WorldWideScience

Sample records for controlled release formulation

  1. Controlled-release tablet formulation of isoniazid.

    Science.gov (United States)

    Jain, N K; Kulkarni, K; Talwar, N

    1992-04-01

    Guar (GG) and Karaya gums (KG) alone and in combination with hydroxy-propylmethylcellulose (HPMC) were evaluated as release retarding materials to formulate a controlled-release tablet dosage form of isoniazid (1). In vitro release of 1 from tablets followed non-Fickian release profile with rapid initial release. Urinary excretion studies in normal subjects showed steady-state levels of 1 for 13 h. In vitro and in vivo data correlated (r = 0.9794). The studies suggested the potentiality of GG and KG as release retarding materials in formulating controlled-release tablet dosage forms of 1.

  2. Controlled release of diuron from an alginate-bentonite formulation: water release kinetics and soil mobility study.

    Science.gov (United States)

    Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E; Flores-Céspedes, F

    1999-02-01

    The herbicide diuron was incorporated in alginate-based granules to obtain controlled release (CR) properties. The standard formulation (alginate-herbicide-water) was modified by the addition of different sorbents. The effect on diuron release rate caused by incorporation of natural and acid-treated bentonites in alginate formulation was studied by immersion of the granules in water under static conditions. The release of diuron was diffusion-controlled. The time taken for 50% release of active ingredient to be released into water, T(50), was calculated for the comparison of formulations. The addition of bentonite to the alginate-based formulation produced the higher T(50) values, indicating slower release of the diuron. The mobility of technical and formulated diuron was compared by using soil columns. The use of alginate-based CR formulations containing bentonite produced a less vertical distribution of the active ingredient as compared to the technical product and commercial formulation. Sorption capacities of the various soil constituents for diuron were also determined using batch experiments.

  3. Controlled Release Formulation of Indomethacin Prepared With Bee ...

    African Journals Online (AJOL)

    Erah

    2010-12-27

    Dec 27, 2010 ... Results: The results show that, although the release rate of formulations F1 - F7 did not show any ... Keywords: Propolis (bee glue), Indomethacin, Controlled release, Zero order kinetics, Waxy materials ... focus of interest.

  4. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    A coating layer was then applied with a mixture of HPMC, ethylcellulose, shellac, and HPMC phthalate. The effect of several formulation variables on in vitro drug release was studied; furthermore, the drug release kinetics of the optimized formulation was evaluated. The in vivo pharmacokinetics of the optimized formulation ...

  5. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  6. The Experiment of Carbofuran Controlled Release Formulation Insecticide Application on Rice Plants

    International Nuclear Information System (INIS)

    Sulistyati, M.; Ulfa TS; Sofnie M Ch; Kuswadi AN

    2004-01-01

    Field test of carbofuran insecticide (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methylcarbamate) controlled release formulation on rice plants of IR-64 variety was carried out in Pusakanegara, West Java. This insecticide formulation was made by using the mixture of activated charcoal, tapioca, kaolin, Na-alginate as a filler matrix. Insecticide formulation was applied one week after transplanting. The observations were conducted on the number of tillers, damage level caused by Orseolia oryzae (Wood/Mason), Chilo suppressalis (Walker), and Cnaphalocrosis medinalis (Guen) on new young plants. The observation were carried out on three weeks after application of carbofuran insecticide formulation then every two weeks until harvest. The number of tillers were occurred at the treatments of controlled release formulation of 20kg/ha, 30kg/ha, and 40kg/ha dose rate on the third weeks, it was showed significant difference compared with commercial carbofuran, and the following weeks were no significant difference between the treatments. The attack of Orseolia oryzae was occurred at the treatments of controlled release formulation with dose rate of 30 kg/ha and 40 kg/ha on the seventh weeks, ninth weeks, and eleventh weeks, those attacks were significantly difference found compared with commercial carbofuran. The attack of Chilo suppressalis was occurred at the treatments of controlled release formulation of 40kg/ha dose rate on the fifth weeks, it was showed significant difference which was compared to untreated carbofuran. The attack of Cnaphalocrosis medinalis was occurred on the ninth weeks, three dose rate of controlled released formulation were showed significant differences which compared with commercial carbofuran and were showed 50% less than commercial carbofuran, while the grains dry weight were no significant difference between the treatments. (author)

  7. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    The effect of several formulation variables on in ... The in vivo pharmacokinetics of the optimized formulation was compared ... Results: The core tablets exhibited extended release consisting of drug release from the embedded ... important factor in medical treatment with respect ... The solvents for high-performance liquid.

  8. Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations.

    Science.gov (United States)

    Garrido-Herrera, F J; Gonzalez-Pradas, E; Fernandez-Pérez, M

    2006-12-27

    Different alginate-based systems of isoproturon, imidacloprid, and cyromazine have been investigated in order to obtain controlled release (CR) properties. The basic formulation [sodium alginate (1.50%), pesticide (0.30%), and water] was modified using different amounts of bentonite and activated carbon. The higher values of encapsulation efficiency corresponded to those formulations prepared with higher percentages of activated carbon, showing higher encapsulation efficiency values for isoproturon and imidacloprid than for cyromazine, which has a higher water solubility. The kinetic experiments of imidacloprid/isoproturon release in water have shown us that the release rate is higher in imidacloprid systems than in those prepared with isoproturon. Moreover, it can be deduced that the use of bentonite and/or activated carbon sorbents reduces the release rate of the isoproturon and imidacloprid in comparison with the technical product and with alginate formulation without modifying agents. The highest decrease in release rate corresponds to the formulations prepared with the highest percentage of activated carbon. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T50, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the pesticide release data, the release of isoproturon and imidacloprid from the various formulations into water is controlled by a diffusion mechanism. The sorption capacity of the sorbents and the permeability of the formulations were the most important factors modulating pesticide release. Finally, a linear correlation of the T50 values and the content of activated carbon in formulations were obtained.

  9. Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-01-01

    The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.

  10. Design of a controlled release liquid formulation of lamotrigine

    Directory of Open Access Journals (Sweden)

    V Kumar

    2011-05-01

    Full Text Available "n  "n  Background and the purpose of the study: Lamotrigine is a broad spectrum anticonvulsant drug widely used as mono- or adjunct- therapy in adults and children. The aim of this study was to develop controlled release liquid formulation of lamotrigine to improve bioavailability and compliance of pediatric and geriatric epileptic patients. "n  Methods: Multiple (w/o/w emulsion was prepared using one step emulsification technique. It was evaluated for entrapment efficiency (EE, morphology, zeta potential (ZP, polydispersity index (PI, rheology, thermal property, in vitro drug release behavior and stability. In vivo studies in albino mice were carried out using maximal electroshock seizure (MES test and strychnine induced seizure (SIS pattern test and results were compared with marketed formulation. "n  Results: The EE of the formulations varied from 84.37% to 98.11%. The ZP and PI values of the prepared batches were in the range of +23.46 to +28.07 and 0.256 and 0.365, respectively. Microscopic observation clearly indicated the stability of the emulsions during the storage period. All batches exhibited controlled in vitro drug release up to 12 hrs. Batch C11 exhibited significantly longer duration of protection of seizure in mice against MES and exhibited comparable efficacy in SIS as compared to the marketed formulation. "n  Major Conclusion: Multiple emulsion of lamotrigine compared to the marketed tablet showed plasma drug concentration within therapeutic range for longer time and comparable efficacy.

  11. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1992-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks mission from 2 to 15 April 1991, and continued it from the 9 to 22 November 1991 at the Center for Application of Isotopes and Radiation (CAIR) of the National Atomic Energy Agency, BATAN in Jakarta. Expert discussed the project and carried out experiments together with the staff of the center, introducing shellac (description in part II) as a candidate for controlled release formulations. Formulations of carbofuran, butachlor, 2,4-D and diazinon were carried out, using sand and cocconut shells as carriers. Release rates of a.i. into water have been checked and further work has been discussed. Expert assessed further needs for supply of instruments, accessories and chemicals. (author)

  12. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  13. Newly developed controlled release subcutaneous formulation for tramadol hydrochloride

    Directory of Open Access Journals (Sweden)

    Mostafa Mabrouk

    2018-05-01

    Full Text Available This study presents a drug delivery system of poly (Ɛ-caprolactone (PCL ribbons to optimize the pharmaceutical action of tramadol for the first time according to our knowledge. PCL ribbons were fabricated and loaded with tramadol HCl. Ribbons were prepared by slip casting technique and coated with dipping technique with β-cyclodextrin. The chemical integrity and surface morphology of the ribbons were confirmed using FTIR and SEM coupled with EDX. In addition, thermodynamic behavior of the fabricated ribbons was investigated using DSC/TGA. Tramadol loading into PCL ribbons, biodegradation of ribbons and tramadol release kinetics were studied in PBS.The results revealed that the formulated composition did not affect the chemical integrity of the drug. Furthermore, SEM/EDX confirmed the inclusion of tramadol into the PCL matrix in homogenous distribution pattern without any observation of porous structure. The particle size of loaded tramadol was found to be in the range of (2–4 nm. The formulated composition did not affect the chemical integrity of the drug and should be further investigated for bioavailability. Tramadol exhibited controlled release behavior from PCL ribbons up to 45 days governed mainly by diffusion mechanism. The fabricated ribbons have a great potentiality to be implemented in the long term subcutaneous delivery of tramadol. Keywords: Tramadol, Polycaprolcatone, Subcutaneous membrane, Ribbons, β-Cyclodextrin, Controlled release

  14. Cardiovascular safety of the oral controlled absorption system (OCAS) formulation of tamsulosin compared to the modified release (MR) formulation

    NARCIS (Netherlands)

    Michel, M. C.; Korstanje, C.; Klauwinkel, W.; Shear, M.; Davies, J.; Quartel, A.

    2005-01-01

    Objective: The potential to interfere with efferent adrenergic drive in the cardiovascular system was tested in elderly healthy subjects for the new oral controlled absorption system (OCAS) 0.4 mg tablet formulation of tamsulosin compared to the modified release (MR) 0.4 mg capsule formulation of

  15. Light-triggerable formulations for the intracellular controlled release of biomolecules.

    Science.gov (United States)

    Lino, Miguel M; Ferreira, Lino

    2018-05-01

    New therapies based on the use of biomolecules [e.g., proteins, peptides, and non-coding (nc)RNAs] have emerged during the past few years. Given their instability, adverse effects, and limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. Sophisticated nanoformulations responsive to light offer an excellent opportunity for the controlled release of these biomolecules, enabling the control of timing, duration, location, and dosage. In this review, we discuss the design principles for the delivery of biomolecules, in particular proteins and RNA-based therapeutics, by light-triggerable formulations. We further discuss the opportunities offered by these formulations in terms of endosomal escape, as well as their limitations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Multi-unit dosage formulations of theophylline for controlled release applications.

    Science.gov (United States)

    Uhumwangho, Michael U; Okor, Roland S

    2007-01-01

    The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The

  17. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-10-01

    The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.

  18. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.

    Science.gov (United States)

    Jhawat, Vikas; Gupta, Sumeet; Saini, Vipin

    2016-11-01

    In the present study, pluronic lecithin based organogels (PLO gels) were formulated as topical carrier for controlled delivery of mefenamic acid. Ten organogel formulations were prepared by a method employing lecithin as lipophilic phase and pluronic F-127 as hydrophilic phase in varying concentrations to study various parameters using in vitro diffusion study and in vivo studies. All formulations were found to be off-white, homogenous, and reluctant to be washed easily and have pH value within the range of 5.56-5.80 which is nonirritant. Polymer concentration increased in formulations of F1 to F5 (lecithin) and F6 to F10 (pluronic) resulted in decrease of the gelation temperature, increase of viscosity and reduction of spreadability of gels having polymer tendency to form rigid 3D network. Organogels with higher viscosity were found to be more stable and retard the drug release from the gel. The formulations of F2 and F3 were selected for kinetic studies and stability studies, as they found to have all physical parameters within acceptable limits, highest percent drug content and exhibited highest drug release in eight hours. The order of drug release from various formulations was found to be F2 > F3 > F10 > F4 > F1 > F9 > F8 > F5 > F7 > F6. The optimized formulation F2 was found to follow zero order rate kinetics showing controlled release of the drug from the formulations. In vivo anti-inflammatory activity of optimized mefenamic acid organogel (F2) against a standard marketed preparation (Volini gel) was found satisfactory and significant.

  19. Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2014-12-01

    Full Text Available The aim of this work was to design a controlled-release drug-delivery system for the angiotensin-II receptor antagonist drug telmisartan. Telmisartan was encapsulated with different EUDRAGIT polymers by an emulsion solvent evaporation technique and the physicochemical properties of the formulations were characterized. Using a solvent evaporation method, white spherical microspheres with particle sizes of 629.9–792.1 μm were produced. The in vitro drug release was studied in three different pH media (pH 1.2 for 2 hours, pH 6.8 for 4 hours, and pH 7.4 for 18 hours. The formulations were then evaluated for their pharmacokinetic parameters. The entrapment efficiency of these microspheres was between 58.6% and 90.56%. The obtained microspheres showed good flow properties, which were evaluated in terms of angle of repose (15.29–26.32, bulk and tapped densities (0.37–0.53 and 0.43–0.64, respectively, Carr indices and Hausner ratio (12.94–19.14% and 1.14–1.23, respectively. No drug release was observed in the simulated gastric medium up to 2 hours; however, a change in pH from 1.2 to 6.8 increased the drug release. At pH 7.4, formulations with EUDRAGIT RS 100 showed a steady drug release. The microsphere formulation TMRS-3 (i.e., microspheres containing 2-mg telmisartan gave the highest Cmax value (6.8641 μg/mL at 6 hours, which was three times higher than Cmax for telmisartan oral suspension (TOS. Correspondingly, the area under the curve for TMRS-3 was 8.5 times higher than TOS. Particle size and drug release depended on the nature and content of polymer used. The drug release mechanism of the TMRS-3 formulation can be explained using the Higuchi model. The controlled release of drug from TMRS-3 also provides for higher plasma drug content and improved bioavailability.

  20. Controlled Release Formulation of Indomethacin Prepared With Bee ...

    African Journals Online (AJOL)

    Abstract. Purpose: To prepare and evaluate new sustained release formulations of indomethacin based on extracts of propolis (bee glue). Methods: Standardization of propolis (bee glue) extracts was performed by high performance liquid chromatography (HPLC) and determination of the values of fat and fixed oils. Several ...

  1. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  2. Methods and predictors of tampering with a tamper-resistant controlled-release oxycodone formulation.

    Science.gov (United States)

    Peacock, Amy; Degenhardt, Louisa; Hordern, Antonia; Larance, Briony; Cama, Elena; White, Nancy; Kihas, Ivana; Bruno, Raimondo

    2015-12-01

    In April 2014, a tamper-resistant controlled-release oxycodone formulation was introduced into the Australian market. This study aimed to identify the level and methods of tampering with reformulated oxycodone, demographic and clinical characteristics of those who reported tampering with reformulated oxycodone, and perceived attractiveness of original and reformulated oxycodone for misuse (via tampering). A prospective cohort of 522 people who regularly tampered with pharmaceutical opioids and had tampered with the original oxycodone product in their lifetime completed two interviews before (January-March 2014: Wave 1) and after (May-August 2014: Wave 2) introduction of reformulated oxycodone. Four-fifths (81%) had tampered with the original oxycodone formulation in the month prior to Wave 1; use and attempted tampering with reformulated oxycodone amongst the sample was comparatively low at Wave 2 (29% and 19%, respectively). Reformulated oxycodone was primarily swallowed (15%), with low levels of recent successful injection (6%), chewing (2%), drinking/dissolving (1%), and smoking (word-of-mouth or the internet). Participants rated reformulated oxycodone as more difficult to prepare and inject and less pleasant to use compared to the original formulation. Current findings suggest that the introduction of the tamper-resistant product has been successful at reducing, although not necessarily eliminating, tampering with the controlled-release oxycodone formulation, with lower attractiveness for misuse. Appropriate, effective treatment options must be available with increasing availability of abuse-deterrent products, given the reduction of oxycodone tampering and use amongst a group with high rates of pharmaceutical opioid dependence. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max).

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Dey, Debjani; Shakil, N A; Walia, S

    2012-01-01

    Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.

  4. Phototoxicity free quantum dot-based niosome formulation for controlled drug release and its monitoring

    Science.gov (United States)

    Kumar, Sunil; Kang, T. W.; Bala, Suman; Kamboj, Sunil; Jeon, H. C.

    2018-04-01

    A novel niosomes-based system composed of Hypromellose (HPMC) functionalized fluorescent, biocompatible ZnS:Mn quantum dots (QDs), and anti-HIV drug Tenofovir disoproxil fumarate (TDF) was designed. An appropriate ratio of surfactant Sorbitan Monostearate (SPAN-60) and cholesterol was used to obtain an optimal entrapment efficiency. Initially, after observing the successful interaction of HPMC with SPAN-60, the noisome formulation including (QDs + drug) and HPMC-coated QDs was synthesized by a wet chemical route and characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Selected Electron Diffraction (SAED). Secondly, (QDs + drug) loaded niosome formulations were studied by varying the ratio of SPAN-60 and cholesterol. Multiple studies were done to characterize the shape, size, viscosity, colloidal stability, and entrapment efficiency of (QDs + drug) loaded niosomes. Lastly, pH-dependent (QDs + drug) release profiles were studied by a spectroscopic technique considering the pH of the human gastrointestinal region to obtain the formulation stability of (QDs + drug) release from the niosome vesicles. These studies also include pH-dependent photo-stability measurements based on laser-induced multiphoton excitation technique in the Infrared region. The multiphoton time-resolved studies were completed to avoid the UV induced phototoxicity in the drug delivery modules. Current studies on the formulation of niosomes-based (QDs + drug) system laid a foundation to make a complete phototoxicity free system for tracking controlled drug release and its imaging.

  5. Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum

    Directory of Open Access Journals (Sweden)

    Gurpreet Arora

    2011-01-01

    Full Text Available The aim of study was to prepare controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum as natural polymer. Tablets were formulated by direct compression technology employing the natural polymer in different concentrations (5, 10, 15 and 20% w/w. The prepared batches were evaluated for drug assay, diameter, thickness, hardness and tensile strength, swelling index, mucoadhesive strength (using texture analyzer and subjected to in vitro drug release studies. Real-time stability studies were also conducted on prepared batches. In vitro drug release data were fitted in various release kinetic models for studying the mechanism of drug release. Tensile strength was found to increase from 0.808 ± 0.098 to 1.527 ± 0.10 mN/cm 2 and mucoadhesive strength increased from 13.673 ± 1.542 to 40.378 ± 2.345 N, with an increase in the polymer concentration from 5 to 20% (A1 to A4. Swelling index was reported to increase with both increase in the concentration of gum and the time duration. The in vitro drug release decreased from 97.76 to 83.4% (A1 to A4 with the increase in polymer concentration. The drug release from the matrix tablets was found to follow zero-order and Higuchi models, indicating the matrix-forming potential of natural polymer. The value of n was found to be between 0.5221 and 0.8992, indicating the involvement of more than one drug release mechanism from the formulation and possibly the combination of both diffusion and erosion. These research findings clearly indicate the potential of S. plebeian gum to be used as binder, release retardant and mucoadhesive natural material in tablet formulations.

  6. Pharmacokinetics and Pharmacodynamics of Tamsulosin in its Modified-Release and Oral Controlled Absorption System Formulations

    NARCIS (Netherlands)

    Franco-Salinas, Gabriela; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2010-01-01

    Tamsulosin is an alpha(1)-adrenoceptor antagonist used for the treatment of lower urinary tract symptoms that are suggestive of benign prostatic hyperplasia. It is mostly used in a modified-release (M R) Formulation. but an oral controlled absorption system (OCAS) and a 'without-water' tablet

  7. Formulation and in vitro evaluation of mucoadhesive controlled release matrix tablets of flurbiprofen using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ikrima Khalid

    2014-09-01

    Full Text Available The objective of the current study was to formulate mucoadhesive controlled release matrix tablets of flurbiprofen and to optimize its drug release profile and bioadhesion using response surface methodology. Tablets were prepared via a direct compression technique and evaluated for in vitro dissolution parameters and bioadhesive strength. A central composite design for two factors at five levels each was employed for the study. Carbopol 934 and sodium carboxymethylcellulose were taken as independent variables. Fourier transform infrared (FTIR spectroscopy studies were performed to observe the stability of the drug during direct compression and to check for a drug-polymer interaction. Various kinetic models were applied to evaluate drug release from the polymers. Contour and response surface plots were also drawn to portray the relationship between the independent and response variables. Mucoadhesive tablets of flurbiprofen exhibited non-Fickian drug release kinetics extending towards zero-order, with some formulations (F3, F8, and F9 reaching super case II transport, as the value of the release rate exponent (n varied between 0.584 and 1.104. Polynomial mathematical models, generated for various response variables, were found to be statistically significant (P<0.05. The study also helped to find the drug's optimum formulation with excellent bioadhesive strength. Suitable combinations of two polymers provided adequate release profile, while carbopol 934 produced more bioadhesion.

  8. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1991-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks (of one month) mission from 2 to 15 April 1991 to the Center for Application of Isotopes and Radiation (CAIR) of BATAN in Jakarta. Expert held a seminar, discussed and carried out experiments on Controlled Release Formulations (CRF). Discussed further experiments, cleaned and reinstalled an ECD of the Shimadzu gas chromatograph and optimized the analytical conditions for chlorinated pesticides. He also developed a project for possible submission to the Government of Germany, to allow the staff of CAIR to undertake a more intensive research and to be able to set up training facilities in his research center in Munich/Germany. He furthermore assessed needs for supply of instruments, accessories and radiolabelled pesticides. An agreement for continuing the scientific and technical mission was obtained with the staff of CAIR, in connection with the DDT-RCM at the end of November 1991, provided approval by IAEA

  9. TURVA-2012: Formulation of radionuclide release scenarios

    International Nuclear Information System (INIS)

    Marcos, Nuria; Hjerpe, Thomas; Snellman, Margit; Ikonen, Ari; Smith, Paul

    2014-01-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR) and application for a construction licence for a repository for disposal of spent nuclear fuel at the Olkiluoto site in south-western Finland. This paper gives a summary of the scenarios and the methodology followed in formulating them as described in TURVA-2012: Formulation of Radionuclide Release Scenarios (Posiva, 2013). The scenarios are further analysed in TURVA-2012: Assessment of Radionuclide Release Scenarios for the Repository System and TURVA-2012: Biosphere Assessment (Posiva, 2012a, 2012b). The formulation of scenarios takes into account the safety functions of the main barriers of the repository system and the uncertainties in the features, events, and processes (FEP) that may affect the entire disposal system (i.e. repository system plus the surface environment) from the emplacement of the first canister until the far future. In the report TURVA-2012: Performance Assessment (2012d), the performance of the engineered and natural barriers has been assessed against the loads expected during the evolution of the repository system and the site. Uncertainties have been identified and these are taken into account in the formulation of radionuclide release scenarios. The uncertainties in the FEP and evolution of the surface environment are taken into account in formulating the surface environment scenarios used ultimately in estimating radiation exposure. Formulating radionuclide release scenarios for the repository system links the reports Performance Assessment and Assessment of Radionuclide Release Scenarios for the Repository System. The formulation of radionuclide release scenarios for the surface environment brings together biosphere description and the surface environment FEP and is the link to the assessment of the surface environment scenarios summarised in TURVA-2012: Biosphere Assessment. (authors)

  10. Formulation and characterization of modified release tablets containing isoniazid using swellable polymers.

    Science.gov (United States)

    Akhtar, M F; Rabbani, M; Sharif, A; Akhtar, B; Saleem, A; Murtaza, G

    2011-01-01

    The aim of this work was to develop swellable modified release (MR) isoniazid tablets using different combinations of polyvinyl acetate (PVAc) and sodium-carboxymethylcellulose (Na-CMC). Granules were prepared by moist granulation technique and then compressed into tablets. In vitro release studies for 12 hr were carried out in dissolution media of varying pH i.e. pH 1.2, 4.5, 7.0 and 7.5. Tablets of all formulations were found to be of good physical quality with respect to appearance (width and thickness), content uniformity, hardness, weight variation and friability. In vitro release data showed that increasing total polymer content resulted in more retarding effect. Formulation with 35% polymer content exhibited zero order release profile and it released 35% of the drug in first hr, later on, controlled drug release was observed upto the 12(th) hour. Formulations with PVAc to Na-CMC ratio 20:80 exhibited zero order release pattern at levels of studied concentrations, which suggested that this combination can be used to formulate zero order release tablets of water soluble drugs like isoniazid. Korsmeyer-Peppas modeling of drug release showed that non-Fickian transport is the primary mechanism of isoniazid release from PVAc and Na-CMC based tablets. The value of mean dissolution time decreased with the increase in the release rate of drug clearly showing the retarding behavior of the swellable polymers. The application of a mixture of PVAc to Na-CMC in a specific ratio may be feasible to formulate zero order release tablets of water soluble drugs like isoniazid.

  11. Comparison of vascular alpha(1)-adrenoceptor antagonism of tamsulosin in oral controlled absorption system (OCAS) and modified release (MR) formulations

    NARCIS (Netherlands)

    Michel, M. C.; Korstanje, C.; Krauwinkel, W.; Shear, M.; Davies, J.; Quartel, A.

    2005-01-01

    Objective: The cardiovascular a-l-adrenoceptor (AR) antagonism of the new oral controlled absorption system (OCAS) 0.4 mg tablet formulation of tamsulosin was compared with that of the modified release (MR) 0.4 mg capsule formulation in healthy male volunteers after a single dose in the fasted

  12. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Soto-Gómez, Diego; Pérez-Rodrígez, Paula

    2014-01-01

    The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should be...

  13. Effect of controlled release formulations of diuron and alachlor herbicides on the biochemical activity of agricultural soils.

    Science.gov (United States)

    Tejada, Manuel; Morillo, Esmeralda; Gómez, Isidoro; Madrid, Fernando; Undabeytia, Tomás

    2017-01-15

    The use of pesticides in agriculture is essential because it reduces the economic losses caused by pests, improving crop yields. In spite of the growing number of studies concerning the development and application of controlled release formulations (CRFs) of pesticides in agricultural soils, there are no studies about the effects of such formulations on the biochemical properties. In this paper the dissipation of diuron and alachlor in three agricultural soils for 127days, applied either as commercial or CRFs, was determined as well as their concomitant effects on soil biochemical properties. Dehydrogenase, urease, β-glucosidase and phosphatase activities were measured thought the experimental period. The application of alachlor as CRF increases its half-life time in soils, whereas no differences were noticed between diuron formulations due to its slower degradation, which takes longer than its release from the CRF. At the end of the incubation period, the enzymatic activities were the same after the use of diuron either as commercial or CRF, recovering the soil previous status. For alachlor formulations, no differences in enzymatic activities were again observed between both formulations, but their levels in soils were enhanced. Therefore, the use of these CRFs does not adversely affect the soil biochemical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.

    Science.gov (United States)

    Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook

    2011-02-14

    The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Eco-friendly PEG-based controlled release nano-formulations of Mancozeb: Synthesis and bioefficacy evaluation against phytopathogenic fungi Alternaria solani and Sclerotium rolfsii.

    Science.gov (United States)

    Majumder, Sujan; Shakil, Najam A; Kumar, Jitendra; Banerjee, Tirthankar; Sinha, Parimal; Singh, Braj B; Garg, Parul

    2016-12-01

    Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t 1/2 ) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL -1 (ED 50 ) values of developed formulations varied from 1.31 to 2.79 mg L -1 for A. solani, and 1.60 to 3.14 mg L -1 for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing

  16. Preparation and Characterization of Azadirachtin Alginate-Biosorbent Based Formulations: Water Release Kinetics and Photodegradation Study.

    Science.gov (United States)

    Flores-Céspedes, Francisco; Martínez-Domínguez, Gerardo P; Villafranca-Sánchez, Matilde; Fernández-Pérez, Manuel

    2015-09-30

    The botanical insecticide azadirachtin was incorporated in alginate-based granules to obtain controlled release formulations (CRFs). The basic formulation [sodium alginate (1.47%) - azadirachtin (0.28%) - water] was modified by the addition of biosorbents, obtaining homogeneous hybrid hydrogels with high azadirachtin entrapment efficiency. The effect on azadirachtin release rate caused by the incorporation of biosorbents such as lignin, humic acid, and olive pomace in alginate formulation was studied by immersion of the granules in water under static conditions. The addition of the biosorbents to the basic alginate formulation reduces the rate of release because the lignin-based formulation produces a slower release. Photodegradation experiments showed the potential of the prepared formulations in protecting azadirachtin against simulated sunlight, thus improving its stability. The results showed that formulation prepared with lignin provided extended protection. Therefore, this study provides a new procedure to encapsulate the botanical insecticide azadirachtin, improving its delivery and photostability.

  17. Continuous-release formulation for environmental doses to moving receptors

    International Nuclear Information System (INIS)

    Piepho, M.G.

    1981-01-01

    Atmospheric dispersion models frequently assume a puff release or several puff releases, each of which are described separately. A dispersion model should better describe a continuous release as more puffs are assumed, but the computational cost and bookkeeping difficulty increases with additional puffs. A new formulism is derived in this work which replaces the puff approximation. With the new continuous release formulation, radioactive dose calculations to moving receptors are more accurately calculated without any great additional computation. There are several advantages of a continuous release formulation. With this formulation, a dose rate to a moving receptor is calculated as a function of time. The dose-rate will increase (decrease) as the bulk of the release gets closer (farther) to (from) the receptor which is at position x(t), y(t). The receptor may follow any x, y trajectory as a function of time, and the dose rate will be calculated along the path

  18. Mydriatics release from solid and semi-solid ophthalmic formulations using different in vitro methods.

    Science.gov (United States)

    Pescina, Silvia; Macaluso, Claudio; Gioia, Gloria Antonia; Padula, Cristina; Santi, Patrizia; Nicoli, Sara

    2017-09-01

    The aim of the present paper was the development of semi-solid (hydrogels) and solid (film) ophthalmic formulations for the controlled release of two mydriatics: phenylephrine and tropicamide. The formulations - based on polyvinylalcohol and hyaluronic acid - were characterized, and release studies were performed with three different in vitro set-ups, i.e. Franz-type diffusion cell, vial method and inclined plane; for comparison, a solution and a commercial insert, both clinically used to induce mydriasis, were evaluated. Both gels and film allowed for a controlled release of drugs, appearing a useful alternative for mydriatics administration. However, the release kinetic was significantly influenced by the method used, highlighting the need for optimization and standardization of in vitro models for the evaluation of drug release from ophthalmic dosage forms.

  19. Formulation and Characterization of Sustained Release Floating ...

    African Journals Online (AJOL)

    Purpose: To formulate sustained release gastroretentive microballoons of metformin hydrochloride with the objective of improving its bioavailability. Methods: Microballoons of metformin hydrochloride were formulated by solvent evaporation and diffusion method using varying mixtures of hydroxypropyl methylcellulose ...

  20. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Erah

    surface, their drug release behavior appears simple, but ... matrix material for the formulation of ..... formulation F5 (,) and reference formulations. ( , □). 0. 50. 100. 150. 200. 250. 300. 0. 3. 6 .... Coviello T, Matricardi P, Marianecci C, Alhaique F.

  1. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    Science.gov (United States)

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation.

    Science.gov (United States)

    Verma, Sanjay; Rudraraju, Varma S

    2015-02-01

    The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi's model better than zero-order, first-order, and Hixson-Crowell's model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell's model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.

  3. Application Test OF Carbofuran Insecticide Controlled Release Formulation On Rice Plants Of Cilosari Variety Have Been Carried Out

    International Nuclear Information System (INIS)

    Sulisyati, M.; Ulfa, T.S. et all

    2000-01-01

    this formulation was made by using a mixture of activated charcoal, tapioca, kaolin, Na-alginate as filter matrix and the second formulation using zeolite with couted shelak. The observation were done on the damage level caused by Orseo;ia oryzae (wood/mason), Chilo suppressalis (walker), and cnaphalocrosis medinalis (Guen) on new young plants. The observation were done every two weeks after transplanting until harvest. Both formulation have the same results showed that new young plants on the early stage growth showed no differences among the treatments, then becoming more different between controlled release formulation and commercial formulation or untreated plants. The attack of orseolia oryzae could be observed on every week of the observation but only on the fifth weeks were significant difference found. The attack of Chilo suppressalis on the seventh week showed significant difference, while the attack of cnaphalocrosis medinalis appeared on the seventh and ninth weeks showing no differences

  4. Formulation of Extended-Release Metformin Hydrochloride Matrix ...

    African Journals Online (AJOL)

    Methods: Various metformin hydrochloride formulations containing a hydrophobic carrier (stearic acid) and a hydrophilic polymer (polyethylene oxide) were prepared using a 32 factorial design. ... The release data were subjected to various release kinetic models and also compared with those of a commercial brand.

  5. Cetirizine release from cyclodextrin formulated compressed chewing gum

    DEFF Research Database (Denmark)

    Stojanov, Mladen; Larsen, Kim Lambertsen

    2012-01-01

    release patterns, but with variations in the total amount released. Chewing gum formulated with cetirizine alone, demonstrated a release of 75% after 8 min of chewing. The presence of CDs resulted in increased cetirizine release. The analysis of variance (ANOVA) demonstrated that parameters with the most...... the statistical analysis (ANOVA) demonstrated significance in the release (P

  6. Quality evaluation of extemporaneous delayed-release liquid formulations of lansoprazole.

    Science.gov (United States)

    Melkoumov, Alexandre; Soukrati, Amina; Elkin, Igor; Forest, Jean-Marc; Hildgen, Patrice; Leclair, Grégoire

    2011-11-01

    The quality attributes of extemporaneous delayed-release liquid formulations of lansoprazole for oral administration were evaluated. A novel liquid formulation (3 mg/mL) of Prevacid FasTab in an Ora-Blend vehicle was prepared and compared with the Prevacid FasTab 30 mg and Prevacid-sodium bicarbonate 1 M formulation (3 mg/mL). The latter formulation was combined with hydrochloric acid 0.1 N, and the remaining lansoprazole content was assayed by high-performance liquid chromatography (HPLC). A batch of delayed-release liquid formulation was prepared to evaluate content uniformity. For content assay, three samples were prepared for each evaluated condition and each sample was analyzed in triplicate by HPLC. The lansoprazole in the sodium bicarbonate formulation was extensively degraded by quantities of hydrochloric acid 0.1 N in excess of 100 mL. Storage time and temperature had a significant effect on lansoprazole stability in the Ora-Blend formulation. The drug remained stable for seven days when the formulation was stored at 4.5-5.5 °C, but storage at 21-22 °C or the reduction of pH with citric acid accelerated lansoprazole degradation. The amount of lansoprazole released from the Ora-Blend formulation during the buffer stage of the dissolution test decreased with increases in formulation storage time, in formulation storage temperature, and in the amount of lansoprazole released and degraded during the acid stage of the test. An extemporaneous formulation consisting of lansoprazole microgranules in Ora-Blend maintained acceptable quality attributes when stored for three days at 4.5-5.5 °C.

  7. Preparation and characterization of Slow Release Formulations of ...

    African Journals Online (AJOL)

    alginate beads and characterize the resulting slow release formulations (SRFs) using scanning electron microscopy (SEM), and Fourier Transform infrared spectroscopy (FTIR). Two sets of formulations were made by extrusion into 0.25 M calcium ...

  8. Formulation And Evaluation Of Bilayer Tablet for Bimodal Release of Venlafaxine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Munira eMomin

    2015-07-01

    Full Text Available The aim of the present research was to develop a bilayer tablet of venlafexine hydrochloride for bimodal drug release. In the present investigation authors have tried to explore Fenugreek Mucilage (FNM for bioadhesive sustained release layer. The attempt has been made to combine FNM with well studied bioahesive polymers like Hydroxy Propyl Methyl Cellulose, Carbopol and Xanthan Gum. The formulations were evaluated for swelling Index, ex-vivo bioadhesion, water uptake studies, in-vitro drug release and dissolution kinetics was studied. Substantial bioadhesion force (2.4±0.023 gms and tablet adhesion retention time (24±2 hrs was observed with FNM and HPMC combination at 80:20 ratio. The dissolution kinetics followed the Higuchi model (R2 =0.9913 via a non-Fickian diffusion controlled release mechanism after the initial burst. The 32 full factorial design was employed in the present study. The type of polymers used in combination with FNM (X1 and percent polymer replaced with FNM (X2 were taken as independent formulations variables. The selected responses, bioadhesion force (0.11-0.25±0.023gm, amount of drug released in 10 h, Y10 (78.20–95.78±1.24 % and bioadhesive strength, (19-24±2hrs presented good correlation with the selected independent variables. Statistical analysis (ANOVA of the optimized bilayer formulations showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05 in the amount of drug released after 1 hr till 12 h from optimized formulations was observed. The natural mucilage like FNM could be successfully incorporated into tablet with only 20% replacement with HPMC and it showed good bioadhesiveness and sustained drug release.

  9. Intermediate release formulations of diclofenac potassium tablets for IVIVC.

    Science.gov (United States)

    Ali, Huma; Shoaib, Muhammad Harris; Zafar, Farya; Bushra, Rabia; Yasmin, Riffat; Siddiqui, Shehla; Alam, Zafar M

    2016-07-01

    In recent days response surface methodology (RSM) has widely been applied for development and optimization of cost effective formulations with required quality. Study comprised of three steps including micromeritic comparison of different powder blends of placebo and diclofenac potassium (DP), formulation designing with CCRD (Design Expert, version 7.0.0), and stability testing of selected formulations by using R Gui. Ten formulations (F11-F20) were developed using microcrystalline cellulose (Avicel PH-102) (X1) (13-72%), methocel K15M (X2) (6.59-23.4%) and magnesium stearate (X3) (1.32-4.68%), while responses were % friability and % drug release. Blending rate constant was determined at 3, 6, 9 and 12 minutes. The results of physicochemical parameters were found within acceptable limits. After in vitro testing at pH 1.2, pH 4.5 and pH 6.8, mechanism of drug release, kinetic analysis and statistical evaluation were carried out by model - independent, model-dependent and one-way ANOVA methods. Most formulations followed zero order kinetics at higher pH. Fickian release (0.326 ≤ n ≤0.449) was observed with β greater than 0.5 and less than 1. ANOVA indicated no significant variation within and between formulations as p-values were found to be > 0.05.

  10. Formulation and in-vitro evaluation of directly compressed controlled release matrices of Losartan Potassium using Ethocel Grade 100 as rate retarding agent.

    Science.gov (United States)

    Khan, Kamran Ahmad; Khan, Gul Majid; Zeeshan Danish, Muhammad; Akhlaq; Khan, Haroon; Rehman, Fazal; Mehsud, Saifullah

    2015-12-30

    Current study was aimed to develop 200mg controlled release matrix tablets of Losartan Potassium using Ethocel 100 Premium and Ethocel 100 FP Premium as rate controlling polymer. In-vitro studies were performed according to USP Method-I in phosphate buffer (PH 6.8) using pharma test dissolution apparatus. The temperature of the dissolution medium was kept constant at 37±0.5°C at 100rpm. Flow properties, physical quality control tests, effect of polymer size and drug-to-polymers ratios were studied using different kinetics models such as 1st-order, zero-order, Hixon Crowell model, Highuchi model and Power law. Difference factor f1 and similarity factor f2 were applied for dissolution profiles against Cardaktin® tablets used as a reference formulation. The matrices with polymer ethocel 100 FP Premiums have prolonged the drug release rate as compared to polymer ethocel 100 Premiums. The n values matrices with polymer ethocel grade 100 ranged from 0.603 to 0.857 indicating that the drug release occurred by anomalous non fickian diffusion kinetics while then value of reference Cardaktin® tablet was measured as 0.125 indicating that these tablets do not follow power law. The dissolution profiles of test formulations were different than that of reference Cardaktin®. This suggests the polymer Ethocel grade 100 can be proficiently incorporated in fabrication and development of once a day controlled release matrix tablets. Copyright © 2015. Published by Elsevier B.V.

  11. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Formulation of Sustained-Release Diltiazem Matrix Tablets Using Hydrophilic Gum Blends. A Moin, H.G Shivakumar. Abstract. Purpose: To develop sustained release matrix tablets of diltiazem hydrochloride (DTZ) using karaya gum (K) alone or in combination with locust bean gum (LB) and hydroxypropyl methylcellulose ...

  12. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  13. Review of extended-release formulations of Tramadol for the management of chronic non-cancer pain: focus on marketed formulations

    Science.gov (United States)

    Kizilbash, Arshi; Ngô-Minh, Cường

    2014-01-01

    Patients with chronic non-malignant pain report impairments of physical, social, and psychological well-being. The goal of pain management should include reducing pain and improving quality of life. Patients with chronic pain require medications that are able to provide adequate pain relief, have minimum dosing intervals to maintain efficacy, and avoid breakthrough pain. Tramadol has proven efficacy and a favourable safety profile. The positive efficacy and safety profile has been demonstrated historically in numerous published clinical studies as well as from post-marketing experience. It is a World Health Organization “Step 2” opioid analgesic that has been shown to be effective, well-tolerated, and valuable, where treatment with strong opioids is not required. A number of extended release formulations of Tramadol are available in Canada and the United States. An optimal extended release Tramadol formulation would be expected to provide consistent pain control with once daily dosing, few sleep interruptions, flexible dosing schedules, and no limitation on taking with meals. Appropriate treatment options should be based on the above proposed attributes. A comparative review of available extended release Tramadol formulations shows that these medications are not equivalent in their pharmacokinetic profile and this may have implications for selecting the optimal therapy for patients with pain syndromes where Tramadol is an appropriate analgesic agent. Differences in pharmacokinetics amongst the formulations may also translate into varied clinical responses in patients. Selection of the appropriate formulation by the health care provider should therefore be based on the patient’s chronic pain condition, needs, and lifestyle. PMID:24711710

  14. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    Science.gov (United States)

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  15. Formulation and evaluation of sustained release matrix tablets of pioglitazone hydrochloride using processed Aloe vera mucilage as release modifier

    Directory of Open Access Journals (Sweden)

    Manoj Choudhary

    2015-01-01

    Full Text Available Background: Natural gums and mucilage which hydrates and swells on contact with aqueous media are used as additives in the formulation of hydrophilic drug delivery system. Aim: The purpose of this study was to develop a new monolithic matrix system for complete delivery of Pioglitazone hydrochloride (HCl, in a zero-order manner over an extended time period using processed Aloe vera gel mucilage (PAG as a release modifier. Materials and Methods: The matrices were prepared by dry blending of selected ratios of polymer and ingredients using direct compression technique. Physicochemical properties of dried powdered mucilage of A. vera were studied. Various formulations of pioglitazone HCl and A. vera mucilage were prepared using different drug: Polymer ratios viz., 1:1, 1:2, 1:3, 1:4, 1:5 for PAG by direct compression technique. Results: The formulated matrix tablets were found to have better uniformity of weight and drug content with low statistical deviation. The swelling behavior and in vitro release rate characteristics were also studied. Conclusion: The study proved that the dried A. vera mucilage can be used as a matrix forming material for controlled release of Pioglitazone HCl matrix tablets.

