United States)

    Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We

    2004-03-01

    Fluoride-containing dental alginate impression materials can exert a considerable reduction in enamel solubility. The objective was to evaluate the effects of fluoride addition in the alginate impression materials on the properties and subsequent release of fluoride. Four experimental alginate impression materials were studied. Materials were mixed with distilled water (control) or 100-ppm fluoride solution. One or two percent NaF, or 1% SnF2 was added to the materials, which were mixed with distilled water. Fluoride release, flexibility, recovery from deformation, setting time, compressive strength and elastic modulus were determined in accordance with the ISO 1563 and ANSI/ADA Spec. 18. Fluoride release increased after addition of fluoride, and the released amount was 0.762-14.761 ppm. Addition of NaF or SnF2 resulted in higher fluoride release than the control group (p alginate impression material may result in effective release of fluoride without deteriorating the properties of material itself.

  17. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    A coating layer was then applied with a mixture of HPMC, ethylcellulose, shellac, and HPMC phthalate. The effect of several formulation variables on in vitro drug release was studied; furthermore, the drug release kinetics of the optimized formulation was evaluated. The in vivo pharmacokinetics of the optimized formulation ...

  18. Preparation and scale up of extended-release tablets of bromopride

    Directory of Open Access Journals (Sweden)

    Guilherme Neves Ferreira

    2014-04-01

    Full Text Available Reproducibility of the tablet manufacturing process and control of its pharmaceutics properties depends on the optimization of formulation aspects and process parameters. Computer simulation such as Design of Experiments (DOE can be used to scale up the production of this formulation, in particular for obtaining sustained-release tablets. Bromopride formulations are marketed in the form of extended-release pellets, which makes the product more expensive and difficult to manufacture. The aim of this study was to formulate new bromopride sustained release formulations as tablets, and to develop mathematical models to standardize the scale up of this formulation, controlling weight and hardness of the tablets during manufacture according to the USP 34th edition. DOE studies were conducted using Minitab(tm software. Different excipient combinations were evaluated in order to produce bromopride sustained-release matrix tablets. In the scale-up study, data were collected and variations in tableting machine parameters were measured. Data were processed by Minitab(tm software, generating mathematical equations used for prediction of powder compaction behavior, according to the settings of the tableting machine suitable for scale-up purposes. Bromopride matrix tablets with appropriate characteristics for sustained release were developed. The scale-up of the formulation with the most suitable sustained release profile was established by using mathematical models, indicating that the formulation can be a substitute for the pellets currently marketed.

  19. Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release

    International Nuclear Information System (INIS)

    Kanungo, Ivy; Fathima, Nishter Nishad; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2013-01-01

    Formulation of biodegradable collagen–poly-ε-caprolactone (PCL) based biomaterials for the sustained release of insulin is the main objective of the present work. PCL has been employed to modulate the physico-chemical behavior of collagen to control the drug release. Designed formulations were employed to statistically optimize insulin release parameter profile at different collagen to PCL molar ratios. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to investigate the effect of PCL on hydration dynamics of the collagen molecule, which in turn changes the dissolution parameters of the drug from the systems. Drug entrapment efficiency has been found to be maximum for collagen to PCL molar ratio of 1:2 (> 90%). In vitro dissolution test reveals that 99% of the drug was released from composite at collagen to PCL molar ratio of 1:3 and 1:4 within 2 h, which indicates that hydrophobicity of the matrix results in weak interaction between lipophilic drug and carrier materials. The least burst release was observed for collagen to PCL molar ratio at 1:2 as synergistic interactions between collagen and PCL was maximum at that particular polymer–polymer ratios. The drug release data indicates super case-II transport of drug (n > 1.0). - Graphical abstract: Collagen–poly-ε-caprolactone based biomaterials for the sustained release of insulin were formulated. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to elucidate the effect of PCL on the structure of the collagen and in vitro drug release. The drug release data fitted to the kinetic model indicates super case-II transport due to the combination of diffusion and polymer relaxation/dissolution (n > 1.0). - Highlights: • Poly-ε-caprolactone influences physico-chemical behavior of collagen. • Poly-ε-caprolactone influences in vitro drug release mechanism from biocomposites.

  20. Use of hydrophilic and hydrophobic polymers for the development of controlled release tizanidine matrix tablets

    Directory of Open Access Journals (Sweden)

    Tariq Ali

    2014-12-01

    Full Text Available The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2 results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.