  16. The effect of rainy and dry seasons upon the application of controlled release of dimethoate formulation on soybean plant

    International Nuclear Information System (INIS)

    Syahrir, Ulfa T.; Rahayu, Ali; Sulistyati, M.; Sofnie M CH; Sumatra, Made

    1998-01-01

    Controlled release formulation of dimethoate (o,o-dimetil s-(metil karbonil metil) fosforoditioate) was applicated on soybean varieties Willis, G-58, G-7, and G-55. The observation was made on damage leaves pod, and residue on seed and soil. The residue of dimethoate was determined using Gas Chromatography with Flame Photometric Detector. The result on rainy season that damage leaves pod and small and soybean grain 7% more than dry season. (authors)

  17. pH-independent immediate release polymethacrylate formulations--an observational study.

    Science.gov (United States)

    Claeys, Bart; Vandeputte, Reinout; De Geest, Bruno G; Remon, Jean Paul; Vervaet, Chris

    2016-01-01

    Using Eudragit® E PO (EudrE) as a polymethacrylate carrier, the aim of the study was to develop a pH-independent dosage form containing ibuprofen (IBP) as an active compound via chemical modification of the polymer (i.e. quaternization of amine function) or via the addition of dicarboxylic acids (succinic, glutaric and adipic acid) to create a pH micro-environment during dissolution. Biconvex tablets (diameter: 10 mm; height: 5 mm) were produced via hot melt extrusion and injection molding. In vitro dissolution experiments revealed that a minimum of 25% of quaternization was sufficient to partially (up to pH 5) eliminate the pH-dependent effect of the EudrE/IBP formulation. The addition of dicarboxylic acids did not alter IBP release in a pH 1 and 3 medium as the dimethyl amino groups of EudrE are already fully protonated, while in a pH 5 solvent IBP release was significantly improved (cf. from 0% to 92% release after 1 h dissolution experiments upon the addition of 20 wt.% succinic acid). Hence, both approaches resulted in a pH-independent (up to pH 5) immediate release formulation. However, the presence of a positively charged polymer induced stability issues (recrystallization of API) and the formulations containing dicarboxylic acids were classified as mechanically unstable. Hence, further research is needed to obtain a pH-independent immediate release formulation while using EudrE as a polmethacrylate carrier.

  18. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  19. Assessment of Aprotinin Loaded Microemulsion Formulations for Parenteral Drug Delivery: Preparation, Characterization, in vitro Release and Cytotoxicity Studies.

    Science.gov (United States)

    Okur, Neslihan Üstündağ; Özdemir, Derya İlem; Kahyaoğlu, Şennur Görgülü; Şenyiğit, Zeynep Ay; Aşıkoğlu, Makbule; Genç, Lütfi; Karasulu, H Yeşim

    2015-01-01

    The object of the current study was to prepare novel microemulsion formulations of aprotinin for parenteral delivery and to compare in vitro characteristics and release behaviour of different Technetium-99m ((99m)Tc)-Aprotinin loaded microemulsion formulations. In addition, cytotoxicity of microemulsion formulation was evaluated with cell culture studies on human immortalized pancreatic duct epithelial-like cells. For this aim, firstly, pseudo-ternary phase diagrams were plotted to detect the formulation region and optimal microemulsions were characterized for their thermodynamic stability, conductivity, particle size, zeta potential, viscosity, pH and in vitro release properties. For in vitro release studies aprotinin was labelled with (99m)Tc and labelling efficiency, radiochemical purity and stability of the radiolabeled complex were determined by several chromatography techniques. Radiolabeling efficiency of (99m)Tc-Aprotinin was found over than 90% without any significant changes up to 6 hours after labelling at room temperature. After that, in vitro release studies of (99m)Tc-Aprotinin loaded microemulsions were performed with two different methods; dissolution from diffusion cells and dialysis bags. Both methods showed that release rate of (99m)Tc- Aprotinin from microemulsion could be controlled by microemulsion formulations. Drug release from the optimized microemulsion formulations was found lower compared to drug solution at the end of six hours. According to stability studies, the optimized formulation was found to be stable over a period of 12 months. Also, human immortalized pancreatic duct epithelial-like cells were used to evaluate the cytotoxicity of optimum formulation. Developed microemulsion did not reveal cytotoxicity. In conclusion the present study indicated that the M1-APT microemulsion is appropriate for intravenous application of aprotinin.

  20. Slow release formulations of Bacillus thuringiensis israelensis (AM 65-52 and spinosyns: effectiveness against the West Nile vector Culex pipiens in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Alaa Sulaiman Alsobhi

    2016-07-01

    Full Text Available Objective: To investigate the effectiveness of slow release formulations of Bacillus thuringiensis israelensis (AM 65-52 (B. thuringiensis israelensis and spinosyns against the West Nile vector Culex pipiens (Cx. pipiens in Saudi Arabia. Methods: We tested slow release insecticide formulations of Natular DT, Tap 60 and VectoBac granule against II instars of Cx. pipiens larvae in 50 L laboratory arenas. Results: Slow release formulations of B. thuringiensis israelensis and spinosyns gave continuous control against Cx. pipiens for several weeks. Natular DT was more effective over Tap 60 and VectoBac granule of about 1.3 and 5.8 times, respectively. Variations in the durations of effective control among the tested slow release formulations may reflect differences in their active ingredients and the mode of action. Conclusions: Our results highlighted the effectiveness of B. thuringiensis israelensis and spinosyns against an important West Nile vector, providing baseline data to develop ecofriendly mosquito control programs in Saudi Arabia.

  1. Pharmacokinetic comparison of controlled-release and immediate-release oral formulations of simvastatin in healthy Korean subjects: a randomized, open-label, parallel-group, single- and multiple-dose study.

    Science.gov (United States)

    Jang, Seong Bok; Lee, Yoon Jung; Lim, Lay Ahyoung; Park, Kyung-Mi; Kwon, Bong-Ju; Woo, Jong Soo; Kim, Yong-Il; Park, Min Soo; Kim, Kyung Hwan; Park, Kyungsoo

    2010-01-01

    A controlled-release (CR) formulation of simvastatin was recently developed in Korea. The formulation is expected to yield a lower C(max) and similar AUC values compared with the immediate-release (IR) formulation. The goal of this study was to compare the pharmacokinetics of the new CR formulation and an IR formulation of simvastatin after single- and multiple-dose administration in healthy Korean subjects. This study was developed as part of a product development project at the request of the Korean regulatory agency. This was a randomized, open-label, parallelgroup, 2-part study. Eligible subjects were healthy male or female volunteers between the ages of 19 and 55 years and within 20% of their ideal weight. In part I, each subject received a single dose of the CR or IR formulation of simvastatin 40 mg orally (20 mg x 2 tablets) after fasting. In part II, each subject received the same dose of the CR or IR formulation for 8 consecutive days. Blood samples were obtained for 48 hours after the dose in part I and after the first and the last dose in part II. Pharmacokinetic parameters were determined for both simvastatin (the inactive prodrug) and simvastatin acid (the active moiety). An adverse event (AE) was defined as any unfavorable sign (including an abnormal laboratory finding) or symptom, regardless of whether it had a causal relationship with the study medication. Serious AEs were defined as any events that are considered life threatening, require hospitalization or prolongation of existing hospitalization, cause persistent or significant disability or incapacity, or result in congenital abnormality, birth defect, or death. AEs were determined based on patient interviews and physical examinations. Twenty-four healthy subjects (17 men, 7 women; mean [SD] age, 29 [7] years; age range, 22-50 years) were enrolled in part I, and 29 subjects (17 men, 12 women; mean age, 33 [9] years; age range, 19-55 years) were enrolled in part II. For simvastatin acid, C

  2. In-vitro release of diclofenac diethylammonium from lipid-based formulations.

    Science.gov (United States)

    Parsaee, Siamak; Sarbolouki, Mohammad N; Parnianpour, Mohamad

    2002-07-08

    This article presents the preparation and topical performance of some new lipid-based formulations of diclofenac, namely (a) a diclofenac aqueous gel containing mixed micelles (sodium cholate:egg lecithin molar ratio 0.55); (b) diclofenac lotion that contains soya lecithin, ethanol and buffer; and (c) diclofenac lipogel containing egg lecithin, isopropyl myristate, propylene glycol and ethanol. Gel formulations were prepared using Carbomer 934. Release of diclofenac from all formulations was monitored via dialysis through Spectra/por membrane into phosphate buffer (0.2 M pH=7.4) using a Franz cell. Drug release profile and diffusion coefficients were compared with brand formulation (Geigy's Vlotaren Emulgel). Statistical analysis of data show that the diffusion coefficient of the drug from these formulations rank according to the following order: Diclofenac lotion (D=5.308x10(-7) cm(2)/s) >lipogel (D=2.102 x 10(-7) cm(2)/s) >Voltaren Emulgel (1.518 x 10(-7) cm(2)/s) >aqueous gel mixed micelle (0.966 x 10(-7) cm(2)/s). These results show that diclofenac lotion and lipogel maybe more suitable formulations than the conventional topical dosage form.

  3. Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns.

    Science.gov (United States)

    Shah, Shefaat Ullah; Shah, Kifayat Ullah; Rehman, Asimur; Khan, Gul Majid

    2011-04-01

    The objective of the study was to formulate and evaluate controlled release polymeric tablets of Diclofenac Potassium for the release rate, release patterns and the mechanism involved in the release process of the drug. Formulations with different types and grades of Ethyl Cellulose Ether derivatives in several drug-to-polymer ratios (D:P) were compressed into tablets using the direct compression method. In vitro drug release studies were performed in phosphate buffer (pH 7.4) as dissolution medium by using USP Method-1 (Rotating Basket Method). Similarity factor f2 and dissimilarity factor f1 were applied for checking the similarities and dissimilarities of the release profiles of different formulations. For the determination of the release mechanism and drug release kinetics various mathematical/kinetic models were employed. It was found that all of the Ethocel polymers could significantly slow down the drug release rate with Ethocel FP polymers being the most efficient, especially at D:P ratios of 10:03 which lead towards the achievement of zero or near zero order release kinetics.

  4. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    HP

    ISSN: 1596-5996 (print); 1596-9827 (electronic). © Pharmacotherapy ... (DHL). Methods: DHL tablets were prepared by direct compression and consisted of .... subjected to 3D response surface methodology to determine the .... Table 3: Release of diltiazem HCl from the test formulations as per factorial design. Formulation ...

  5. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    Science.gov (United States)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  6. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  7. Investigation of the effects of certain formulation factors on release ...

    African Journals Online (AJOL)

    Objective: To study the effects of three formulation variables (PVP, stearic acid and Avicel PH101) on disintegration time and release properties of paracetamol tablets using a 23 factorial experimental design. Methodology: Three formulation variables; Polyvinyl pyrrolidone (factor A), Stearic acid (factor B) and Avicel PH 101 ...

  8. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    Science.gov (United States)

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  9. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    Science.gov (United States)

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  10. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops.

    Science.gov (United States)

    Bashir, Oumar; Claverie, Jerome P; Lemoyne, Pierre; Vincent, Charles

    2016-01-01

    Bacillus thuringiensis ( B. t. ) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni ( T. ni ) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.

  11. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops

    Directory of Open Access Journals (Sweden)

    Oumar Bashir

    2016-10-01

    Full Text Available Bacillus thuringiensis (B. t. based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water. A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin. Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.

  12. Evaluation of olibanum and its resin as rate controlling matrix for controlled release of diclofenac

    OpenAIRE

    Chowdary KPR; Mohapatra P; Murali Krishna M

    2006-01-01

    Olibanum and its resin and carbohydrate fractions were evaluated as rate controlling matrix materials in tablets for controlled release of diclofenac. Diclofenac matrix tablets were formulated employing olibanum and its resin and carbohydrate fractions in different concentrations and the tablets were evaluated for various tablet characters including drug release kinetics and mechanism. Olibanum and its resin component exhibited excellent retarding effect on drug release from the matrix tablet...

  13. Pharmacological and clinical evidence of nevirapine immediate- and extended-release formulations

    Directory of Open Access Journals (Sweden)

    Ena J

    2012-11-01

    Full Text Available Javier Ena, Concepción Amador, Conxa Benito, Francisco PasquauHIV Unit, Hospital Marina Baixa, Villajoyosa, SpainAbstract: We reviewed the current information available on nevirapine immediate- and extended-release formulations and its role in single-dose and combination antiretroviral therapy. Nevirapine was approved in 1996 and was the first non-nucleoside reverse-transcriptase inhibitor available for the treatment of HIV-1 infection. Nevirapine has demonstrated good efficacy and a well-characterized safety profile. A major drawback is the low genetic barrier, allowing the emergence of resistance in the presence of single mutations in the reverse-transcriptase gene. This shortcoming is particularly relevant when nevirapine is administered in a single dose to prevent mother-to-child transmission of HIV-1 infection, compromising the efficacy of future non-nucleoside reverse transcriptase–inhibitor regimens. Studies published recently have probed the noninferiority of nevirapine compared to ritonavir-boosted atazanavir with both tenofovir disoproxil fumarate and emtricitabine in antiretroviral treatment–naïve patients. In 2011, a new formulation of nevirapine (nevirapine extended release that allowed once-daily dosing was approved by the Food and Drug Administration and by the European Medicines Agency. VERxVe, a study comparing nevirapine extended release with nevirapine immediate release in antiretroviral treatment–naïve patients, and TRANxITION, a study carried out in antiretroviral treatment–experienced patients who switched therapy from nevirapine immediate release to nevirapine extended release, provided data on the noninferiority of the new formulation of nevirapine compared with nevirapine immediate release in terms of efficacy and safety. Nevirapine extended release will further increase the durability and persistence of nevirapine-containing antiretroviral therapy, allowing once-daily dosing regimens.Keywords: nevirapine

  14. Development of novel diclofenac potassium controlled release tablets by wet granulation technique and the effect of co-excipients on in vitro drug release rates.

    Science.gov (United States)

    Shah, Shefaatullah; Khan, Gul Majid; Jan, Syed Umer; Shah, Kifayatullah; Hussain, Abid; Khan, Haroon; Khan, Haroon; Khan, Haroon; Khan, Kamran Ahmad

    2012-01-01

    The aim of the present study was the formulation and evaluation of controlled release polymeric tablets of Diclofenac Potassium by wet granulation method for the release rate, release pattern and the mechanism involved in drug release. Formulations having three grades of polymer Ethocel (7P; 7FP, 10P, 10FP, 100P, 100FP) in several drugs to polymer ratios (10:3 and 10:1) were compressed into tablets using wet granulation method. Co-excipients were added to some selected formulations to investigate their enhancement effect on in vitro drug release patterns. In vitro drug release studies were performed using USP Method-1 (Rotating Basket method) and Phosphate buffer (pH 7.4) was used as a dissolution medium. The similarities and dissimilarities of release profiles of test formulations with reference standard were checked using f2 similarity factor and f1 dissimilarity factor. Mathematical/Kinetic models were employed to determine the release mechanism and drug release kinetics.

  15. A REVIEW ON CONTROLLED DRUG RELEASE FORMULATION: SPANSULES

    OpenAIRE

    Rinky Maurya; Dr. Pramod Kumar Sharma; Rishabha Malviya

    2014-01-01

    Spansules are a dosage form which was considered as one of the Advanced Drug Delivery System. Multidrug preparations can be delivered easily by spansules or granules in capsule technology. This type of delivery system designed to release a drug or a medicament at two or more different rates or in different span of time. A quick/slow release system provides an initial release of drug followed by a constant rate of drug release over a extended period or a defined period of time and in slow/quic...

  16. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.

    Science.gov (United States)

    Siafaka, Panoraia I; Barmbalexis, Panagiotis; Bikiaris, Dimitrios N

    2016-06-10

    In the present work, a series of novel formulations consisting of poly(lactic acid)/poly(butylene adipate) (PLA/PBAd) electrospun blends was examined as controlled release matrices for Leflunomide's active metabolite, Teriflunomide (TFL). The mixtures were prepared using different ratios of PLA and PBAd in order to produce nanofibrous matrices with different characteristics. Miscibility studies of the blended polymeric fibers were performed through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolytic degradation in the prepared fibers was evaluated at 37°C using a phosphate buffered saline solution. Different concentrations of (TFL) (5, 10, 15wt.%) were incorporated into nanofibers for examining the drug release behavior in simulated body fluids (SBF), at 37°C. The drug-loaded nanofibrous formulations were further characterized by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, DSC and XRD. Gel permeation chromatography (GPC) analysis was used to evaluate the mechanism of TFL release. Artificial neural networks (ANN) and multi-linear-regression (MLR) models were used to evaluate the effect of % content of PBAd (X1) and TFL (X2) on an initial burst effect and a dissolution behavior. It was found that PLA/PBAd nanofibers have different diameters depending on the ratio of used polyesters and added drug. TFL was incorporated in an amorphous form inside the polymeric nanofibers. In vitro release studies reveal that a drug release behavior is correlated with the size of the nanofibers, drug loading and matrix degradation after a specific time. ANN dissolution modeling showed increased correlation efficacy compared to MLR. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2016-05-01

    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  18. Single Layer Extended Release Two-in-One Guaifenesin Matrix Tablet: Formulation Method, Optimization, Release Kinetics Evaluation and Its Comparison with Mucinex® Using Box-Behnken Design.

    Science.gov (United States)

    Morovati, Amirhosein; Ghaffari, Alireza; Erfani Jabarian, Lale; Mehramizi, Ali

    2017-01-01

    Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex ® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release "%" in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X 1 : Cetyl alcohol, X 2 : Starch 1500 ® , X 3 : HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X 1 : 37.10, X 2 : 2, X 3 : 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500 ® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too.

  19. Comparative steady-state pharmacokinetic study of an extended-release formulation of itopride and its immediate-release reference formulation in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Yoon S

    2014-01-01

    Full Text Available Seonghae Yoon,1,* Howard Lee,2,* Tae-Eun Kim,1 SeungHwan Lee,1 Dong-Hyun Chee,3 Joo-Youn Cho,1 Kyung-Sang Yu,1 In-Jin Jang1 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 2Clinical Trials Center, Seoul National University Hospital, 3AbbVie Ltd., Seoul, Republic of Korea *These authors contributed equally to this work Background: This study was conducted to compare the oral bioavailability of an itopride extended-release (ER formulation with that of the reference immediate-release (IR formulation in the fasting state. The effect of food on the bioavailability of itopride ER was also assessed. Methods: A single-center, open-label, randomized, multiple-dose, three-treatment, three-sequence, crossover study was performed in 24 healthy male subjects, aged 22–48 years, who randomly received one of the following treatments for 4 days in each period: itopride 150 mg ER once daily under fasting or fed conditions, or itopride 50 mg IR three times daily in the fasting state. Steady-state pharmacokinetic parameters of itopride, including peak plasma concentration (Cmax and area under the plasma concentration versus time curve over 24 hours after dosing (AUC0–24h, were determined by noncompartmental analysis. The geometric mean ratio of the pharmacokinetic parameters was derived using an analysis of variance model. Results: A total of 24 healthy Korean subjects participated, 23 of whom completed the study. The geometric mean ratio and its 90% confidence interval of once-daily ER itopride versus IR itopride three times a day for AUC0–24h were contained within the conventional bioequivalence range of 0.80–1.25 (0.94 [0.88–1.01], although Cmax was reached more slowly and was lower for itopride ER than for the IR formulation. Food delayed the time taken to reach Cmax for itopride ER, but AUC0–24h was not affected. There were no serious adverse events and both formulations were

  20. Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology

    Directory of Open Access Journals (Sweden)

    Bingna Huang

    2018-02-01

    Full Text Available Pesticides are the basis for defending against major biological disasters and important for ensuring national food security. Biocompatible, biodegradable, intelligent, and responsive materials are currently an emerging area of interest in the field of efficient, safe, and green pesticide formulation. Using nanotechnology to design and prepare targeted pesticides with environmentally responsive controlled release via compound and chemical modifications has also shown great potential in creating novel formulations. In this review, special attention has been paid to intelligent pesticides with precise controlled release modes that can respond to micro-ecological environment changes such as light-sensitivity, thermo-sensitivity, humidity sensitivity, soil pH, and enzyme activity. Moreover, establishing intelligent and controlled pesticide release technologies using nanomaterials are reported. These technologies could increase pesticide-loading, improve the dispersibility and stability of active ingredients, and promote target ability.

  1. Prolonged release matrix tablet of pyridostigmine bromide: formulation and optimization using statistical methods.

    Science.gov (United States)

    Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen

    2012-07-01

    The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.

  2. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  3. Absorption of controlled-release iron

    International Nuclear Information System (INIS)

    Cook, J.D.; Lipschitz, D.A.; Skikne, B.S.

    1982-01-01

    A multiple-dose double radioiron technic was used to compare absorption of iron administered as a controlled release (CR) capsule and as an elixir; both formulations contained 50 mg elemental iron as ferrous sulfate. When taken by normal subjects in the fasting state, mean absorption from the elixir and CR capsule averaged 4.92% and 4.38%, which gave a CR capsule:elixir ratio of 0.89. This difference was not significant, but when taken with meals that inhibit absorption of dietary iron by different degrees, absorption of the CR formulation was superior. CR capsule:elixir absorption ratios averaged 1.70 from a meal that is mildly inhibitory and 3.13 from a meal that causes more marked inhibition. It is concluded that CR iron formulations may offer a therapeutic advantage to patients who take oral iron with meals to avoid gastrointestinal side effects

  4. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  5. Sintering of wax for controlling release from pellets

    OpenAIRE

    Singh, Reena; Poddar, S. S.; Chivate, Amit

    2007-01-01

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%–20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusio...

  6. Development of sustained and dual drug release co-extrusion formulations for individual dosing.

    Science.gov (United States)

    Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg

    2015-01-01

    In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparative steady-state pharmacokinetic study of an extended-release formulation of itopride and its immediate-release reference formulation in healthy volunteers.

    Science.gov (United States)

    Yoon, Seonghae; Lee, Howard; Kim, Tae-Eun; Lee, SeungHwan; Chee, Dong-Hyun; Cho, Joo-Youn; Yu, Kyung-Sang; Jang, In-Jin

    2014-01-01

    This study was conducted to compare the oral bioavailability of an itopride extended-release (ER) formulation with that of the reference immediate-release (IR) formulation in the fasting state. The effect of food on the bioavailability of itopride ER was also assessed. A single-center, open-label, randomized, multiple-dose, three-treatment, three-sequence, crossover study was performed in 24 healthy male subjects, aged 22-48 years, who randomly received one of the following treatments for 4 days in each period: itopride 150 mg ER once daily under fasting or fed conditions, or itopride 50 mg IR three times daily in the fasting state. Steady-state pharmacokinetic parameters of itopride, including peak plasma concentration (Cmax) and area under the plasma concentration versus time curve over 24 hours after dosing (AUC(0-24h)), were determined by noncompartmental analysis. The geometric mean ratio of the pharmacokinetic parameters was derived using an analysis of variance model. A total of 24 healthy Korean subjects participated, 23 of whom completed the study. The geometric mean ratio and its 90% confidence interval of once-daily ER itopride versus IR itopride three times a day for AUC(0-24h) were contained within the conventional bioequivalence range of 0.80-1.25 (0.94 [0.88-1.01]), although Cmax was reached more slowly and was lower for itopride ER than for the IR formulation. Food delayed the time taken to reach Cmax for itopride ER, but AUC(0-24h) was not affected. There were no serious adverse events and both formulations were generally well tolerated. At steady state, once-daily itopride ER at 150 mg has a bioavailability comparable with that of itopride IR at 50 mg given three times a day under fasting conditions. Food delayed the absorption of itopride ER, with no marked change in its oral bioavailability.

  8. Formulation and evaluation of sustained release matrix tablet of rabeprazole using wet granulation technique

    Directory of Open Access Journals (Sweden)

    Ruqaiyah Khan

    2014-01-01

    Full Text Available Introduction: Rabeprazole, a member of substituted benzimidazoles, inhibits the final step in gastric acid secretions. This drug claims to cause fastest acid separation (due to higher pKa, and more rapidly converts to the active species to aid gastric mucin synthesis. The most significant pharmacological action of Rabeprazole is dose dependent suppression of gastric acid secretion; without anticholinergic or H2-blocking action. It completely abolishes the hydrochloric acid secretion as it is powerful inhibitor of gastric acid. Rabeprazole is acid labile and hence commonly formulated as an enteric coated tablet. The absorption of rabeprazole occurs rapidly as soon as tablet leaves the stomach. Aim: In the present study an attempt was made to formulate and evaluate Rabeprazole sustained release matrix tablet using wet granulation technique incorporating various polymers like HPMC-E15, Carbopol934, and sodium carboxymethyl cellulose (CMC. Materials and Methods: The Formulated tablets were evaluated for different physicochemical properties like rheological properties, weight variation, thickness, hardness, % friability, in vitro release studies and drug content. Results: Studies revealed that all the physicochemical parameters comply with the official standards. The in vitro release studies exhibits the release up to 90%, over a prolonged period of time which confirms the extended release profile of formulation, having better bioavailability as well as decreased dosing frequency with reduced doses. Conclusion: The sustained release matrix tablets of rabiprazole shown better bioavailability, efficacy and potency, when compared with official standards.

  9. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension

    Directory of Open Access Journals (Sweden)

    Subhashree Sahoo

    2011-01-01

    Full Text Available Mucoadhesive polymeric (carbopol 934 suspension of ciprofloxacin was prepared by ultrasonication and optimized with the aim of developing an oral controlled release gastro-retentive dosage form. The qualitative analysis of the formulation was performed by fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, X-ray powder diffraction (XRD, and scanning electron microscopy (SEM analyses. FTIR (400 cm-1 to 4000 cm-1 region and Raman (140 to 2400 cm-1 region Spectroscopic studies were carried out and the spectra were used for interpretation. XRD data of pure drug, polymer and the formulation were obtained using a powder diffractometer scanned from a Bragg′s angle (2q of 10° to 70°. The dispersion of the particle was observed using SEM techniques. The particle size distribution and aspect ratio of particles in the polymeric suspension were obtained from SEM image analysis. The results from FTIR and Raman spectroscopic analyses suggested that, in formulation, the carboxylic groups of ciprofloxacin and hydroxyl groups of C934 undergo a chemical interaction leading to esterification and hydrogen bonding. The XRD data suggested that the retention of crystalline nature of ciprofloxacin in the formulation would lead to increase in stability and drug loading; decrease in solubility; and delay in release of the drug from polymeric suspension with better bioavailability and penetration capacity. The SEM image analysis indicated that, in the formulation maximum particles were having aspect ratio from 2 to 4 and standard deviation was very less which provided supporting evidences for homogeneous, uniformly dispersed, stable controlled release ciprofloxacin suspension which would be pharmaceutically acceptable.

  10. Use of hydrophilic and hydrophobic polymers for the development of controlled release tizanidine matrix tablets

    Directory of Open Access Journals (Sweden)

    Tariq Ali

    2014-12-01

    Full Text Available The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2 results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.

  11. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    Conclusion: A fair correlation between in vitro dissolution and in vivo data was found. The results obtained indicate successful development of a sustained release formulation of diltiazem. Keywords: Diltiazem, Matrix tablet, Hydroxypropyl methylcellulose Eudragit, In vitro/in vivo correlation, Optimization ...

  12. Meticulous Overview on the Controlled Release Fertilizers

    Directory of Open Access Journals (Sweden)

    Siafu Ibahati Sempeho

    2014-01-01

    Full Text Available Owing to the high demand for fertilizer formulations that will exhaust the possibilities of nutrient use efficiency (NUE, regulate fertilizer consumption, and lessen agrophysicochemical properties and environmental adverse effects instigated by conventional nutrient supply to crops, this review recapitulates controlled release fertilizers (CRFs as a cutting-edge and safe way to supply crops’ nutrients over the conventional ways. Essentially, CRFs entail fertilizer particles intercalated within excipients aiming at reducing the frequency of fertilizer application thereby abating potential adverse effects linked with conventional fertilizer use. Application of nanotechnology and materials engineering in agriculture particularly in the design of CRFs, the distinctions and classification of CRFs, and the economical, agronomical, and environmental aspects of CRFs has been revised putting into account the development and synthesis of CRFs, laboratory CRFs syntheses and testing, and both linear and sigmoid release features of CRF formulations. Methodical account on the mechanism of nutrient release centring on the empirical and mechanistic approaches of predicting nutrient release is given in view of selected mathematical models. Compositions and laboratory preparations of CRFs basing on in situ and graft polymerization are provided alongside the physical methods used in CRFs encapsulation, with an emphasis on the natural polymers, modified clays, and superabsorbent nanocomposite excipients.

  13. Formulation and Evaluation of Extended- Release Tablet of Zolpidem Tartrate by Wet Granulation Technique

    Directory of Open Access Journals (Sweden)

    Fatemeh Pourhashem

    2016-06-01

    Full Text Available The goal of this study was to design and evaluate extended - release system of the hypnotic agent, Zolpidem tartrate usefulness for the treatment of insomnia. The half-life of this drug is about 1.9 - 3 hours that indicating it a candidate for the extended release formulation. Our investigation relates to development of extended drug delivery system based on Hydroxy propyl methyl cellulose (HPMCK4M as release retardant, polyvinyl pyrrolidone (PVP k30 as binder and Magnesium Stearate using Factorial design. In vitro release study of matrix tablets was carried out in 0.01N HCl for 2 hours. All prepared matrix tablets were evaluated for physicochemical evaluation and drug content. The formulation that had release profile according to United State Pharmacopoeia selected for stability study according to ICH guidelines.

  14. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  15. Risk based In Vitro Performance Assessment of Extended Release Abuse Deterrent Formulations

    Science.gov (United States)

    Xu, Xiaoming; Gupta, Abhay; Al-Ghabeish, Manar; Calderon, Silvia N.; Khan, Mansoor A.

    2016-01-01

    High strength extended release opioid products, which are indispensable tools in the management of pain, are associated with serious risks of unintentional and potentially fatal overdose, as well as of misuse and abuse that might lead to addiction. The issue of drug abuse becomes increasingly prominent when the dosage forms can be readily manipulated to release a high amount of opioid or to extract the drug in certain products or solvents. One approach to deter opioid drug abuse is by providing novel abuse deterrent formulations (ADF), with properties that may be viewed as barriers to abuse of the product. However, unlike regular extended release formulations, assessment of ADF technologies are challenging, in part due to the great variety of formulation designs available to achieve deterrence of abuse by oral, parenteral, nasal and respiratory routes. With limited prior history or literature information, and lack of compendial standards, evaluation and regulatory approval of these novel drug products become increasingly difficult. The present article describes a risk-based standardized in-vitro approach that can be utilized in general evaluation of abuse deterrent features for all ADF products. PMID:26784976

  16. Design and characterization of controlled release tablet of metoprolol

    Directory of Open Access Journals (Sweden)

    Gautam Singhvi

    2012-01-01

    Full Text Available Metoprolol succinate is a selective beta-adrenergic receptor blocker useful in treatment of hypertension, angina and heart failure. The purpose of the present work was to design and evaluate controlled release matrix type tablet of Metoprolo succinate using HPMC K15M and Eudragit (RLPO and RSPO as a matrix forming agents. Effect of various polymer alone and combinations were studied in pH 1.2 buffer using USP type II paddle at 50 rpm. HPMC was used to form firm gel with Eudragit polymer. Formulation with Equal proportion (1:1 of Eudragit RSPO and RLPO showed optimum drug release t50 =7 hrs and t100 =16 hrs indicate optimum permeability for drug release from matrix. The drug release mechanism was predominantly found to be Non-Fickian diffusion controlled.

  17. Formulation and In Vitro, In Vivo Evaluation of Effervescent Floating Sustained-Release Imatinib Mesylate Tablet

    Science.gov (United States)

    Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim

    2015-01-01

    Introduction Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets. Methodology Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted. Results and Discussion Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent

  18. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet.

    Directory of Open Access Journals (Sweden)

    Ali Kadivar

    Full Text Available Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT. Conventional imatinib mesylate (Gleevec tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M, with Sodium alginate (SA and Carbomer 934P (CP as release-retarding polymers, sodium bicarbonate (NaHCO3 as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec in 0.1 N HCl (pH 1.2 at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted.Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec. Thus, formulated SR tablets preserved persistent concentration of plasma up to 24 hours

  19. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100

    Directory of Open Access Journals (Sweden)

    Maghraby Gamal Mohamed El

    2014-03-01

    Full Text Available Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels

  20. Development and evaluation of diltiazem hydrochloride controlled-release pellets by fluid bed coating process

    Directory of Open Access Journals (Sweden)

    Mikkilineni Bhanu Prasad

    2013-01-01

    Full Text Available The aim of the present study was to develop controlled-release pellets of diltiazem HCl with ethyl cellulose and hydroxylpropyl methylcellulose phthalate as the release rate retarding polymers by fluid bed coating technique. The prepared pellets were evaluated for drug content, particle size, subjected to Scanning Electron Microscopy (SEM and Differential Scanning Calori metry (DSC, and evaluated for in vitro release. Stability studies were carried out on the optimized formulations for a period of 3 months. The drug content was in the range of 97%-101%. The mean particle size of the drug-loaded pellets was in the range 700-785 μm. The drug release rate decreased as the concentration of ethyl cellulose increased in the pellet formulations. Among the prepared formulations, FDL10 and FDL11 showed 80% drug release in 16 h, matching with USP dissolution test 6 for diltiazem HCl extended-release capsules. SEM photographs confirmed that the prepared formulations were spherical in nature with a smooth surface. The compatibility between drug and polymers in the drug-loaded pellets was confirmed by DSC studies. Stability studies indicated that the pellets were stable.

  1. Formulation, Development and Evaluation of delayed release capsules of Duloxetine Hydrochloride made of different Enteric Polymers

    OpenAIRE

    Pallavi Yerramsetty; J. Vijaya Ratna; Venkata Ramana Reddy; Praveen Kumar

    2012-01-01

    Delayed release systems have acquired a centre stage in the arena of pharmaceutical research and development. The present study involves formulation and evaluation of Duloxetine Hydrochloride delayed release capsules. Duloxetine Hydrochloride is an acid labile drug. It degrades in the acidic environment of the stomach thus leading to therapeutic inefficacy. Therefore it is necessary to bypass the acidic pH of the stomach which can be achieved by formulating delayed release dosage form by usin...

  2. Extended release formulations for local anaesthetic agents.

    Science.gov (United States)

    Weiniger, C F; Golovanevski, L; Domb, A J; Ickowicz, D

    2012-08-01

    Systemic toxicity through overdose of local anaesthetic agents is a real concern. By encapsulating local anaesthetics in biodegradable carriers to produce a system for prolonged release, their duration of action can be extended. This encapsulation should also improve the safety profile of the local anaesthetic as it is released at a slower rate. Work with naturally occurring local anaestheticss has also shown promise in the area of reducing systemic and neurotoxicity. Extended duration local anaesthetic formulations in current development or clinical use include liposomes, hydrophobic based polymer particles such as Poly(lactic-co-glycolic acid) microspheres, pasty injectable and solid polymers like Poly(sebacic-co-ricinoleic acid) P(SA:RA) and their combination with synthetic and natural local anaesthetic. Their duration of action, rationale and limitations are reviewed. Direct comparison of the different agents is limited by their chemical properties, the drug doses encapsulated and the details of in vivo models described. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  3. Fabrication of ketoprofen controlled-release tablets using biopolymeric hydrophilic matrices: in-vitro studies

    International Nuclear Information System (INIS)

    Rashid, S.; Khan, B.A.; Khan, G.M.

    2017-01-01

    Ketoprofen is propionic acid derivative and belongs to the Non-Steroidal anti-inflammatory group of drugs. Due to the short half-life, dosage frequency, patient non-compliance and side effects such as gastrointestinal disturbance, peptic ulceration and gastro intest inal bleeding, it is considered to be good candidate for formulation into controlled release dosage forms. Directly compressed controlled released ( CR) tablets using Acrylic acid derivatives were prepared and evaluated. In-Vitro Physicochemical assessment of the formulated tablets were performed using different physicochemical, dimensional and quality control tests such as weight variation, thickness and diameter, hardness test, friability test, content uniformity, disintegration and dissolution testing. Results of all these tests were formed within acceptable range. The effect of carbomer polymers on the tablet characteristics, drug release rates, release patterns and release kinetics were investigated. The F2-metric technique was applied to compare dissolution profiles of ketoprofen and carbopol tablets with ketoprofen SR - tablets taken as standard preparation. Acrylic acid derivatives when used as polymers resulted in an extended release profile of about 12 h. Using Higuchi's model and the Korsmeyer equation, the drug release mechanism from the tablets was found to be an anomalous type involving diffusion and erosion. Controlled- release Ketoprofen tablets appear to be a good choice for the symptomatic treatment of rheumatoid arthritis and osteoarthritis. Convenient once-daily administration may help improve patient's compliance. (author)

  4. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  5. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  6. Extended‐Release Once‐Daily Formulation of Tofacitinib: Evaluation of Pharmacokinetics Compared With Immediate‐Release Tofacitinib and Impact of Food

    Science.gov (United States)

    Wang, Rong; Fletcher, Tracey; Alvey, Christine; Kushner, Joseph; Stock, Thomas C.

    2016-01-01

    Abstract Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. An extended‐release (XR) formulation has been designed to provide a once‐daily (QD) dosing option to patients to achieve comparable pharmacokinetic (PK) parameters to the twice‐daily immediate‐release (IR) formulation. We conducted 2 randomized, open‐label, phase 1 studies in healthy volunteers. Study A characterized single‐dose and steady‐state PK of tofacitinib XR 11 mg QD and intended to demonstrate equivalence of exposure under single‐dose and steady‐state conditions to tofacitinib IR 5 mg twice daily. Study B assessed the effect of a high‐fat meal on the bioavailability of tofacitinib from the XR formulation. Safety and tolerability were monitored in both studies. In study A (N = 24), the XR and IR formulations achieved time to maximum plasma concentration at 4 hours and 0.5 hours postdose, respectively; terminal half‐life was 5.9 hours and 3.2 hours, respectively. Area under plasma concentration‐time curve (AUC) and maximum plasma concentration (Cmax) after single‐ and multiple‐dose administration were equivalent between the XR and IR formulations. In study B (N = 24), no difference in AUC was observed for fed vs fasted conditions. Cmax increased by 27% under the fed state. On repeat administration, negligible accumulation (Tofacitinib administration as an XR or IR formulation was generally well tolerated in these studies. PMID:26970526

  7. New polymeric formulation for control of biomphalaria Alexandria based on pharmaceutical waste gelatin

    International Nuclear Information System (INIS)

    Kenawy, E.; El-Maghraby, A.

    2005-01-01

    In the recent years, important new areas of application for plastics have emerged in medicine such as devices for the controlled release of drugs. The increases in the use of plastic materials in all sectors of industry have led to a continuous increase in the generation of plastic wastes. Recycling allow the waste to be reintroduced into the consumption cycle. Pharmaceutical companies which manufacture soft gels with different shapes, sizes and colors based mainly on gelatin formulations produce huge amount of gelatin waste. Schistosomiasis is one of the most important public health problems in our country. We now report the utilization of gelatin scrap by incorporating them in biodegradable films containing the molluscicide niclosamide for control of Biomphalaria Alexandrina snails. The preparation of the gelatin films will be described. The release of niclosamide from the prepared blends was investigated. The prepared formulations proved to be useful compared with free niclosamide

  8. Studies on the controlled release pesticide formulation for pest control in cotton using isotope technique

    International Nuclear Information System (INIS)

    Jamil, F.F.; Qureshi, M.J.; Naqvi, S.H.M.

    1989-06-01

    Cotton plants were treated with 14C-carbofuran, cold carbofuran formulation and granular carbofuran pesticides. Sampling of soil and formulation pieces from the field was done at the end of experiment. Data for insect attack was also recorded throughout the crop season. Cotton plants treated with cold carbofuran formulation and granular carbofuran, their soil samples and residual cold formulation pieces were analyzed by HPLC. (A.B)

  9. Formulation and optimization of pH sensitive drug releasing O/W emulsions using Albizia lebbeck L. seed polysaccharide.

    Science.gov (United States)

    Varma, Chekuri Ashok Kumar; Jayaram Kumar, K

    2018-04-30

    Smart polymers, one of the class of polymers with extensive growth in the last few decades due to their wide applications in drug targeting and controlled delivery systems. With this in mind, the aim of the present study is to design and formulate smart releasing o/w emulsion by using Albizia lebbeck L. seed polysaccharide (ALPS). For this purpose, the physicochemical and drug release characteristics like emulsion capacity (EC), emulsion stability (ES), viscosity, microscopy, zeta potential, polydispersity index (PDI) and in-vitro drug release were performed. The EC and ES values were found to increase with an increased concentration of ALPS. The emulsion formulations were statistically designed by using 3 2 full factorial design. All the emulsions showed a shear-thinning behavior. The zeta potential and polydispersity index were found to be in the range of -35.83 mV to -19.00 mV and 0.232-1.000 respectively. Further, the percent cumulative drug release of the emulsions at 8 h was found to be in the range of 30.19-82.65%. The drug release profile exhibited zero order release kinetics. In conclusion, the ALPS can be used as a natural emulsifier and smart polymer for the preparation of pH sensitive emulsions in drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Formulation of radionuclide release scenarios 2012

    International Nuclear Information System (INIS)

    2013-04-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR) and application for a construction licence for a repository for disposal of spent nuclear fuel at the Olkiluoto site in south-western Finland. This report presents the radionuclide release scenarios and the methodology followed in formulating them. The formulation of scenarios takes into account the regulatory framework, the knowledge acquired in the present safety case as well as in previous safety assessments, the safety functions of the barriers of the repository system and the uncertainties in the features, events, and processes (FEPs) that may affect the entire disposal system (i.e. repository system plus the surface environment) from the emplacement of the first canister until the far future. In the report Performance Assessment, the performance of the engineered and natural barriers has been assessed against the loads expected during the evolution of the repository system and the site. Uncertainties have been identified and these are taken into account in the formulation of radionuclide release scenarios. The uncertainties in the FEPs affecting the characteristics and evolution of the surface environment are taken into account in formulating the surface environment scenarios used ultimately for assessing radiation exposure. Formulating radionuclide release scenarios for the repository system links the reports Performance Assessment and Assessment of Radionuclide Release Scenarios for the Repository System. The formulation of radionuclide release scenarios for the surface environment brings together Biosphere Description and the surface environment FEPs and is the link to the assessment of the surface environment scenarios analysed in Biosphere Assessment. (orig.)

  12. Extended-Release Once-Daily Formulation of Tofacitinib: Evaluation of Pharmacokinetics Compared With Immediate-Release Tofacitinib and Impact of Food.

    Science.gov (United States)

    Lamba, Manisha; Wang, Rong; Fletcher, Tracey; Alvey, Christine; Kushner, Joseph; Stock, Thomas C

    2016-11-01

    Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. An extended-release (XR) formulation has been designed to provide a once-daily (QD) dosing option to patients to achieve comparable pharmacokinetic (PK) parameters to the twice-daily immediate-release (IR) formulation. We conducted 2 randomized, open-label, phase 1 studies in healthy volunteers. Study A characterized single-dose and steady-state PK of tofacitinib XR 11 mg QD and intended to demonstrate equivalence of exposure under single-dose and steady-state conditions to tofacitinib IR 5 mg twice daily. Study B assessed the effect of a high-fat meal on the bioavailability of tofacitinib from the XR formulation. Safety and tolerability were monitored in both studies. In study A (N = 24), the XR and IR formulations achieved time to maximum plasma concentration at 4 hours and 0.5 hours postdose, respectively; terminal half-life was 5.9 hours and 3.2 hours, respectively. Area under plasma concentration-time curve (AUC) and maximum plasma concentration (C max ) after single- and multiple-dose administration were equivalent between the XR and IR formulations. In study B (N = 24), no difference in AUC was observed for fed vs fasted conditions. C max increased by 27% under the fed state. On repeat administration, negligible accumulation (Tofacitinib administration as an XR or IR formulation was generally well tolerated in these studies. © 2016, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  13. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  14. Formulation and Study of Some Controlled Release Tablets with Pentoxifylline Based on Hydroxypropylcellulose Matrix Obtained by Wet Granulation Method with PEG 6000

    Directory of Open Access Journals (Sweden)

    Gabriel Hancu

    2011-01-01

    Full Text Available In this work three formulations of modified release tablets
    containing pentoxifylline 400 mg/tablet were obtained. Hydroxypropylcellulose (HPC in di®erent ratios was used as hydrophilic matrix agent. The pentoxifylline inclusion in the matrix has been carried out by water granulation, using PEG 6000 as binder. Tablets were obtained with a single station
    tablet machine (Korsch, using standard pressure, and obtaining tablets with 13 mm diameter, 800 mg weight and 400 mg pentoxifylline per tablet. The weight uniformity, friability, hardness, thickness and disintegration of tablets were determined according to the stipulations of the 2001 Supplement of the Romanian Pharmacopoeia Xth edition. The experimental formulations with 400 mg pentoxifylline/tablet were studied by comparing them to the industrial reference product, Trental 400 mg (Aventis Pharma and in according
    to the stipulations of Romanian Pharmacopoeia Xth edition, USP 27 and European Pharmacopoeia 5th edition. Every determination was performed using 20 tablets. We followed the comparison between dissolution profiles of slow release tablets containing pentoxifylline based on hydrophilic matrix. The dissolution studies were performed using the method from USP 24, using the paddle apparatus, and water as medium of dissolution at 37+/-0,5 Celsius degrees, at a rotation speed of 50 rpm. The determination was performed by spectrofotometric as say in UV at 274 nm. It was noticeable that regarding the weight uniformity, friability, hardness, thickness and disintegration the proposed formulations are comparable with the industrial reference product (Trental, 400 mg and are in agreement with the stipulations of the Romanian Pharmacopoeia Xth edition and European Pharmacopoeia 5th edition. The analysis of dissolution profiles showed that all formulations exhibit slow release.

  15. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations

    Directory of Open Access Journals (Sweden)

    Adedokun Musiliu O.

    2014-09-01

    Full Text Available The binding properties of Eucalyptus gum obtained from the incised trunk of Eucalyptus tereticornis, were evaluated in paracetamol tablet formulations, in comparison with that of Gelatin B.P. In so doing, the compression properties were analyzed using density measurements and the compression equations of Heckel, Kawakita and Gurham. In our work, the mechanical properties of the tablets were assessed using the crushing strength and friability of the tablets, while the drug release properties of the tablets were assessed using disintegration and dissolution times. The results of the study reveal that tablet formulations incorporating Eucalyptus gum as binder, exhibited faster onset and higher amount of plastic deformation during compression than those containing gelatin. What is more, the Gurnham equation could be used as a substitute for the Kawakita equation in describing the compression properties of pharmaceutical tablets. Furthermore, the crushing strength, disintegration and dissolution times of the tablets increased with binder concentration, while friability values decreased. We noted that no significant differences in properties exist between formulations derived from the two binders (p > 0.05 exist. While tablets incorporating gelatin exhibited higher values for mechanical properties, Eucalyptus gum tablets had better balance between mechanical and release properties - as seen from the CSFR/Dt values. Tablets of good mechanical and release properties were prepared using Eucalyptus gum as a binder, and, therefore, it could serve as an alternative binder in producing tablets with good mechanical strength and fast drug release.

  16. A double-blind placebo-controlled study of controlled release fluvoxamine for the treatment of generalized social anxiety disorder

    NARCIS (Netherlands)

    Westenberg, HGM; Stein, DJ; Yang, HC; Li, D; Barbato, LM

    This was a randomized double-blind placebo-controlled multicenter study to assess the efficacy, safety, and tolerability of fluvoxamine in a controlled release (CR) formulation for treatment of generalized social anxiety disorder (GSAD). A total of 300 subjects with GSAD were randomly assigned to

  17. PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release.

    Science.gov (United States)

    Halayqa, Mohammed; Domańska, Urszula

    2014-12-22

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles.

  18. PLGA Biodegradable Nanoparticles Containing Perphenazine or Chlorpromazine Hydrochloride: Effect of Formulation and Release

    Directory of Open Access Journals (Sweden)

    Mohammed Halayqa

    2014-12-01

    Full Text Available In our study, poly(dl-lactide-co-glycolide (PLGA nanoparticles loaded with perphenazine (PPH and chlorpromazine hydrochloride (CPZ-HCl were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol (PVA concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4 by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles.

  19. Formulation of Dipyridamole Sustained Release Tablet Using Floating System

    Directory of Open Access Journals (Sweden)

    Lenny Mauilida Valentina

    2011-06-01

    Full Text Available Dipyridamole is a drug for prevention of postoperative thromboembolic complication of heart valve replacement and long term therapy of angina pectoris will be well absorbed in stomach. To maintain therapeutic plasma concentration in long time and to increase bioavalaibility is needed a sustained release dosage form having the long residence time in the stomach. The objective of this research was to make floating sustained release tablet of dipyridamole conforming to the requirement that was set up by dipyridamol therapeutic concentration. Tablets were made by wet granulation method using aquadest as a liquid binder, HPMC K4M, Ac-di-sol, Avicel PH 102, talk, and Mg stearat. Dissolution assay was carried out using type 2 release tester at rotation speed of 50 rpm in medium 900 mL HCl 0.1 N at 37 ± 0.5 °C for 8 hours. The formulation containing of 50 mg dipirydamole, HPMC K4M (30%, Ac-di-sol (20%, Avicel PH 102 (37%, talk (2%, and Mg stearat (1% released 59.61 ± 6.73% and 89.34 ± 5.87% of dipyridamole respectively after 4 and 8 hours that conformed to the requirement.

  20. Sustained release nimesulide microparticles: evaluation of release modifying property of ethy

    International Nuclear Information System (INIS)

    Khan, S.A.; Ahmed, M.; Nisar-ur-Rehman; Madni, A.U.; Aamir, M.N.; Murtaza, G.

    2011-01-01

    Microencapsulated controlled-release preparations of nimesulide were formulated. Microparticles were prepared by modified phase separation (non-solvent addition) technique using different ratios of ethylcellulose. The microparticles (M/sub 1/, M/sub 2/, and M/sub 3/) were yellow, free flowing and spherical in shape with the particle size varying from 93.62 +- 14.15 to 104.19 +- 18.15 mu m. The t/sub 60%/of nimesulide release from microparticles was found to be 3 +- 0.6, 5 +- 0.6 and 8 +- 0.8 h for formulations M/sub 1/, M/sub 2/, and M/sub 3/, respectively. FT-IR, XRD, and thermal analysis were done which showed that there is no interaction between the polymer and drug. The mechanism of drug release from nimesulide microparticles was studied by using Higuchi and Korsmeyer-Peppas models. The value of coefficient of determination (R/sup 2/) for M/sub 1/, M/sub 2/, and M/sub 3/ indicates anomalous and case-II transport release mechanism. The dissolution data of designed system verified its ability to maintain plasma concentration without the need of frequent dosing. The Nimesulide microparticles prolonged drug release for 12 hours or longer. Based on the results of release studies, M/sub 3/ was opted as a suitable microparticulate formulation allowing the controlled release of nimesulide over a prolonged period of time. Moreover, its encapsulation efficiency was also comparable to the other two formulations (M/sub 1/ and M/sub 2/). In conclusion, the influence of polymer concentration should be considered during formulation development. (author)

  1. A New Environmentally Safe Formulation and of Low Cost for Prolonged Release System of Atrazine and Diuron

    Directory of Open Access Journals (Sweden)

    Gracy karla da Rocha Cortes

    2017-07-01

    Full Text Available Diuron and atrazine were incorporated in new formulations developed with the purpose to improve herbicides action through release systems, as well as to reduce the environmental toxicity. A low cost formulation (ALG/ESC was obtained by combining sodium alginate (ALG with fish scales of the Piau fish (ESC from the Leporinus elongatus species. From the crosslinking of ALG/ESC with CaCl2, the formulation ALG/ESC-CaCl2 was obtained. For ALG/ESC-CaCl2, the results are successful, showing a prolonged release of 3.5 and 4.5 days for atrazine and diuron, respectively. Based on parameters of an empirical equation used to fit the herbicide release data, it appears that the release systems of diuron and atrazine from ALG/ESC-CaCl2 are by diffusion processes due to anomalous transport, which did not follow Fick’s laws of diffusion. DOI: http://dx.doi.org/10.17807/orbital.v9i3.994

  2. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    Science.gov (United States)

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  3. Analgesic Efficacy of a New Immediate-Release/Extended-Release Formulation of Ibuprofen: Results From Single- and Multiple-Dose Postsurgical Dental Pain Studies.

    Science.gov (United States)

    Christensen, Steven; Paluch, Ed; Jayawardena, Shyamalie; Daniels, Stephen; Meeves, Suzanne

    2017-05-01

    Analgesic effects of ibuprofen immediate-release/extended-release (IR/ER) 600-mg tablets were evaluated in 2 randomized, double-blind, placebo-controlled dental pain studies. Patients 16-40 years old with moderate-severe pain following third-molar extraction received single-dose ibuprofen 600 mg IR/ER (formulation A or B), naproxen sodium 220 mg, or placebo (2:2:2:1; study 1) or 4 doses of ibuprofen 600 mg IR/ER (formulation A) or placebo (1:1; study 2). In study 1 (n = 196), mean (standard deviation [SD]) time-weighted sum of pain intensity difference scores for placebo, ibuprofen IR/ER A, ibuprofen IR/ER B, and naproxen, respectively, were 0.05 (9.2), 16.87 (9.4), 17.34 (10.5), and 12.66 (10.0) over 0-12 hours and -0.03 (4.1), 6.57 (4.4), 7.14 (5.2), and 5.14 (5.0) over 8-12 hours (all P ibuprofen IR/ER, respectively (P ibuprofen. Gastrointestinal adverse events predominated with placebo both after study medication administration and after rescue medication use, if applicable. Ibuprofen 600 mg IR/ER provided safe and effective analgesia after single and multiple doses. © 2016, The American College of Clinical Pharmacology.

  4. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    Science.gov (United States)

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release.

  5. A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties.

    Science.gov (United States)

    Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil

    2014-10-01

    To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Development of a new esomeprazole delayed release gastro-resistant pellet formulation with improved storage stability.

    Science.gov (United States)

    Barmpalexis, Panagiotis; Grypioti, Agni

    2018-06-01

    This study describes the development of a new esomeprazole (ESO) delayed release gastro-resistant formulation with improved storage stability. A three-step (drug-, sub(seal)- and enteric-) coating process was employed with the aid of a fluid bed coater. Several formulation factors (namely, size and quantity of starting non-pareil sugar spheres, binder quantity during drug-layering, sub(seal)-coating polymer type, and quantity and enteric coating quantity) were evaluated and the whole process was modeled with the aid of feed-forward back-propagation artificial neural networks (ANNs). Results showed that the selection of small-sized starting spheres (45/60 mesh size) leads to pellet agglomeration, while as sub(seal)-coating weight gain increases a reduction in ESO dissolution rate is observed. The enteric-coating applied (Eudragit L30D-55) showed good gastro-resistant performance in both 0.1 N HCl and pH 4.5 media, while immediate release profiles with more than 85% of ESO being released in less than 30 min were obtained. The effect of cellulose-based sub(seal)-coating polymers, (namely, hydroxypropyl cellulose and hydroxypropylmethyl cellulose) on formulation's storage stability at 40 ± 2 °C/75 ± 5%RH indicated that only hydroxypropylmethyl cellulose was able to stabilize ESO delayed-release formulations in terms of assay, dissolution, impurities, and gastro-resistance performance. Finally, scanning electron microscopy (SEM) analysis revealed smooth and homogeneous external surface/coating layers in all three levels (drug-, sub(seal)-, and enteric- coating), while x-ray diffraction showed no polymorphic transformations.

  7. Formulation and Evaluation of Extended- Release Tablet of Zolpidem Tartrate by Wet Granulation Technique

    OpenAIRE

    Fatemeh Pourhashem; Mohammad Reza Avadi

    2016-01-01

    The goal of this study was to design and evaluate extended - release system of the hypnotic agent, Zolpidem tartrate usefulness for the treatment of insomnia. The half-life of this drug is about 1.9 - 3 hours that indicating it a candidate for the extended release formulation. Our investigation relates to development of extended drug delivery system based on Hydroxy propyl methyl cellulose (HPMCK4M) as release retardant, polyvinyl pyrrolidone (PVP k30) as binder and Magnesium S...

  8. Synthesis of hydrogels of alginate for system controlled release of progesterone

    International Nuclear Information System (INIS)

    Abreu, Marlon de F.; Rodriguez, Ruben J.S.; Silva, Ester C.C. da; Barreto, Gabriela N.S.

    2015-01-01

    The chemical modifications of natural polymers like alginate, has allowed the development of new formulations for controlled release systems. In this work we report the synthesis of a derivative of the amidic alginate with alkyl chain. The polymer was characterized by spectroscopic techniques: Nuclear Magnetic Resonance and Fourier Transform Infrared. (author)

  9. Development and evaluation of controlled-release buccoadhesive verapamil hydrochloride tablets

    Directory of Open Access Journals (Sweden)

    Emami J.

    2008-05-01

    Full Text Available Background and purpose of the study: Verapamil hydrochloride is a calcium channel blocker which is used in the control of supraventricular arrhythmia, hypertension and myocardial infraction. There are considerable inter-individual variations in serum concencentration of verpamil due to variation in the extent of hepatic metabolism. In this study controlled-release buccoadhesive tablets of verapamil hydrochloride (VPH were prepared in order to achieve constant plasma concentrations, to improve the bioavailability by the avoidance of hepatic first-pass metabolism, and to prevent frequent administration. Materials and methods: Tablets containing fixed amount of VPH were prepared by direct compression method using polymers like carbomer (CP, hydroxypropylmethyl cellulose (HPMC and sodium carboxymethyl cellulose (NaCMC in various combination and ratios and evaluated for thickness, weight variation, hardness, drug content uniformity, swelling, mucoadhesive strength, drug release and possible interaction between ingredients. Results: All tablets were acceptable with regard to thickness, weight variation, hardness, and drug content. The maximum bioadhesive strength was observed in tablets formulated with a combination of CP-NaCMC followed by CP-HPMC and NaCMC-HPMC.  Decreasing the content of CP in CP-HPMC tablets or NaCMC in CP-NaCMC or NaCMC-HPMC systems resulted in decrease in detachment forces. Lower release rates were observed by lowering the content of CP in CP-HPMC containing formulations or NaCMC in tablets which contained CP-NaCMC or NaCMC-HPMC. The release behavior was non-Fickian controlled by a combination of diffusion and chain relaxation mechanisms and best fitted zero-order kinetics. Conclusion: The buccoadhesive VPH tablets containing 53% CP and 13.3% HPMC showed suitable release kinetics (n = 0.78, K0 zero order release = 4.11 mg/h, MDT = 5.66 h and adhesive properties and did not show any interaction between polymers and drug based on

  10. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.

    Science.gov (United States)

    Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A

    2018-03-15

    Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for

  11. Natural gum as mucoadhesive controlled release carriers: evaluation of cefpodoxime proxetil by D-optimal design technique.

    Science.gov (United States)

    Patil, Satish H; Talele, Gokul S

    2014-03-01

    The present study deals with the development of mucoadhesive controlled release tablets of Cefpodoxime Proxetil to increase the gastric residence time and thus prolong drug release, reduce dosing frequency and improve oral bioavailability. Tablets were prepared using sodium alginate and karaya gum, a natural polymer, with a synthetic polymer hydroxypropylmethylcellulose (K100LV) and Karaya gum with HPMC K100LV in various ratios to optimize the drug release profile using D-Optimal technique. Pre- and post-compression parameters of tablets prepared with various formulations (S1-S9, C1-C9) were evaluated. The FTIR and DSC studies revealed that no physiochemical interaction between excipients and drug. The formulation S7 showed prolonged drug release, and the mechanism of drug release from the optimized formulation was confirmed using the Korsmeyer-Peppas model to be non-Fickian release transport and n value was found 0.605 indicating both diffusion and erosion mechanism from these natural gums. The optimized formulation showed mucoadhesive strength >35 g. An in vivo study was performed on rabbits using an X-ray imaging technique. The radiological evidence suggests that the tablets adheres (more than 10 hours) to a rabbit's stomach. No significant changes were found in the physical appearance, drug content, mucoadhesive study and in vitro dissolution pattern after storage at 40 °C/75% relative humidity for 3 months.

  12. Bioavailability of immediate and controlled release formulations of lithium carbonate Biodisponibilidade de formulações de liberação imediata e controlada de carbonato de lítio

    Directory of Open Access Journals (Sweden)

    Luciana Vismari

    2002-06-01

    Full Text Available INTRODUCTION/OBJECTIVES: Controlled-release lithium formulations were developed to minimize elevated blood peaks, related to side-effects and intoxications. However, there is little information about the bioavailability of the only controlled-release lithium formulation available in Brazil. The objective of this study was to compare the bioavailability of controlled-release and immediate-release lithium formulations, after single and multiple doses. METHODS: Twelve healthy volunteers received 900 mg of immediate-release or controlled-release lithium carbonate in single or multiple doses during 9 days. After single dose administration, the following parameters were analyzed for each formulation: maximum lithium concentration (Cmax; time to reach Cmax (t max; area under the curve of serum concentration versus time (AUC0-12 and AUC0-¥ and the elimination half-life (t1/2 elim.. After multiple doses, Cmax; t max; AUC0-12; mean (Cmean and minimum drug concentration (Cmin and degree of fluctuation (DF were analyzed. A 90% confidence interval (90%CI for the ratio between the AUCs for each formulation was constructed. RESULTS/DISCUSSION: Following single dose, the two formulations were bioequivalent; however, they were not after multiple doses. This fact could be a consequence of methodological limitations of lithium level's measurements since, following single dose, these levels could not be detected at time periods 24 and 48h in many volunteers, compromising the calculation of t1/2 elim ,and consequently of the AUC0-¥ and the 90%CI to the ratio of these areas. Therefore, the bioequivalence found after single dose may be an unreliable result.INTRODUÇÃO/OBJETIVO: Formulações de liberação controlada de lítio foram produzidas para minimizar picos sangüíneos elevados relacionados a efeitos colaterais e intoxicações. No entanto, o único produto com liberação controlada de lítio disponível no Brasil possui poucas informações a respeito de

  13. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Luo YL

    2016-07-01

    Full Text Available Yuling Luo, Zhongbing Liu, Xiaoqin Zhang, Juan Huang, Xin Yu, Jinwei Li, Dan Xiong, Xiaoduan Sun, Zhirong Zhong Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan,People’s Republic of ChinaAbstract: The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 µm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy.Keywords: oleanolic acid, multivesicular liposomes, murine hepatocellular carcinoma, controlled release, cancer therapy

  14. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of Mebeverine HCl.

    Science.gov (United States)

    El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A

    2017-01-01

    To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin ® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the C max of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The t max was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action.

  15. The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations.

    Science.gov (United States)

    Fauzee, Ayeshah Fateemah Beebee; Khamanga, Sandile Maswazi; Walker, Roderick Bryan

    2014-12-01

    The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 2(4) full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer-Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.

  16. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    Science.gov (United States)

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  17. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS): A rapid test for enteric coating thickness and integrity of controlled release pellet formulations.

    Science.gov (United States)

    Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara

    2018-04-12

    There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Pharmacokinetics of an oral extended-release formulation of doxycycline hyclate containing acrylic acid and polymethacrylate in dogs.

    Science.gov (United States)

    Ruiz, Sara Melisa Arciniegas; Olvera, Lilia Gutiérrez; Chacón, Sara del Carmen Caballero; Estrada, Dinorah Vargas

    2015-04-01

    To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid-polymethacrylate-based matrices. 30 healthy adult dogs. In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment. Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment. Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.

  20. Research and development of controlled release technology for agrochemicals using isotopes

    International Nuclear Information System (INIS)

    1986-01-01

    In recent years, increasing investment has been made into development of measures to reduce pesticide contamination of food and the environment while at the same time protecting crops and livestock from pest attack. Studies to develop controlled-release technology are frequently carried out with labelled compounds. Radiotracer techniques provide a unique tool in measuring the release rate of the chemical, the stability of the chemical within the formulation and evaluating the effect of environmental factors on the release rate. These technologies and pesticide residue problems were the theme of the Seminar. The Seminar has illustrated the potential value of isotope techniques and has reviewed information on current developments in this field and their relevance to agriculture in developing countries

  1. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  2. Use of partial AUC to demonstrate bioequivalence of Zolpidem Tartrate Extended Release formulations.

    Science.gov (United States)

    Lionberger, Robert A; Raw, Andre S; Kim, Stephanie H; Zhang, Xinyuan; Yu, Lawrence X

    2012-04-01

    FDA's bioequivalence recommendation for Zolpidem Tartrate Extended Release Tablets is the first to use partial AUC (pAUC) metrics for determining bioequivalence of modified-release dosage forms. Modeling and simulation studies were performed to aid in understanding the need for pAUC measures and also the proper pAUC truncation times. Deconvolution techniques, In Vitro/In Vivo Correlations, and the CAT (Compartmental Absorption and Transit) model were used to predict the PK profiles for zolpidem. Models were validated using in-house data submitted to the FDA. Using dissolution profiles expressed by the Weibull model as input for the CAT model, dissolution spaces were derived for simulated test formulations. The AUC(0-1.5) parameter was indicative of IR characteristics of early exposure and effectively distinguished among formulations that produced different pharmacodynamic effects. The AUC(1.5-t) parameter ensured equivalence with respect to the sustained release phase of Ambien CR. The variability of AUC(0-1.5) is higher than other PK parameters, but is reasonable for use in an equivalence test. In addition to the traditional PK parameters of AUCinf and Cmax, AUC(0-1.5) and AUC(1.5-t) are recommended to provide bioequivalence measures with respect to label indications for Ambien CR: onset of sleep and sleep maintenance.

  3. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  4. The effect of additives on release and in vitro skin retention of flavonoids from emulsion and gel semisolid formulations.

    Science.gov (United States)

    Dyja, R; Jankowski, A

    2017-08-01

    To assess the effect of two different additives (propylene glycol (PG) and polyethylene glycol 400 (PEG 400)) on release and in vitro skin retention of quercetin and chrysin from semisolid bases (amphiphilic creams and acidic carbomer gels). For obtaining semisolid formulations, flavonoids were pre-dissolved in the liquid (PG or PEG 400) or directly suspended in the semisolid base. Three chrysin formulations ('cream 0', 'PG-cream' and 'PEG 400-cream') and five quercetin formulations ('cream 0', 'PG cream', 'PEG 400 cream', 'gel 0' and 'PG gel') were prepared. The release studies were carried out in Franz diffusion cells by means of a cellulose membrane. The porcine ear skin was used in in vitro skin retention studies. The dissolution was a prerequisite to increase the release rates of tested flavonoids from obtained semisolid formulations. The cumulative amount of chrysin released after 6 h from 'PEG 400 cream' containing partly dissolved form of that flavonoid was higher than that from 'cream 0' or 'PG cream' containing its suspended form. The formulations containing quercetin dissolved in PG ('PG cream', 'PG gel') or PEG 400 ('PEG 400 cream') exhibited higher release rates of that flavonoid than corresponding semisolid suspensions ('cream 0' or 'gel 0'). The effects of both liquid additives (PG and PEG 400) on the cumulative amount of quercetin released after 6 h were comparable. However, there was no correlation between the release rate and the skin retention. The amounts of the flavonoids found in the skin were strongly affected by the type of the used solvent. While PG increased the skin retention of both flavonoids, PEG 400 had no effect on chrysin skin retention and delayed quercetin skin absorption. The proper choice of the solvent added to the semisolid base is crucial for enhanced skin delivery of the tested flavonoids. PG is more efficient absorption promoter than PEG 400 of both chrysin and quercetin. © 2017 Society of Cosmetic Scientists and the Soci

  5. Development and characterization of controlled release polar lipid microparticles of candesartan cilexetil by solid dispersion

    Science.gov (United States)

    Kamalakkannan, V; Puratchikody, A; Ramanathan, L

    2013-01-01

    Candesartan cilexetil (CC) is a newer class of angiotensin II receptor antagonist used for the treatment of hypertension. The solubility of the CC is very poor and its oral bioavailability is only 15%. The controlledrelease polar lipid microparticles of CC (formulations F1, F2, F3 and F4) were prepared using variable erodible lipophilic excipients like hydrogenated castor oil, stearic acid, cetostearyl alcohol and carnauba wax by fusion method. The particle sizes of polar lipid microparticles were less than 50 microns and they were irregular in shape. Drug content ranged between 98.96 ± 2.1 and 101.9 ± 1.6% were present in all the formulations. The formulation F3 showed better drug release throughout the study period in a controlled release manner. Moreover, the in vitro release showed that all the formulations were best fitted to Higuchi model. Accelerated stability studies indicated that there was no significant changes in the chemical and physical characteristics of the formulated drug product during initial and at the end of the study period. The FTIR and DSC studies showed that there was no interaction between the drug and lipophilic excipients and no polymorphic transitions in all formulations. The X-ray diffraction peak of solid dispersion indicated that the crystalline nature of CC disappeared and no new peaks could be observed, suggesting the absence of interaction between drug and excipients. PMID:24019822

  6. Development and validation of an in vitro–in vivo correlation (IVIVC model for propranolol hydrochloride extended-release matrix formulations

    Directory of Open Access Journals (Sweden)

    Chinhwa Cheng

    2014-06-01

    Full Text Available The objective of this study was to develop an in vitro–in vivo correlation (IVIVC model for hydrophilic matrix extended-release (ER propranolol dosage formulations. The in vitro release characteristics of the drug were determined using USP apparatus I at 100 rpm, in a medium of varying pH (from pH 1.2 to pH 6.8. In vivo plasma concentrations and pharmacokinetic parameters in male beagle dogs were obtained after administering oral, ER formulations and immediate-release (IR commercial products. The similarity factor f2 was used to compare the dissolution data. The IVIVC model was developed using pooled fraction dissolved and fraction absorbed of propranolol ER formulations, ER-F and ER-S, with different release rates. An additional formulation ER-V, with a different release rate of propranolol, was prepared for evaluating the external predictability. The results showed that the percentage prediction error (%PE values of Cmax and AUC0–∞ were 0.86% and 5.95%, respectively, for the external validation study. The observed low prediction errors for Cmax and AUC0–∞ demonstrated that the propranolol IVIVC model was valid.

  7. Cross-linked chitosan-dextran sulphate vehicle system for controlled release of ciprofloxaxin drug: An ophthalmic application

    Directory of Open Access Journals (Sweden)

    Chetan Chavan

    2017-01-01

    Full Text Available The major challenge associated with conventional eye-drop is the rapid drug loss due to precorneal defence barrier. In this context, controlled-release system of ciprofloxacin-conjugated chitosan (CS-Dextran sulphate (DS nanoparticles (NPs have been synthesized, to increase the bioavailability. The formulated drug delivery vehicle was evaluated for its therapeutic value in the simulated tear fluidat pH 7.4. Ophthalmic microbes were tested with this formulation, to confirm the drug efficacy; which showed conducive therapeutic values of both MIC and MBC. Ocular irritancy test was performed using HET-CAM test, which showed that the CS-DS system did not yield any vascular response, offering it to be a non-irritant to the ocular surface. The release studies showed monotonous controlled-release for duration of 21 h. A fine cross-linking between CS and DS has been demonstrated to form CS-DS NPs and their interaction with drug has been evaluated using conventional characterization tools.

  8. A comparative histological study of alginate beads as a promising controlled release delivery for mefenamic acid.

    Science.gov (United States)

    Sevgi, Ferhan; Kaynarsoy, Buket; Ozyazici, Mine; Pekcetin, Cetin; Ozyurt, Dogan

    2008-01-01

    The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 x 2(2) factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 +/- 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t(50) % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg(-1)), blank and MA (100 mgkg(-1)) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.

  9. Controlled release systems containing solid dispersions: strategies and mechanisms.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin

    2011-10-01

    In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

  10. A simple and rapid approach to evaluate the in vitro in vivo role of release controlling agent ethyl cellulose ether derivative polymer.

    Science.gov (United States)

    Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy

    2014-11-01

    Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (prelease rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (prelease. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.

  11. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  12. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  13. pH responsive alginate polymeric rafts for controlled drug release by using box behnken response surface design.

    Science.gov (United States)

    Abbas, Ghulam; Hanif, Muhammad; Khan, Mahtab Ahmad

    2017-01-01

    Aim of the present work was to develop alginate raft forming tablets for controlled release pantoprazole sodium sesquihydrate (PSS). Box behnken design was used to optimize 15 formulations with three independent and three dependent variables. Physical tests of all formulations were within pharmacopoeial limits. Raft was characterized by their strength, thickness, resilience, acid neutralizing capacity, floating lag time and total floating time. Raft strength, thickness and resilience of optimized formulation AR9 were 7.43 ± 0.019 g, 5.8 ± 0.245 cm and greater than 480 min, respectively. Buffering and neutralizing capacity were 11.2 ± 1.01 and 6.5 ± 0.56 meq, respectively. Dissolution studies were performed by using simulated gastric fluid pH 1.2 and cumulative percentage release of optimized formulation AR9 was found 98%. First order release kinetics were followed and non-fickian diffusion was observed as value of n was greater than 0.45 in korsmeyer-peppas model. PSS, polymers, tablets and rafts were further characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). FTIR spectra of PSS, polymers and raft of optimized formulation AR9 showed peaks at 3223.09, 1688.17, 1586.67, 1302.64 and 1027.74 cm -1 due to -OH stretching, ester carbonyl group (C=O) stretching, existence of water and carboxylic group in raft, C-N stretching and -OH bending vibration showed no interaction between them. XRD showed diffraction lines indicates crystalline nature of PSS. DSC thermogram showed endothermic peaks at 250 °C for PSS. The developed raft was suitable for controlled release delivery of PSS.

  14. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  15. Preparation and scale up of extended-release tablets of bromopride

    Directory of Open Access Journals (Sweden)

    Guilherme Neves Ferreira

    2014-04-01

    Full Text Available Reproducibility of the tablet manufacturing process and control of its pharmaceutics properties depends on the optimization of formulation aspects and process parameters. Computer simulation such as Design of Experiments (DOE can be used to scale up the production of this formulation, in particular for obtaining sustained-release tablets. Bromopride formulations are marketed in the form of extended-release pellets, which makes the product more expensive and difficult to manufacture. The aim of this study was to formulate new bromopride sustained release formulations as tablets, and to develop mathematical models to standardize the scale up of this formulation, controlling weight and hardness of the tablets during manufacture according to the USP 34th edition. DOE studies were conducted using Minitab(tm software. Different excipient combinations were evaluated in order to produce bromopride sustained-release matrix tablets. In the scale-up study, data were collected and variations in tableting machine parameters were measured. Data were processed by Minitab(tm software, generating mathematical equations used for prediction of powder compaction behavior, according to the settings of the tableting machine suitable for scale-up purposes. Bromopride matrix tablets with appropriate characteristics for sustained release were developed. The scale-up of the formulation with the most suitable sustained release profile was established by using mathematical models, indicating that the formulation can be a substitute for the pellets currently marketed.

  16. Development of a CO2 releasing co-formulation 1 based on starch, Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae

    Science.gov (United States)

    CO2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO2 emitting formulations need to be developed. This work aimed at the development of a slow release bead system in order to bridge the gap between application and hatching of...

  17. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants.

    Science.gov (United States)

    Wang, Yan; Wang, Anqi; Wang, Chunxin; Cui, Bo; Sun, Changjiao; Zhao, Xiang; Zeng, Zhanghua; Shen, Yue; Gao, Fei; Liu, Guoqiang; Cui, Haixin

    2017-10-06

    Pesticide slow-release formulations provide a way to increase the efficiency of active components by reducing the amount of pesticide that needs to be applied. Slow-release formulations also increase the stability and prolong the control effect of photosensitive pesticides. Surfactants are an indispensable part of pesticide formulations, and the choice of surfactant can strongly affect formulation performance. In this study, emamectin-benzoate (EMB) slow-release microspheres were prepared by the microemulsion polymerization method. We explored the effect of different surfactants on the particle size and dispersity of EMB in slow-release microspheres. The results indicated that the samples had uniform spherical shapes with an average diameter of 320.5 ±5.24 nm and good dispersity in the optimal formulation with the polymeric stabilizer polyvinyl alcohol (PVA) and composite non-ionic surfactant polyoxyethylene castor oil (EL-40). The optimal EMB pesticide slow-release microspheres had excellent anti-photolysis performance, stability, controlled release properties, and good leaf distribution. These results demonstrated that EMB slow-release microspheres are an attractive candidate for improving pesticide efficacy and prolonging the control effect of EMB in the environment.

  18. Pharmacokinetics of a Sustained-release Formulation of Meloxicam After Subcutaneous Administration to Hispaniolan Amazon Parrots (Amazona ventralis).

    Science.gov (United States)

    Guzman, David Sanchez-Migallon; Court, Michael H; Zhu, Zhaohui; Summa, Noémie; Paul-Murphy, Joanne R

    2017-09-01

    Meloxicam has been shown to have a safe and favorable pharmacodynamic profile with individual variability in Hispaniolan Amazon parrots (Amazona ventralis). In the current study, we determined the pharmacokinetics of a sustained-release formulation of meloxicam after subcutaneous administration to Hispaniolan Amazon parrots. Twelve healthy adult parrots, 6 males and 6 females, were used in the study. Blood samples were collected before (time 0) and at 0.5, 1, 2, 6, 12, 24, 48, 72, 96, and 120 hours after a single dose of the sustained-release meloxicam formulation (3 mg/kg SC). Plasma meloxicam concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were determined by noncompartmental analysis. Plasma concentrations reached a mean C max of 23.4 μg/mL (range, 14.7-46.0 μg/mL) at 1.8 hours (range, 0.5-6 hours), with a terminal half-life of 7.4 hours (range, 1.4-40.9 hours). Individual variation was noticeable, such that some parrots (4 of 12 birds) had very low plasma meloxicam concentrations, similar to the high variability reported in a previous pharmacokinetic study of the standard meloxicam formulation in the same group of birds. Two birds developed small self-resolving scabs at the injection site. On the basis of these results, the sustained-release meloxicam formulation could be administered every 12 to 96 hours in Hispaniolan Amazon parrots to manage pain. Because of these highly variable results, the use of this formulation in this species cannot be recommended until further pharmacokinetic, safety, and pharmacogenomic evaluations are performed to establish accurate dosing recommendations and to understand the high pharmacokinetic variability.

  19. Formulation and release of alaptide from cellulose-based hydrogels

    Directory of Open Access Journals (Sweden)

    Zbyněk Sklenář

    2012-01-01

    Full Text Available The modern drug alaptide, synthetic dipeptide, shows regenerative effects and effects on the epitelisation process. A commercial product consisting of 1% alaptide hydrophilic cream is authorised for use in veterinary practice. This study focuses on the formulation of alaptide into semi-synthetic polymer-based hydrogels. The aim of the present study is to prepare hydrogels and to evaluate the liberation of alaptide from hydrogels. The hydrogels were prepared on the basis of three gel-producing substances: methylcellulose, hydroxyethylcellulose and hydroxypropylcellulose. To enhance the drug release from hydrogel humectants, glycerol, propylene glycol and ethanol in various concentrations were evaluated. The permeation of the alaptide from gels into the acceptor solution was evaluated with the use of the permeable membrane neprophane. The amount of drug released from prepared hydrogels was determined spectrophotometrically. Hydrogels with optimal alaptide liberation properties were subjected to the study of rheological properties in the next phase. The optimal composition of hydrogel as established in this study was 1% alaptide + 3% hydroxyethylcellulose with the addition of 10% glycerol as humectant. Due to the advantageous properties of hydrogels in wounds, alaptide could be incorporated into a hydrogel base for use in veterinary medicine.

  20. Differential scanning calorimetry as a screening technique in compatibility studies of acyclovir extended release formulations

    International Nuclear Information System (INIS)

    Barboza, Fernanda M.; Vecchia, Debora D.; Tagliari, Monika P.; Ferreira, Andrea Granada; Silva, Marcos A.S.; Stulzer, Hellen K.

    2009-01-01

    Acyclovir (ACV) has been investigated during the past years, mainly due to its antiviral activity. Assessment of possible incompatibility between an active component and different excipients along with the evaluation of thermal stability are crucial parts of a normal study prior to the final formulation setting of a medicine. Thermal analysis studies were used as important and complementary tools during pre-formulation to determine the compatibility of drug excipients with the purpose of developing an acyclovir extended release formulation. Fourier transform infrared spectroscopy and X-ray powder diffraction analyses were also realized. The results showed that ACV only exhibited interaction which could influence the stability of the product in the binary mixtures of ACV/magnesium stearate. (author)

  1. STUDIES ON NATURAL AND SYNTHETIC POLYMERS FOR CONTROLLED RELEASE MATRIX TABLET OF ACECLOFENAC

    OpenAIRE

    Abhishek S. Joshi *, Deepak A. Joshi , Avinash V. Dhobale , Sandhya S. Bundel , Vijay R. Chakote, Gunesh N. Dhembre

    2018-01-01

    The present study was aimed to design new oral controlled release matrix tablets of new NSAID Aceclofenac for once a day by using 10, 15, 20 and 25% of GG:HPMC and XG:HPMC mixture in the ratio 1:1 by wet granulation method. The prepared tablets subjected to in vitro drug release studies in pH 7.4 buffer solution. All the formulation meets the pre-compression and compression characteristics. All the tablets prepared with 10, 15, 20 and 25% of HPMC: XG mixture in the ratio 1:1 fails to meet the...

  2. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. [The use of natural and synthetic hydrophilic polymers in the formulation of metformin hydrochloride tablets with different profile release].

    Science.gov (United States)

    Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2012-01-01

    Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration

  4. Evaluation of Ocimum basilicum L. seed mucilage as rate controlling matrix for sustained release of propranolol HCl

    Directory of Open Access Journals (Sweden)

    Majid Saeedi

    2015-01-01

    Full Text Available Polysaccharide mucilage derived from the seeds of Ocimum basilicum L. (family Lamiaceae was investigated for use in matrix formulations containing propranolol hydrochloride. Basil mucilage was extracted and several tablets were formulated. The effect of mucilage on drug release rate was evaluated in comparison with tablets containing two kinds of hydroxypropyl methylcellulose (HPMC K4M and HPMC K100M as standard polymer. The release data were fitted to several models for kinetic evaluation. The results showed that hardness decreased and friability of tablets increased as the concentration of mucilage increased. The rate of release of propranolol HCl from O. basilicm mucilage matrices was mainly controlled by the drug: mucilage ratio. Drug release was slower from the HPMC K4M and HPMCK100M containing tablets compared to the mucilage containing matrices than the drug release from matrices containing O. basilicum seed mucilage in similar ratios.  Formulations containing O. basilicm mucilage were found to exhibit suitable release pattern. The results of kinetic analysis showed that in tablets containing O. basilicm mucilage the highest correlation coefficient was achieved with the zero order model. The swelling and erosion studies revealed that, as the proportion of mucilage in tablets was increased, there was a corresponding increase in percent swelling and a decrease in percent erosion of tablets.

  5. Reformulation of controlled-release oxycodone and pharmacy dispensing patterns near the US-Canada border.

    Science.gov (United States)

    Gomes, Tara; Paterson, J Michael; Juurlink, David N; Dhalla, Irfan A; Mamdani, Muhammad M

    2012-01-01

    In August 2010, a tamper-resistant formulation of controlled-release oxycodone (OxyContin-OP) was introduced in the United States but not in Canada. Our objective was to determine whether introduction of OxyContin-OP in the United States influenced prescription volumes for the original controlled-release oxycodone formulation (OxyContin) at Canadian pharmacies near the international border. We conducted a population-based, serial, cross-sectional study of prescriptions dispensed from pharmacies in the 3 cities with the highest volume of US-Canada border crossings in Ontario: Niagara Falls, Windsor and Sarnia. We analyzed data on all outpatient prescriptions for OxyContin dispensed by Canadian pharmacies near each border crossing between 2010 Apr. 1 and 2012 Feb. 29. We calculated and compared monthly prescription rates, adjusted per 1000 population and stratified by tablet strength. The number of tablets dispensed near 4 border crossings in the 3 Canadian cities remained stable over the study period. However, the rate of dispensing at pharmacies near the Detroit-Windsor Tunnel increased roughly 4-fold between August 2010 and February 2011, from 505 to 1969 tablets per 1000 population. By April 2011, following warnings to prescribers and pharmacies regarding drug-seeking behaviour, the dispensing rate declined to 1683 tablets per 1000 population in this area. By November 2011, the rate had returned to levels observed in early 2010. Our analyses suggest that 242 075 excess OxyContin tablets were dispensed near the Detroit-Windsor Tunnel between August 2010 and October 2011. Prescribing of the original formulation of controlled-release oxycodone rose substantially near a major international border crossing following the introduction of a tamper-resistant formulation in the United States. It is possible that the restriction of this finding to the area surrounding the Detroit-Windsor Tunnel reflects specific characteristics of this border crossing, including its high

  6. The influence of polymeric excipients on the process of pharmaceutical availability of therapeutic agents from a model drug form. Part I. In formulations with controlled disintegration and release time.