  1. Thermal treating of acrylic matrices as a tool for controlling drug release.

    Science.gov (United States)

    Hasanzadeh, Davood; Ghaffari, Solmaz; Monajjemzadeh, Farnaz; Al-Hallak, M H D-Kamal; Soltani, Ghazal; Azarmi, Shirzad

    2009-12-01

    The purpose of the present study was to investigate the effect of thermal-treating on the release of ibuprofen from the granules prepared using aqueous dispersions of Eudragit. To accomplish this goal, different formulations were prepared using wet granulation method containing two different types of Eudragit aqueous dispersions, RS30D, RL30D and Avicel as filler. Tablets were prepared using direct compression method. The prepared tablets were thermally treated at 50 and 70 degrees C for 24 h. The drug release from tablets was assessed before and after thermal-treating. The results of release study showed that, thermally-treating the tablets at the temperatures higher than glass transition temperature (Tg) of the polymer can decrease the drug release from matrices. For mechanistic evaluation of the effect of thermal-treating, powder X-ray diffraction (XPD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), Fourier transform infrared (FT-IR) and helium pycnometer have been employed. The SEM graphs showed that the tablets have smoother surface with less porosity after thermal-treating. FT-IR spectra showed no change in the spectrum of thermally-treated tablet compared to control. In DSC graphs, no crystalline change was seen in the heat-treated samples of ibuprofen tablets, but decreased and widened peak size were related to the probable formation of solid solution of ibuprofen in Eudragit matrix. The results of helium pycnometer showed a significant decrease in the total porosity of some heat-treated samples. This study revealed the importance of thermal treating on the drug release from sustained release tablets containing Eudragit polymer.

  2. Combined gelatin-chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins

    NARCIS (Netherlands)

    Kuijpers, A. J.; Engbers, G. H. M.; Meyvis, T. K. L.; de Smedt, S. S. C.; Demeester, J.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J.

    2000-01-01

    Chemically cross-linked gelatin-chondroitin sulfate (ChS) hydrogels were prepared for the controlled release of small cationic proteins. The amount of chondroitin sulfate in the gelatin gels varied between 0 and 20 wt %. The chemical cross-link density, the degree of swelling, and the rheological

  3. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  4. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  5. 77 FR 42076 - Notice of Opportunity for Public Comment on Surplus Property Release at Hancock County-Bar Harbor...

    Science.gov (United States)

    2012-07-17

    ... Comment on Surplus Property Release at Hancock County-Bar Harbor Airport, Trenton, ME AGENCY: Federal... located at Hancock County-Bar Harbor Airport, Trenton, Maine. DATES: Comments must be received on or... INFORMATION: The Federal Aviation Administration is reviewing a request by Hancock County-Bar Harbor Airport...

  6. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.

    Science.gov (United States)

    Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla

    2016-01-15

    Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  8. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.-C. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    The current helium cooled pebble bed (HCPB) tritium breeding blanket concept for fusion reactors includes a bed of 1 mm diameter beryllium pebbles to act as a neutron multiplier. Beryllium pebbles, fabricated by the rotating electrode method, were neutron irradiated in the HFR in Petten within the HIDOBE-01 experiment. This study presents tritium release and retention properties and data on microstructure evolution of beryllium pebbles irradiated at 630, 740, 873, 948 K up to a damage dose of 18 dpa, corresponding to a helium accumulation of about 3000 appm. The measured cumulative released activity from the beryllium pebbles irradiated at 948 K was found to be significantly lower than the calculated value. After irradiation at 873 and 948 K scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed large pores or bubbles in the bulk and oxide films with a thickness of up to 8 μm at the surface of the beryllium pebbles. The radiation-enhanced diffusion of tritium and the formation of open porosity networks accelerate the tritium release from the beryllium pebbles during the high-flux neutron irradiation.

  9. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Zhang, Ying [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, PR China. (China); Zhao, Qinfu, E-mail: zqf021110505@163.com [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China)

    2016-10-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  10. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    International Nuclear Information System (INIS)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua; Zhang, Ying; Zhao, Qinfu; Wang, Siling

    2016-01-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  11. Unexpected consequences of control: competitive vs. predator release in a four-species assemblage of invasive mammals.

    Science.gov (United States)

    Ruscoe, Wendy A; Ramsey, David S L; Pech, Roger P; Sweetapple, Peter J; Yockney, Ivor; Barron, Mandy C; Perry, Mike; Nugent, Graham; Carran, Roger; Warne, Rodney; Brausch, Chris; Duncan, Richard P

    2011-10-01

    Invasive species are frequently the target of eradication or control programmes to mitigate their impacts. However, manipulating single species in isolation can lead to unexpected consequences for other species, with outcomes such as mesopredator release demonstrated both theoretically and empirically in vertebrate assemblages with at least two trophic levels. Less is known about the consequences of species removal in more complex assemblages where a greater number of interacting invaders increases the potential for selective species removal to result in unexpected changes in community structure. Using a replicated Before-After Control-Impact field experiment with a four-species assemblage of invasive mammals we show that species interactions in the community are dominated by competition rather than predation. There was no measurable response of two mesopredators (rats and mice) following control of the top predator (stoats), but there was competitive release of rats following removal of a herbivore (possums), and competitive release of mice following removal of rats. © 2011 Blackwell Publishing Ltd/CNRS.