    Science.gov (United States)

    Nachajski, Michal Jakub; Zgoda, Marian Mikołaj

    2010-01-01

    Pre-formulation research was conducted on the application of Ex. Echinaceae aq. siccum in the production of a quickly disintegrating suspension tablet, a lozenge with kariostatic sugar alcohols (mannitol, sorbitol), and, above all, a solid drug form with controlled release of therapeutic agents included in the extract. Morphological parameters of tablets obtained in the course of experiment were estimated and the profiles of the release (diffusion) ofhydrophilic therapeutic agents into model receptor fluids with varying values of osmolarity (0.1 mol HCl approximately 200 mOsm/l, hypotonic hydrating fluid approximately 143 mOsm/l, and compensatory paediatric fluid approximately 272 mOsm/l) were examined. The study focused on the technological problem of determining the effect of hydrogel Carbopol structure on the ordering of diffusion ofhydrophilic therapeutic agents from a model drug form (a tablet) into model fluids with variable osmolarity.

  7. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    Science.gov (United States)

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.

  8. Polymeric materials and formulation technologies for modified-release tablet development.

    Science.gov (United States)

    Zarate, J; Igartua, M; Hernández, R M; Pedraz, J L

    2009-11-01

    Over the last years significant advances have been made in the area of drug delivery with the development of modified-release (MR) dosage forms. The present review is divided into two parts, one dealing with technologies for the design of modified-release drug delivery tablets and the other with the use of synthetic and natural polymers that are capable of controlling drug release.

  9. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    Science.gov (United States)

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Nano-suspension coating as a technique to modulate the drug release from controlled porosity osmotic pumps for a soluble agent.

    Science.gov (United States)

    Bahari, Leila Azharshekoufeh; Javadzadeh, Yousef; Jalali, Mohammad Barzegar; Johari, Peyvand; Nokhodchi, Ali; Shokri, Javad

    2017-05-01

    In controlled porosity osmotic pumps (CPOP), usually finding a single solvent with a capability to dissolve both film former (hydrophobic) and pore former (hydrophilic) is extremely challenging. Therefore, the aim of the present investigation was to tackle the issue associated with controlled porosity osmotic pump (CPOP) system using nano-suspension coating method. In the present study 4-Amino pyridine was used as a highly water soluble drug. In this method, a hydrophilic pore former (sucrose or mannitol) in nano range was suspended in polymeric coating solution using ball-mill. The performance of the prepared formulations was assessed in terms of D 12h (cumulative release percent after 12h), Dev zero (mean percent deviation of drug release from zero order kinetic), t L (lag time of the drug release) and RSQ zero . The results revealed that gelling agent amount (HPMC E 15LV ) in core and pore former concentration in SPM had crucial effect on SPM integrity. All the optimised formulations showed a burst drug release due to fast dissolving nature of the pore formers. Results obtained from scanning electron microscopy demonstrated the formation of nanopores in the membrane where the drug release takes place via these nanopores. Nano suspension coating method can be introduced as novel method in formulation of CPOPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nanocapsule@xerogel microparticles containing sodium diclofenac: a new strategy to control the release of drugs.

    Science.gov (United States)

    da Fonseca, Letícia Sias; Silveira, Rodrigo Paulo; Deboni, Alberto Marçal; Benvenutti, Edilson Valmir; Costa, Tânia M H; Guterres, Sílvia S; Pohlmann, Adriana R

    2008-06-24

    The aim of this work was to evaluate the potentiality to control the drug release of a new architecture of microparticles organized at the nanoscopic scale by assembling polymeric nanocapsules at the surface of drug-loaded xerogels. Xerogel was prepared by sol-gel method using sodium diclofenac, as hydrophilic drug model, and coated by spray-drying. After coating, the surface areas decreased from 82 to 28 m(2)/g, the encapsulation efficiency was 71% and SEM analysis showed irregular microparticles coated by the nanocapsules. Formulation showed satisfactory gastro-resistance presenting drug release lower than 3% (60 min) in acid medium. In water, the pure drug dissolved 92% after 5 min, uncoated drug-loaded xerogel released 60% and nanocapsule coated drug-loaded xerogel 36%. After 60 min, uncoated drug-loaded xerogel released 82% and nanocapsule coated drug-loaded xerogel 62%. In conclusion, the new system was able to control the release of the hydrophilic drug model.

  12. Effect of xanthan gum on the release of strawberry flavor in formulated soy beverage.

    Science.gov (United States)

    Xu, Jiao; He, Zhiyong; Zeng, Maomao; Li, Bingbing; Qin, Fang; Wang, Linxiang; Wu, Shengfang; Chen, Jie

    2017-08-01

    The effects of xanthan gum on the release of strawberry flavor compounds in formulated soy protein isolate (SPI) beverage were investigated by headspace gas chromatography (GC). Seven strawberry flavor compounds (limonene, ethyl hexanoate, (Z)-3-hexenyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, (Z)-3-hexen-1-ol and diacetyl) could be detected by GC and hence analyzed the gas-matrix partition coefficients (K). The release of flavor compounds was restrained in SPI and/or xanthan gum solution. The retention of (Z)-3-hexen-1-ol, limonene and diacetyl significantly changed (pfuraneol) accelerated the release of ester compounds to some extent in different matrices. The above results demonstrated that presence of SPI and xanthan gum could bring about an imbalance in the strawberry flavor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  14. The Multimedia Environmental Pollutant Assessment System (MEPAS)reg-sign: Source-term release formulations

    International Nuclear Information System (INIS)

    Streile, G.P.; Shields, K.D.; Stroh, J.L.; Bagaasen, L.M.; Whelan, G.; McDonald, J.P.; Droppo, J.G.; Buck, J.W.

    1996-11-01

    This report is one of a series of reports that document the mathematical models in the Multimedia Environmental Pollutant Assessment System (MEPAS). Developed by Pacific Northwest National Laboratory for the US Department of Energy, MEPAS is an integrated impact assessment software implementation of physics-based fate and transport models in air, soil, and water media. Outputs are estimates of exposures and health risk assessments for radioactive and hazardous pollutants. Each of the MEPAS formulation documents covers a major MEPAS component such as source-term, atmospheric, vadose zone/groundwater, surface water, and health exposure/health impact assessment. Other MEPAS documentation reports cover the sensitivity/uncertainty formulations and the database parameter constituent property estimation methods. The pollutant source-term release component is documented in this report. MEPAS simulates the release of contaminants from a source, transport through the air, groundwater, surface water, or overland pathways, and transfer through food chains and exposure pathways to the exposed individual or population. For human health impacts, risks are computed for carcinogens and hazard quotients for noncarcinogens. MEPAS is implemented on a desktop computer with a user-friendly interface that allows the user to define the problem, input the required data, and execute the appropriate models for both deterministic and probabilistic analyses

  15. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database.

    Science.gov (United States)

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.

  16. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation.

    Science.gov (United States)

    Pineros, Isabel; Slowing, Karla; Serrano, Dolores R; de Pablo, Esther; Ballesteros, Maria Paloma

    2017-04-01

    Development of analgesic and anti-inflammatory controlled-released injectable microemulsions utilising lysine clonixinate (LC) as model drug and generally regarded as safe (GRAS) excipients. Different microemulsions were optimised through pseudo-ternary phase diagrams and characterised measuring droplet size, viscosity, ex vivo haemolytic activity and in vitro drug release. The anti-inflammatory and analgesic activity was tested in mice (Hot plate test) and rats (Carrageenan-induced paw edema test) respectively and their activity was compared to an aqueous solution of LC salt. The aqueous solution showed a faster and shorter response whereas the optimised microemulsion increased significantly (p<0.01) the potency and duration of the analgesic and anti-inflammatory activity after deep intramuscular injection. The droplet size and the viscosity were key factors to control the drug release from the systems and enhance the effect of the formulations. The microemulsion consisting of Labrafil®/Lauroglycol®/Polysorbate 80/water with LC (56.25/18.75/15/10, w/w) could be a promising formulation after buccal surgery due to its ability to control the drug release and significantly achieve greater analgesic and anti-inflammatory effect over 24h. Copyright © 2016. Published by Elsevier B.V.

  17. Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles.

    Science.gov (United States)

    Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon

    2011-04-04

    A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Simulation and parametric study of a film-coated controlled-release pharmaceutical.

    Science.gov (United States)

    Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders

    2002-04-23

    Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.

  19. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  20. Release behavior of drugs from various natural gums and polymers.

    Science.gov (United States)

    Singh, Anupama; Sharma, Pramod Kumar; Malviya, Rishabha

    2011-01-01

    Polymers are the high molecular weight compounds of natural or synthetic origin, widely used in drug delivery of formulations. These polymers are further classified as hydrophilic or hydrophobic in nature. Depending upon this characteristic, polymers exhibit different release behavior in different media. This property plays an important role in the selection of polymers for controlled, sustained or immediate release formulations. The review highlights the literatures related to the research made on several polymers regarding the release kinetics which made them a novel approach for modifying the action of the particular formulation.

  1. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective.

    Science.gov (United States)

    Solomon, Deepak; Gupta, Nilesh; Mulla, Nihal S; Shukla, Snehal; Guerrero, Yadir A; Gupta, Vivek

    2017-11-01

    In the past few years, measurement of drug release from pharmaceutical dosage forms has been a focus of extensive research because the release profile obtained in vitro can give an indication of the drug's performance in vivo. Currently, there are no compendial in vitro release methods designed for liposomes owing to a range of experimental challenges, which has created a major hurdle for both development and regulatory acceptance of liposome-based drug products. In this paper, we review the current techniques that are most often used to assess in vitro drug release from liposomal products; these include the membrane diffusion techniques (dialysis, reverse dialysis, fractional dialysis, and microdialysis), the sample-and-separate approach, the in situ method, the continuous flow, and the modified United States Pharmacopeia methods (USP I and USP IV). We discuss the principles behind each of the methods and the criteria that assist in choosing the most appropriate method for studying drug release from a liposomal formulation. Also, we have included information concerning the current regulatory requirements for liposomal drug products in the United States and in Europe. In light of increasing costs of preclinical and clinical trials, applying a reliable in vitro release method could serve as a proxy to expensive in vivo bioavailability studies. Graphical Abstract Appropriate in-vitro drug release test from liposomal products is important to predict the in-vivo performance.

  3. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation and Pharmacokinetics of Double-Compression-Coated Mini-Tablets.

    Science.gov (United States)

    Vemula, Sateesh Kumar

    2015-12-01

    A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.

  4. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  5. Application of UV Imaging in Formulation Development.

    Science.gov (United States)

    Sun, Yu; Østergaard, Jesper

    2017-05-01

    Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.

  6. Formulation strategy towards minimizing viscosity mediated negative food effect on disintegration and dissolution of immediate release tablets.

    Science.gov (United States)

    Zaheer, Kamran; Langguth, Peter

    2018-03-01

    Food induced viscosity can delay disintegration and subsequent release of API from solid dosage form which may lead to severe reduction in the bioavailability of BCS type III compounds. Formulations of such tablets need to be optimized in view of this postprandial viscosity factor. In this study, three super disintegrants, croscarmellose sodium (CCS), cross-linked polyvinylpolypyrrolidone (CPD), and sodium starch glycolate (SSG) were assessed for their efficiency under simulated fed state. Tablets containing these disintegrants were compressed at 10 and 30 KN, while taking lactose as a soluble filler. In addition to other compendial tests, disintegration force of these formulations was measured by texture analysis. Comparison of parameters derived from force - time curves revealed a direct relation of maximum disintegration force (F max ) and disintegration force development rate (DFDR) with compressional force in fasted state, whereas an inverse relationship of F max and DFDR with compressional force was observed in fed state. The gelling tendency of disintegrants influenced the rate of release of API in simulated fed and fasted states when compressional force was changed. These observations recommend the evaluation of formulations in simulated fed state, in the development stage, with an objective of minimizing the negative impact of food induced viscosity on disintegration. Use of disintegrants that act without gelling or can counteract the effect of gelling is recommended for tablet formulations with reduced disintegration time (DT) and mean dissolution time (MDT) in fed state, respectively.

  7. Review of levetiracetam, with a focus on the extended release formulation, as adjuvant therapy in controlling partial-onset seizures

    Directory of Open Access Journals (Sweden)

    Carol M Ulloa

    2009-09-01

    Full Text Available Carol M Ulloa, Allen Towfigh, Joseph SafdiehDepartment of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Levetiracetam is a second-generation antiepileptic drug (AED with a unique chemical structure and mechanism of action. The extended release formulation of levetiracetam (Keppra XR™; UCB Pharma was recently approved by the Food and Drug Administration for adjunctive therapy in the treatment of partial-onset seizures in patients 16 years of age and older with epilepsy. This approval is based on a double-blind, randomized, placebo-controlled, multicenter, multinational trial. Levetiracetam XR allows for once-daily dosing, which may increase compliance and, given the relatively constant plasma concentrations, may minimize concentration-related adverse effects. Levetiracetam’s mode of action is not fully elucidated, but it has been found to target high-voltage, N-type calcium channels as well as the synaptic vesicle protein 2A (SV2A. Levetiracetam has nearly ideal pharmacokinetics. It is rapidly and almost completely absorbed after oral ingestion, is ‹10% protein-bound, demonstrates linear kinetics, is minimally metabolized through a pathway independent of the cytochrome P450 system, has no significant drug–drug interactions, and has a wide therapeutic index. The most common reported adverse events with levetiracetam XR were somnolence, irritability, dizziness, nausea, influenza, and nasopharyngitis. Levetiracetam XR provides an efficacious and well-tolerated treatment option for adjunctive therapy in the treatment of partial-onset seizures.Keywords: levetiracetam, partial-onset seizures, antiepileptic drugs

  8. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent.

    Science.gov (United States)

    Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong

    2015-07-15

    To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.

    Science.gov (United States)

    Siyawamwaya, Margaret; du Toit, Lisa C; Kumar, Pradeep; Choonara, Yahya E; Kondiah, Pierre P P D; Pillay, Viness

    2018-04-12

    A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a loading of ∼12.5 mg/6.3 mg/4 mg of EFV/TDF/FTC respectively per printed layer. Hydrogen bonding between the EFV/TDF/FTC and HA-PQ10 was detected which was indicative of possible drug solubility enhancement. The overall surface of the tablet exhibited a fibrilla structure and the 90° inner pattern was determined to be optimal for 3DP of the FDC. In vitro and in vivo drug release profiles from the 3DP FDC demonstrated that intestinal-targeted and controlled drug release was achieved. A 3DP FDC was successfully manufactured with the aid of a 3D-Bioplotter in a single step process. The versatile HA-PQ10 entrapped all drugs and achieved an enhanced relative bioavailability of EFV, TDF, and FTC compared to the market formulation for potentially enhanced HIV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cyclodextrin Controlled Release of Poorly Water-Soluble Drugs from Hydrogels

    DEFF Research Database (Denmark)

    Woldum, Henriette Sie; Madsen, Flemming; Larsen, Kim Lambertsen

    2008-01-01

    The effect of 2-hydroxypropyl- -cyclodextrin and -cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation...... and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all -cyclodextrin complexes was limited. The load also was increased...

  11. Formulation and Evaluation of a Sustained-Release Tablets of Metformin Hydrochloride Using Hydrophilic Synthetic and Hydrophobic Natural Polymers

    OpenAIRE

    Wadher, K. J.; Kakde, R. B.; Umekar, M. J.

    2011-01-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study ...

  12. Spironolactone release from liquisolid formulations prepared with Capryol™ 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles.

    Science.gov (United States)

    Elkordy, Amal Ali; Tan, Xin Ning; Essa, Ebtessam Ahmed

    2013-02-01

    The purpose of the study is to enhance dissolution of spironolactone as a model hydrophobic drug through application of liquisolid technology. Spironolactone is prepared as liquisolid formulations, and its dissolution property is evaluated and compared to that of conventional spironolactone tablets and pure spironolactone. Three non-volatile liquid vehicles were used in the design of spironolactone liquisolid formulations, Capryol™ 90, Synperonic® PE/L61 in combination with Solutol® HS-15 at a ratio of 1:1, and Kollicoat® SR 30 D. Spironolactone liquisolid formulations were tested according to British Pharmacopoeia (BP) quality control tests. Furthermore, the prepared liquisolid powder formulations were evaluated via differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) and scanning electron microscopy. Also, liquisolid formulations were subjected to testing of storage stability at high relative humidity. The results indicated that most of liquisolid tablets met the BP requirements. Dissolution results indicate that release of spironolactone was significantly increased (PSolutol® HS-15 showed highest dissolution. DSC thermograms from liquisolid formulations revealed that drug endothermic peak was disappeared after processing. Dissolution, DSC and FT-IR data after storage demonstrated that there were no significant changes in the formulations after storage. In conclusion, the liquid vehicles used within spironolactone liquisolid formulations enhanced drug dissolution rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    Science.gov (United States)

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  15. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  16. Methylphenidate disintegration from oral formulations for intravenous use by experienced substance users.

    Science.gov (United States)

    Bjarnadottir, G D; Johannsson, M; Magnusson, A; Rafnar, B O; Sigurdsson, E; Steingrimsson, S; Asgrimsson, V; Snorradottir, I; Bragadottir, H; Haraldsson, H M

    2017-09-01

    Methylphenidate (MPH) is a prescription stimulant used to treat attention-deficit hyperactivity disorder. MPH is currently the preferred substance among most intravenous (i.v.) substance users in Iceland. Four types of MPH preparations were available in Iceland at the time of study: Immediate-release (IR), sustained-release (SR), osmotic controlled-release oral delivery (OROS) tablet and osmotic-controlled release (OCR). MPH OROS has previously been rated the least desirable by i.v. users and we hypothesized that this was associated with difficulty of disintegrating MPH from OROS formulation. The aim of the study was to measure the amount of MPH and the viscosity of the disintegrated solutions that were made from the four MPH formulations by four i.v.-users and non-users. A convenience sample of four i.v. substance users and 12 non-users. Non-users imitated the methods applied by experienced i.v. substance users for disintegrated MPH formulations. Both groups managed to disintegrate over 50% of MPH from IR and SR formulations but only 20% from OROS (pusers and non-users. To our knowledge, this is the first investigation of viscosity and the amount of disintegrated MPH from prescription drugs for i.v. use. The results indicate that the ease of disintegration, amount of MPH and viscosity may explain the difference in popularity for i.v. use between different MPH formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention.

    Science.gov (United States)

    Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang

    2012-07-18

    With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture.

  18. Workload Control with Continuous Release

    NARCIS (Netherlands)

    Phan, B. S. Nguyen; Land, M. J.; Gaalman, G. J. C.

    2009-01-01

    Workload Control (WLC) is a production planning and control concept which is suitable for the needs of make-to-order job shops. Release decisions based on the workload norms form the core of the concept. This paper develops continuous time WLC release variants and investigates their due date

  19. Formulation and evaluation of a bilayer tablet comprising of diclofenac potassium as orodispersible layer and diclofenac sodium as sustained release core

    OpenAIRE

    Abbas, Jabbar; Bashir, Sajid; Samie, Muhammad; Laghari, Sadaf

    2017-01-01

    Diclofenac a phenylacetic acid derivative has long been used as an anti-inflammatory and analgesic drug to treat certain conditions however its sustained release formulation with immediate release loading dose is desirable. The rationale of the current work was to develop and evaluate bilayer tablets with diclofenac potassium as orodispersible layer and diclofenac sodium as sustained release core. The diclofenac sodium core was prepared by wet granulation method while the...

  20. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  1. Are Branded and Generic Extended-Release Ropinirole Formulations Equally Efficacious? A Rater-Blinded, Switch-Over, Multicenter Study

    Directory of Open Access Journals (Sweden)

    Edit Bosnyák

    2014-01-01

    Full Text Available The aim of this study was to compare the efficacy of the branded and a generic extended-release ropinirole formulation in the treatment of advanced Parkinson’s disease (PD. Of 22 enrolled patients 21 completed the study. A rater blinded to treatment evaluated Unified Parkinson’s Disease Rating Scale, Fahn-Tolosa-Marin Tremor Rating Scale, Nonmotor Symptoms Assessment Scale, and a structured questionnaire on ropinirole side effects. Besides, the patients self-administered EQ-5D, Parkinson’s Disease Sleep Scale (PDSS-2, and Beck Depression Inventories. Branded and generic ropinirole treatment achieved similar scores on all tests measuring severity of motor symptoms (primary endpoint, UPDRS-III: 27.0 versus 28.0 points, P=0.505. Based on patient diaries, the lengths of “good time periods” were comparable (10.5 and 10.0 hours for branded and generic ropinirole, resp., P=0.670. However, generic ropinirole therapy achieved almost 3.0 hours shorter on time without dyskinesia (6.5 versus. 9.5 hours, P<0.05 and 2.5 hours longer on time with slight dyskinesia (3.5 versus. 1.0 hours, P<0.05 than the branded ropinirole did. Except for gastrointestinal problems, nonmotor symptoms were similarly controlled. Patients did not prefer either formulation. Although this study has to be interpreted with limitations, it demonstrated that both generic and branded ropinirole administration can achieve similar control on most symptoms of PD.

  2. Development of controlled release spheroids using Buchananiacochinchinesis gum

    Directory of Open Access Journals (Sweden)

    Narayan Babulal Gaikwad

    2013-03-01

    Full Text Available Chirauli nut gum was isolated from the bark of Buchanania cochinchinesis (fam. Anacadiacea and was used as a release modifier for the preparation of Diclofenac sodium spheroids using the extrusion spheronization technique. The process was studied for the effects on variables when making spheroids with satisfactory particle shape, size and size distribution. The prepared spheroids were characterized for surface morphology, qualitative surface porosity, friability, bulk density and flow properties. In vitro studies demonstrated that the release exhibited Fickian diffusion kinetics which was confirmed by the Higuchi and the Korsmeyer-Peppas models. The physico-chemical parameters of the gum could be correlated to the in vitro dissolution profile of the spheroids. The spheroids were not able to sustain the drug releases over 12 hours. A greater concentration of Chirauli nut gum and a process that can accommodate such greater concentrations may produce a formulation capable of significant sustained release.

  3. Optimization of chlorphenesin emulgel formulation.

    Science.gov (United States)

    Mohamed, Magdy I

    2004-10-11

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 2(3) factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activity, and stability. Commercially available CHL topical powder was used for comparison. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. They also exhibited higher drug release and antifungal activity than the CHL powder. It was found that the emulsifying agent concentration had the most pronounced effect on the drug release from the emulgels followed by the oil phase concentration and finally the type of the gelling agent. The drug release from all the emulgels was found to follow diffusion-controlled mechanism. Rheological studies revealed that the CHL emulgels exhibited a shear-thinning behavior with thixotropy. Stability studies showed that the physical appearance, rheological properties, drug release, and antifungal activity in all the prepared emulgels remained unchanged upon storage for 3 months. As a general conclusion, it was suggested that the CHL emulgel formulation prepared with HPMC with the oil phase concentration in its low level and emulsifying agent concentration in its high level was the formula of choice since it showed the highest drug release and antifungal activity.

  4. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    Science.gov (United States)

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products

    International Nuclear Information System (INIS)

    Ribeiro, Roseane Fagundes; Motta, Mariana Heldt; Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer; Beck, Ruy Carlos Ruver; Schaffazick, Scheila Rezende

    2016-01-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze-drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102% with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products. - Highlights: • Polymeric nanocapsule suspensions containing tioconazole were submitted to spray-drying and freeze-drying. • Dried products from nanocapsule suspensions were stable for 30 days. • Release studies showed that the dried products presented greater control of drug release compared to the original suspension.

  6. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Roseane Fagundes [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Motta, Mariana Heldt [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Beck, Ruy Carlos Ruver [Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000 (Brazil); Schaffazick, Scheila Rezende [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); and others

    2016-02-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze-drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102% with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products. - Highlights: • Polymeric nanocapsule suspensions containing tioconazole were submitted to spray-drying and freeze-drying. • Dried products from nanocapsule suspensions were stable for 30 days. • Release studies showed that the dried products presented greater control of drug release compared to the original suspension.

  7. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Formulation and In Vitro Release Kinetics of Mucoadhesive Blend Gels Containing Matrine for Buccal Administration.

    Science.gov (United States)

    Chen, Xiaojin; Yan, Jun; Yu, Shuying; Wang, Pingping

    2018-01-01

    Enterovirus 71 (EV71) is a pathogenic factor of severe hand, foot, and mouth disease (HFMD). No vaccine or specific treatment is currently available for EV71 infection. Hence, we developed a buccal mucoadhesive gel containing matrine to protect against HFMD. Mucoadhesive gels were prepared by Carbopol 974P and were combined with Carbopol 971P, sodium carboxymethyl cellulose (CMC-Na), or hydroxypropylmethy cellulose (HPMC K100M). The formulations were characterized in terms of tensile testing and continuous flow techniques for mucoadhesion. The rheological studies and in vitro drug release characteristics were also investigated. The results showed that combinations of two polymers significantly improved mucoadhesion, especially Carbopol 974P blended with HPMC. Carbopol 974P to HPMC blend ratios of 1:1 and 2:1 induced better mucoadhesion in the tensile test and continuous flow method, respectively. The most sustained release was obtained at a Carbopol 974P to HPMC ratio of 2.5:1. A predominantly non-Fickian diffusion release mechanism was obtained. The gel containing 2.5% Carbopol 974P combined with 1% HPMC showed good mucoadhesion properties and sustained drug release.

  9. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  10. Effect of thermal and chemical modifications on the mechanical and release properties of paracetamol tablet formulations containing corn, cassava and sweet potato starches as filler-binders

    Directory of Open Access Journals (Sweden)

    Mariam Vbamiunomhene Lawal

    2015-07-01

    Conclusions: Modification of the experimental starches improved the mechanical and release properties of directly compressed paracetamol tablet formulations. Thus, they can be developed for use as pharmaceutical excipients in specific formulations.

  11. A mathematical model for interpreting in vitro rhGH release from laminar implants.

    Science.gov (United States)

    Santoveña, A; García, J T; Oliva, A; Llabrés, M; Fariña, J B

    2006-02-17

    Recombinant human growth hormone (rhGH), used mainly for the treatment of growth hormone deficiency in children, requires daily subcutaneous injections. The use of controlled release formulations with appropriate rhGH release kinetics reduces the frequency of medication, improving patient compliance and quality of life. Biodegradable implants are a valid alternative, offering the feasibility of a regular release rate after administering a single dose, though it exists the slight disadvantage of a very minor surgical operation. Three laminar implant formulations (F(1), F(2) and F(3)) were produced by different manufacture procedures using solvent-casting techniques with the same copoly(D,L-lactic) glycolic acid (PLGA) polymer (Mw=48 kDa). A correlation in vitro between polymer matrix degradation and drug release rate from these formulations was found and a mathematical model was developed to interpret this. This model was applied to each formulation. The obtained results where explained in terms of manufacture parameters with the aim of elucidate whether drug release only occurs by diffusion or erosion, or by a combination of both mechanisms. Controlling the manufacture method and the resultant changes in polymer structure facilitates a suitable rhGH release profile for different rhGH deficiency treatments.

  12. Formulation and Evaluation of Microspheres Based on Gelatin ...

    African Journals Online (AJOL)

    Formulation and Evaluation of Microspheres Based on Gelatin-Mucin Admixtures for the Rectal Delivery of Cefuroxime Sodium. K C Ofokansi, M U Adikwu. Abstract. Purpose: Swellable microspheres based on polymers or their admixtures are frequently employed as drug delivery systems to achieve a controlled release ...

  13. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.

    Science.gov (United States)

    Nallamothu, Ramakrishna; Wood, George C; Kiani, Mohammad F; Moore, Bob M; Horton, Frank P; Thoma, Laura A

    2006-01-01

    Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol

  14. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Alibolandi, Mona [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of); Ramezani, Mohammad; Abnous, Khalil [Mashhad University of Medical Sciences, Pharmaceutical Research Center, School of Pharmacy (Iran, Islamic Republic of); Sadeghi, Fatemeh, E-mail: sadeghif@mums.ac.ir [Mashhad University of Medical Sciences, Targeted Drug Delivery Research Center, School of Pharmacy (Iran, Islamic Republic of); Hadizadeh, Farzin, E-mail: hadizadehf@mums.ac.ir [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of)

    2015-02-15

    Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(d,l-lactide), were synthesized by ring-opening polymerization for the preparation of doxorubicin-loaded self-assembled nanostructures, including polymeric vesicles (polymersomes) and micelles. The capability and stability of the nanostructures prepared for the controlled release of DOX are discussed in this paper. The in vitro drug release at 37 °C was evaluated up to 6 days at pH 7.4 and 5.5 and in the presence of 50 % FBS. The cellular uptake and cytotoxicity effect of both formulations were also evaluated in the MCF-7 cell line. The SEM and AFM images confirmed the hollow spherical structure of the polymersomes and the solid round structures of the micelles. The TEM results also revealed the uniformity in size and shape of the drug-loaded micelle and polymersome nanostructures. The DOX-loaded micelles and polymersomes presented efficient anticancer performance, as verified by flow cytometry and MTT assay tests. The most important finding of this study is that the prepared nanopolymersomes presented significant increases in the doxorubicin encapsulation efficiency and the stability of the formulation in comparison with the micelle formulation. In vitro studies revealed that polymersomes may be stable in the blood circulation and meet the requirements for an effective drug delivery system.

  15. A formulation to encapsulate nootkatone for tick control.

    Science.gov (United States)

    Behle, Robert W; Flor-Weiler, Lina B; Bharadwaj, Anuja; Stafford, Kirby C

    2011-11-01

    Nootkatone is a component of grapefruit oil that is toxic to the disease-vectoring tick, Ixodes scapularis Say, but unfortunately causes phytotoxicity to treated plants and has a short residual activity due to volatility. We prepared a lignin-encapsulated nootkatone formulation to compare with a previously used emulsifiable formulation for volatility, plant phytotoxicity, and toxicity to unfed nymphs of I. scapularis. Volatility of nootkatone was measured directly by trapping nootkatone vapor in a closed system and indirectly by measuring nootkatone residue on treated filter paper after exposure to simulated sunlight (Xenon). After 24 h in the closed system, traps collected only 15% of the nootkatone applied as the encapsulated formulation compared with 40% applied as the emulsifiable formulation. After a 1-h light exposure, the encapsulated formulation retained 92% of the nootkatone concentration compared with only 26% retained by the emulsifiable formulation. For plant phytotoxicity, cabbage, Brassica oleracea L., leaves treated with the encapsulated formulation expressed less necrosis, retaining greater leaf weight compared with leaves treated with the emusifiable formulation. The nootkatone in the emulsifiable formulation was absorbed by cabbage and oat, Avena sativa L., plants (41 and 60% recovered 2 h after application, respectively), as opposed to 100% recovery from the plants treated with encapsulated nootkatone. Using a treated vial technique, encapsulated nootkatone was significantly more toxic to I. scapularis nymphs (LC50 = 20 ng/cm2) compared with toxicity of the emulsifiable formulation (LC50 = 35 ng/cm2). Thus, the encapsulation of nootkatone improved toxicity for tick control, reduced nootkatone volatility, and reduced plant phytotoxicity.

  16. Viability of lactobacillus acidophilus in various vaginal tablet formulations

    Directory of Open Access Journals (Sweden)

    Fazeli M.R.

    2006-07-01

    Full Text Available The lactobacilli which are present in vaginal fluids play an important role in prevention of vaginosis and there are considerable interests in formulation of these friendly bacteria into suitable pharmaceutical dosage forms. Formulating these microorganisms for vaginal application is a critical issue as the products should retain viability of lactobacilli during formulation and also storage. The aim of this study was to examine the viability and release of Lactobacillus acidophilus from slow-release vaginal tablets prepared by using six different retarding polymers and from two effervescent tablets prepared by using citric or adipic acid. The Carbomer–based formulations showed high initial viablility compared to those based on HPMC-LV, HPMC-HV, Polycarbophil and SCMC polymers which showed one log decrease in viable cells. All retarding polymers in slow release formulations presented a strong bacterial release at about 2 h except Carbomer polymers which showed to be poor bacterial releasers. Although effervescent formulations produced a quick bacterial release in comparison with polymer based slow-release tablets, they were less stable in cold storage. Due to the strong chelating characteristic of citric acid, the viability was quickly lost for aqueous medium of citric acid in comparison with adipic acid based effervescent tablets.

  17. Design and evaluation of nicorandil extended-release tablet

    Directory of Open Access Journals (Sweden)

    Ju-Young Kim

    2015-04-01

    Full Text Available The aim of this study was to design and evaluate extended-release formulations of a model drug, nicorandil, in order to achieve the desired steady-state plasma concentration of drug in vivo. Simulation was employed to estimate optimum dissolution and absorption rate of nicorandil. The dissolution test was employed using pH 1.2, 4.0, 6.8 buffer solution, or water, to measure the in vitro release behaviors of nicorandil formulations. A single dose (15 mg of each formulation was orally administered to four beagle dogs under fasted conditions, and the pharmacokinetic parameters were calculated. The in vitro/in vivo relationship of the extended-release formulation was confirmed using in vitro dissolution profiles and plasma concentrations of drug in beagle dogs. Nicorandil was released completely within 30 min from the immediate-release tablets and released for 24 h from the extended-release tablets. The nicorandil plasma concentration could be modified by adjusting the drug release rate from the extended-release formulation. The release rate of nicorandil was the rate-limiting step in the overall absorption of drug from the extended-release formulations. These results highlight the potential of a nicorandil extended-release formulation in the treatment of angina pectoris.

  18. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  19. Formulation and Evaluation of Two-Pulse Drug Delivery System of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome the snag of biological ... Conclusion: The developed formulation demonstrates the feasibility of a two-phase release of amoxicillin separated by a ... comprised of a calorimeter (DSC 60), flow controller (FCL 60), thermal ...

  20. Application of a Compact Magnetic Resonance Imaging System with 1.5 T Permanent Magnets to Visualize Release from and the Disintegration of Capsule Formulations in Vitro and in Vivo.

    Science.gov (United States)

    Takeshita, Keizo; Okazaki, Shoko; Shinada, Kyosuke; Shibamoto, Yuma

    2017-01-01

    Although magnetic resonance imaging (MRI) has potential in assessments of formulations, few studies have been conducted because of the size and expense of the instrument. In the present study, the processes of in vitro and in vivo release in a gelatin capsule formulation model were visualized using a compact MRI system with 1.5 T permanent magnets, which is more convenient than the superconducting MRI systems typically used for clinical and experimental purposes. A Gd-chelate of diethylenetriamine-N,N,N',N″,N″-pentaacetic acid, a contrast agent that markedly enhances proton signals via close contact with water, was incorporated into capsule formulations as a marker compound. In vitro experiments could clearly demonstrate the preparation-dependent differences in the release/disintegration of the formulations. In some preparations, the penetration of water into the formulation and generation of bubbles in the capsule were also observed prior to the disintegration of the formulation. When capsule formulations were orally administered to rats, the release of the marker into the stomach and its transit to the duodenum were visualized. These results strongly indicate that the compact MRI system is a powerful tool for pharmaceutical studies.

  1. A double-blind comparison of slow-release and standard tablet formulations of fentiazac in the treatment of patients with tendinitis and bursitis.

    Science.gov (United States)

    Ginsberg, F; Famaey, J P

    1985-01-01

    Two double-blind studies were carried out to compare the effectiveness and tolerance of a slow-release tablet formulation of 300 mg fentiazac, given once daily, with the standard tablet formulations of 100 mg, given 4-times daily, or 200 mg, given twice daily. A total of 60 patients suffering from acute bicipital tendinitis and/or subdeltoid bursitis was studied, 15 patients on the slow-release and 15 on one of the two standard tablets in each of the two trials. Patients were assessed on entry and at Days 7 and 14 of treatment. The results in both studies showed that there was significant improvement in tenderness, pain on movement, overall pain and in the range of movement after treatment, there being no significant difference between those receiving the slow-release form or the standard tablets. Tolerance was good in all groups and only a few minor or moderate side-effects, mainly of a gastro-intestinal type, were reported.

  2. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Formulation and Release Characteristics of Zidovudine- Loaded ...

    African Journals Online (AJOL)

    Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of ... The results show that drug content has influence on drug release from the SLMs, but not ... poor bioavailability [1, 2]. ..... et al [21] this initial in vitro burst release could be.

  5. How controlled release technology can aid gene delivery.

    Science.gov (United States)

    Jo, Jun-Ichiro; Tabata, Yasuhiko

    2015-01-01

    Many types of gene delivery systems have been developed to enhance the level of gene expression. Controlled release technology is a feasible gene delivery system which enables genes to extend the expression duration by maintaining and releasing them at the injection site in a controlled manner. This technology can reduce the adverse effects by the bolus dose administration and avoid the repeated administration. Biodegradable biomaterials are useful as materials for the controlled release-based gene delivery technology and various biodegradable biomaterials have been developed. Controlled release-based gene delivery plays a critical role in a conventional gene therapy and genetic engineering. In the gene therapy, the therapeutic gene is released from biodegradable biomaterial matrices around the tissue to be treated. On the other hand, the intracellular controlled release of gene from the sub-micro-sized matrices is required for genetic engineering. Genetic engineering is feasible for cell transplantation as well as research of stem cells biology and medicine. DNA hydrogel containing a sequence of therapeutic gene and the exosome including the individual specific nucleic acids may become candidates for controlled release carriers. Technologies to deliver genes to cell aggregates will play an important role in the promotion of regenerative research and therapy.

  6. The impact of new partial AUC parameters for evaluating the bioequivalence of prolonged-release formulations.

    Science.gov (United States)

    Boily, Michaël; Dussault, Catherine; Massicotte, Julie; Guibord, Pascal; Lefebvre, Marc

    2015-01-23

    To demonstrate bioequivalence (BE) between two prolonged-release (PR) drug formulations, single dose studies under fasting and fed state as well as at least one steady-state study are currently required by the European Medicines Agency (EMA). Recently, however, there have been debates regarding the relevance of steady-state studies. New requirements in single-dose investigations have also been suggested by the EMA to address the absence of a parameter that can adequately assess the equivalence of the shape of the curves. In the draft guideline issued in 2013, new partial area under the curve (pAUC) pharmacokinetic (PK) parameters were introduced to that effect. In light of these potential changes, there is a need of supportive clinical evidence to evaluate the impact of pAUCs on the evaluation of BE between PR formulations. In this retrospective analysis, it was investigated whether the newly defined parameters were associated with an increase in discriminatory ability or a change in variability compared to the conventional PK parameters. Among the single dose studies that met the requirements already in place, 20% were found unable to meet the EMA's new requirements in regards to the pAUC PK parameters. When pairing fasting and fed studies for a same formulation, the failure rate increased to 40%. In some cases, due to the high variability of these parameters, an increase of the sample size would be required to prove BE. In other cases however, the pAUC parameters demonstrated a robust ability to detect differences between the shapes of the curves of PR formulations. The present analysis should help to better understand the impact of the upcoming changes in European regulations on PR formulations and in the design of future BE studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thermal treating of acrylic matrices as a tool for controlling drug release.

    Science.gov (United States)

    Hasanzadeh, Davood; Ghaffari, Solmaz; Monajjemzadeh, Farnaz; Al-Hallak, M H D-Kamal; Soltani, Ghazal; Azarmi, Shirzad

    2009-12-01

    The purpose of the present study was to investigate the effect of thermal-treating on the release of ibuprofen from the granules prepared using aqueous dispersions of Eudragit. To accomplish this goal, different formulations were prepared using wet granulation method containing two different types of Eudragit aqueous dispersions, RS30D, RL30D and Avicel as filler. Tablets were prepared using direct compression method. The prepared tablets were thermally treated at 50 and 70 degrees C for 24 h. The drug release from tablets was assessed before and after thermal-treating. The results of release study showed that, thermally-treating the tablets at the temperatures higher than glass transition temperature (Tg) of the polymer can decrease the drug release from matrices. For mechanistic evaluation of the effect of thermal-treating, powder X-ray diffraction (XPD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), Fourier transform infrared (FT-IR) and helium pycnometer have been employed. The SEM graphs showed that the tablets have smoother surface with less porosity after thermal-treating. FT-IR spectra showed no change in the spectrum of thermally-treated tablet compared to control. In DSC graphs, no crystalline change was seen in the heat-treated samples of ibuprofen tablets, but decreased and widened peak size were related to the probable formation of solid solution of ibuprofen in Eudragit matrix. The results of helium pycnometer showed a significant decrease in the total porosity of some heat-treated samples. This study revealed the importance of thermal treating on the drug release from sustained release tablets containing Eudragit polymer.

  8. Controlled release effervescent buccal discs of buspirone hydrochloride: in vitro and in vivo evaluation studies.

    Science.gov (United States)

    Jaipal, A; Pandey, M M; Charde, S Y; Sadhu, N; Srinivas, A; Prasad, R G

    2016-01-01

    In the present study controlled release effervescent buccal discs of buspirone hydrochloride (BS) were designed using HPMC as rate controlling and bioadhesive polymer by direct compression method. Sodium bicarbonate and citric acid were used in varying amounts as effervescence forming agents. Carbon dioxide evolved due to reaction of sodium bicarbonate and citric acid was explored for its potential as buccal permeation enhancer. The designed buccal discs were evaluated for physical characteristics and in vitro drug release studies. Bioadhesive behavior of designed buccal discs was assessed using texture analyzer. In vivo animal studies were performed in rabbits to study bioavailability of BS in the designed buccal discs and to establish permeation enhancement ability of carbon dioxide. It was observed that effervescent buccal discs have faster drug release compared to non-effervescent buccal discs in vitro and effervescent buccal discs demonstrated significant increase in bioavailability of drug when compared to non-effervescent formulation. Hence, effervescent buccal discs can be used as an alternative to improve the drug permeation resulting in better bioavailability. However, the amount of acid and base used for generation of carbon dioxide should be selected with care as this may damage the integrity of bioadhesive dosage form.

  9. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation

    DEFF Research Database (Denmark)

    Franek, F; Jarlfors, A; Larsen, F.

    2015-01-01

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step...... not imply low intestinal permeability, as indicated by the BDDCS, merely low duodenal/jejunal permeability....... for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq®, an extended release formulation...

  10. Pharmacokinetics of a once-daily extended-release formulation of pramipexole in healthy male volunteers: three studies.

    Science.gov (United States)

    Jenner, Peter; Könen-Bergmann, Michael; Schepers, Cornelia; Haertter, Sebastian

    2009-11-01

    Pramipexole is a dopamine agonist used in the treatment of Parkinson's disease. The currently available immediate-release (IR) formulation is taken orally 3 times daily. These studies were conducted to evaluate the pharmacokinetic properties of a variety of prototypes for a once-daily extended-release (ER) formulation of pramipexole and to further characterize the prototype whose pharmacokinetics best matched those of the IR formulation. Three Phase I studies were conducted, all in healthy adult men aged food effect. In the third study, steady-state pharmacokinetics of the optimal ER formulation were assessed across a range of pramipexole doses (0.375-4.5 mg/d), including investigation of the food effect at steady state for the highest dose. Tolerability was assessed throughout all studies based on physical examinations, laboratory measurements, and adverse events (AEs). The 3 studies included 18, 15, and 39 subjects, respectively. Among the ER prototypes tested at 0.75 mg once daily in study 1, a matrix tablet had the optimal pharmacokinetic resemblance to IR pramipexole 0.25 mg TID, with a geometric mean AUC(0-24h,ss) of 17.4 ng.h/mL (vs 16.0 ng.h/mL for the IR formulation), C(max,ss) of 0.967 ng/mL (vs 1.09 ng/mL), and C(min,ss) of 0.455 ng/mL (vs 0.383 ng/mL). For single-dose ER 0.375 mg administered in the fasted state in study 2, in vivo bioavailability was predictable from in vitro dissolution data, with internal mean absolute percent prediction errors of 3.18% for AUC(0-30h) and 4.87% for C(max), and external mean absolute prediction errors of 6.61% and 3.34%, respectively, satisfying current guidelines for a level A IVIVC. For single-dose ER 0.375 mg administered in the fed state, the upper bound of the 90% CI for fed:fasted values was 119.8 for AUC(0-30h) (within the bioequivalence limits of 80%-125%) and 134.1 for C(max). At steady state in study 3 (subjects' 5th treatment day), dosing at 0.375 to 4.5 mg in the fasted state was associated with a linear

  11. Acrylic injectable and self-curing formulations for the local release of bisphosphonates in bone tissue.

    Science.gov (United States)

    Rodríguez-Lorenzo, L M; Fernández, M; Parra, J; Vázquez, B; López-Bravo, A; Román, J San

    2007-11-01

    Two bisphosphonates (BPs), namely 1-hydroxy-2-[4-aminophenyl]ethane-1,1-diphosphonic acid (APBP) and 1-hydroxy-2-[3-indolyl]ethane-1,1-diphosphonic acid (IBP), have been synthesized and incorporated to acrylic injectable and self-curing formulations. Alendronic acid monosodium trihydrated salt (ALN) containing cement was formulated as control. These systems have potential applications in low density hard tissues affected by ailments characterized by a high osteoclastic resorption, i.e. osteoporosis and osteolysis. Values of curing parameters of APBP and IBP were acceptable to obtain pastes with enough fluency to be injected through a biopsy needle into the bone cavity. Working times ranged between 8 and 15 min and maximum temperature was around 50 degrees C. Cured systems stored for a month in synthetic body fluid had compressive strengths between 90 and 96 MPa and modulus between 1.2 and 1.3 GPa, which suggest mechanical stabilization after setting and in the short time. BPs were released in PBS at an initial rate depending on the corresponding chemical structure in the order ALN > APBP > IBP to give final concentrations in PBS of 2.21, 0.44, and 0.19 mol/mL for ALN, APBP, and IBP, respectively. Cytotoxicities of bisphosphonates were evaluated, IC(50) values being in the order APBP > ALN > IBP. Absence of cytotoxicity coming from leachables of the cured systems was observed in all cases independently of the BP. An improved cell growth and proliferation for the systems loaded with APBP and IBP compared with that loaded with ALN was observed, as assessed by measuring cell adhesion and proliferation, and total DNA content.

  12. Controlled release and angiotensin-converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine-layered double hydroxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Hussein Al Ali SH

    2012-04-01

    Full Text Available Samer Hasan Hussein Al Ali1, Mothanna Al-Qubaisi2, Mohd Zobir Hussein1,3, Maznah Ismail2,4, Zulkarnain Zainal1, Muhammad Nazrul Hakim51Department of Chemistry, Faculty of Science, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 4Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, 5Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaBackground: The intercalation of perindopril erbumine into Zn/Al-NO3-layered double hydroxide resulted in the formation of a host-guest type of material. By virtue of the ion-exchange properties of layered double hydroxide, perindopril erbumine was released in a sustained manner. Therefore, this intercalated material can be used as a controlled-release formulation.Results: Perindopril was intercalated into the interlayers and formed a well ordered, layered organic-inorganic nanocomposite. The basal spacing of the products was expanded to 21.7 Å and 19.9 Å by the ion-exchange and coprecipitation methods, respectively, in a bilayer and a monolayer arrangement, respectively. The release of perindopril from the nanocomposite synthesized by the coprecipitation method was slower than that of its counterpart synthesized by the ion-exchange method. The rate of release was governed by pseudo-second order kinetics. An in vitro antihypertensive assay showed that the intercalation process results in effectiveness similar to that of the antihypertensive properties of perindopril.Conclusion: Intercalated perindopril showed better thermal stability than its free counterpart. The resulting material showed sustained-release properties and can therefore be used as a controlled-release formulation.Keywords: perindopril erbumine, layered double hydroxides, ion-exchange, coprecipitation, sustained release, angiotensin-converting enzyme

  13. 28 CFR 541.50 - Release from a control unit.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Release from a control unit. 541.50... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.50 Release from a control unit. (a) Only the Executive Panel may release an inmate from a control unit. The following factors are...

  14. Formulation and in vivo evaluation of diclofenac sodium sustained release matrix tablet: effect of compression force.

    Science.gov (United States)

    Taha, Ehab Ibrahim; Shazly, Gamal Abdel-Ghany; Harisa, Gamaleldin Ibrahim; Barakat, Nahla Sedik; Al-Enazi, Fouza Kayem; Elbagory, Ibrahim Mostafa

    2015-03-01

    In the present study, Diclofenac Sodium (DS) matrix tablets were prepared by direct compression method under different compression forces (5, 10, 15 and 20 KN), using ethylcellulose as matrix forming material. The produced tablets were characterized on the foundation of satisfactory tablet properties such as hardness, friability, drug content, weight variations and in vitro drug release rate. Differential scanning calorimetry (DSC), Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction have been used to investigate any incompatibilities of the tablet's ingredients. Additionally, in vivo bioavailability has been investigated on beagle dogs. Data obtained revealed that, upon increasing compression force the in vitro drug release was sustained and the T(max) value was four hours (for formulations compressed at 15 and 20 kN) compared to the conventional voltarine(®) 50 tablets (T(max) value of 2 hours).

  15. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology.

    Science.gov (United States)

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Mahmood, Asif; Maheen, Safirah; Afzal, Khurram; Iqbal, Nabila; Andleeb, Mehwish; Abbas, Nazar

    2017-12-20

    For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  16. Controlled swollen and drug release from urea-cross-linked polyether/siloxane hybrids

    International Nuclear Information System (INIS)

    Santilli, Celso V.; Lopes, Leandro; Pulcinelli, Sandra H.; Chiavacci, Leila A.; Oliveira, Anselmo G.

    2009-01-01

    From a simple synthesis method we produced transparent ureasil cross-linked polyether (poly(ethylene oxide), PEO, or poly (propylene oxide), PPO) networks, whose designed inter cross-linking distance and tunable swell ability was assessed by small angle X-ray scattering on the D11A-SAXS1 beamline of the LNLS, we demonstrated that the controlled drug release from swell able hydrophilic ureasil-PEO materials can be sustained during some days, while from the unswell able ureasil-PPO ones, during some weeks. This outstanding feature conjugated with the bio medically safe formulation of the ureasil cross-linked polyether/siloxane hybrid widen their scope of application to include the domain of soft and implantable drug delivery devices. (author)

  17. Evaluation of released malathion and spinosad from chitosan/alginate/gelatin capsules against Culex pipiens larvae

    Directory of Open Access Journals (Sweden)

    Badawy MEI

    2016-09-01

    Full Text Available Mohamed EI Badawy,1 Nehad EM Taktak,2 Osama M Awad,2 Souraya A Elfiki,2 Nadia E Abou El-Ela2 1Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 2Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt Abstract: Efficacy of spinosad and malathion loaded in eco-friendly biodegradable formulations was evaluated for controlling Culex pipiens larvae. Malathion (organophosphorus larvicide and spinosad (naturally derived insecticide were loaded on chitosan/alginate/gelatin capsules. Capsules were characterized by size measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, and water uptake. In vitro release kinetics of the larvicides was studied in the running and stagnant water. Biochemical studies on the larvae treated with technical and formulated insecticides were also demonstrated. The results indicated that the released spinosad was active for a long time up to 48 and 211 days in the running and stagnant water, respectively. However, the capsules loaded with malathion showed larvicidal activity for 20 and 27 days in the running and stagnant water, respectively. Technical and formulated malathion and spinosad had an inhibition effect on acetylcholinesterase, carboxylesterase, and glutathione S-transferase. The results proved that the prepared capsules consisting of biodegradable polymers containing larvicides could be effective as controlled-release formulation against C. pipiens larvae for a long period. Keywords: chitosan capsules, larvicide, controlled-release formulation, swelling, mosquitocidal activity, Culex pipiens, biochemical study

  18. Diclofenac salts, part 6: release from lipid microspheres.

    Science.gov (United States)

    Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez

    2011-08-01

    The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. Copyright © 2011 Wiley-Liss, Inc.

  19. Development and validation of stability indicating method for the quantitative determination of venlafaxine hydrochloride in extended release formulation using high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Jaspreet Kaur

    2010-01-01

    Full Text Available Objective : Venlafaxine,hydrochloride is a structurally novel phenethyl bicyclic antidepressant, and is usually categorized as a serotonin-norepinephrine reuptake inhibitor (SNRI but it has been referred to as a serotonin-norepinephrine-dopamine reuptake inhibitor. It inhibits the reuptake of dopamine. Venlafaxine HCL is widely prescribed in the form of sustained release formulations. In the current article we are reporting the development and validation of a fast and simple stability indicating, isocratic high performance liquid chromatographic (HPLC method for the determination of venlafaxine hydrochloride in sustained release formulations. Materials and Methods : The quantitative determination of venlafaxine hydrochloride was performed on a Kromasil C18 analytical column (250 x 4.6 mm i.d., 5 μm particle size with 0.01 M phosphate buffer (pH 4.5: methanol (40: 60 as a mobile phase, at a flow rate of 1.0 ml/min. For HPLC methods, UV detection was made at 225 nm. Results : During method validation, parameters such as precision, linearity, accuracy, stability, limit of quantification and detection and specificity were evaluated, which remained within acceptable limits. Conclusions : The method has been successfully applied for the quantification and dissolution profiling of Venlafaxine HCL in sustained release formulation. The method presents a simple and reliable solution for the routine quantitative analysis of Venlafaxine HCL.

  20. Preparation of nanoscale pulmonary drug delivery formulations by spray drying

    DEFF Research Database (Denmark)

    Bohr, Adam; Ruge, Christian A; Beck-Broichsitter, Moritz

    2014-01-01

    and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary...... administration in a direct one-step process. This chapter describes the different state-of-the-art techniques used to prepare drug nanoparticles (with special emphasize on spray drying techniques) and the strategies for administering such unique formulations to the pulmonary environment....

  1. Evaluation of Plantago major L. seed mucilage as a rate controlling matrix for sustained release of propranolol hydrochloride.

    Science.gov (United States)

    Saeedi, Majid; Morteza-Semnani, Katayoun; Sagheb-Doust, Mehdi

    2013-03-01

    Polysaccharide mucilage derived from the seeds of Plantago major L. (family Plantaginaceae) was investigated for use in matrix formulations containing propranolol hydrochloride. HPMC K4M and tragacanth were used as standards for comparison. The hardness, tensile strength, and friability of tablets increased as the concentration of mucilage increased, indicating good compactibility of mucilage powders. The rate of release of propranolol hydrochloride from P. major mucilage matrices was mainly controlled by the drug/mucilage ratio. Formulations containing P. major mucilage were found to exhibit a release rate comparable to HPMC containing matrices at a lower drug/polymer ratio (drug/HPMC 2:1). These results demonstrated that P. major mucilage is a better release retardant compared to tragacanth at an equivalent content. The results of kinetic analysis showed that in F3 (containing 1:2 drug/mucilage) the highest correlation coefficient was achieved with the zero order model. The swelling and erosion studies revealed that as the proportion of mucilage in tablets was increased, there was a corresponding increase in percent swelling and a decrease in percent erosion of tablets. The DSC and FT-IR studies showed that no formation of complex between the drug and mucilage or changes in crystallinity of the drug had occurred.

  2. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes

    Science.gov (United States)

    Chen, Yipei; Li, Yuzhuo; Shen, Wenjia; Li, Kun; Yu, Lin; Chen, Qinghua; Ding, Jiandong

    2016-01-01

    In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide. PMID:27531588

  3. THE STUDY ON THE EFFECT OF FORMULATION VARIABLES ON IN VITRO FLOATING TIME AND THE RELEASE PROPERTIES OF A FLOATING DRUG DELIVERY SYSTEM BY A STATISTICAL OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    C. NARENDRA

    2008-03-01

    Full Text Available The present investigation concerns the evaluation of the effect of formulation variables on in vitro floating time and the release properties in developing a floating drug delivery system (FDDS containing a highly water soluble drug metoprolol tartrate (MT in the presence of a gas generating agent. A 32 full factorial design was employed in formulating the FDDS containing hydroxyl propylmethylcellulose (HPMC K4M and sodium carboxymethylcellulose (NaCMC as swellable polymers. Drug-to-polymer ratio and polymer-to-polymer ratio were included as independent variables. The main effect and the interaction terms were quantitatively evaluated by a quadratic model to predict formulations with the floating time desired, and the release properties. It was found that only drug-to-polymer ratio and its quadratic term were found to be significantly affective for all the response variables. Non-Fickian transport was confirmed as a release mechanism from the optimized formulations. The desirability function was used to optimize the response variables, each having a different target, and the observed responses were highly agreed with experimental values. The results demonstrate the feasibility of the model in the development of FDDS containing a highly water-soluble drug MT.

  4. Formulation and Evaluation of Tramadol HCl Matrix Tablets Using ...

    African Journals Online (AJOL)

    Formulation and Evaluation of Tramadol HCl Matrix Tablets Using Carbopol ... to 83 % compared with the release rate of 99 % for the formulation with D:P ratio of 10:3. Kinetic analysis indicates that drug release mechanism was anomalous ...

  5. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.

    Science.gov (United States)

    Zhang, Jiaxiang; Feng, Xin; Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2017-03-15

    The main objective of this work was to explore the potential of coupling fused deposition modeling in three-dimensional (3D) printing with hot-melt extrusion (HME) technology to facilitate additive manufacturing, in order to fabricate tablets with enhanced extended release properties. Acetaminophen was used as the model drug and different grades and ratios of polymers were used to formulate tablets. Three-point bending and hardness tests were performed to determine the mechanical properties of the filaments and tablets. 3D-printed tablets, directly compressed mill-extruded tablets, and tablets prepared from a physical mixture were evaluated for drug release rates using a USP-II dissolution apparatus. The surface and cross-sectional morphology of the 3D-printed tablets were assessed by scanning electron microscopy. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the crystal states and thermal properties of materials, respectively. The 3D-printed tablets had smooth surfaces and tight structures; therefore, they showed better extended drug release rates than the directly compressed tablets did. Further, this study clearly demonstrated the feasibility of coupling HME with 3D printing technology, which allows for the formulation of drug delivery systems using different grades and ratios of pharmaceutical polymers. In addition, formulations can be made based on the personal needs of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quality control of an antipsoriatic ayurvedic herbal Formulation: Lajjalu Keram

    Directory of Open Access Journals (Sweden)

    M T Athar

    2016-01-01

    Full Text Available Background: Psoriasis is an autoimmune disorder, which affects a large group of human population of world (3%. Till date, there is no treatment for psoriasis except some herbal drugs and its constituents. Since Ayurveda is the main traditional system of medicine in India, here, we have selected one ayurvedic formulation - Lajjalu Keram, which has been used since long for their quality control. Methods: Total microbial load of formulations were carried out for total fungal count and total bacterial count. Lajjalu Keram was also tested by high-performance liquid chromatographic (HPLC for aflatoxins (B1, B2, G1, and G2, which showed its presence below the permissible limit; similarly, pesticides residues were analyzed using gas chromatography/mass spectrometry for organophosphates and organochlorides, which showed that pesticides were below detection limit (0.1 ppb. The content of heavy metals was analyzed using AAS, which demonstrated the presence of cadmium, lead, and arsenic below permissible limit, whereas mercury was found absent. Results: The result of quality control analysis showed the presence of alkaloids, tannins, carbohydrate, saponins, proteins and amino acids, lipid/fats, phenolic compounds, and flavonoids in formulation. The dermal toxicity (LD50 of Lajjalu Keram in Wistar rats was found more than 2000 mg/kg (safe for the management of psoriasis. Formulation was also analyzed for their composition of fatty acids. It was found to have 13 fatty acids, out of which, seven were saturated fatty acids (95.2% and the rest were unsaturated fatty acids (3.27%. A rapid HPLC method for quantification of mimosine (an unusual amino acid present in formulation has been developed and validated. The mimosine content in Lajjalu Keram was found to be 0.0070% w/w with % relative standard deviation of 0.41. Conclusion: The formulation afforded significant and better protection of carrageenan-induced rat paw edema (72.11% inhibition as compared to

  7. EPICS application source/release control

    International Nuclear Information System (INIS)

    Zieman, B.; Anderson, J.; Kraimer, M.

    1995-01-01

    This manual describes a set of Application Source/Release Control tools (appSR) that can be used to develop software for EPICS based control systems. The Application Source/Release Control System (appSR) has been unbundled from base EPICS and is now available as an EPICS extension. Due to this unbundling, two new directories must be added to a user's path (see section ''Environment'' on page 3 for more information) and a new command getapp must be issued after the getrel command to get a specific version of appSR (see section ''Creating The Initial Application System Area'' on page 7 for more information). It is now required that GNU make version 3.71 or later be used for makes instead of SUN make. Users should now type gmake instead of make

  8. Development of In Vitro-In Vivo Correlation for Amorphous Solid Dispersion Immediate-Release Suvorexant Tablets and Application to Clinically Relevant Dissolution Specifications and In-Process Controls.

    Science.gov (United States)

    Kesisoglou, Filippos; Hermans, Andre; Neu, Colleen; Yee, Ka Lai; Palcza, John; Miller, Jessica

    2015-09-01

    Although in vitro-in vivo correlations (IVIVCs) are commonly pursued for modified-release products, there are limited reports of successful IVIVCs for immediate-release (IR) formulations. This manuscript details the development of a Multiple Level C IVIVC for the amorphous solid dispersion formulation of suvorexant, a BCS class II compound, and its application to establishing dissolution specifications and in-process controls. Four different 40 mg batches were manufactured at different tablet hardnesses to produce distinct dissolution profiles. These batches were evaluated in a relative bioavailability clinical study in healthy volunteers. Although no differences were observed for the total exposure (AUC) of the different batches, a clear relationship between dissolution and Cmax was observed. A validated Multiple Level C IVIVC against Cmax was developed for the 10, 15, 20, 30, and 45 min dissolution time points and the tablet disintegration time. The relationship established between tablet tensile strength and dissolution was subsequently used to inform suitable tablet hardness ranges within acceptable Cmax limits. This is the first published report for a validated Multiple Level C IVIVC for an IR solid dispersion formulation demonstrating how this approach can facilitate Quality by Design in formulation development and help toward clinically relevant specifications and in-process controls. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  10. Trigger chemistries for better industrial formulations.

    Science.gov (United States)

    Wang, Hsuan-Chin; Zhang, Yanfeng; Possanza, Catherine M; Zimmerman, Steven C; Cheng, Jianjun; Moore, Jeffrey S; Harris, Keith; Katz, Joshua S

    2015-04-01

    In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.

  11. Formulation of criteria for pollution control on cement products produced from solid wastes in China.

    Science.gov (United States)

    Yang, Yufei; Huang, Qifei; Yang, Yu; Huang, Zechun; Wang, Qi

    2011-08-01

    The process of producing cement products from solid waste can increase the level of pollutants in the cement products. Therefore, it is very important to establish a pollution control standard for cement products to protect the environment and human health. This paper presents acceptance limits for the availability of heavy metals in cement products which have been produced from solid wastes and explains how the limits have been calculated. The approach and method used to formulate these criteria were based on EN 12920. The typical exposure scenarios used in this paper involve concrete being used for drinking water supply pipelines and concrete pavements and are based on an analysis of typical applications of cement in China, and the potential for contact with water. The parameters of a tank test which was based on NEN 7375 were set in accordance with the environmental conditions of typical scenarios in China. Mechanisms controlling the release of heavy metals in concrete and a model for that release were obtained using the leaching test. Finally, based on acceptance criteria for drinking water and groundwater quality in China, limit values for the availability of heavy metals in concrete were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Overview study of LNG release prevention and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  13. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    Science.gov (United States)

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way.

  14. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-04-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  15. Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners.

    Science.gov (United States)

    Aitipamula, Srinivasulu; Wong, Annie B H; Kanaujia, Parijat

    2018-02-01

    Pharmaceutical cocrystals have garnered significant interest as potential solids to address issues associated with formulation development of drug substances. However, studies concerning the understanding of formulation behavior of cocrystals are still at the nascent stage. We present results of our attempts to evaluate suspension formulations of cocrystals of an antiasthmatic drug, theophylline, with 2 artificial sweeteners. Stability, solubility, drug release, and taste of the suspension formulations were evaluated. Suspension that contained cocrystal with acesulfame showed higher drug release rate, while a cocrystal with saccharin showed a significant reduction in drug release rate. The cocrystal with saccharin was found stable in suspension for over 9 weeks at accelerated test condition; in contrast, the cocrystal with acesulfame was found unstable. Taste analysis using an electronic taste-sensing system revealed improved sweetness of the suspension formulations with cocrystals. Theophylline has a narrow therapeutic index with a short half-life which necessitates frequent dosing. This adversely impacts patient compliance and enhances risk of gastrointestinal and cardiovascular adverse effects. The greater thermodynamic stability, sweetness, and sustained drug release of the suspension formulation of theophylline-saccharin could offer an alternative solution to the short half-life of theophylline and make it a promising formulation for treating asthmatic pediatric and geriatric patients. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Controlled release studies of calcium alginate hydrogels

    International Nuclear Information System (INIS)

    Rendevski, S.; Andonovski, A.; Mahmudi, N.

    2012-01-01

    Controlled release of substances in many cases may be achieved from calcium alginate hydrogels. In this research, the time dependence of the mass of released model substance bovine serum albumin (BSA) from calcium alginate spherical hydrogels of three different types (G/M ratio) have been investigated. The hydrogels were prepared with the drop-wise method of sodium alginate aqueous solutions with concentration of 0.02 g/cm 3 with 0.01 g/cm 3 BSA and a gelling water bath of chitosan in 0.2 M CH 3 COOH/0.4 M CH 3 COONa with added 0.2 M CaCl 2 .The hydrogel structures were characterized by dynamic light scattering and scanning electron microscopy. The controlled release studies were conducted by UV-Vis spectrophotometry of the released medium with p H=7 at 37 °C. The results showed that the model of osmotic pumping is the dominant mechanism of the release. Also, large dependences of the release profile on the homogeneity of the hydrogels were found. (Author)

  17. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  18. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology

    Directory of Open Access Journals (Sweden)

    Hanif Muhammad

    2017-12-01

    Full Text Available For preparing nebivolol loaded solid lipid microparticles (SLMs by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1, entrapment efficiency (Y2 and drug release (Y3. SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV. The obtained outcomes for Y1 (29-86 %, Y2 (45-83 % and Y3 (49-86 % were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  19. Comparison of the pharmacokinetics of a new 30 mg modified-release tablet formulation of metoclopramide for once-a-day administration versus 10 mg immediate-release tablets: a single and multiple-dose, randomized, open-label, parallel study in healthy male subjects.

    Science.gov (United States)

    Bernardo-Escudero, Roberto; Alonso-Campero, Rosalba; Francisco-Doce, María Teresa de Jesús; Cortés-Fuentes, Myriam; Villa-Vargas, Miriam; Angeles-Uribe, Juan

    2012-12-01

    The study aimed to assess the pharmacokinetics of a new, modified-release metoclopramide tablet, and compare it to an immediate-release tablet. A single and multiple-dose, randomized, open-label, parallel, pharmacokinetic study was conducted. Investigational products were administered to 26 healthy Hispanic Mexican male volunteers for two consecutive days: either one 30 mg modified-release tablet every 24 h, or one 10 mg immediate-release tablet every 8 h. Blood samples were collected after the first and last doses of metoclopramide. Plasma metoclopramide concentrations were determined by high-performance liquid chromatography. Safety and tolerability were assessed through vital signs measurements, clinical evaluations, and spontaneous reports from study subjects. All 26 subjects were included in the analyses [mean (SD) age: 27 (8) years, range 18-50; BMI: 23.65 (2.22) kg/m², range 18.01-27.47)]. Peak plasmatic concentrations were not statistically different with both formulations, but occurred significantly later (p 0.05)]. One adverse event was reported in the test group (diarrhea), and one in the reference group (headache). This study suggests that the 30 mg modified-release metoclopramide tablets show features compatible with slow-release formulations when compared to immediate-release tablets, and is suitable for once-a-day administration.

  20. Pramipexole Extended Release: A Novel Treatment Option in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Wolfram Eisenreich

    2010-01-01

    Full Text Available Pramipexole, the most commonly prescribed dopamine agonist worldwide, meanwhile serves as a reference substance for evaluation of new drugs. Based on numerous clinical data and vast experiences, efficacy and safety profiles of this non-ergoline dopamine agonist are well characterized. Since October 2009, an extended-release formulation of pramipexole has been available for symptomatic treatment of Parkinson's disease. Pramipexole administration can be cut down from three times to once a day due to the newly developed extended-release formulation. This is considerable progress in regard to minimizing pill burden and enhancing compliance. Moreover, the 24 h continuous drug release of the once-daily extended-release formulation results in fewer fluctuations in plasma concentrations over time compared to immediate-release pramipexole, given three times daily. The present study summarizes pharmacokinetics and all essential pharmacological and clinical characteristics of the extended-release formulation. In addition, it provides all study data, available so far, with regard to transition and de-novo administration of extended-release formulation for patients with Parkinson's disease. It further compares efficacy and safety data of immediate-release pramipexole with the extended-release formulation of pramipexole.

  1. Release Properties of Paracetamol Granulationa Formulated with ...

    African Journals Online (AJOL)

    Theobroma cacao gum, TCG was derived as a dry powder from fresh fruits of Theobroma cacao. Various granulations of paracetamol were prepared with TCG at the concentrations of 0.5 – 4% w/w. Similar formulations were prepared using sodium carboxymethyl cellulose, SCMC and acacia gums as standards. In each ...

  2. Birth control - slow release methods

    Science.gov (United States)

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  3. FORMULATION AND EVALUATION OF FLOATING DRUG DELIVERY SYSTEM OF AMOXYCILLIN TRIHYDRATE

    OpenAIRE

    Marella Radhakrishna; K.G.Parthiban; Nelluri Ramarao; Nagapuri Santhoshi Deepika; Perumulla Abhishek

    2012-01-01

    The present study was designed to formulate and evaluate balanced Floating Drug Delivery Systems as controlled release modules, which prolongs the release rate of the drugs. Amoxycillin is an anti- bacterial acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell walls of both Gram-positive and Gram-negative bacteria. Helicobacter pylori exists in the gastric mucous layer or ...

  4. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  5. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  6. The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels.

    Science.gov (United States)

    Malana, Muhammad A; Zohra, Rubab

    2013-01-18

    Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA) were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n) derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1) showing swelling controlled mechanism. The mechanical strength and controlled release capability of the systems indicate that these co-polymeric hydrogels have a great potential to

  7. Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels.

    Science.gov (United States)

    Carmona-Moran, Carlos A; Zavgorodnya, Oleksandra; Penman, Andrew D; Kharlampieva, Eugenia; Bridges, S Louis; Hergenrother, Robert W; Singh, Jasvinder A; Wick, Timothy M

    2016-07-25

    Enhancing skin permeation is important for development of new transdermal drug delivery formulations. This is particularly relevant for non-steroidal anti-inflammatory drugs (NSAIDs). To address this, semisolid gel and solid hydrogel film formulations containing gellan gum as a gelling agent were developed and the effects of penetration enhancers (dimethyl sulfoxide, isopropyl alcohol and propylene glycol) on transport of the NSAID diclofenac sodium was quantified. A transwell diffusion system was used to accelerate formulation development. After 4h, diclofenac flux from a superior formulation of the semisolid gel or the solid hydrogel film was 130±11μg/cm(2)h and 108±7μg/cm(2)h, respectively, and significantly greater than that measured for a currently available diclofenac sodium topical gel (30±4μg/cm(2)h, ptransdermal drug formulations with adjustable drug transport kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Model-based computer-aided design for controlled release of pesticides

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Gani, Rafiqul; Bell, G.

    2005-01-01

    In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available, ...... extended models have been developed and implemented into a computer-aided system. The total model consisting of the property models embedded into the release models are then employed to study the release of different combinations of AIs and polymer-based microcapsules.......In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available...

  9. The antianginal efficacy and tolerability of controlled-release metoprolol once daily

    DEFF Research Database (Denmark)

    Egstrup, K; Gundersen, T; Härkönen, R

    1988-01-01

    In a randomized, double-blind, cross-over study treatment with a new controlled-release (CR) preparation of metoprolol, given once daily, was compared with treatment with conventional metoprolol tablets, given twice daily, in 115 patients with stable effort angina pectoris. The patients were...... questionnaire. When all patients were analysed together there were no differences in antianginal efficacy between the two treatment regimens. However, when the group taking 200 mg daily was analysed separately better exercise tolerance was found during metoprolol CR therapy, as measured by onset of chest pain...... and ST-segment change, compared with conventional metoprolol therapy. The two formulations were well tolerated. When given once daily in a total daily dose of 100 mg, the CR preparation induced less adverse effects than the conventional tablets, 50 mg twice daily. It was concluded that the new metoprolol...

  10. Physiological Feedback Control 2011-2012 Annual Report

    Science.gov (United States)

    2013-01-07

    Desai, James R. Baker Jr., Bradford G. Orr, Mark M. Banaszak Holl. The effect of mass transport in the synthesis of partially acetylated dendrimer ...Invention Title: UM 3709 – Dendrimeric Prodrug as a Controlled Release Formulation in Pain Management – Patent Title: Dendrimer Conjugates Patent... Dendrimeric Prodrug as a Controlled Release Formulation in Pain Management – Patent Title: Dendrimer Conjugates Patent/Application Numbers: 61/101,461; 12

  11. Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.

    Science.gov (United States)

    Klein, Mariana Nadjara; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-12-01

    Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.

  12. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid in Simulated Intestinal Fluids.

    Directory of Open Access Journals (Sweden)

    Patrik Knöös

    Full Text Available A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium or fed state (FeSSIF. The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.

  13. Evaluation of a 12-Hour Sustained-Release Acetaminophen (Paracetamol) Formulation: A Randomized, 3-Way Crossover Pharmacokinetic and Safety Study in Healthy Volunteers.

    Science.gov (United States)

    Yue, Yong; Collaku, Agron; Liu, Dongzhou J

    2018-01-01

    Acetaminophen (paracetamol) is a first-line treatment for mild and moderate pain. A twice-daily sustained-release (SR) formulation may be more convenient for chronic users than standard immediate-release (IR) acetaminophen. This randomized, 3-way crossover study evaluated pharmacokinetics and safety of single-dose 1500- and 2000-mg SR acetaminophen formulations and 2 doses of IR acetaminophen 1000 mg given 6 hours apart in healthy adults (n = 14). Primary outcome was time that plasma acetaminophen concentration was ≥4 μg/mL (T C≥4μg/mL ). Key secondary outcomes were area under the plasma concentration-time curve (AUC) from time 0 to time t, when plasma acetaminophen was detectable (AUC 0-t ), AUC from 0 to infinity (AUC 0-inf ), and maximum plasma acetaminophen concentration (C max ). T C≥4μg/mL from 2000-mg SR acetaminophen was similar to that from 2 doses of IR acetaminophen, whereas T C≥4μg/mL for 1500-mg SR acetaminophen was significantly shorter than that for IR acetaminophen (P = .004). The extent of acetaminophen absorption from 2000-mg SR and 2 doses of the IR formulation was similar and within bioequivalence limits with regard to AUC 0-12 , AUC 0-t , and AUC 0-inf . The extent of acetaminophen absorption from 1500-mg SR was significantly lower than that from IR acetaminophen. The 2000-mg SR represents a potential candidate formulation for 12-hour dosing with acetaminophen. © 2017, The American College of Clinical Pharmacology.

  14. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  15. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling.

    Science.gov (United States)

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin

    2017-07-01

    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  16. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres

    Directory of Open Access Journals (Sweden)

    Alli SMA

    2011-03-01

    Full Text Available Sk Md Athar AlliDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, IndiaAbstract: Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor ( ƒ1, the similarity factor (ƒ2, and the Rescigno index (ξ1 and ξ 2 of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.Keywords: probiotics, B. coagulans, mucoadhesive, microspheres, extended-release

  17. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  18. Influence of different test parameters on in vitro drug release from topical diclofenac formulations in a vertical diffusion cell setup.

    Science.gov (United States)

    Klein, S

    2013-07-01

    In the past decades, the vertical diffusion cell has emerged as a useful device for testing drug release of topical dosage forms. However, to date neither a general USP method nor formulation-related monographs have been published in international pharmacopoeia. The purpose of the present work was to examine the influence of different test parameters in a vertical diffusion cell setup on in vitro drug release from semi-solid preparations for cutaneous application. Diclofenac was selected as the model compound. Release experiments were performed in a 7 ml Microett vertical diffusion cell system. Various test parameters, including the media composition and pH, degassing, membrane material and pore size, stirring speed and stirrer type, were varied. Results obtained with different test parameter settings clearly indicate that both drug properties and instrumental details can have a huge impact on the outcome of in vitro diffusion/drug release studies with the vertical diffusion cell. Thus, the selection of adequate test parameters is crucial for the success of the release experiments and, as shown in the present study, optimal test parameters/conditions need to be established and validated on a case by case study.

  19. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-01-01

    Approximately 400 x 10 6 liters of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of CS + and Sr +2 followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic waste form. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with Class F fly ash used in saltstone as a functional extender to control heat of hydration and reduce permeability. A monolithic waste form is produced by the hydration of the slag and fly ash. Soluble ion release (NO 3 - ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes compared to cement-based waste forms because these species are chemically reduced to a lower valence state by ferrous iron in the slag and precipitated as relatively insoluble phases, such as CR(OH) 3 and TcO 2 . 5 refs., 4 figs., 4 tabs

  20. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-08-01

    Approximately 400 x 10 6 L of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of Cs + and Sr +2 , followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic wasteform. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with the Class F flyash used in saltstone as a functional extender to control heat of hydration and reduce permeability. (Class F flyash is also locally available at SRP.) A monolithic wasteform is produced by the hydration of the slag and flyash. Soluble ion release (NO 3- ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes because these species are chemically reduced to a lower valence state by ferrous iron in the slag and are precipitated as relatively insoluble phases, such as Cr(OH) 3 and TcO 2 . 3 refs., 3 figs., 2 tabs

  1. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xin Hua

    Full Text Available Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF. An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  2. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Science.gov (United States)

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  3. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.

    Science.gov (United States)

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.

  4. Model‐Informed Development and Registration of a Once‐Daily Regimen of Extended‐Release Tofacitinib

    Science.gov (United States)

    Lamba, M; Hutmacher, MM; Furst, DE; Dikranian, A; Dowty, ME; Conrado, D; Stock, T; Nduaka, C; Cook, J

    2017-01-01

    Extended‐release (XR) formulations enable less frequent dosing vs. conventional (e.g., immediate release (IR)) formulations. Regulatory registration of such formulations typically requires pharmacokinetic (PK) and clinical efficacy data. Here we illustrate a model‐informed, exposure–response (E‐R) approach to translate controlled trial data from one formulation to another without a phase III trial, using a tofacitinib case study. Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). E‐R analyses were conducted using validated clinical endpoints from phase II dose–response and nonclinical dose fractionation studies of the IR formulation. Consistent with the delay in clinical response dynamics relative to PK, average concentration was established as the relevant PK parameter for tofacitinib efficacy and supported pharmacodynamic similarity. These evaluations, alongside demonstrated equivalence in total systemic exposure between IR and XR formulations, provided the basis for the regulatory approval of tofacitinib XR once daily by the US Food and Drug Administration. PMID:27859030

  5. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  6. Continuous production of controlled release dosage forms based on hot-melt extruded gum arabic: Formulation development, in vitro characterization and evaluation of potential application fields.

    Science.gov (United States)

    Kipping, Thomas; Rein, Hubert

    2016-01-30

    Controlled release matrices based on gum arabic are prepared by applying a continuous hot-melt extrusion technology: the pre-mixture consisting of gum arabic and the incorporated API is plasticized by a co-rotating twin-screw extruder, an intermediate strand is formed by a round nozzle. Single dosed matrices are prepared by cutting the semi elastic strand with a rotary fly cutter. Paracetamol and phenazone are used as model drug substances. High drug loadings up to 70% can be realized. Matrices are characterized concerning their crystalline structure, in vitro dissolution, disintegration time and various physical parameters including glass transition temperature (Tg). Release characteristic behavior is mainly influenced by erosion of the matrices. At higher drug loadings also diffusion based transport gain importance. The solubility of the API shows an influence on the erosion rate of the matrix and should therefore be considered during formulation development. Tg is mainly influenced by the solubility of the API in the surrounding matrix. High soluble phenazone shows a decrease, whereas paracetamol addition has nearly no influence on the Tg of the polymeric system. Activation energy (EA) of the glass transition is determined via dynamic mechanical analysis. The addition of APIs leads to a reduction of EA indicating an increased molecular movement at Tg region compared to placebo extrudates. X-ray diffraction is used to determine the crystalline state of the extruded matrices and interaction between matrix and incorporated APIs. The production of thin layer matrices is an interesting option to provide a fast drug delivery to the oral cavity. High mechanical strength combined with fast disintegration times can be a great advantage for the development of oro-dispersible tablets. A great benefit of the evaluated processing technology is the simple adaption of the final dose by varying either the cutting length or the diameter of the nozzle resulting in a cost

  7. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2012-11-01

    Preparing for a nuclear accident implies understanding potential consequences. While many specialized experts have been working on different particular aspects, surprisingly little effort has been dedicated to establishing the big picture and providing a global and balanced image of all major consequences. IRSN has been working on the cost of nuclear accidents, an exercise which must strive to be as comprehensive as possible since any omission obviously underestimates the cost. It therefore provides (ideally) an estimate of all cost components, thus revealing the structure of accident costs, and hence sketching a global picture. On a French PWR, it appears that controlled releases would cause an 'economical' accident with limited radiological consequences when compared to other costs; in contrast, massive releases would trigger a major crisis with strong radiological consequences. The two types of crises would confront managers with different types of challenges. (authors)

  8. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation.

    Science.gov (United States)

    Kulhari, Hitesh; Pooja, Deep; Singh, Mayank K; Chauhan, Abhay S

    2015-02-01

    Abstract Cisplatin is mainly used in the treatment of ovarian, head and neck and testicular cancer. Poor solubility and non-specific interactions causes hurdles in the development of successful cisplatin formulation. There were few reports on poly(amidoamine) (PAMAM) dendrimer-cisplatin complexes for anticancer treatment. But the earlier research was mainly focused on therapeutic effect of PAMAM dendrimer-cisplatin complex, with less attention paid on the formulation development of these complexes. Objective of the present study is to optimize and validate the carboxylate-terminated, EDA core PAMAM dendrimer-based cisplatin formulation with respect to various variables such as dendrimer core, generation, drug entrapment, purification, yield, reproducibility, stability, storage and in-vitro release. Dendrimer-cisplatin complex was prepared by an efficient method which significantly increases the % platinum (Pt) content along with the product yield. Dendrimers showed reproducible (∼27%) platinum loading by weight. Variation in core and generations does not produce significant change in the % Pt content. Percentage Pt content of dendrimeric formulation increases with increase in drug/dendrimer mole ratio. Formulation with low drug/dendrimer mole ratio showed delayed release compared to the higher drug/dendrimer mole ratio; these dendrimer formulations are stable in room temperature. In vitro release profiles of the stored dendrimer-cisplatin samples showed comparatively slow release of cisplatin, which may be due to formation of strong bond between cisplatin and dendrimer. This study will contribute to create a fine print for the formulation development of PAMAM dendrimer-cisplatin complexes.

  9. Preparation and characterization of novel functionalized prochloraz microcapsules using silica-alginate-elements as controlled release carrier materials.

    Science.gov (United States)

    Zhang, Wenbing; He, Shun; Liu, Yao; Geng, Qianqian; Ding, Guanglong; Guo, Mingcheng; Deng, Yufang; Zhu, Juanli; Li, Jianqiang; Cao, Yongsong

    2014-07-23

    Controlled release formulation of pesticides is an effective approach to achieve the desirable purpose of increasing the utilization of pesticides and reducing the environmental residuals. In this work, a novel functionalized microcapsule using silica cross-linked with alginate, and some beneficial elements to crops, was prepared. The microcapsules were structurally characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The results showed that the microcapsules had a high loading efficiency of prochloraz (about 30% w/w) and could effectively protect prochloraz against degradation under UV irradiation and alkaline conditions, showed sustainable release for at least 60 days, and also likely increased disease resistance due to the element on the surface. Given the advantages of the microcapsules, this delivery system may be extended to other photosensitive or pH-sensitive pesticides in the future.

  10. Drug release kinetic analysis and prediction of release data via polymer molecular weight in sustained release diltiazem matrices.