  12. STUDIES ON NATURAL AND SYNTHETIC POLYMERS FOR CONTROLLED RELEASE MATRIX TABLET OF ACECLOFENAC

    OpenAIRE

    Abhishek S. Joshi *, Deepak A. Joshi , Avinash V. Dhobale , Sandhya S. Bundel , Vijay R. Chakote, Gunesh N. Dhembre

    2018-01-01

    The present study was aimed to design new oral controlled release matrix tablets of new NSAID Aceclofenac for once a day by using 10, 15, 20 and 25% of GG:HPMC and XG:HPMC mixture in the ratio 1:1 by wet granulation method. The prepared tablets subjected to in vitro drug release studies in pH 7.4 buffer solution. All the formulation meets the pre-compression and compression characteristics. All the tablets prepared with 10, 15, 20 and 25% of HPMC: XG mixture in the ratio 1:1 fails to meet the...

  13. Influence of Nanomaterial Compatibilization Strategies on Polyamide Nanocomposites Properties and Nanomaterial Release during the Use Phase.

    Science.gov (United States)

    Fernández-Rosas, Elisabet; Vilar, Gemma; Janer, Gemma; González-Gálvez, David; Puntes, Victor; Jamier, Vincent; Aubouy, Laurent; Vázquez-Campos, Socorro

    2016-03-01

    The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m(2)) than for SiO2 NPs (167 and 730 mg/m(2)), being lower in those samples where the NC was designed to improve the nanofiller-matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller.

  14. Novel HPLC Analysis of Hydrocortisone in Conventional and Controlled-Release Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Ofosua Adi-Dako

    2017-01-01

    Full Text Available An isocratic sensitive and precise reverse phase high-performance liquid chromatography (RP-HPLC method was developed and validated for the determination and quantification of hydrocortisone in controlled-release and conventional (tablets and injections pharmaceutical preparations. Chromatographic separation was achieved on an ODS (C18, 5 μm, 4.6 × 150 mm, with an isocratic elution using a freshly prepared mobile phase of composition methanol : water : acetic acid (60 : 30 : 10, v/v/v at a flow rate of 1.0 ml/min. The detection of the drug was successfully achieved at a wavelength of 254 nm. The retention time obtained for the drug was 2.26 min. The proposed method produced linear detectable responses in the concentration range of 0.02 to 0.4 mg/ml of hydrocortisone. High recoveries of 98–101% were attained at concentration levels of 80%, 100%, and 120%. The intraday and interday precision (RSD were 0.19–0.55% and 0.33–0.71%, respectively. A comparison of hydrocortisone analyses data from the developed method and the official USP method showed no significant difference (p>0.05 at a 95% confidence interval. The method was successfully applied to the determination and quantification of hydrocortisone in six controlled-release and fifteen conventional release pharmaceutical preparations.

  15. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  16. Development and evaluation of diltiazem hydrochloride controlled-release pellets by fluid bed coating process

    Directory of Open Access Journals (Sweden)

    Mikkilineni Bhanu Prasad

    2013-01-01

    Full Text Available The aim of the present study was to develop controlled-release pellets of diltiazem HCl with ethyl cellulose and hydroxylpropyl methylcellulose phthalate as the release rate retarding polymers by fluid bed coating technique. The prepared pellets were evaluated for drug content, particle size, subjected to Scanning Electron Microscopy (SEM and Differential Scanning Calori metry (DSC, and evaluated for in vitro release. Stability studies were carried out on the optimized formulations for a period of 3 months. The drug content was in the range of 97%-101%. The mean particle size of the drug-loaded pellets was in the range 700-785 μm. The drug release rate decreased as the concentration of ethyl cellulose increased in the pellet formulations. Among the prepared formulations, FDL10 and FDL11 showed 80% drug release in 16 h, matching with USP dissolution test 6 for diltiazem HCl extended-release capsules. SEM photographs confirmed that the prepared formulations were spherical in nature with a smooth surface. The compatibility between drug and polymers in the drug-loaded pellets was confirmed by DSC studies. Stability studies indicated that the pellets were stable.

  17. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  18. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath; Almahdali, Sarah; Vu, Khanh B.; Zapsas, Georgios; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2017-01-01

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  19. Ampicillin-Ester Bonded Branched Polymers: Characterization, Cyto-, Genotoxicity and Controlled Drug-Release Behaviour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2014-06-01

    Full Text Available The development and characterization of novel macromolecular conjugates of ampicillin using branched biodegradable polymers has been described in this study. The conjugates have been prepared coupling the β-lactam antibiotic with branched polymer matrices based on the natural oligopeptide core. The cyto- and genotoxicity of the synthesized polymers were evaluated with a bacterial luminescence test, two protozoan assays and Salmonella typhimurium TA1535. The presence of a newly formed covalent bond between the drug and the polymer matrices was confirmed by 1H-NMR and FTIR studies. A drug content (15.6 and 10.2 mole % in the macromolecular conjugates has been determined. The obtained macromolecular products have been subjected to further in vitro release studies. The total percentage of ampicillin released after 21 days of incubation was nearly 60% and 14% and this resulted from the different physicochemical properties of the polymeric matrices. This is the first report on the application of branched biodegradable polymeric matrices for the covalent conjugation of ampicillin. The obtained results showed that the synthesized macromolecular drug-conjugates might slowly release the active drug molecule and improve the pharmacokinetics of ampicillin.

  20. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).