    Science.gov (United States)

    Adibkia, K; Ghanbarzadeh, S; Mohammadi, G; Khiavi, H Z; Sabzevari, A; Barzegar-Jalali, M

    2014-03-01

    This study was conducted to investigate the effects of HPMC (K4M and K100M) as well as tragacanth on the drug release rate of diltiazem (DLTZ) from matrix tablets prepared by direct compression method.Mechanism of drug transport through the matrices was studied by fitting the release data to the 10 kinetic models. 3 model independent parameters; i. e., mean dissolution time (MDT), mean release rate (MRR) and release rate efficacy (RE) as well as 5 time point approaches were established to compare the dissolution profiles. To find correlation between fraction of drug released and polymer's molecular weight, dissolution data were fitted into two proposed equations.All polymers could sustain drug release up to 10 h. The release data were fitted best to Peppas and Higuchi square root kinetic models considering squared correlation coefficient and mean percent error (MPE). RE and MRR were decreased when polymer to drug ratio was increased. Conversely, t60% was increased with raising polymer /drug ratio. The fractions of drug released from the formulations prepared with tragacanth were more than those formulated using the same amount of HPMC K4M and HPMC K100M.Preparation of DLTZ matrices applying HPMCK4M, HPMC K100M and tragacanth could effectively extend the drug release. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  12. Sustained release of verapamil hydrochloride from sodium alginate microcapsules.

    Science.gov (United States)

    Farhana, S Ayesha; Shantakumar, S M; Shyale, Somashekar; Shalam, Md; Narasu, Laxmi

    2010-04-01

    The objective of the present study was to develop sustained release microcapsules of verapamil hydrochloride (VH) using biodegradable polymers. For this purpose microcapsules embedded verapamil hydrochloride were prepared using sodium alginate alone and also by incorporating some co polymers like methyl cellulose (MC), sodium carboxy methyl cellulose (SCMC) , poly vinyl pyrollidone (PVP) and xanthan gum by employing complex emulsion method of microencapsulation. Microcapsules were prepared in various core: coat ratios to know the effect of polymer and co polymers on drug release. Overall ten formulations were prepared and evaluated for flow behaviour, sieve analysis, drug entrapment efficiency, in vitro dissolution studies, stability studies, including scanning electron microscopy and DSC. The resulting microcapsules were discrete, large, spherical and also free flowing. The drug content in all the batches of microcapsules was found to be uniform. The release was depended on core: coat ratio and nature of the polymers. FTIR analysis revealed chemical integrity between Verapamil hydrochloride (VH), sodium alginate and between the copolymers. Among the four copolymers used methyl cellulose retarded the drug release more than the other three, hence the same formulation was subjected for in vivo studies. The drug release from the microcapsules was found to be following non fickian diffusion. Mechanism of drug release was diffusion controlled first order kinetics. Drug diffusion co efficient and correlation co efficient were also assessed by using various mathematical models. In vivo result analysis of pharmacokinetic parameters revealed that t max of reference and test formulations were almost same. From the study it was concluded that, sustained release Verapamil hydro chloride microcapsules could be achieved with success using sodium alginate alone and also in combination with other biodegradable polymers.

  13. Geometry of modified release formulations during dissolution--influence on performance of dosage forms with diclofenac sodium.

    Science.gov (United States)

    Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina

    2014-12-30

    The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Formulation of Sustained-Release Matrix Tablets Using Cross ...

    African Journals Online (AJOL)

    MK and the formulations were also characterized by scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: Tablets with MK showed higher mean dissolution time (MDT) and lower dissolution efficiency than those prepared with karaya gum.

  15. Controlled Release of Damascone from Poly(styrene-co-maleic anhydride-based Bioconjugates in Functional Perfumery

    Directory of Open Access Journals (Sweden)

    Andreas Herrmann

    2013-02-01

    Full Text Available Poly(styrene-co-maleic anhydrides were modified with poly(propylene oxide (PO-co-ethylene oxide (EO side chains (Jeffamine® with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained poly(maleic acid monoamide-based β-mercapto ketones were then studied as delivery systems for the controlled release of δ-damascone by retro 1,4-addition. The release of δ-damascone, a volatile, bioactive molecule of the family of rose ketones, was studied by dynamic headspace analysis above a cotton surface after deposition of a cationic surfactant containing fabric softening formulation, as a function of the ethylene oxide (EO/propylene oxide (PO molar ratio of the grafted copolymer side chains. The polarity of the EO/PO side chain influenced the release efficiency of the damascone in a typical fabric softening application. PO-rich copolymers and the corresponding poly(styrene-co-maleic anhydride without Jeffamine® side chains were found to be less efficient for the desired fragrance release than the corresponding bioconjugate with a EO/PO ratio of 3.60 in the side chain. This copolymer conjugate seemed to represent a suitable balance between hydrophilicity and hydrophobicity to favor the release of the δ-damascone and to improve the deposition of the conjugate from an aqueous environment onto a cotton surface.

  16. Radiolabelling of potential colonic delivery systems by neutron activation. An evaluation based on physiochemical properties of excipients and formulations

    International Nuclear Information System (INIS)

    Ahrabi, Sayeh

    1999-01-01

    The effects of neutron irradiation on the physicochemical properties of some potential release-controlling excipients for oral delivery to colon (based on microbially degradable polysaccharide or a combination of pH- and time-dependent mechanisms) were initially investigated. The aim was to choose the most irradiation-resistant ones for the development of a colonic delivery system to be radiolabelled by the neutron activation procedure. However, no correlation between the extent of irradiation-induced changes of the release-controlling polymers and the in vitro properties of the final formulation was observed. Incorporation of samarium oxide (Sm 2 O 3 ) resulted in retardation of the drug release through the diffusion layer. The influence of neutron activation factors on the properties of some suppository combinations was also studied. The effect of the admixture of Sm 2 O 3 on the dissolution and disintegration of the suppositories was more profound than the effect of neutron irradiation. In hydrophilic suppositories, the effect of Sm 2 O 3 was dependent on the type, amount and the physicochemical characteristics of the incorporated drug. In lipophilic suppositories, the release-controlling effect of Sm 2 O 3 was hypothesised to be due to its insoluble micronised particles blocking the drug diffusion layer. The neutron activation procedure could be utilised for radiolabelling potential oral and rectal colonic drug delivery systems. However, to avoid alteration in the crucial in vitro characteristics of the formulations, the amount, the particle size and the aggregated particle characteristics of the lanthanide salt (e.g. Sm 2 O 3 or samarium stearate) together with the neutron irradiation dose should be controlled precisely for each dosage system. For the systems investigated in this work the release-controlling mechanism of the dosage form seems to be a key parameter to predict the extent of the influence of neutron activation factors on the in vitro properties

  17. Meltable magnetic biocomposites for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Müller, R., E-mail: robert.mueller@ipht-jena.de [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Zhou, M. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany); Dellith, A. [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Liebert, T.; Heinze, T. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany)

    2017-06-01

    New biocompatible composites with adjustable melting point in the range of 30–140 °C, consisting of magnetite nanoparticles embedded into a matrix of meltable dextran fatty acid ester are presented which can be softened under an induced alternating magnetic field (AMF). The chosen thermoplastic magnetic composites have a melting range close to human body temperature and can be easily shaped into disk or coating film under melting. The composite disks were loaded with green fluorescent protein (GFP) as a model protein. Controlled release of the protein was realized with high frequent alternating magnetic field of 20 kA/m at 400 kHz. These results showed that under an AMF the release of GFP from magnetic composite was accelerated compared to the control sample without exposure to AMF. Furthermore a texturing of particles in the polymer matrix by a static magnetic field was investigated. - Highlights: • Thermoplastic biocomposite are prepared from dextran ester and magnetite particles. • The composite can be heated by an AC magnetic field above the melting temperature. • In molten state texturing of particles is possible and improves the heating ability. • The biopolymer could be used as a remote controlled matrix for protein release.

  18. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations.

    Science.gov (United States)

    Ginés, O; Chimenos, J M; Vizcarro, A; Formosa, J; Rosell, J R

    2009-09-30

    This paper reports the experimental results obtained after casting concrete formulated with different mix proportions of municipal solid waste incineration (MSWI) by-products, bottom ash (BA) and air pollution control fly ash (APCFA), as aggregates. Several tests were performed to determine the properties of the mixed proportions. Mechanical properties of the formulations, such as compressive strength, were also determined, and two different leaching tests were performed to study their environmental effects. Some suitable concrete formulations were obtained for the 95/5 and 90/10 BA/APCFA mix proportions. These formulations showed the highest compressive strength test results, above 15 MPa, and the lowest amount of released trace metals in reference to the leaching test. The leaching mechanisms involved in the release of trace metals for the best formulations were also studied, revealing that the washing-off process may play an important role. Given the experimental data it can be concluded that these concrete mix proportions are suitable for use as non-structural concrete.

  19. Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.

    Science.gov (United States)

    Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M

    2012-01-01

    Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.

  20. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Science.gov (United States)

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.

  1. Topiramate Extended-Release Options: A Focus on Efficacy and Safety in Epilepsy and Comorbidities

    Directory of Open Access Journals (Sweden)

    Yuchen Wang

    2017-02-01

    Full Text Available Topiramate (TPM is effective for multiple seizure types and epilepsy syndromes in children and adults. Topiramate has adverse effects (including cognitive, depression, renal stones, but many of these are low incidence when started at a low dose and slowly titrated to 100 to 200 mg/day. Also, TPM has proven benefit for migraine, obesity, eating disorders, and alcohol use disorders, which can be comorbid in patients with epilepsy and may also be effective in subpopulations within specific psychiatric diagnoses. Recently approved extended-release formulations of TPM (Trokendi and Qudexy in the United States have reliable data supporting their safety and efficacy for patients with epilepsy. They have potential for more rapid titration within 1 month to 200 mg/day and have better patient retention than TPM immediate-release, but there are no robust double-blind randomized controlled trials comparing the different formulations. We expect the once per day extended-release formulations to improve medication adherence compared with the twice per day formulations. This has significant potential to improve outcomes in epilepsy and the other TPM-responsive disorders.

  2. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.

    Science.gov (United States)

    Schesser, J H

    1976-10-01

    Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg).

  4. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    Science.gov (United States)

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control

  5. 3D printing of tablets containing multiple drugs with defined release profiles.

    Science.gov (United States)

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J

    2015-10-30

    We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.

  6. [Abpm and duration of the antihypertensive effect: a study with a new formulation of sustained release losartan (CRONOS)].

    Science.gov (United States)

    Bendersky, Mario; Juncos, Luis; Waisman, Gabriel Dario; Piskorz, Daniel; Lopez-Santi, Ricardo; Montaña, Oscar; Caruso, Gustavo; Kotetzky, Martin; Penna, Maria; Gomez, Roberto

    2012-01-01

    Antihypertensive drugs action should last at least 24 h in order to enhance adherence, with positive impact on CV morbimortality. ABPM allow us to evaluate duration of action of drugs, against placebo, using Trough:Peak Ratio, antihypertensive effect in the last 4 h interdosis, and calculating the rate of BP morning surge. Losartán is an Antagonist At1 with good antihypertensive efficacy and renal, cardiac and cerebrovascular protection. Some studies shows less than 24 hs of action, that suggest twice a day dosing. The merge of a new formulation, Losartan Cronos, a bilayer tablet containing 50 mg of Losartan immediate release (IR) and 50 mg extended release (ER) would allow 24 h coverage, maintaining the previous advantages. To assess antihypertensive duration of action of Losartán Cronos in patients with essential hypertension throughout a 24-h dosing interval, using ABPM and response rates, AASI and Smoothness Index. 97 essential hypertensives, where included and received a single morning dose of Losartán Cronos (50 mg of regular release and 50 mg of controlled and retarded release) during 8 weeks. Performed valid ABPM post placebo and post active treatment. Results Mean age 58 (26-86), 60% women. 63% treatment naïve. The mean reduction in BP from baseline to week 8 (end of treatment) was statistically significant for all times analyzed (24 hours, daytime, night-time, and last 4 hours monitoring). There were no significant changes in 24h heart rate. BP morning surge (mmHg/hour) decreased from 4.53 to 3,68 (p=0.03).T:P Ratio was 0.91 for SBP and 1.14 for DBP. Smoothness Index: SBP 2.86 (95% CI 1.84-3.7) - DBP 3.17 (95% CI 2.03-3.9) 19 patients had adverse events, no-one cough, all mild, without discontinuations. Conclusion Losartán Cronos demonstrated efficacy and safety, decreases BP without significant effects in heart rate, it reduces the pulse pressure, and its effect lasts for 24 hs, assessed by T:P ratio, last 4 hours effects, decreasing morning surge

  7. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  8. Long-acting poly(DL:lactic acid-castor oil) 3:7-bupivacaine formulation: effect of hydrophobic additives.

    Science.gov (United States)

    Sokolsky-Papkov, Marina; Golovanevski, Ludmila; Domb, Abraham J; Weiniger, Carolyn F

    2011-12-01

    To reduce formulation viscosity of bupivacaine/poly(DL lactic acid co castor oil) 3:7 without increasing bupivacaine release rates. Poly(DL lactic acid) 3:7 was synthesized and bupivacaine formulation prepared by mixing with additives ricinoleic acid or castor oil. In vitro release measurements identified optimum formulation. Anesthetized ICR mice were injected around left sciatic nerve using nerve stimulator with 0.1 mL of formulation. Animals received 10% bupivacaine-polymer formulation with 10% castor oil (p(DLLA:CO)3:7-10% bupi-10% CO) or 15% bupivacaine-polymer with 10% castor oil (p(DLLA:CO)3:7-15% bupi-10% CO). Sensory and motor block were measured. Viscosity of 10% and 15% bupivacaine-p(DLLA:CO)3:7 formulations was reduced using hydrophobic additives; however, castor oil reduced bupivacaine release rates and eliminated burst effect. Less than 10% of the incorporated bupivacaine was released during 6 h, and less than 25% released in 24 h in vitro. In vivo formulation injection resulted in a 24 h motor block and a sensory block lasting at least 72 h. Incorporation of hydrophobic low-viscosity additive reduced viscosity in addition to burst release effects. Bupivacaine-polymer formulation with castor oil additive demonstrated prolonged sensory analgesia in vivo, with reduced duration of motor block.

  9. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  10. Formulation and evaluation of orally disintegrating clopidogrel tablets

    Directory of Open Access Journals (Sweden)

    Gamal Mohamed Mahrous

    Full Text Available ABSTRACT Recent advances in drug delivery systems have aimed to achieve better patient compliance. One of these advances is the formulation of orally disintegrating tablets (ODTs that dissolve instantaneously, releasing drugs within a few seconds without the need of water. The main objective of this paper was to prepare and develop ODTs of clopidogrel. The ODTs were prepared by direct compression. The effect of three superdisintegrants, namely crospovidone, croscarmellose sodium, and sodium starch glycolate, using three different disintegration times on the dissolution rate was investigated. The prepared tablets were evaluated for hardness, friability, disintegration time and in vitro drug release. Furthermore, the interaction of clopidogrel with the formulation excipients was studied using differential scanning calorimetry (DSC. DSC studies revealed that there were no interactions between the drug and the excipients used. All tablets had hardness values in the range 4.0-5.2 kp and friability lower than 1%. The weight and drug content uniformity of all formulations was within official limits according to BP. In vitro drug release studies of the ODTs showed that more than 90% of the drug was released within ten minutes. A palatability test in human volunteers showed acceptable taste and mouth feel. Thus, the obtained results conclusively demonstrated successful rapid disintegration of the formulated tablets and acceptable palatability.

  11. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    Science.gov (United States)

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  12. Physically Targeted Intravenous Polyurethane Nanoparticles for Controlled Release of Atorvastatin Calcium

    Science.gov (United States)

    Eftekhari, Behnaz Sadat; Karkhaneh, Akbar; Alizadeh, Ali

    2017-01-01

    Background: Intravenous drug delivery is an advantageous choice for rapid administration, immediate drug effect, and avoidance of first-pass metabolism in oral drug delivery. In this study, the synthesis, formulation, and characterization of atorvastatin-loaded polyurethane (PU) nanoparticles were investigated for intravenous route of administration. Method: First, PU was synthesized and characterized. Second, nanoparticles were prepared in four different ratios of drug to polymer through two different techniques, including emulsion-diffusion and single-emulsion. Finally, particle size and polydispersity index, shape and surface morphology, drug entrapment efficiency (EE), drug loading, and in vitro release were evaluated by dynamics light scattering, scanning electron microscopy, and UV visible spectroscopy, respectively. Results: Within two methods, the prepared nanoparticles had a spherical shape and a smooth surface with a diversity of size ranged from 174.04 nm to 277.24 nm in emulsion-diffusion and from 306.5 nm to 393.12 in the single-emulsion method. The highest EE was 84.76%, for (1:4) sample in the emulsion-diffusion method. It has also been shown that in vitro release of nanoparticles, using the emulsion-diffusion method, was sustained up to eight days by two mechanisms: drug diffusion and polymer relaxation. Conclusion: PU nanoparticles, that were prepared by the emulsion-diffusion method, could be used as effective carriers for the controlled drug delivery of poorly water soluble drugs such as atorvastatin calcium. PMID:28532144

  13. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.

    Science.gov (United States)

    Nian, Xiao-Ge; He, Yu-Rong; Lu, Li-Hua; Zhao, Rui

    2015-12-01

    Entomopathogenic fungi are potential candidates for controlling the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). The control efficacy of two Isaria fumosorosea conidial formulations - wettable powder and oil-based formulation - combined with Bacillus thuringiensis against P. xylostella was tested. In the laboratory, the combined application of two pathogens increased larval mortality either in an additive or a synergistic way. P. xylostella larvae treated with oil-based formulation died sooner than larvae infected with wettable powder. For pot and field experiments, each formulation was applied alone or combined with B. thuringiensis 668 µg mL(-1) , and then larval mortality, pupation rate, adult emergence rate, female longevity and fecundity were recorded. In pot experiments there was no evidence of any antagonistic effects between the two pathogens. Combined application of B. thuringiensis and a high concentration of the two I. fumosorosea formulations resulted in higher mortality (84.4 and 86.2%) with minimum pupation (15.6 and 11.9%) and adult emergence rates (8.7 and 7.0%). Female longevity and fecundity were significantly reduced by the two formulations at high concentration compared with the control. Similar results were also observed in field experiments. The combined application of I. fumosorosea and B. thuringiensis is a promising alternative strategy for P. xylostella control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Formulation, quality control and shelf life of the experimental cytostatic drug cyclopentenyl cytosine

    NARCIS (Netherlands)

    Schimmel, Kirsten; Guchelaar, Henk-Jan; van Kan, Erik

    2006-01-01

    This paper describes the formulation and quality control of an aqueous sterilized formulation of the experimental cytostatic drug cyclopentenyl cytosine (CPEC) to be used in Phase I/II clinical trials. The raw drug substance was extensively tested. A High Pressure Liquid Chromotography (HPLC) method

  15. Development of Oral Flexible Tablet (OFT) Formulation for Pediatric and Geriatric Patients: a Novel Age-Appropriate Formulation Platform.

    Science.gov (United States)

    Chandrasekaran, Prabagaran; Kandasamy, Ruckmani

    2017-08-01

    Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2-6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.

  16. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  17. Preparation and physicochemical evaluation of topical formulations of purified curcuminoids from Curcuma longa rhizome

    Directory of Open Access Journals (Sweden)

    K. Berenjian*

    2017-11-01

    Full Text Available Background and objectives: The purpose of this study was optimization of semisolid topical formulation from ethanol extract of turmeric and evaluation of rheological characterization and investigation of physicochemical control tests. Methods: The ethanolic extract was prepared with Soxhlet method and the compounds were isolated with silica gel column chromatography. Isolation of curcuminoids was accomplished by preparative HPLC.  The accelerated and real time stability tests for the formulations were investigated at 40±2 °C/70% RH for 90 days and 30±2° C/35%±5 RH for 12 month, respectively. Results: The yield of pure curcuminoids was 0.8%.The results of rheograms at 25° C showed pseudoplastic, plastic and pseudoplastic behavior for the ointment, cream and gel formulations respectively. The pH was measured by using  a  digital  type  of  pH  meter  by  dipping  the  glass electrical probe  for all of formulation, and the consequences exhibited PH values of 6.6, 6.8 and 6.9for the ointment, cream and gel, respectively. The results of cumulative release (µg/cm2 for ointment, cream and gel formulation achieved with dissolution media which contained buffer phosphate with pH 7.2 and 1% tween 20 after 24 h were 693.6, 648.5 and 650.5, respectively. Discussion:  The advantage of this method extraction compared to previously described methods, was utilizing safer solvent for extraction. The cumulative release of formulation and drug content during the physicochemical control tests was compared with commercial product and showed no significant different (p˃ 0.05.The formulations of this study showed functional and physical stability in the period of the study.

  18. L-Cysteine conjugated poly L-lactide nanoparticles containing 5-fluorouracil: formulation, characterization, release and uptake by tissues in vivo.

    Science.gov (United States)

    Mishra, Brijeshkunvar J; Kaul, Ankur; Trivedi, Piyush

    2015-02-01

    Targeted delivery of drugs is still a therapeutic challenge and numerous methods have been reported for the same. In this study, emphasis was placed on developing nanoparticles loaded with 5-fluorouracil (FU) and modifying the surface of the nanoparticles by conjugation with amino acid, to improve the distribution of 5-FU in the lungs. An emulsion solvent evaporation technique was used to formulate nanoparticles of FU using Poly L-lactide and Pluronic F-68. The nanoparticles were conjugated with L-Cysteine using EDC as the activator of COOH group and were evaluated for product yield, particle size, surface morphology, amount of conjugation by Ellman's method and in vitro drug release study. The results indicated 60-65% yield with an average particle size of 242.7 ± 37.11 nm for the cysteine conjugated nanoparticle (CNP) formulation and more than 70% conjugation of cysteine. The cumulative percentage of drug released over a period of 24 h was found to be 58%. An increase in distribution of the delivery system in lungs (11.4% ID after 1 h) in mice was found indicating the role of L-Cysteine in the transport mechanism to the lungs. In vivo kinetic studies in rats revealed higher circulation time of CNP as compared to pure FU solution. The study helps in designing a colloidal delivery system for increased distribution of drugs to the lungs and may be helpful in delivery of drugs in conditions like non-small cell lung carcinomas.

  19. Formulation design of an HPMC-based sustained release tablet for pyridostigmine bromide as a highly hygroscopic model drug and its in vivo/in vitro dissolution properties.

    Science.gov (United States)

    Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho

    2007-11-01

    Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 2(3) full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the T(max) was prolonged (from 0.65 +/- 0.082 hr to 4.83 +/- 1.60 hr) and AUC(0-t) (from 734.88 +/- 230.68 ng/ml.hr to 1153.34 +/- 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.

  20. Application of a Biodegradable Polyesteramide Derived from L-Alanine as Novel Excipient for Controlled Release Matrix Tablets.

    Science.gov (United States)

    Bonillo Martínez, Ana Dora; Galán, Inés Carmen Rodríguez; Bellver, María Victoria Margarit

    2017-11-01

    This pre-formulation study assays the capacity of the polyesteramide PADAS, poly (L-alanine-dodecanediol-L-alanine-sebacic), as an insoluble tablet excipient matrix for prolonged drug release. The flow properties of PADAS were suitable for tableting, and the compressibility of tablets containing exclusively PADAS was evaluated by ESEM observation of the microstructure. The tablets were resistant to crushing and non-friable and they did not undergo disintegration (typical features of an inert matrix). Tablets containing 33.33% sodium diclofenac (DF), ketoprofen (K) or dexketoprofen trometamol (DK-T) as a model drug, in addition with 66.67% of polymer, were formulated, and the absence of interactions between the components was confirmed by differential scanning calorimetry. Dissolution tests showed that PADAS retained DF and K and prolonged drug release, following a Higuchi kinetic. The tablets containing DK-T did not retain the drug sufficiently for prolonged release to be established. Tablets containing DK-T and 66.67, 83.33 or 91.67% PADAS, compressed at 44.48 or 88.96 kN, were elaborated to determine the influence of the polymer amount and of the compression force on DK-T release. Both parameters significantly delayed drug release, except when the proportion of polymer was 91.67%.

  1. Release of a wound-healing agent from PLGA microspheres in a thermosensitive gel.

    Science.gov (United States)

    Machado, H A; Abercrombie, J J; You, T; Deluca, P P; Leung, K P

    2013-01-01

    The purpose of this research was to develop a topical microsphere delivery system in a thermosensitive 20% poloxamer 407 gel (Pluronic F127) to control release of KSL-W, a cationic antimicrobial decapeptide, for a period of 4-7 days for potential application in combat related injuries. KSL-W loaded microsphere formulations were prepared by a solvent extraction-evaporation method (water-oil-water), with poly (D,L-lactic-co-glycolic acid) (PLGA) (50 : 50, low-weight, and hydrophilic end) as the polymeric system. After optimization of the process, three formulations (A, B, and C) were prepared with different organic to water ratio of the primary emulsion while maintaining other components and manufacturing parameters constant. Formulations were characterized for surface morphology, porous nature, drug loading, in vitro drug release, and antimicrobial activity. Microspheres containing 20% peptide with porous surfaces and internal structure were prepared in satisfactory yields and in sizes varying from 25 to 50 μm. Gels of 20% Pluronic F127, which were liquid at or below 24.6°C and formed transparent films at body temperature, were used as carriers for the microspheres. Rheological studies showed a gelation temperature of 24.6°C for the 20% Pluronic F127 gel alone. Gelation temperature and viscosity of formulations A, B, and C as a function of temperature were very close to those of the carrier. A Franz diffusion cell system was used to study the release of peptide from the microspheres suspended in both, phosphate-buffered saline (PBS) and a 20% Pluronic F127 gel. In vitro release of greater than 50% peptide was found in all formulations in both PBS and the gel, and in one formulation there was a release of 75% in both PBS and the gel. Fractions collected from the release process were also tested for bactericidal activity against Staphylococcus epidermidis using the broth microdilution method and found to provide effective antimicrobial activity to warrant

  2. Formulation and Evaluation of New Glimepiride Sublingual Tablets

    Directory of Open Access Journals (Sweden)

    Wafa Al-Madhagi

    2017-01-01

    Full Text Available Oral mucosal delivery of drugs promotes rapid absorption and high bioavailability, with a subsequent immediate onset of pharmacological effect. However, many oral mucosal deliveries are compromised by the possibility of the patient swallowing the active substance before it has been released and absorbed locally into the systemic circulation. The aim of this research was to introduce a new glimepiride formula for sublingual administration and rapid drug absorption that can be used in an emergency. The new sublingual formulation was prepared after five trials to prepare the suitable formulation. Two accepted formulations of the new sublingual product were prepared, but one of them with disintegration time of 1.45 min and searching for preferred formulation, the binder, is changed with Flulac and starch slurry to prepare formula with disintegration time of 21 seconds that supports the aim of research to be used in an emergency. The five formulations were done, after adjusting to the binder as Flulac and aerosil with disintegration time of 21 seconds and accepted hardness as well as the weight variation. The assay of a new product (subglimepiride is 103% which is a promising result, confirming that the formula succeeded. The new product (subglimepiride is accepted in most quality control tests and it is ready for marketing.

  3. Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation.

    Science.gov (United States)

    Alibolandi, Mona; Abnous, Khalil; Mohammadi, Marzieh; Hadizadeh, Farzin; Sadeghi, Fatemeh; Taghavi, Sahar; Jaafari, Mahmoud Reza; Ramezani, Mohammad

    2017-10-28

    Due to the severe cardiotoxicity of doxorubicin, its usage is limited. This shortcoming could be overcome by modifying pharmacokinetics of the drugs via preparation of various nanoplatforms. Doxil, a well-known FDA-approved nanoplatform of doxorubicin as antineoplastic agent, is frequently used in clinics in order to reduce cardiotoxicity of doxorubicin. Since Doxil shows some shortcomings in clinics including hand and food syndrome and very slow release pattern thus, there is a demand for the development and preparation of new doxorubicin nanoformulation with fewer side effects. The new formulation of the doxorubicin, synthesized previously by our group was extensively examined in the current study. This new formulation is doxorubicin encapsulated in PEG-PLGA polymersomes (PolyDOX). The main aim of the study was to compare the distribution and treatment efficacy of a new doxorubicin-polymersomal formulation (PolyDOX) with regular liposomal formulation (Doxil-mimic) in murine colon adenocarcinoma model. Additionally, the pathological, hematological changes, pharmacodynamics, biodistribution, tolerated dose and survival rate in vivo were evaluated and compared. Murine colon cancer model was induced by subcutaneous inoculation of BALB/c mice with C26 cells. Afterwards, either Doxil-mimic or PolyDOX was administered intravenously. The obtained results from biodistribution study showed a remarkable difference in the distribution of drugs in murine organs. In this regard, Doxil-mimic exhibited prolonged (48h) presence within liver tissues while PolyDOX preferentially accumulate in tumor and the presence in liver 48h post-treatment was significantly lower than that of Doxil-mimic. Obtained results demonstrated comparable final length of life for mice receiving either Doxil-mimic or PolyDOX formulations whereas tolerated dose of mice receiving Doxil-mimic was remarkably higher than those receiving PolyDOX. Therapeutic efficacy of formulation in term of tumor growth rate

  4. Bioactive thermoresponsive polyblend nanofiber formulations for wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Mahesh D. [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); MAEER' s Maharashtra Institute of Pharmacy S. No. 124, MIT Campus Paud Road, Kothrud, Pune 411 038 (India); Rathna, G.V.N., E-mail: rv.gundloori@ncl.res.in [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); Agrawal, Shubhang [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); Kuchekar, Bhanudas S. [MAEER' s Maharashtra Institute of Pharmacy S. No. 124, MIT Campus Paud Road, Kothrud, Pune 411 038 (India)

    2015-03-01

    The rationale of this work is to develop new bioactive thermoresponsive polyblend nanofiber formulations for wound healing (topical). Various polymer compositions of thermoresponsive, poly(N-isopropylacrylamide), egg albumen and poly(ε-caprolactone) blend solutions with and without a drug [gatifloxacin hydrochloride, Gati] were prepared. Non-woven nanofibers of various compositions were fabricated using an electrospinning technique. The morphology of the nanofibers was analyzed by an environmental scanning electron microscope. The morphology was influenced by the concentration of polymer, drug, and polymer blend composition. Fourier transform infrared spectroscopy analysis showed the shift in bands due to hydrogen ion interactions between polymers and drug. Thermogram of PNIPAM/PCL/EA with Gati recorded a shift in lower critical solution temperature (LCST) and glass transition temperature (T{sub g}) of PNIPAM. Similarly T{sub g} and melting temperature (T{sub m}) of PCL were shifted. X-ray diffraction patterns recorded a decrease in the crystalline state of PCL nanofibers and transformed crystalline drug to an amorphous state. In vitro release study of nanofibers with Gati showed initial rapid release up to 10 h, followed by slow and controlled release for 696 h (29 days). Nanofiber mats with Gati exhibited antibacterial properties to Staphylococcus aureus, supported suitable controlled drug release with in vitro cell viability and in vivo wound healing. - Highlights: • Thermoresponsive and bioactive nanofiber blends of PNIPAM/EA/PCL were fabricated. • Nanofiber blends favored initial rapid release, followed by controlled release. • In vitro cell viability of pure polymers and nanofiber blends was least toxic. • In vivo studies of drug loaded nanofiber mats recorded faster tissue regeneration.

  5. Critical review of controlled release packaging to improve food safety and quality.

    Science.gov (United States)

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  6. Pharmacokinetics of hydrocodone extended-release tablets formulated with different levels of coating to achieve abuse deterrence compared with a hydrocodone immediate-release/acetaminophen tablet in healthy subjects.

    Science.gov (United States)

    Darwish, Mona; Bond, Mary; Tracewell, William; Robertson, Philmore; Yang, Ronghua

    2015-01-01

    A hydrocodone extended-release (ER) formulation employing the CIMA(®) Abuse-Deterrence Technology platform was developed to provide resistance against rapid release of hydrocodone when tablets are comminuted or taken with alcohol. This study evaluated the pharmacokinetics of three hydrocodone ER tablet prototypes with varying levels of polymer coating to identify the prototype expected to have the greatest abuse deterrence potential based on pharmacokinetic characteristics that maintain systemic exposure to hydrocodone comparable to that of a commercially available hydrocodone immediate-release (IR) product. In this four-period crossover study, healthy subjects aged 18-45 years were randomized to receive a single intact, oral 45-mg tablet of one of three hydrocodone ER prototypes (low-, intermediate-, or high-level coating) or an intact, oral tablet of hydrocodone IR/acetaminophen (APAP) 10/325 mg every 6 h until four tablets were administered, with each of the four treatments administered once over the four study periods. Dosing periods were separated by a minimum 5-day washout. Naltrexone 50 mg was administered to block opioid receptors. Blood samples for pharmacokinetic assessments were collected predose and through 72 h postdose. Parameters assessed included maximum observed plasma hydrocodone concentration (C(max)), time to C(max) (t(max)), and area under the concentration-time curve from time 0 to infinity (AUC(0-∞)). Mean C(max) values were 49.2, 32.6, and 28.4 ng/mL for the low-, intermediate-, and high-level coating hydrocodone ER tablet prototypes, respectively, and 37.3 ng/mL for the hydrocodone IR/APAP tablet; respective median t(max) values were 5.9, 8.0, 8.0, and 1.0 h. Total systemic exposure to hydrocodone (AUC(0-∞)) was comparable between hydrocodone ER tablet prototypes (640, 600, and 578 ng·h/mL, respectively) and hydrocodone IR/APAP (581 ng·h/mL). No serious adverse events or deaths were reported. The most common adverse events included

  7. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    Science.gov (United States)

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved

  8. WE-AB-BRA-03: Non-Invasive Controlled Release from Implantable Hydrogel Scaffolds Using Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Moncion, A; Kripfgans, O.D; Putnam, A.J; Frances chi, R.T; Fabiilli, M.L [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: To control release of a model payload in acoustically responsive scaffolds (ARSs) using focused ultrasound (FUS). Methods: Fluorescently-labeled dextran (10 kDa) was encapsulated in sonosensitive perfluorocarbon (C{sub 6}F{sub 14} or C{sub 5}F{sub 12}) double emulsions (mean diameter: 2.9±0.1 µm). For in vitro release studies, 0.5 mL ARSs (10 mg/mL fibrin, 1% (v/v) emulsion) were polymerized in 24 well plates and covered with 0.5 mL medium. Starting one day after polymerization, ARSs were exposed to FUS (2.5 MHz, Pr = 8 MPa, 13 cycles, 100 Hz PRF) for 2 min daily. The amount of dextran released into the media was quantified. For in vivo studies, 0.25 mL ARSs were prepared as described previously and injected subcutaneously in the lower back of BALB/c mice. After polymerization, a subset of the implanted ARSs were exposed to FUS (as previously described). Animals were imaged longitudinally using a fluorescence imaging system to quantify the amount of dextran released from the ARSs. Results: In vitro: Over 6 days, +FUS displayed an 8.2-fold increase in dextran release compared to −FUS (−FUS: 2.7±0.6%; +FUS: 22.2±3.0%) for C{sub 6}F{sub 14} ARSs, and a 6.7-fold increase (−FUS: 5.0±0.8%; +FUS: 38.5±1.6%) for C{sub 5}F{sub 12}:C{sub 6}F{sub 14} ARSs. In vivo: +FUS displayed statistically greater dextran release compared to −FUS one day after implantation for C{sub 5}F{sub 12}:C{sub 6}F{sub 14} ARSs (−FUS: 55.1±1.5%; +FUS: 74.1±2.2%) and three days after implantation for C{sub 6}F{sub 14} ARSs (−FUS: 1.4±6.5%; +FUS: 30.4±5.4%). Conclusion: FUS enables non-invasive control of payload release from an ARS, which could benefit growth factor delivery for tissue regeneration. ARS are versatile due to their tunability (i.e. stiffness, emulsion composition, FUS pressure, FUS frequency, etc.) and can be modified to for optimal payload release. Future work will optimize ARS formulations for in vivo use to minimize payload release in the absence of

  9. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    OpenAIRE

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    Preety Panwar1, Bhumika Pandey1, P C Lakhera2, K P Singh11Biophysics and Nanotechnology Research Laboratory, CBSH, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India; 2Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhand, IndiaAbstract: The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was ...

  10. In vitro characterization of a formulation of butorphanol tartrate in a poloxamer 407 base intended for use as a parenterally administered slow-release analgesic agent.

    Science.gov (United States)

    Laniesse, Delphine; Smith, Dale A; Knych, Heather K; Mosley, Cornelia; Guzman, David Sanchez-Migallon; Beaufrère, Hugues

    2017-06-01

    OBJECTIVE To assess rheological properties and in vitro diffusion of poloxamer 407 (P407) and butorphanol-P407 (But-P407) hydrogels and to develop a sustained-release opioid formulation for use in birds. SAMPLE P407 powder and a commercially available injectable butorphanol tartrate formulation (10 mg/mL). PROCEDURES P407 and But-P407 gels were compounded by adding water or butorphanol to P407 powder. Effects of various concentrations of P407 (20%, 25% and 30% [{weight of P407/weight of diluent} × 100]), addition of butorphanol, and sterilization through a microfilter on rheological properties of P407 were measured by use of a rheometer. In vitro diffusion of butorphanol from But-P407 25% through a biological membrane was compared with that of a butorphanol solution. RESULTS P407 20% and 25% formulations were easily compounded, whereas it was difficult to obtain a homogenous P407 30% formulation. The P407 was a gel at avian body temperature, although its viscosity was lower than that at mammalian body temperature. The But-P407 25% formulation (butorphanol concentration, 8.3 mg/mL) was used for subsequent experiments. Addition of butorphanol to P407 as well as microfiltration did not significantly affect viscosity. Butorphanol diffused in vitro from But-P407, and its diffusion was slower than that from a butorphanol solution. CONCLUSIONS AND CLINICAL RELEVANCE But-P407 25% had in vitro characteristics that would make it a good candidate for use as a sustained-release analgesic medication. Further studies are needed to characterize the pharmacokinetic and pharmacodynamic properties of But-P407 25% in vivo before it can be recommended for use in birds.

  11. Low molecular weight polylactic acid as a matrix for the delayed release of pesticides.

    Science.gov (United States)

    Zhao, Jing; Wilkins, Richard M

    2005-05-18

    Low molecular weight polylactic acid (LMW PLA) was used as a matrix to formulate biodegradable matrix granules and films with bromacil using a melt process. The compatibility of the PLA with bromacil was evaluated. The release characteristics of the formulations were investigated in vitro. The degradation and erosion of the formulations were monitored by pH and gravimetric analysis during the course of release. Various granules and films had similar biphasic release patterns, a delayed release followed by an explosive release. The release rates were independent of bromacil content in the matrix, but varied with the geometry of matrices. The mechanisms of diffusion and erosion were involved in the release. The delayed release of the formulations was dominantly governed by the degradation and erosion of PLA. LMW PLA underwent bulk erosion. LMW PLA-based matrix formulations could thus be useful for the application of pesticides to sensitive targets such as seed treatment.

  12. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2013-01-01

    In this article, the authors report identification and assessment of different types of costs associated with nuclear accidents. They first outline that these cost assessments must be as exhaustive or comprehensive as possible. While referring to past accidents, they define the different categories of costs: on-site costs (decontamination and dismantling, electricity not produced on the site), off-site costs (health costs, psychological costs, farming losses), image-related costs (impact on food and farm product exports, decrease of other exports), costs related to energy production, costs related to contaminated areas (refugees, lands). They give an assessment of a severe nuclear accident (i.e. an accident with important but controlled radiological releases) in France and outline that it would be a national catastrophe which could be however managed. They discuss the possible variations of the estimated costs. Then, they show that a major accident (i.e. an accident with massive radiological releases) in France would be an unmanageable European catastrophe because of the radiological consequences, of high economic costs, and of huge losses

  13. Granular formulation of Fusarium oxysporum for biological control of faba bean and tomato Orobanche.

    Science.gov (United States)

    Nemat Alla, Mamdouh M; Shabana, Yasser M; Serag, Mamdouh M; Hassan, Nemat M; El-Hawary, Mohamed M

    2008-12-01

    Orobanche spp. represent a serious threat to a wide range of crops. They are difficult targets for herbicides, and biological control could provide a possible solution. This work therefore aimed to formulate mycoherbicides of Fusarium with adequate shelf life and virulence against Orobanche but safe to faba bean and tomato. Only two isolates of Fusarium oxysporum Schlecht. (Foxy I and Foxy II) obtained from diseased Orobanche shoots were found to be pathogenic to Orobanche crenata Forsk. and Orobanche ramosa L. Conidial suspension of both isolates significantly decreased germination, attachments and tubercles of Orobanche. Microconidia and chlamydospores of both isolates were formulated as mycoherbicides encapsulated in a wheat flour-kaolin matrix (four different formulations). All formulations greatly diminished Orobanche emerged shoots, total shoot number, shoot height, attachment of emerged shoots, the germinated seeds that succeeded in emerging above the soil surface and dry weight. Meanwhile, disease incidence and disease severity of emerged shoots were enhanced. The shelf life was adequate, particularly for coarse, freshly prepared, low-temperature-stored, microconidia-rich formulations. The induced growth reduction of Orobanche-infected host plants seemed to be nullified by formulations, particularly at the highest dose. These formulations seemed to destroy Orobanche but appeared harmless to host plants. Hence, they could be efficiently used as mycoherbicides for biological control of Orobanche in faba bean and tomato.

  14. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    Science.gov (United States)

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  15. SOL-Gel microspheres and nanospheres for controlled release applications

    International Nuclear Information System (INIS)

    Barbe, C.; Beyer, R.; Kong, L.; Blackford, M.; Trautman, R.; Bartlett, J.

    2002-01-01

    We present a novel approach to the synthesis of inorganic sol-gel microspheres for encapsulating organic and bioactive molecules, and controlling their subsequent release kinetics. The bioactive species are incorporated, at ambient temperature, into the inorganic particles using an emulsion gelation process. Independent control of the release rate (by adapting the nanostructure of the internal pore network to the physico-chemical properties of the bioactive molecules) and particle size (by tailoring the emulsion chemistry) is demonstrated. Sol-gel chemistry has been shown to be a flexible technique for producing inorganic silica matrices with tailored microstructures, which can be used for the encapsulation and controlled release of organic and bioactive molecules. The present paper extends this concept by combining sol-gel chemistry with an emulsion approach for producing inorganic particles with controlled dimensions, and demonstrates how the particle size and microstructure can be independently controlled. Sol-Gel Chemistry and Encapsulation of Model Compounds. A stock solution of 4-(2-hydroxy-l-naphthylazo) benzene sulfonic acid (Orange II) was produced by dissolving Orange II in water (0.1 wt%), and adjusting the pH to the required value. Sol-gel solutions were subsequently prepared by mixing the aqueous solution with tetramethylorthosilicate (TMOS) and methanol (MeOH), to achieve H 2 O:TMOS (W] and MeOH:TMOS mole ratios (D) of four. The resulting solution was stirred and left to age at ambient temperature for one day. A transparent emulsion was prepared by mixing selected surfactants and organic solvents. The surfactants used included sorbitan monooleate, sorbitan monolaurate and bis-2-ethylhexylsulfo-succinate (AOT), while the organic phase was typically chosen from the group consisting of kerosene, hexane, heptane, octane, decane, dodecane and cyclohexane. The sol-gel solution was added to the emulsion, and the resulting mixture was stirred at 500 rpm for

  16. Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.

    Science.gov (United States)

    Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal

    2016-01-01

    The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.

  17. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies.

    Science.gov (United States)

    Tavakoli, Javad; Tang, Youhong

    2017-08-01

    Hydrogel/honey hybrids manifest an attractive design with an exclusive therapeutic property that promotes wound healing process. The greater the concentration of honey within the formulation, the better the biomedical properties that will be achieved. However, an increase in the percentage of honey can negatively affect the physico-chemical and mechanical properties of hybrid hydrogels. The need exists, therefore, to prepare wound dressings that contain high honey density with optimal biomedical, mechanical and physicochemical properties. In this study, a simple method for the preparation of a highly concentrated honey/PVA hybrid hydrogel with borax as the crosslinking agent is reported. Comprehensive evaluations of the morphology, swelling kinetics, permeability, bio-adhesion, mechanical characteristics, cytotoxicity, antibacterial property, cell proliferation ability and their controlling release properties were conducted as a function of crosslinking density. All the borax-induced hydrogels showed acceptable biocompatibility, and the incorporation of 1% borax in the hydrogel formulation produced optimal behaviours for wound addressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Improved design and characterization of PLGA/PLA-coated Chitosan based micro-implants for controlled release of hydrophilic drugs.

    Science.gov (United States)

    Manna, Soumyarwit; Donnell, Anna M; Kaval, Necati; Al-Rjoub, Marwan F; Augsburger, James J; Banerjee, Rupak K

    2018-05-29

    Repetitive intravitreal injections of Methotrexate (MTX), a hydrophilic chemotherapeutic drug, are currently used to treat selected vitreoretinal (VR) diseases, such as intraocular lymphoma. To avoid complications associated with the rapid release of MTX from the injections, a Polylactic acid (PLA) and Chitosan (CS)-based MTX micro-implant prototype was fabricated in an earlier study, which showed a sustained therapeutic release rate of 0.2-2.0 µg/day of MTX for a period ∼1 month in vitro and in vivo. In the current study, different combinations of Poly(lactic-co-glycolic) acid (PLGA)/PLA coatings were used for lipophilic surface modification of the CS-MTX micro-implant, such as PLGA 5050, PLGA 6535 and PLGA 7525 (PLA: PGA - 50:50, 65:35, 75:25, respectively; M.W: 54,400 - 103,000) and different PLA, such as PLA 100 and PLA 250 (MW: 102,000 and 257,000, respectively). This improved the duration of total MTX release from the coated CS-MTX micro-implants to ∼3-5 months. With an increase in PLA content in PLGA and molecular weight of PLA, a) the initial burst of MTX and the mean release rate of MTX can be reduced; and b) the swelling and biodegradation of the micro-implants can be delayed. The controlled drug release mechanism is caused by a combination of diffusion process and hydrolysis of the polymer coating, which can be modulated by a) PLA content in PLGA and b) molecular weight of PLA, as inferred from Korsmeyer Peppas model, Zero order, First order and Higuchi model fits. This improved micro-implant formulation has the potential to serve as a platform for controlled release of hydrophilic drugs to treat selected VR diseases. Copyright © 2018. Published by Elsevier B.V.

  19. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  20. Radiolabelling of potential colonic delivery systems by neutron activation. An evaluation based on physiochemical properties of excipients and formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ahrabi, Sayeh

    1999-07-01

    The effects of neutron irradiation on the physicochemical properties of some potential release-controlling excipients for oral delivery to colon (based on microbially degradable polysaccharide or a combination of pH- and time-dependent mechanisms) were initially investigated. The aim was to choose the most irradiation-resistant ones for the development of a colonic delivery system to be radiolabelled by the neutron activation procedure. However, no correlation between the extent of irradiation-induced changes of the release-controlling polymers and the in vitro properties of the final formulation was observed. Incorporation of samarium oxide (Sm{sub 2}O{sub 3}) resulted in retardation of the drug release through the diffusion layer. The influence of neutron activation factors on the properties of some suppository combinations was also studied. The effect of the admixture of Sm{sub 2}O{sub 3} on the dissolution and disintegration of the suppositories was more profound than the effect of neutron irradiation. In hydrophilic suppositories, the effect of Sm{sub 2}O{sub 3} was dependent on the type, amount and the physicochemical characteristics of the incorporated drug. In lipophilic suppositories, the release-controlling effect of Sm{sub 2}O{sub 3} was hypothesised to be due to its insoluble micronised particles blocking the drug diffusion layer. The neutron activation procedure could be utilised for radiolabelling potential oral and rectal colonic drug delivery systems. However, to avoid alteration in the crucial in vitro characteristics of the formulations, the amount, the particle size and the aggregated particle characteristics of the lanthanide salt (e.g. Sm{sub 2}O{sub 3} or samarium stearate) together with the neutron irradiation dose should be controlled precisely for each dosage system. For the systems investigated in this work the release-controlling mechanism of the dosage form seems to be a key parameter to predict the extent of the influence of neutron

  1. Dexamethasone-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles for controlled release

    International Nuclear Information System (INIS)

    Riekes, Manoela Klueppel; Paula, Josiane Padilha de; Farago, Paulo Vitor; Zawadzki, Sonia Faria

    2009-01-01

    Dexamethasone (DEX) has been widely used for the treatment of ulcerative colitis. The aim of the present study was to obtain DEX-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) microparticles prepared by simple emulsion/solvent evaporation method. The drug loading and the encapsulation efficiency were determined by a previously validated UV method at 233 nm. Morphological, spectroscopical and dissolution analyses were also performed. The microparticles (formulation F no. 0, F no. 1 and F no. 2) were successfully obtained as off-white powders. A drug loading of 92.27 mg.g -1 and 218.54 mg.g -1 and an encapsulation efficiency of 93.96 % and 87.43 % were respectively observed for F no. 1 and F no. 2. Particles showed spherical and rough aspect by SEM. X-ray diffraction analysis demonstrated that the encapsulation reduced the drug crystallinity. FTIR spectra showed that no chemical bonding occurred between PHBV and DEX. Drug-loaded microparticles revealed controlled release profiles compared to pure DEX. (author)

  2. Formulation Optimization and In-vitro Evaluation of Oral Floating ...

    African Journals Online (AJOL)

    matrix tablets and to systematically optimize its drug release using varying levels of xanthan gum and hydroxypropyl ... stomach and improve oral bioavailability of drugs that have ... which can affect its sustained release formulation. [19].

  3. Managing severe pain and abuse potential: the potential impact of a new abuse-deterrent formulation oxycodone/naltrexone extended-release product

    Directory of Open Access Journals (Sweden)

    Pergolizzi, J

    2018-02-01

    Full Text Available Joseph V Pergolizzi, Jr,1 Robert Taylor Jr,1 Jo Ann LeQuang,1 Robert B Raffa2,3 On behalf of the NEMA Research Group 1NEMA Research Inc., Naples, FL, USA; 2University of Arizona College of Pharmacy, Tucson, AZ, USA; 3Temple University School of Pharmacy, Philadelphia, PA, USA Abstract: Proper management of severe pain represents one of the most challenging clinical dilemmas. Two equally important goals must be attained: the humanitarian/medical goal to relieve suffering and the societal/legal goal to not contribute to the drug abuse problem. This is an age-old problem, and the prevailing emphasis placed on one or the other goal has resulted in pendulum swings that have resulted in either undertreatment of pain or the current epidemic of misuse and abuse. In an effort to provide efficacious strong pain relievers (opioids that are more difficult to abuse by the most dangerous routes of administration, pharmaceutical companies are developing products in which the opioid is manufactured in a formulation that is designed to be tamper resistant. Such a product is known as an abuse-deterrent formulation (ADF. ADF opioid products are designed to deter or resist abuse by making it difficult to tamper with the product and extracting the opioid for inhalation or injection. To date, less than a dozen opioid formulations have been approved by the US Food and Drug Administration to carry specific ADF labeling, but this number will likely increase in the coming years. Most of these products are extended-release formulations. Keywords: oxycodone/naltrexone, abuse-deterrent formulation, abuse-deterrent opioid, oxycodone, abuse liability

  4. Optimization of chlorphenesin emulgel formulation

    OpenAIRE

    Mohamed, Magdy I.

    2004-01-01

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 23 factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activi...

  5. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    Science.gov (United States)

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  7. Bilayer tablets of Paliperidone for Extended release osmotic drug delivery

    Science.gov (United States)

    Chowdary, K. Sunil; Napoleon, A. A.

    2017-11-01

    The purpose of this study is to develop and optimize the formulation of paliperidone bilayer tablet core and coating which should meet in vitro performance of trilayered Innovator sample Invega. Optimization of core formulations prepared by different ratio of polyox grades and optimization of coating of (i) sub-coating build-up with hydroxy ethyl cellulose (HEC) and (ii).enteric coating build-up with cellulose acetate (CA). Some important influence factors such as different core tablet compositions and different coating solution ingredients involved in the formulation procedure were investigated. The optimization of formulation and process was conducted by comparing different in vitro release behaviours of Paliperidone. In vitro dissolution studies of Innovator sample (Invega) with formulations of different release rate which ever close release pattern during the whole 24 h test is finalized.

  8. Correlation of dissolution and disintegration results for an immediate-release tablet.

    Science.gov (United States)

    Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming

    2018-02-20

    The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes.

    Science.gov (United States)

    Kulinowski, Piotr; Dorozyński, Przemysław; Jachowicz, Renata; Weglarz, Władysław P

    2008-11-04

    Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.

  10. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities.

    Science.gov (United States)

    Sechi, Mario; Syed, Deeba N; Pala, Nicolino; Mariani, Alberto; Marceddu, Salvatore; Brunetti, Antonio; Mukhtar, Hasan; Sanna, Vanna

    2016-11-01

    The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems. Results showed NPs having a mean diameter of 140-200nm, and a percent loading of FS ranging from 70 to 82%. In vitro release studies revealed that NPs are able to protect and preserve the release of FS in gastric simulated conditions, also controlling the release in the intestinal medium. Moreover, the DPPH and ABTS scavenging capacity of FS, as well as α-glucosidase inhibition activity, that resulted about 20-fold higher than commercial Acarbose, were retained during nanoencapsulation process. In summary, our developed NPs can be proposed as an attractive delivery system to control the release of antioxidant and anti-hyperglycemic FS for nutraceutical and/or therapeutic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Microemulsion-Based Mucoadhesive Buccal Wafers: Wafer Formation, In Vitro Release, and Ex Vivo Evaluation.

    Science.gov (United States)

    Pham, Minh Nguyet; Van Vo, Toi; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2017-10-01

    Microemulsion has the potentials to enhance dissolution as well as facilitate absorption and permeation of poorly water-soluble drugs through biological membranes. However, its application to govern a controlled release buccal delivery for local treatment has not been discovered. The aim of this study is to develop microemulsion-based mucoadhesive wafers for buccal delivery based on an incorporation of the microemulsion with mucoadhesive agents and mannitol. Ratio of oil to surfactant to water in the microemulsion significantly impacted quality of the wafers. Furthermore, the combination of carbopol and mannitol played a key role in forming the desired buccal wafers. The addition of an extra 50% of water to the formulation was suitable for wafer formation by freeze-drying, which affected the appearance and distribution of carbopol in the wafers. The amount of carbopol was critical for the enhancement of mucoadhesive properties and the sustained drug release patterns. Release study presented a significant improvement of the drug release profile following sustained release for 6 h. Ex vivo mucoadhesive studies provided decisive evidence to the increased retention time of wafers along with the increased carbopol content. The success of this study indicates an encouraging strategy to formulate a controlled drug delivery system by incorporating microemulsions into mucoadhesive wafers.

  12. In vitro transdermal delivery of propranolol hydrochloride through rat skin from various niosomal formulations

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-09-01

    Full Text Available   Objective(s: The purpose of the present study was to prepare and to evaluate a novel niosome as transdermal drug delivery system for propranolol hydrochloride and to compare the in vitro efficiency of niosome by either thin film hydration or hand shaking method.   Materials and Methods: Niosomes were prepared by Thin Film Hydration (TFH or Hand Shaking (HS method. Propranolol niosomes were prepared using different surfactants (span20, 80 ratios and a constant cholesterol concentration. In vitro characterization of niosomes included microscopical observation, size distribution, laser light scattering evaluation, stability of propranolol niosomes and permeability of formulations in phosphate buffer (pH=7 through rat abdominal skin. Results: The percentage of entrapment efficiency (%EE increased with increase in surfactant concentration in all formulations. Among them, F3 formulation (containing span80:cholesterol ratio of 3:1 showed the highest entrapment efficiency (86.74±2.01%, Jss (6.33μg/cm2.h and permeability coefficient ( . By increasing the percentage of entrapment efficiency (resulting in increase in surfactant concentration, the drug released time is not prolonged. Among all the formulations, F4 needed more time for maximum drug release. Among these formulations, F4 was also found to have the maximum vesicle size as compared to other formulations. It was observed that niosomal suspension prepared from span 80 was more stable than span 20. Conclusion: This study demonstrates that niosomal formulations may offer a promise transdermal delivery of propranolol which improves drug efficiency and can be used for controlled delivery of propranolol

  13. Influence of Differing Analgesic Formulations of Aspirin on Pharmacokinetic Parameters

    Directory of Open Access Journals (Sweden)

    Kunal Kanani

    2015-08-01

    Full Text Available Aspirin has been used therapeutically for over 100 years. As the originator and an important marketer of aspirin-containing products, Bayer’s clinical trial database contains numerous reports of the pharmacokinetics of various aspirin formulations. These include evaluations of plain tablets, effervescent tablets, granules, chewable tablets, and fast-release tablets. This publication seeks to expand upon the available pharmacokinetic information concerning aspirin formulations. In the pre-systemic circulation, acetylsalicylic acid (ASA is rapidly converted into its main active metabolite, salicylic acid (SA. Therefore, both substances are measured in plasma and reported in the results. The 500 mg strength of each formulation was chosen for analysis as this is the most commonly used for analgesia. A total of 22 studies were included in the analysis. All formulations of 500 mg aspirin result in comparable plasma exposure to ASA and SA as evidenced by AUC. Tablets and dry granules provide a consistently lower Cmax compared to effervescent, granules in suspension and fast release tablets. Effervescent tablets, fast release tablets, and granules in suspension provide a consistently lower median Tmax compared to dry granules and tablets for both ASA and SA. This report reinforces the importance of formulation differences and their impact on pharmacokinetic parameters.

  14. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    Science.gov (United States)

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  15. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    Science.gov (United States)

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of

  16. Controlled release of curcumin from poly(HEMA-MAPA) membrane.

    Science.gov (United States)

    Caka, Müşerref; Türkcan, Ceren; Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2017-05-01

    In this work, poly(HEMA-MAPA) membranes were prepared by UV-polymerization technique. These membranes were characterized by SEM, FTIR, and swelling studies. Synthesized membranes had high porous structure. These membranes were used for controlled release of curcumin which is already used as folk remedy and used as drug for some certain diseases and cancers. Curcumin release was investigated for various pHs and temperatures. Optimum drug release yield was found to be as 70% at pH 7.4 and 37 °C within 2 h period. Time-depended release of curcumin was also investigated and its slow release from the membrane demonstrated within 48 h.

  17. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs.

    Science.gov (United States)

    Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san

    2011-05-30

    The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

    Science.gov (United States)

    Karkossa, Frank; Klein, Sandra

    2017-10-01

    The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.

  19. Controlled Pesticide Release from Porous Composite Hydrogels Based on Lignin and Polyacrylic Acid

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2016-01-01

    Full Text Available For the controlled release of pesticides, a novel composite porous hydrogel (LBPAA was prepared based on lignin and polyacrylic acid for use as the support frame of a pore structure for water delivery. The LBPAA was analyzed to determine its water-swelling and slow release properties. The controlled release properties of LBPAA were evaluated through experiments in relation to the cumulative release of pesticides, with particular emphasis on environmental effects and release models. The porous LBPAA hydrogel showed improved properties compared to polyacrylic acid, and could therefore be considered an efficient material for application in controlled release systems in agriculture.

  20. Design, formulation and evaluation of caffeine chewing gum.

    Science.gov (United States)

    Aslani, Abolfazl; Jalilian, Fatemeh

    2013-01-01

    Caffeine which exists in drinks such as coffee as well as in drug dosage forms in the global market is among the materials that increase alertness and decrease fatigue. Compared to other forms of caffeine, caffeine gum can create faster and more prominent effects. In this study, the main goal is to design a new formulation of caffeine gum with desirable taste and assess its physicochemical properties. Caffeine gum was prepared by softening of gum bases and then mixing with other formulation ingredients. To decrease the bitterness of caffeine, sugar, aspartame, liquid glucose, sorbitol, manitol, xylitol, and various flavors were used. Caffeine release from gum base was investigated by mechanical chewing set. Content uniformity test was also performed on the gums. The gums were evaluated in terms of organoleptic properties by the Latin-Square design at different stages. After making 22 formulations of caffeine gums, F11 from 20 mg caffeine gums and F22 from 50 mg caffeine gums were chosen as the best formulation in organoleptic properties. Both types of gum released about 90% of their own drug content after 30 min. Drug content of 20 and 50 mg caffeine gum was about 18.2-21.3 mg and 45.7-53.6 mg respectively. In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release) were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  1. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  2. Formulation and quality control of a topical gel product for treatment of melasmaFormulation and quality control of a topical gel product for treatment of melasma

    Directory of Open Access Journals (Sweden)

    A. Ketabi

    2017-11-01

    Full Text Available Background and objectives: Melasma is one of the most common pigmentary disorders. It has a considerable impact on quality of life. The treatment of melasma has still remained a challenge because the efficient treatment has not been proven until now and there is still a need to find new depigmenting products.Allium cepa L. and Cucumis melo L. seeds as well as tragacanth have been introduced in Iranian traditional medicine (ITM as depigmenting agents. Moreover, modern studies have shown their antioxidant and inhibitory mushroom tyrosinase effect.In this study, a topical gel containing Allium cepa L. and Cucumis melo L. seeds extract was prepared with tragacanth and quality control evaluations have been accomplished. Method: After performing quality control of plants seeds and tragacanth according to pharmacopoeia, the ethanol extract of A. cepa and hydroalcoholic extract of C. melo seeds were prepared. An appropriate gel formulation was selected on the base of suitable viscosity. The gel product was formulated using 5% of each plant extracts in tragacanth gel base. In addition, the herbal gel was evaluated using pharmaceutical behavior such as physical appearance, pH, viscosity, spreadability as well as phenolics content. Results: The herbal gel product showed acceptable pharmaceutical behavior as well as considerable phenolic content (1.43±0.01 mg/g. Conclusion: The prepared topical gel product could be a good natural formulation candidate for clinical studies in the field of hyperpigmentation. Moreover, phenolic content of the product could be considered as an indicator for its quality control.

  3. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films.

    Science.gov (United States)

    Chen, Xi; Lee, Dong Sun; Zhu, Xuntao; Yam, Kit L

    2012-04-04

    This paper investigated the feasibility of manipulating packaging polymers with various degrees of hydrophobicity to release two antioxidants, tocopherol and quercetin, at rates suitable for long-term inhibition of lipid oxidation in food. For example, one antioxidant can be released at a fast rate to provide short-term/intermediate protection, whereas the other antioxidant can be released at a slower rate to provide intermediate/long-term protection of lipid oxidation. Controlled-release packaging films containing tocopherol and quercetin were produced using ethylene vinyl alcohol (EVOH), ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), and polypropylene (PP) polymers; the release of these antioxidants to 95% ethanol (a fatty food simulant) was measured using UV-vis spectrophotometry, and Fickian diffusion models with appropriate initial and boundary conditions were used to fit the data. For films containing only quercetin, the results show that the release of quercetin was much faster but lasted for a much shorter time for hydrophilic polymers (EVOH and EVA) than for hydrophobic polymers (LDPE and PP). For binary antioxidant films containing tocopherol and quercetin, the results show that tocopherol released more rapidly but for a shorter period of time than quercetin in LDPE and EVOH films, and the difference is more pronounced for LDPE films than EVOH films. The results also show the presence of tocopherol can accelerate the release of quercetin. Although none of the films produced is acceptable for long-term lipid oxidation inhibition, the study provides encouraging results suggesting that acceptable films may be produced in the future using polymer blend films.

  4. Formulation optimization of gentamicin loaded Eudragit RS100 microspheres using factorial design study.

    Science.gov (United States)

    Singh, Deependra; Saraf, Swarnlata; Dixit, Vinod Kumar; Saraf, Shailendra

    2008-04-01

    Gentamicin-Eudragit RS100 microspheres were prepared by modified double emulsion method. A 3(2) full factorial experiment was designed to study the effects of the composition of outer aqueous phase in terms of amount of glycerol (viscosity effect) and sodium chloride (osmotic pressure gradient effect) on the entrapment efficiency and % yield and microsphere size. The results of analysis of variance test for responses measured indicated that the test is significant (p>0.05). The contribution of sodium chloride concentration was found to be higher on entrapment efficiency and % yield, whereas glycerol produced significant effect on the mean diameter of microspheres. Microspheres demonstrated spherical particles in the size range of 33.24-60.43 microm. In vitro release profile of optimized formulation demonstrated sustained release for 24 h following Higuchi kinetics. Finally, drug bioactivity was found to remain intact after microencapsulation. Response surface graphs are presented to examine the effects of independent variables on the responses studied. Thus, by formulation design important parameters affecting formulation characteristics of gentamicin loaded Eudragit RS100 microspheres can be identified for controlled delivery with desirable characters in terms of maximum entrapment and yield.

  5. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...

  6. Immobilization and controlled release of drug using plasma polymerized thin film

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung-Woon [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Sunchon 540-742 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of)

    2015-06-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release.

  7. Immobilization and controlled release of drug using plasma polymerized thin film

    International Nuclear Information System (INIS)

    Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release

  8. [New research on the significance of polymers in pharmaceutical formulations].

    Science.gov (United States)

    Amighi, K

    2001-01-01

    During these last few decades, a lot of work has been made in pharmaceutical area in order to control the drug delivery from various pharmaceutical dosage forms. The use of polymers in pharmaceutical technology have led to the development of the first drug delivery systems proposed in order to prolong or to delay the drug delivery, or to enhance drug release for drugs showing bioavailability shortcomings. The wide range of polymers available for pharmaceutical use, their low reactivity towards drugs and other formulation ingredients and their safe nature, have permitted a widespread use of polymers to improve manufacturing processes or for the formulation of pharmaceutical dosage forms for various administration routes. More over, the preparation of new polymeric materials by the synthesis of new polymers with unique properties or by the modification of available natural or synthetic polymers, offer to the formulator a wide range of applications in order to optimise the drug delivery for each specific case.

  9. Control of Black Rot Disease in Tomato Fruits by Using Formulated Ginger Essential oil Treated by Gamma Radiation

    International Nuclear Information System (INIS)

    Helal, I.M.; Abdeldaiem, M.H.

    2008-01-01

    Ginger essential oil (Zingiber officinale) treated by gamma radiation at dose of 10 kGy was selected as an active ingredient for formulation of the biocide. Liquid formulations (emulsifiable concentrates) were prepared using different emulsifiers (Emulgator B.L.M. and tween 80 or tween 20) and additive oil (soybean oil). Physicochemical properties of the formulated oil (spontaneous emulsification, emulsion stability; cold stability and heat stability, viscosity, surface tension and ph) were measured. The formulated oil was tested in vivo to investigate its efficiency for controlling the growth of Alternaria alternata inoculated into tomato fruits. The results indicated that soaking inoculated tomato fruits in the formulated oil (ginger essential oil + soybean oil + emulgator B.L.M. + tween 80) treatment at concentration of 300 ppm for a period of 12 minute was the most effective for controlling the growth of the tested fungus. In addition, the formulated oil had efficiency for controlling the rot development on tomato fruits when applied as therapeutic and protective agents

  10. Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel.

    Science.gov (United States)

    Ozeki, Tetsuya; Kaneko, Daiki; Hashizawa, Kosuke; Imai, Yoshihiro; Tagami, Tatsuaki; Okada, Hiroaki

    2012-05-10

    A local drug delivery system based on sustained drug release is an attractive approach to treat brain tumors. We have developed a novel device using drug-incorporated poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in thermoreversible gelation polymer (TGP) formulation (drug/PLGA/TGP formulation). TGP forms a gel at body temperature but sol at room temperature. Therefore, when this formulation is injected into the brain tumor, the PLGA microspheres in TGP gel are localized at the injection site and do not diffuse throughout the brain tissue; eventually, sustained drug release from PLGA microspheres is achieved at the target site. In this study, two chemotherapeutic drugs (camptothecin (CPT) or vincristine (VCR)) were incorporated into PLGA microspheres to prepare drug/PLGA/TGP formulations. VCR/PLGA microspheres exhibited the higher encapsulation efficiency than CPT/PLGA microspheres (70.1% versus 30.1%). In addition, VCR/PLGA microspheres showed a higher sustained release profile than CPT/PLGA microspheres (54.5% versus 72.5% release, at 28 days). Therapeutic effect (mean survival) was evaluated in the C6 rat glioma model (control group, 18 days; CPT/PLGA/TGP treatment group, 24 days; VCR/PLGA/TGP treatment group, 33 days). In particular, the VCR/PLGA/TGP formulation produced long-term survivors (>60 days). Therefore, this formulation can be therapeutically effective formulation for the glioma therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  12. Optimization and Formulation of Orodispersible Tablets of Meloxicam

    African Journals Online (AJOL)

    ... 98.5% and fast drug release rate of 99.5% within 30 min, as compared with the conventional tablet (49.5%) . Conclusion: It is feasible to formulate orodispersible tablets of meloxican with acceptable disintegration time, rapid drug release and good hardness, which could be amenable to replication on an industrial scale.

  13. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued

  14. Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying.

    Science.gov (United States)

    Kim, Sun J; Kim, Chan W

    2016-02-01

    The purpose of this study was to develop and characterize a sodium hyaluronate microparticle-based sustained release formulation of recombinant human growth hormone (SR-rhGH) prepared by spray-drying. Compared to freeze-drying, spray-dried SR-rhGH showed not only prolonged release profiles but also better particle property and injectability. The results of size-exclusion high-performance liquid chromatography showed that no aggregate was detected, and dimer was just about 2% and also did not increase with increase of inlet temperature up to 150 °C. Meanwhile, the results of reversed-phase high-performance liquid chromatography revealed that related proteins increased slightly from 4.6% at 100 °C to 6.3% at 150 °C. Thermal mapping test proved that product temperature did not become high to cause protein degradation during spray-drying because thermal energy was used for the evaporation of surface moisture of droplets. The structural characterization by peptide mapping, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and circular dichroism revealed that the primary, secondary, and tertiary structures of rhGH in SR-rhGH were highly comparable to those of reference somatropin materials. The biological characterization by rat weight gain and cell proliferation assays provided that bioactivity of SR-rhGH was equivalent to that of native hGH. These data establish that spray-dried SR-rhGH is highly stable by preserving intact rhGH and hyaluronate microparticle-based formulation by spray-drying can be an alternative delivery system for proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Formulation and evaluation of antipsoriatic gel using natural excipients

    OpenAIRE

    Raghupatruni Jhansi Laxmi; R. Karthikeyan; P. Srinivasa Babu; R.V.V. Narendra Babu

    2013-01-01

    Objective: To develop topical gel formulations of Psoralen using natural excipients to minimize the side effects of synthetic drugs. Methods: The Psoralen gel formulations were prepared using different natural gums and polymers. The physicochemical compatibility between Psoralen and other excipients was confirmed by using Fourier transform infrared spectroscopy. All prepared gel formulations were evaluated for drug content uniformity, viscosity, pH, and stability. The release of psoralen f...

  16. Controlled release from drug microparticles via solventless dry-polymer coating.

    Science.gov (United States)

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Use of fibrin sealants for the localized, controlled release of cefazolin

    Science.gov (United States)

    Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.

    2006-01-01

    Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573

  18. Treatment-Continuity of ADHD Compared Using Immediate-Release and Extended-Release MPH

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-07-01

    Full Text Available The continuity of methylphenidate (MPH therapy for ADHD in young Medicaid beneficiaries (ages 6 to 17 years treated with immediate-release (IR or extended-release (ER MPH formulations was compared in an analysis of statewide California Medicaid claims (2000-2003 conducted at Columbia University, New York; University of Pennsylvania, Philadelphia; and McNeil Pharmaceuticals, Fort Washington, PA.

  19. Formulation and optimization of chronomodulated press-coated tablet of carvedilol by Box–Behnken statistical design

    Directory of Open Access Journals (Sweden)

    Satwara RS

    2012-08-01

    Full Text Available Rohan S Satwara, Parul K PatelDepartment of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, Gujarat, IndiaObjective: The primary objective of the present investigation was to formulate and optimize chronomodulated press-coated tablets to deliver the antihypertensive carvedilol at an effective quantity predawn, when a blood pressure spike is typically observed in most hypertensive patients.Experimental work: Preformulation studies and drug excipient compatibility studies were carried out for carvedilol and excipients. Core tablets (6 mm containing carvedilol and 10-mm press-coated tablets were prepared by direct compression. The Box–Behnken experimental design was applied to these press-coated tablets (F1–F15 formula with differing concentrations of rate-controlling polymers. Hydroxypropyl methyl cellulose K4M, ethyl cellulose, and K-carrageenan were used as rate-controlling polymers in the outer layer. These tablets were subjected to various precompression and postcompression tests. The optimized batch was derived both by statistically (using desirability function and graphically (using Design Expert® 8; Stat-Ease Inc. Tablets formulated using the optimized formulas were then evaluated for lag time and in vitro dissolution.Results and discussion: Results of preformulation studies were satisfactory. No interaction was observed between carvedilol and excipients by ultraviolet, Fourier transform infrared spectroscopy, and dynamic light scattering analysis. The results of precompression studies and postcompression studies were within limits. The varying lag time and percent cumulative carvedilol release after 8 h was optimized to obtain a formulation that offered a release profile with 6 h lag time, followed by complete carvedilol release after 8 h. The results showed no significant bias between predicted response and actual response for the optimized formula.Conclusion: Bedtime dosing of chronomodulated press-coated tablets may offer a

  20. Development of theophylline sustained release dosage form based on Kollidon SR.

    Science.gov (United States)

    Reza, Md Selim; Quadir, Mohiuddin Abdul; Haider, Syed Shabbir

    2002-01-01

    Sustained release theophylline matrix tablets constituting Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer) were developed in this study in an attempt to design a dosage form that manifests desirable release profile and thorough adherence to official monographs. Four matrix tablet formulations were prepared by dry blending and direct compression of Kollidon SR and HPMC-15cps (hydroxypropylmethylcellulose) in varying proportion with fixed percentage of theophylline. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release with an initial burst effect. Incorporation of HPMC-15cps in the matrix tablet prolonged the release of drug with subsequent minimization of burst effect as confirmed by mean dissolution time, T50 and Higuchi release rate data. Among the batches containing HPMC-15 cps, a direct relationship was obtained between release rate and the percentage of HPMC used. A suitable controlled release profile was obtained with the matrix tablets containing 20% Kollidon SR and 30% HPMC-15cps. The formulation showed close resemblance to commercial products and compliance with USP specification. The results were explored and explained by the difference of physico-chemical property and hydration characteristics of the polymers. In addition to this result, the exponential model was applied to characterize the drug release behaviour from polymeric systems. It was found that, Fickian release is predominant in tablets containing Kollidon SR alone and non-Fickian mechanism plays an important role in the release of drug from HPMC containing tablets with a trend towards zero-order or case II release. In vitro release profile of two commercial brands were also undertaken for comparison and modulation of the experimental batches.

  1. A new LP formulation of the admission control problem modelled as an MDP under average reward criterion

    Science.gov (United States)

    Pietrabissa, Antonio

    2011-12-01

    The admission control problem can be modelled as a Markov decision process (MDP) under the average cost criterion and formulated as a linear programming (LP) problem. The LP formulation is attractive in the present and future communication networks, which support an increasing number of classes of service, since it can be used to explicitly control class-level requirements, such as class blocking probabilities. On the other hand, the LP formulation suffers from scalability problems as the number C of classes increases. This article proposes a new LP formulation, which, even if it does not introduce any approximation, is much more scalable: the problem size reduction with respect to the standard LP formulation is O((C + 1)2/2 C ). Theoretical and numerical simulation results prove the effectiveness of the proposed approach.

  2. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    Science.gov (United States)

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems.

    Science.gov (United States)

    Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten

    2009-01-05

    The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.

  4. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  5. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  6. Improvement of waste release control in French NPP

    International Nuclear Information System (INIS)

    Samson, T.; Lucquin, E.; Dupin, M.; Florence, D.; Grisot, M.

    2002-01-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  7. Improvement of waste release control in French NPP

    Energy Technology Data Exchange (ETDEWEB)

    Samson, T.; Lucquin, E.; Dupin, M. [EDF/GDL (France); Florence, D. [EDF/GENV (France); Grisot, M. [EDF/CNPE Saint Laurent (France)

    2002-07-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  8. Dissolution stability studies of suspensions of prolonged-release diclofenac microcapsules prepared by the Wurster process: I. Eudragit-based formulation and possible drug-excipient interaction.

    Science.gov (United States)

    Adeyeye, M C; Mwangi, E; Katondo, B; Jain, A; Ichikawa, H; Fukumori, Y

    2005-06-01

    The aim was to evaluate possible interaction in solid and liquid state of the drug with formulation excipients consequent to very fast drug release of diclofenac-Eudragit prolonged release microcapsules. The microcapsules were prepared by drug layering on calcium carbonate cores and coated with Eudragit RS 30D and L30D-55 as previously reported. Suspension of the microcapsules was prepared using microcrystalline cellulose/sodium carboxymethyl cellulose (Avicel CL-611) as medium. In vitro dissolution testing of the suspension was done, and, based on the dissolution results, possible interaction between diclofenac and Eudragit and Avicel in the medium was studied. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses were performed using 1:1 binary, 1:1:1 ternary mixtures and a ratio equivalent to that in the formulation. The mixtures were prepared by mixing the dispersions--Eudragit RS 30D or L30D-55 with the drug or other components, followed by drying at 60 degrees C for 48 h. Dry mixing was done using the powder equivalents of the polymers, Eudragit RS PO and L100-55, Avicel and calcium carbonate. In vitro dissolution of the suspended microcapsules showed a very fast release after 48 h (T50 = microcapsules (T50 = 6 h). DSC curves of the formulation components or microcapsules did not show the characteristic endothermic peak of diclofenac at 287 degrees C. Powder X-ray diffraction of the binary or ternary mixtures of diclofenac and Eudragit polymers indicated reduction, shift or modification of the crystalline peaks of the drug or excipients at 2theta of 12 degrees and 18 degrees , suggestive of interaction. Some changes in drug peak characteristics at 18 degrees and 23 degrees were observed for Avicel/drug mixture, though not significant. The DSC curves of the binary mixture of diclofenac co-dried with liquid forms of Eudragit (i.e. RS 30D or L30D-55) revealed greater interaction compared to the curves of drug and powdered forms of

  9. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    International Nuclear Information System (INIS)

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-01-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and 1 H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  10. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jalvandi, Javid, E-mail: Javid.jlv@gmail.com [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); White, Max, E-mail: tamrak@bigpond.com [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Gao, Yuan, E-mail: Yuan.Gao@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Truong, Yen Bach, E-mail: Yen.truong@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Padhye, Rajiv, E-mail: rajiv.padhye@rmit.edu.au [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Kyratzis, Ilias Louis, E-mail: Louis.kyratzis@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and {sup 1}H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  11. Formulation and Characterization of Biodegradable Medicated ...

    African Journals Online (AJOL)

    PEG)-600, tributyl citrate, PEG-200, PEG-300, PEG-400, PEG-4000, triethyl citrate and castor oil. The gum formulations were characterized for the following parameters: texture profile analysis (TPA), biodegradation, in vitro drug release using a ...

  12. Controlled drug release from bifunctionalized mesoporous silica

    Science.gov (United States)

    Xu, Wujun; Gao, Qiang; Xu, Yao; Wu, Dong; Sun, Yuhan; Shen, Wanling; Deng, Feng

    2008-10-01

    Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.

  13. Controlled antiseptic release by alginate polymer films and beads.

    Science.gov (United States)

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. HABIT, Toxic and Radioactive Release Hazards in Reactor Control Room

    International Nuclear Information System (INIS)

    Stage, S.A.

    2005-01-01

    1 - Description of program or function: HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. 2 - Methods: Given information about the design of a nuclear power plant, a scenario for the release of toxic or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel

  15. Ispaghula Husk-Based Extended Release Tablets of Diclofenac ...

    African Journals Online (AJOL)

    Purpose: To formulate extended-release tablets of diclofenac sodium based on ispaghula husk. Methods: Tablets with varying proportions of diclofenac sodium and ispaghula husk were formulated by wet granulation technique at a fixed compression force of 10 kN. The formulated tablets were evaluated for ...

  16. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

    Science.gov (United States)

    Keshavarz, M; Kaffashi, B

    2014-12-01

    The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations.

  17. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  18. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent

    Directory of Open Access Journals (Sweden)

    Kura AU

    2013-03-01

    Full Text Available Aminu Umar Kura,1 Samer Hasan Hussein Al Ali,2 Mohd Zobir Hussein,3 Sharida Fakurazi,1,4 Palanisamy Arulselvan11Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 4Faculty of Medicine and Health Science, Pharmacology Unit, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: A new layered organic–inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl alanine (levodopa, intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nanocomposite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w. A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.Keywords: levodopa, layered double hydroxides, coprecipitation, sustained release

  19. Inclusion of Whole Flour from Latin-American Crops into Bread Formulations as Substitute of Wheat Delays Glucose Release and Uptake.

    Science.gov (United States)

    Laparra, José Moisés; Haros, Monika

    2018-03-01

    Bakery formulations limiting glucose availability for uptake without compromising product quality are required. Herein, bread formulations containing whole flour from Amaranthus hypochondriacus (AB), Chenopodium quinoa (QB), Salvia hispanica L (ChB) or wheat (WWB) were compared to white bread (WB) for glycaemic index (GI) in fasted animals. The hepatic expression (mRNA) of PPAR-γ receptor as key regulator in substrate fractionation towards energy expenditure was monitored. GIs were associated to fluxes of glucose release (F Gluc ) and metabolic response (MTT assay) of HepG2 cells. ChB (19.7%) and AB (13.5%) decreased GI to a higher extent than QB (2.7%), but all increased expression of PPARγ in relation to WB. F Gluc (AB> > ChB, WWB, WB > QB) showed a reciprocal relationship with the area under curve (AUC) in vivo, and decreased MTT conversion values (WB > WWB, ChB, AB, QB) by HepG2 cells. Thus, inclusion of latin-american crops (LAcs) reducing GI, without compromising bread quality, could help preventing metabolic diseases.

  20. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    Science.gov (United States)

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  1. Formulation and quality control of a poly herbal tranquilizer syrup

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Herbal drugs are rapidly becoming popular in recent years as alternative therapies. Numerous poly herbal formulations, which are combinations of different herbal materials/extracts are being used for prevention or treatment of various disorders. The present research has been undertaken to formulate and evaluate the quality of a tranquilizing syrup based on Iranian traditional medicine references. Methods: A decoction containing Echium amoenum L., Lavandula spp. L., Melissa officinalis L., Cuscuta chinensis Lam, Vitis venifera L.,Prunus domestica and Alhagi camelorum Fisch.was prepared and then filtered. The filtrate was concentrated and different sweeteners and flavoring agents including, brown sugar, honey, masking flavor, sucralose, lemon and orange essential oil were examined to cover the unpleasant taste of the product caused by Cuscuta chinensis. Finally,sucralose was found to be beneficent to cover the unpleasant taste. The final product was evaluated physicochemically and microbiologically according to standard protocols. Results: The results of the quality control assessments demonstrated that the color, odor, microbial and physicochemical characteristics of the syrup were acceptable. Conclusion: The formulated syrup can be examined in in vivo and clinical studies as a tranquilizer with respect to its tranquilizing herbal content.

  2. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie [State Key Laboratory of Coordination Chemistry, MOE Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)], E-mail: wangzl@nju.edu.cn, E-mail: jjzhu@nju.edu.cn

    2009-04-22

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe{sub 3}O{sub 4} nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  3. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    International Nuclear Information System (INIS)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie

    2009-01-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe 3 O 4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  4. Novel jojoba oil-based emulsion gel formulations for clotrimazole delivery.

    Science.gov (United States)

    Shahin, Mostafa; Hady, Seham Abdel; Hammad, Mohammed; Mortada, Nahed

    2011-03-01

    Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37 °C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended. © 2011 American Association of Pharmaceutical Scientists

  5. FERLENT - a controlled release fertilizer produced from a polymer material

    International Nuclear Information System (INIS)

    Gonzalez, Mayra; Arces, Milagros; Cuesta, Ernesto; Corredera, Pilar; Sardina, Carmen; Rieumont, Jacques; Quintana, Patricia; Bartolo, Pascual; Guenther, Bluma

    2011-01-01

    The possibility to use release controlled fertilizers in the agriculture of the tropical countries is more important than in the agriculture of the countries of the template regions. In this context, this work purpose the development of a new Fertilizer of Controlled Release named FERLENT, which was obtained starting from a polymeric material, under controlled conditions which allowed to corroborate the adjustment of the synthesis parameters under the modulate of nutrients liberation. It was characterized by, Scanning Microscopy Electron (SEM), Thermogravimetric analysis (TGA), Nuclear Magnetic Resonance (NMR) and infrared spectroscopy (FTIR). (author)

  6. Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs.

    Science.gov (United States)

    De Smet, Lieselotte; Saerens, Lien; De Beer, Thomas; Carleer, Robert; Adriaensens, Peter; Van Bocxlaer, Jan; Vervaet, Chris; Remon, Jean Paul

    2014-05-01

    The aim of the study is to increase the bioavailability of itraconazole (ITRA) using nanosized cocrystals prepared via wet milling of ITRA in combination with dicarboxylic acids. Wet milling was used in order to create a nanosuspension of ITRA in combination with dicarboxylic acids. After spray-drying and bead layering, solid state was characterized by MDSC, XRD, Raman and FT-IR. The release profiles and bioavailability of the nanococrystalline suspension, the spray-dried and bead layered formulation were evaluated. A monodisperse nanosuspension (549±51nm) of ITRA was developed using adipic acid and Tween®80. Solid state characterization indicated the formation of nanococrystals by hydrogen bounds between the triazole group of ITRA and the carboxyl group of adipic acid. A bioavailability study was performed in dogs. The faster drug release from the nanocrystal-based formulation was reflected in the in vivo results since Tmax of the formulations was obtained 3h after administration, while Tmax of the reference formulation was observed only 6h after administration. This fast release of ITRA was obtained by a dual concept: manufacturing of nanosized cocrystals of ITRA and adipic acid via wet milling. Formation of stable nanosized cocrystals via this approach seems a good alternative for amorphous systems to increase the solubility and obtain a fast drug release of BCS class II drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  8. Bioadhesive Controlled Release Clotrimazole Vaginal Tablets | Bhat ...

    African Journals Online (AJOL)

    Conclusion: This study indicates the possible use of suitable mixtures of natural and semi-synthetic cellulosic polymers for the preparation of clotrimazole mucoadhesive tablets for application as a vaginal controlled delivery system. Keywords: Clotrimazole, Swelling, Cellulosic polymers, Guar gum, Bioadhesion, Release ...

  9. Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release

    International Nuclear Information System (INIS)

    Kanungo, Ivy; Fathima, Nishter Nishad; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2013-01-01

    Formulation of biodegradable collagen–poly-ε-caprolactone (PCL) based biomaterials for the sustained release of insulin is the main objective of the present work. PCL has been employed to modulate the physico-chemical behavior of collagen to control the drug release. Designed formulations were employed to statistically optimize insulin release parameter profile at different collagen to PCL molar ratios. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to investigate the effect of PCL on hydration dynamics of the collagen molecule, which in turn changes the dissolution parameters of the drug from the systems. Drug entrapment efficiency has been found to be maximum for collagen to PCL molar ratio of 1:2 (> 90%). In vitro dissolution test reveals that 99% of the drug was released from composite at collagen to PCL molar ratio of 1:3 and 1:4 within 2 h, which indicates that hydrophobicity of the matrix results in weak interaction between lipophilic drug and carrier materials. The least burst release was observed for collagen to PCL molar ratio at 1:2 as synergistic interactions between collagen and PCL was maximum at that particular polymer–polymer ratios. The drug release data indicates super case-II transport of drug (n > 1.0). - Graphical abstract: Collagen–poly-ε-caprolactone based biomaterials for the sustained release of insulin were formulated. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to elucidate the effect of PCL on the structure of the collagen and in vitro drug release. The drug release data fitted to the kinetic model indicates super case-II transport due to the combination of diffusion and polymer relaxation/dissolution (n > 1.0). - Highlights: • Poly-ε-caprolactone influences physico-chemical behavior of collagen. • Poly-ε-caprolactone influences in vitro drug release mechanism from biocomposites.

  10. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chime, Salome Amarachi; Attama, Anthony Amaechi; Builders, Philip F; Onunkwo, Godswill C

    2013-01-01

    To formulate sustained-release diclofenac potassium-loaded solid lipid microparticles (SLMs) based on solidified reverse micellar solution (SRMS) and to evaluate the in vitro and in vivo properties. SRMS consisting of mixtures of Phospholipon® 90H and Softisan® 154 were used to formulate diclofenac potassium-loaded SLMs. Characterization based on the particle size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release was carried out in simulated intestinal fluid (pH 7.5). Anti-inflammatory and ulcerogenic properties were studied using rats. Maximum EE% of 95%, 94% and 93% were obtained for SLMs formulated with SRMS 1:1, 2:1 and 1:2, respectively. In vitro release showed about 85-90% drug release at 13 h. Diclofenac potassium-loaded SLMs showed good anti-inflammatory and gastro-protective properties. Diclofenac potassium-loaded SLMs based on SRMS could be used orally or parenterally under controlled conditions, for once daily administration.

  11. Formulation of enterosoluble microparticles for an acid labile protein.

    Science.gov (United States)

    Alavi, Ahmed Kashif; Squillante, Emilio; Mehta, Ketan A

    2002-01-01

    A microencapsulation method that preserves the activity of an acid labile protein was developed. Solvent evaporation technique that employed ICH class 2 and 3 solvents methanol and acetone, respectively to dissolve pH-sensitive Eudragit polymers was investigated. Total protein released and lactase activities were measured using the USP method A for enteric cores and optimized with respect to process parameters. The percentage yields and entrapment efficiencies were directly proportional to solid content. The mean percentage yield and entrapment efficiency of selected sample was 84 +/- 0.9% and 88 +/- 0.7%, respectively. The residual specific activity of lactase in the selected sample was 89% +/- 0.8 with a net activity loss of 2 +/- 0.28% and 4 +/- 0.52% under ambient and stressed storage, respectively. Dibutyl sebacate levels, lower processing temperatures and lower processing speeds were influential in modulating enzyme activity. The most important formulation factor affecting lactase stability was Eudragit type, followed in decreasing order by processing temperature, processing speed, and solid percentage. Reliable control of lactase release was achieved by microencapsulating the enzyme with pH-sensitive Eudragit L and S enteric polymers using either acetone- or methanol-based solvent but lactase activity was preserved only in acetone-based formulations.

  12. Formulation and evaluation of a bioadhesive patch for buccal delivery of tizanidine

    Directory of Open Access Journals (Sweden)

    Mohamed S. Pendekal

    2012-06-01

    Full Text Available Tizanidine hydrochloride (THCl is an antispasmodic agent which undergoes extensive first pass metabolism making it a possible candidate for buccal delivery. The aim of this study was to prepare a monolayered buccal patch containing THCl using the emulsification solvent evaporation method. Fourteen formulations were prepared using the polymers Eudragit® RS 100 or Eudragit® RL 100 and chitosan. Polymer solutions in acetone were combined with a THCl aqueous solution (in some cases containing chitosan by homogenization at 9000 rpm for 2 min in the presence of triethyl citrate as plasticizer and cast in novel Teflon molds. Physicochemical properties such as film thickness, in vitro drug release and in vitro mucoadhesion were evaluated after which permeation across sheep buccal mucosa was examined in terms of flux and lag time. Formulations prepared using a Eudragit® polymer alone exhibited satisfactory physicomechanical properties but lacked a gradual in vitro drug release pattern. Incorporation of chitosan into formulations resulted in the formation of a porous structure which did exhibit gradual release of drug. In conclusion, THCl can be delivered by a buccal patch formulated as a blend of Eudragit® and chitosan, the latter being necessary to achieve gradual drug release.

  13. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development.

    Science.gov (United States)

    Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S

    2010-10-04

    Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.

  14. Control of accidental releases of hydrogen selenide in vented storage cabinets

    Science.gov (United States)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  15. Delayed release formulation of the somatostatin analog RC-160 inhibits the growth hormone (GH) response to GH-releasing factor-(1-29)NH2 and decreases elevated prolactin levels in rats.

    Science.gov (United States)

    Bokser, L; Schally, A V

    1988-10-01

    Recently, we have developed a long-acting delivery system for our somatostatin (SS) analog RC-160 based on injectable microcapsules in poly-(D,L-lactide-coglycolide). We studied the capacity of this formulation to repeatedly block the GH secretion induced by administration of GRF-(1-29)NH2 (GRF) on different days. Male rats anesthetized with pentobarbital were injected iv with 2.5 micrograms/kg BW GRF-(1-29)NH2 or saline. Five minutes later, blood samples were taken for GH measurement, and the animals were injected im with RC-160 microcapsules at a dose calculated to release 25 micrograms/day of the analog for 7 days or with the vehicle. The GRF stimuli were repeated 48 h, 96 h, and 8 days after administration of SS analog in microcapsules. GRF administration increased GH levels at the four times tested (P less than 0.01) in the control group injected with vehicle, while RC-160 microcapsules inhibited the GH response for more than 96 h (P less than 0.01). The GH levels augmented by pentobarbital were also decreased by the RC-160 microcapsules (P less than 0.01). Animals treated with microcapsules showed smaller increases in their body weight than untreated rats (P less than 0.05). We also investigated the effect of RC-160 microcapsules on hyperprolactinemic female rats implanted with pituitary glands under the kidney capsules. High PRL levels in rats bearing pituitary grafts showed a significant decrease when measured 4 days after the administration of RC-160 microcapsules. These results demonstrate the efficacy of the long-acting delivery system of the SS analog RC-160 and suggest the possible clinical usefulness of this formulation for lowering GH and PRL levels.

  16. In-vitro release and permeation studies of ketoconazole from optimized dermatological vehicles using powder, nanoparticles and solid dispersion forms of drug

    Science.gov (United States)

    Mohammed, Irfan A.

    To optimize the clinical efficacy of Ketoconazole from an externally applied product, this project was undertaken to evaluate the drug release/permeation profile from various dermatological vehicles using regular powder, nanoparticles and solid dispersion forms with reduced level of drug. Nanoparticles of drug were prepared by wet media milling method using Polyvinylpyrrolidone (PVP-10K) as a stabilizer. The nanoparticles were in the size range of 250-300nm. Solid dispersion was prepared by solvent evaporation method using drug to PVP-10K at a weight ratio of (1:2). Formulations containing 1% w/w drug were developed using HPMC gel, Carbomer gel and a cationic cream as the vehicles. Penetration enhancers including propylene glycol (PG), dimethylsulfoxide (DMSO) and polyethylene glycol 400 (PEG-400) at various levels were evaluated. A commercial 2% w/w ketoconazole product was included as a control for comparison. Studies were carried out with Franz Diffusion Cells using cellulose membrane and human cadaver skin for two and six hour studies. Among the formulations evaluated, the general rank order of the drug release through the cellulose membrane was observed to be: HPMC gel base > Anionic gel base > Cationic gel base > Commercial product. The addition of penetration enhancers showed variable effects in all samples evaluated. However, the HPMC gel-based vehicle showed significant effect in enhancing the drug release in the presence of DMSO. The formulation containing 1% w/w ketoconazole and 20% w/w DMSO gave a maximum drug release of 20.21% when compared to only 1.60% from the commercial product. This represents a twelve fold increase in the release of ketoconazole from the formulation. Furthermore, when the optimum gel-based formulation containing 1% w/w ketoconazole was studied over an extended period of 6 hours, it gave 36.01% drug release from the sample formulation compared to only 2.00% from the commercial product. Finally, this formulation was selected to

  17. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release

    International Nuclear Information System (INIS)

    Yuan Peng; Southon, Peter D; Kepert, Cameron J; Liu Zongwen

    2012-01-01

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release. (paper)

  18. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release.

    Science.gov (United States)

    Yuan, Peng; Southon, Peter D; Liu, Zongwen; Kepert, Cameron J

    2012-09-21

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release.

  19. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films.

    Science.gov (United States)

    Hanif, Muhammad; Zaman, Muhammad

    2017-03-20

    Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl). Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X 1 ) and glycerol (X 2 ) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents. Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm -1 . The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman's reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters. In nutshell, TARX in combination with glycerolwas found

  20. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan.

    Science.gov (United States)

    Cevher, Erdal; Sensoy, Demet; Taha, Mohamed A M; Araman, Ahmet

    2008-01-01

    The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 +/- 4.16 and 41.17 +/- 2.34 micromol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.

  1. Formulation and Evaluation of Optimized Oxybenzone Microsponge Gel for Topical Delivery

    Directory of Open Access Journals (Sweden)

    Atmaram P. Pawar

    2015-01-01

    Full Text Available Background. Oxybenzone, a broad spectrum sunscreen agent widely used in the form of lotion and cream, has been reported to cause skin irritation, dermatitis, and systemic absorption. Aim. The objective of the present study was to formulate oxybenzone loaded microsponge gel for enhanced sun protection factor with reduced toxicity. Material and Method. Microsponge for topical delivery of oxybenzone was successfully prepared by quasiemulsion solvent diffusion method. The effects of ethyl cellulose and dichloromethane were optimized by the 32 factorial design. The optimized microsponges were dispersed into the hydrogel and further evaluated. Results. The microsponges were spherical with pore size in the range of 0.10–0.22 µm. The optimized formulation possesses the particle size and entrapment efficiency of 72 ± 0.77 µm and 96.9 ± 0.52%, respectively. The microsponge gel showed the controlled release and was nonirritant to the rat skin. In creep recovery test it had shown highest recovery indicating elasticity. The controlled release of oxybenzone from microsponge and barrier effect of gel result in prolonged retention of oxybenzone with reduced permeation activity. Conclusion. Evaluation study revealed remarkable and enhanced topical retention of oxybenzone for prolonged period of time. It also showed the enhanced sun protection factor compared to the marketed preparation with reduced irritation and toxicity.

  2. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  3. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rawson, Greg; Niño, Joe A.; Carson, Kenneth H. [Microencapsulation and Nanomaterials Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX (United States)

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.

  4. Method and apparatus for controlling accidental releases of tritium

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1980-01-01

    An improvement in a tritium control system based on a catalytic oxidation reactor is provided wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release

  5. Method and apparatus for controlling accidental releases of tritium

    Science.gov (United States)

    Galloway, Terry R. [Berkeley, CA

    1980-04-01

    An improvement in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release.

  6. Design and optimization of self-nanoemulsifying formulations for lipophilic drugs

    International Nuclear Information System (INIS)

    Zhao, Tianjing; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio; Chen, Jie; Chen, Bin

    2015-01-01

    The purpose of the current study was to develop and optimize novel self-nanoemulsifying drug delivery systems (SNEDDS) with a high proportion of essential oil as carriers for lipophilic drugs. Solubility and droplet size as a function of the composition were investigated, and a ternary phase diagram was constructed in order to identify the self-emulsification regions. The optimized SNEDDS formulation consisted of lemon essential oil (oil), Cremophor RH40 (surfactant) and Transcutol HP (co-surfactant) in the ratio 50:30:20 (v/v). Ibuprofen was chosen as the model drug. The droplet size, ζ-potential and stability of the drug-loaded optimized formulations were determined. The stability of SNEDDS was proved after triple freezing/thawing cycles and storage at 4 °C and 25 °C for 3 months. In vitro drug release studies of optimized SNEDDS revealed a significant increase of the drug release and release rate in comparison to the Ibuprofen suspension (80% versus approximately 40% in 2 h). The results indicated that these SNEDDS formulations could be used to improve the bioavailability of lipophilic drugs. (paper)

  7. Critical appraisal of extended-release hydrocodone for chronic pain: patient considerations

    Directory of Open Access Journals (Sweden)

    Gould HJ III

    2015-10-01

    Full Text Available Harry J Gould III,1,3–7 Dennis Paul1–8 1Department of Neurology, 2Department of Pharmacology and Experimental Therapeutics, 3Department of Internal Medicine, Section of Physical Medicine and Rehabilitation, 4Department of Anesthesiology, 5Neuroscience Center of Excellence, 6Center of Excellence for Oral and Craniofacial Biology, 7Pain Mastery Center of Louisiana, 8Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA Abstract: Opioid analgesics are currently the most effective pharmacologic option for the management of both acute and chronic forms of moderate-to-severe pain. Although the “as-needed” use of immediate-release formulations is considered optimum for treating acute, painful episodes of limited duration, the scheduled dosing of extended-release formulations with immediate-release supplementation for breakthrough pain is regarded to be most effective for managing chronic conditions requiring around-the-clock treatment. The recent introduction of extended-release formulations of the opioid analgesic hydrocodone potentially broadened the possibility of providing pain relief for individuals for whom current formulations are either ineffective or not tolerated. However, reaction to the approval of the new formulations has fueled controversy over the general safety and need for opioid medications, in light of their potential for misuse, abuse, diversion, and addiction. Here, we discuss how the approval of extended-release formulations of hydrocodone and the emotionally charged controversy over their release may affect physician prescribing and the care available to patients in need of chronic opioid therapy for the management of pain. Keywords: opioid analgesics, patient risks, patient benefits, misuse, addiction

  8. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets.

    Science.gov (United States)

    Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B

    2010-12-01

    Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.

  9. Development of an attract-and-kill co-formulation containing Saccharomyces cerevisiae and neem extract attractive towards wireworms.

    Science.gov (United States)

    Humbert, Pascal; Vemmer, Marina; Mävers, Frauke; Schumann, Mario; Vidal, Stefan; Patel, Anant V

    2017-12-27

    Wireworms (Coleoptera: Elateridae) are major insect pests of worldwide relevance. Owing to the progressive phasing-out of chemical insecticides, there is great demand for innovative control options. This study reports on the development of an attract-and-kill co-formulation based on Ca-alginate beads, which release CO 2 and contain neem extract as a bioinsecticidal compound. The objectives of this study were to discover: (1) whether neem extract can be immobilized efficiently, (2) whether CO 2 -releasing Saccharomyces cerevisiae and neem extract are suitable for co-encapsulation, and (3) whether co-encapsulated neem extract affects the attractiveness of CO 2 -releasing beads towards wireworms. Neem extract was co-encapsulated together with S. cerevisiae, starch and amyloglucosidase with a high encapsulation efficiency of 98.6% (based on measurement of azadirachtin A as the main active ingredient). Even at enhanced concentrations, neem extract allowed growth of S. cerevisiae, and beads containing neem extract exhibited CO 2 -emission comparable with beads without neem extract. When applied to the soil, the beads established a CO 2 gradient of >15 cm. The co-formulation containing neem extract showed no repellent effects and was attractive for wireworms within the first 24 h after exposure. Co-encapsulation of S. cerevisiae and neem extract is a promising approach for the development of attract-and-kill formulations for the control of wireworms. This study offers new options for the application of neem extracts in soil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Bioavailability of oxycodone after administration of a new prolonged-release once-daily tablet formulation in healthy subjects, in comparison to an established twice-daily tablet
.

    Science.gov (United States)

    Scheidel, Bernhard; Maritz, Martina A; Gschwind, Yves J; Steigerwald, Kerstin; Guth, Volker; Kovacs, Peter; Rey, Helene

    2017-11-01

    To evaluate and to compare the bioavailability, the influence of food intake on the bioavailability, and the safety and tolerability of a newly-developed oxycodone once-daily (OOD) prolonged-release tablet with an established oxycodone twice-daily (OTD) prolonged-release tablet after single-dose administration under fasting or fed conditions as well as after multiple-dose administration. Three single-center, open-label, randomized, balanced, two-treatment, two-period, two-sequence crossover studies were conducted. In each study, 36 healthy volunteers were randomized to receive 10 mg oxycodone daily as OOD (oxycodone HCL 10-mg PR tablets XL (Develco Pharma Schweiz AG, Pratteln, Switzerland); administration of 1 tablet in the morning) or as OTD (reference formulation: oxygesic 5-mg tablets (Mundipharma GmbH, Limburg an der Lahn, Germany); administration of 1 tablet in the morning and 1 tablet in the evening). Tablets were administered once daily or twice daily under fasting conditions (study 1) or under fed conditions (study 2) as well as after multiple-dose administration (study 3). A sufficient number of blood samples were taken for describing plasma profiles and for calculation of pharmacokinetic parameters. Plasma concentrations of oxycodone were determined by LC-MS/MS. Safety and tolerability were monitored and assessed in all three studies. Plasma profiles of OOD reveal sustained concentrations of oxycodone over the complete dosing interval of 24 hours. In comparison to the OTD reference formulation, the OOD test formulation showed a slightly slower increase of concentrations within the absorption phase and similar plasma concentrations at the maximum and at the end of the dosing interval (24 hours). Extent of bioavailability (AUC), maximum plasma concentrations (Cmax), and plasma concentrations at the end of the dosing interval (Cτ,ss,24h) of OOD could be classified as comparable to OTD considering 90% confidence intervals (CIs) and acceptance limits of 80

  11. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  12. Potential application of surfactant systems in formulation of dosage forms with slightly soluble substances

    Directory of Open Access Journals (Sweden)

    Ibrić Svetlana R.

    2012-01-01

    Full Text Available In order to achieve fast release of ibuprofen, slightly soluble model substance (0.52104 mol/l, surfactant systems for oral use with different PEG-40 hydrogenated castor oil (C/diethylene glycol monoethyl ether (T ratios were investigated. Comparison between dissolution profiles for ibuprofen from formulated systems and from two commercial products, film tablets and soft capsules, is presented in this paper. Photon correlation spectroscopy has shown that after high dilution with water, surfactant systems were able to form micellar solutions. The size of micelles varies from 14.8 ± 0,075 nm to 16.2 ± 0,021 nm with increasing C/T ratio from 1:2 to 2:1. Although with increasing content of PEG-40 hydrogenated castor oil larger micelles have formed, lower values of polydispersity index indicated that more homogeneous distribution of micelles size was gained. Conductometric analysis has demonstrated that system composing of C/T ratio 2:1, has shown most pronounced interaction between droplets, which can be seen as high rise of electrical conductivity with increasing water content (% (wwater/wtotal in the sample. No significant difference in percolation threshold between formulations with different C/T ratios was observed. Different surfactant systems were adsorbed on magnesium aluminometasilicate, as adsorbent with high specific active surface (≈300 m2/g, in order to investigate potential influence of adsorbent on ibuprofen dissolution rate. Formulated systems, with or without adsorbent were filled in hard gelatin capsules. The dissolution profiles of ibuprofen from different formulations were obtained in 30 minutes by dissolution apparatus with rotating baskets and compared with dissolution profiles of ibuprofen from commercial products. For formulations without adsorbent faster release of ibuprofen in first minutes of dissolution test, showed formulations with C/T ratio 2:1 and 1:1. Magnesium aluminometasilicate, as adsorbent with high specific

  13. A review of mathematical modeling and simulation of controlled-release fertilizers.

    Science.gov (United States)

    Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N

    2018-02-10

    Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.

    Science.gov (United States)

    Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N

    2015-06-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.

  15. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    Science.gov (United States)

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  16. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  17. Effect of food on early drug exposure from extended-release stimulants: results from the Concerta, Adderall XR Food Evaluation (CAFE) Study.

    Science.gov (United States)

    Auiler, J F; Liu, K; Lynch, J M; Gelotte, C K

    2002-01-01

    Stimulant therapy is the mainstay of treatment for children, adolescents and adults with attention-deficit/hyperactivity disorder (ADHD). Once-daily, extended-release oral formulations offer long acting control of symptoms by modifying drug delivery and absorption. In particular, consistency in early drug exposure is important for symptom control during school or work hours. Because these once-daily formulations are usually taken in the morning, the timing of the doses with breakfast is important. This study compared the effect of a high-fat breakfast on early drug exposure from a morning dose of two extended-release stimulant formulations: the osmotic-controlled OROS tablet of methylphenidate HCI (CONCERTA) and the capsule containing extended-release beads of mixed amphetamine salts (ADDERALL XR). The study had a single-dose, open-label, randomised, four-treatment, crossover design in which healthy subjects received either 36 mg CONCERTA or 20 mg ADDERALL XR in the morning after an overnight fast or a high-fat breakfast. Serial blood samples were collected over 28h to determine plasma concentrations of methylphenidate and amphetamine. The food effect on early drug exposure and the pharmacokinetic profiles up to 8 h after dosing of the two extended-release stimulants were directly compared using partial area (AUC(p4h), AUC(p6h) and AUC(p8h)) fed/fasted ratios. Amphetamine concentrations were markedly lower when the subjects had eaten breakfast, resulting in lower early drug exposures (p food, for patients with ADHD.

  18. Formulation and characterisation of self-microemulsifying drug delivery systems based on biocompatible nonionic surfactants

    Directory of Open Access Journals (Sweden)

    Đekić Ljiljana M.

    2014-01-01

    Full Text Available Development of self-dispersing drug delivery systems (SMEDDS is a modern strategy for oral delivery improvement of poorly soluble drugs. Self-microemulsifying drug delivery systems (SMEDDS are isotropic mixtures of oils and hydrophilic surfactants, which form oil-in-water (o/w microemulsions by dilution in aqueous media (e.g., gastrointestinal fluids. Formulation of SMEDDS carriers requires consideration of a large number of formulation parameters and their influences on process of self-microemulsifying and releasing of drug. The aim of this work was formulation and characterisation of SMEDDS for oral administration of ibuprofen. In the experimental work, two series of potential SMEDDS were prepared (M1-M10, using surfactant (Labrasol®, Gattefosse, cosurfactant (PEG-40 hydrogenated castor (Cremophor® RH40, and oil (medium chain triglycerides (Crodamol® GTCC and olive oil (Cropur® Olive, at surfactant-to-cosurfactant mass ratios (Km 9:1, 7:3, 5:5, 3:7, and 1:9, and 10 % or 20 % of the oil phase. Ibuprofen was dissolved in formulations in concentration of 10 %. Characterisation of the investigated formulations included evaluation of physical stability, self-microemulsification ability in 0,1M HCl (pH 1.2 and phosphate buffer pH 7.2 (USP and in vitro drug release. Formation of o/w microemulsions with the average droplet size (Z-ave up to 100 nm, was observed in dispersions of formulations prepared with 10% w/w of medium chain triglycerides, within the entire investigated range of the Km values (M1-M5. These formulations were selected as SMEDDS. Results of characterisation pointed out the importance of the type and concentration of the oil as well as the Km value for the self-microemulsying ability as well as drug release kinetics from the investigated SMEDDS. Ibuprofen relase was in accordance with the request of USP 30-NF 25 (at least 80 %, after 60 min from the formulations M1 (Km 9:1 and M5 (Km 1:9. Furthermore, ibuprofen release was

  19. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  20. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  1. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil.

    Science.gov (United States)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-09-01

    In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1 H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Application of mixture experimental design in the formulation and optimization of matrix tablets containing carbomer and hydroxy-propylmethylcellulose.

    Science.gov (United States)

    Petrovic, Aleksandra; Cvetkovic, Nebojsa; Ibric, Svetlana; Trajkovic, Svetlana; Djuric, Zorica; Popadic, Dragica; Popovic, Radmila

    2009-12-01

    Using mixture experimental design, the effect of carbomer (Carbopol((R)) 971P NF) and hydroxypropylmethylcellulose (Methocel((R)) K100M or Methocel((R)) K4M) combination on the release profile and on the mechanism of drug liberation from matrix tablet was investigated. The numerical optimization procedure was also applied to establish and obtain formulation with desired drug release. The amount of TP released, release rate and mechanism varied with carbomer ratio in total matrix and HPMC viscosity. Increasing carbomer fractions led to a decrease in drug release. Anomalous diffusion was found in all matrices containing carbomer, while Case - II transport was predominant for tablet based on HPMC only. The predicted and obtained profiles for optimized formulations showed similarity. Those results indicate that Simplex Lattice Mixture experimental design and numerical optimization procedure can be applied during development to obtain sustained release matrix formulation with desired release profile.

  3. Formulation and Characterization of Matrix and Triple-Layer matrix tablets for Controlled Delivery of Metoprolol tartrate

    OpenAIRE

    Izhar Ahmed Syed; Lakshmi Narsu Mangamoori; Yamsani Madhusudan Rao

    2011-01-01

    In the present study matrix and triple layer matrix tablets of metoprolol tartrate were formulated by using xanthan gum as the matrix forming agent and Sodium Carboxy Methyl Cellulose (Na CMC) as barrier layers. The prepared tablets were analysed for their hardness, friability, drug content and in-vitro drug release studies. Marked differences in dissolution characteristics of (M3) and (M3L3) were observed and showed a significant difference statistically. Mean dissolution time (MDT) for M3 a...

  4. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules.

    Directory of Open Access Journals (Sweden)

    Wenhui Yang

    Full Text Available Crystal proteins synthesized by Bacillus thuringiensis (Bt have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid (PAH and poly (styrene sulfonate (PSS were fabricated through layer-by-layer self-assembly based on a CaCO(3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM, using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac. The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects' midgut, which has shown potential as biopesticide in the field.

  5. Electrochemically controlled release of anticancer drug methotrexate using nanostructured polypyrrole modified with cetylpyridinium: Release kinetics investigation

    International Nuclear Information System (INIS)

    Alizadeh, Naader; Shamaeli, Ehsan

    2014-01-01

    A new simple strategy for direct electrochemical incorporation of chemotherapeutic methotrexate (MTX) into conductive polypyrrole (PPy) has been suggested for an electrochemically controlled loading and release system. Electropolymerization of MTX doped polypyrrole yielded poor quality with low efficiency of doping, but a well-doped, nanostructure and increased capacity of drug loading (24.5 mg g −1 ) has been obtained in the presence of cetylpyridinium (CP) as a modifier. When CP was preloaded onto PPy, the hydrophobic surface of the PPy serves as a backbone to which the hydrophobic chain of the CP can be attached. Electrostatic interaction between cationic CP with anionic MTX and aromatic interaction between pyridinium head of CP with pyrimidine and pyrazine rings of MTX increases drug doping. Then release kinetics were investigated at various applied potentials and temperatures. Kinetics analysis based on Avrami's equation showed that the drug release was controlled and accelerated by increasing temperature and negative potential and sustained by increasing positive potential. At open circuit condition, the release parameter (n) represented a diffusive mechanism and at applying electrochemical potentials, a first-order mode. Activation energy parameters (E a , ΔG ≠ , ΔH ≠ and ΔS ≠ ) and half-life time (t 1/2 ) of drug release are also analyzed as a function of applied potential. The nanostructured polymer films (PPy/CP/MTX) were characterized by several techniques: scanning electron microscopy, Furrier transforms Infrared, UV-vis spectroscopy. Overall, our results demonstrate that the PPy/CP/MTX films, combined with electrical stimulation, permit a programmable release of MTX by altering the interaction strength between the PPy/CP and MTX

  6. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  7. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  8. Comparison of New Formulation of Diclofenac Diethylamonium Emulgel with Standard Preparation

    Directory of Open Access Journals (Sweden)

    SA Mostafavi

    2006-07-01

    Full Text Available Introduction & Objective: Oral route is a common route of administration for anti-inflammatory drugs including diclofenac. Due to some disadvantages of this route, the alternative routes of administrations are considered. The skin has been increasingly important in this regard, and many drugs have been formulated intradermal delivery systems. The purpose of this study was to prepare a topical diclofenac formulation emulgel with appropriate skin penetration and compare it with standard formulation. Materials & Methods: To prepare the formulation, we used the emulsion form. Several formulations containing different kinds and amounts of diclofenac salts, different emulsifying agents, and different HPMC concentrations were prepared. The skin penetration was evaluated by using Franz cell apparatus and the concentrations of diclofenac were determined in the receptor phase of Franz cell using spectrophotometer. The in vivo absorption of diclofenac was evaluated by determination of drug in urine. The concentration of drug was determined by HPLC. Results: In selected formulation, 85% of drug was released after 4 hours from formulation which was similar to drug released from standard formulation. The values of coefficient variation for HPLC method were utmost 15%. The range of variation in measurement was between 10 and 1000 ng/ml. Conclusion: The selected formulation had appropriate physicochemical properties. We were unable to measure drug concentrations in urine by the constructed HPLC, therefore it can be suggested that one should determine drug concentration in synovial fluid as the drug is concentrated in it.

  9. Development of a CO2 -releasing coformulation based on starch, Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae.

    Science.gov (United States)

    Vemmer, Marina; Schumann, Mario; Beitzen-Heineke, Wilhelm; French, Bryan W; Vidal, Stefan; Patel, Anant V

    2016-11-01

    CO 2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO 2 -emitting formulations need to be developed. The aim of the present work was to develop a slow-release bead system in order to bridge the gap between application and hatching of western corn rootworm larvae. We compared different Ca-alginate beads containing Saccharomyces cerevisiae for their potential to release CO 2 over a period of several weeks. The addition of starch improved CO 2 release, resulting in significantly higher CO 2 concentrations in soil for at least 4 weeks. The missing amylase activity was compensated for either by microorganisms present in the soil or by coencapsulation of Beauveria bassiana. Formulations containing S. cerevisiae, starch and B. bassiana were attractive for western corn rootworm larvae within the first 4 h following exposure; however, when considering the whole testing period, the maize root systems remained more attractive for the larvae. Coencapsulation of S. cerevisiae, starch and B. bassiana is a promising approach for the development of attractive formulations for soil applications. For biological control strategies, the attractiveness needs to be increased by phagostimuli to extend contact between larvae and the entomopathogenic fungus growing out of these formulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.

    Science.gov (United States)

    Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy

    2015-04-01

    For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.

    Science.gov (United States)

    Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P

    2013-09-01

    Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto textile

    Science.gov (United States)

    Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.

    2017-10-01

    Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.

  13. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide Hydrogels for Transdermal Delivery

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2017-07-01

    Full Text Available Novel poly (ethylene oxide (PEO hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID, diclofenac sodium (DIC and ibuprofen (IBU via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM, swelling studies, differential scanning calorimetry (DSC, fourier transform infrared spectroscopy (FT-IR, tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.

  14. Pharmacokinetics of prolonged-release tacrolimus and implications for use in solid organ transplant recipients.

    Science.gov (United States)

    Tanzi, Maria G; Undre, Nasrullah; Keirns, James; Fitzsimmons, William E; Brown, Malcolm; First, M Roy

    2016-08-01

    Prolonged-release tacrolimus was developed as a once-daily formulation with ethylcellulose as the excipient, resulting in slower release and reduction in peak concentration (Cmax ) for a given dose compared with immediate-release tacrolimus, which is administered twice daily. This manuscript reviews pharmacokinetic information on prolonged-release tacrolimus in healthy subjects, in transplant recipients converted from immediate-release tacrolimus, and in de novo kidney and liver transplant recipients. As with the immediate-release formulation, prolonged-release tacrolimus shows a strong correlation between trough concentration (Cmin ) and area under the 24-hour time-concentration curve (AUC24 ), indicating that trough whole blood concentrations provide an accurate measure of drug exposure. We present the pharmacokinetic similarities and differences between the two formulations, so that prescribing physicians will have a better understanding of therapeutic drug monitoring in patients receiving prolonged-release tacrolimus. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Formulation and Evaluation of Rifampicin Liposomes for Buccal Drug Delivery.

    Science.gov (United States)

    Lankalapalli, Srinivas; Tenneti, V S Vinai Kumar

    2016-01-01

    Drug delivery through liposomes offers several advantages, but still challenging to the researchers for the use of liposomes as carriers in drug delivery due to their poor physical stability, unpredictable drug encapsulation and systemic availability of the loaded drug. The present investigation was planned with an objective to prepare Rifampicin loaded liposomes by using response surface methodology of statistical 32 factorial design and further to formulate them into pastilles for deliver through buccal route thereby to enhance systemic absorption. Rifampicin liposomes were prepared by using different ratios of soya lecithin and cholesterol by solvent Injection method. These liposomes were characterized by using optical microscopy, Scanning Electron Microscopy (SEM) and evaluated for particle size, entrapment efficiency (EE), in vitro and ex vivo drug release. Main effects and interaction terms of the formulation variables were evaluated quantitatively using a mathematical statistical model approach showing that both independent variables have significant (P value value: 0.0273), percentage entrapment efficiency (P value: 0.0096), percentage drug release through dialysis membrane (P value: 0.0047) and percentage drug release through porcine buccal membrane (P value: 0.0019). The statistical factorial design of liposomal formulations fulfilled all the requirements of the target set and exhibited suitable values for the selected test parameters. Pastilles were prepared for liposomes using glycerol gelatin base and were found to be soft, smooth with uniform drug content and drug release.

  16. Formulation and pharmacokinetics of diclofenac lipid nanoemulsions for parenteral application.

    Science.gov (United States)

    Ramreddy, Srividya; Kandadi, Prabhakar; Veerabrahma, Kishan

    2012-01-01

    The objective of the present study was to formulate and determine the pharmacokinetics of stable o/w parenteral lipid nanoemulsions (LNEs) of diclofenac acid used to treat arthritic conditions. The LNEs of diclofenac acid with a mean size ranging from 200 to 240 nm and a zeta potential of -29.4 ± 1.04 mV (negatively charged LNEs) and 62.1 ± 3.5 (positively charged LNEs) emulsions were prepared by hot homogenization and ultrasonication process. The influence of formulation variables, such as the change in proportion of cholesterol, was studied, and optimized formulations were developed. The optimized formulations were relatively stable during centrifugal stress, dilution stress, and storage. The drug content and entrapment efficiency were determined using high-performance liquid chromatography. The in vitro drug release was carried out in phosphate-buffered saline pH 7.4 and cumulative amount of drug released was estimated using a UV-visible spectro-photometer. During in vivo pharmacokinetic studies in male Wistar rats, diclofenac serum concentration from LNEs was higher than that of Voveran injection and was detectable up to 12 h. Diclofenac in LNEs showed improved pharmacokinetic profile with increase in area under the curve, elimination half-life and mean residence time in comparison to Voveran. Our aim was to prepare and determine the pharmacokinetics of injectable lipid nanoemulsions of diclofenac acid for treating arthritic conditions by reducing the frequency of dosing and pain at site of injection. The nanoemulsions of diclofenac acid were prepared by homogenization and ultrasonication process. The sizes and charges of oil globules were determined. The effect of cholesterol on stability of emulsion was studied, and an optimized preparation was developed. The optimized formulations were stable during centrifugation, dilution, and storage. The total amount of drug in emulsion and percentage amount of drug present in emulsion globules were determined using

  17. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    Science.gov (United States)

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  18. Isoniazid release from suppositories compounded with selected bases.

    Science.gov (United States)

    Hudson, Kristofer C; Asbill, C Scott; Webster, Andrew A

    2007-01-01

    There is an increasing need for an alternative route of isoniazid adminstration for prophylaxis and treatment of tuberculosis in children. The purpose of this study is to evaluate the in vitro release of isoniazid from extemporaneously compounded isoniazid suppositories with a goal of optimizing the suppository dosage form for this indication. Suppositories were compounded using three different base formulations (cocoa butter, Witepsol H15 Base F, and a combination of polyethylene glycols 3350, 1000, and 400). The release profiles of six compounded suppositories with isoniazid (100 mg) were tested with a United States Pharmacopeial Convention-approved dissolution apparatus. Isoniazid concentrations at predetermined time points were determined using high-performance liquid chromatographic analysis. The results show that drug release from the water-solutble base (mixed polyethylene glycols) was significantly greater than that from the lipophilic bases (cocoa butter and Witepsol H15). The percentage of isoniazid release form the polyethylene glycol suppository formulation (70 +/- 1.4 mg/mL) was greater than that from the cocoa butter (55 +/- 1.1 mg/mL) and Witepsol H15 Base F (18 +/- 0.36 mg/mL) suppository formulations.

  19. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design.

    Science.gov (United States)

    Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R

    2010-01-01

    Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.

  20. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  1. Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment.

    Science.gov (United States)

    Stähli, Christoph; Muja, Naser; Nazhat, Showan N

    2013-02-01

    The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.

  2. Formulation and In Vitro Evaluation of Release Retardant Diclofenac ...

    African Journals Online (AJOL)

    Development of release retardant matrix tablets of diclofenac sodium for 24 h by wet granulation technique using different combinations and ratios of hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (sodium CMC), sodium alginate and cetostearyl alcohol was carried out. The tablets were evaluated ...

  3. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jü rgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  4. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  5. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    Science.gov (United States)

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rectal absorption of morphine from controlled release suppositories

    NARCIS (Netherlands)

    Moolenaar, Frits; Meyler, Pim; Frijlink, Erik; Jauw, Tjoe Hang; Visser, Jan; Proost, Johannes

    1995-01-01

    The absorption profiles and bioavailability of morphine in human volunteers (n = 13) were described after oral administration of MS Contin tablets and rectal administration of a newly developed controlled release suppository. By manipulating the viscosity of fatty suppository base an entirely

  7. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets.

    Science.gov (United States)

    Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon

    2012-09-01

    A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.

  9. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions....... The proposed scheme adjusts the two loop gains in a DFIG controller depending on its rotor speed so that a DFIG operating at a higher rotor speed releases more KE. The performance of the proposed scheme was investigated under various wind conditions. The results clearly indicate that the proposed scheme...

  10. Design of analog networks in the control theory formulation. Part 2: Numerical results

    OpenAIRE

    Zemliak, A. M.

    2005-01-01

    The paper presents numerical results of design of nonlinear electronic networks based on the problem formulation in terms of the control theory. Several examples illustrate the prospects of the approach suggested in the first part of the work.

  11. Improvement of Tenofovir vaginal release from hydrophilic matrices through drug granulation with hydrophobic polymers.

    Science.gov (United States)

    Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores

    2018-05-30

    Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage

    Directory of Open Access Journals (Sweden)

    M. Kaleemullah

    2017-07-01

    Full Text Available Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor (f2 value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05 between the F3 and reference drug in terms of MDT and

  14. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    Science.gov (United States)

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p

  15. Predictive property models for use in design of controlled release of pesticides

    DEFF Research Database (Denmark)

    Suné, Nuria Muro; Gani, Rafiqul; Bell, G.

    2005-01-01

    A model capable of predicting the release of an Active Ingredient (AI) from a specific device would be very useful in the field of pesticide controlled release technology for design purposes. For the release of an AI from a microcapsule a mathematical model is briefly presented here, as an introd...

  16. Multi-kinetics and site-specific release of gabapentin and flurbiprofen from oral fixed-dose combination: in vitro release and in vivo food effect.

    Science.gov (United States)

    Sonvico, Fabio; Conti, Chiara; Colombo, Gaia; Buttini, Francesca; Colombo, Paolo; Bettini, Ruggero; Barchielli, Marco; Leoni, Barbara; Loprete, Luca; Rossi, Alessandra

    2017-09-28

    In this work, a fixed-dose combination of gabapentin and flurbiprofen formulated as multilayer tablets has been designed, developed and studied in vitro and in vivo. The aim was to construct a single dosage form of the two drugs, able to perform a therapeutic program involving three release kinetics and two delivery sites, i.e., immediate release of gabapentin, intra-gastric prolonged release of gabapentin and intestinal (delayed) release of flurbiprofen. An oblong three-layer tablet was manufactured having as top layer a floating hydrophilic polymeric matrix for gastric release of gabapentin, as middle layer a disintegrating formulation for immediate release of a gabapentin loading dose and as bottom layer, an uncoated hydrophilic polymeric matrix, swellable but insoluble in gastric fluids, for delayed and prolonged release of flurbiprofen in intestinal environment. The formulations were studied in vitro and in vivo in healthy volunteers. The in vitro release rate assessment confirmed the programmed delivery design. A significant higher bioavailability of gabapentin administered 30min after meal, compared to fasting conditions or to dose administration 10min before meal, argued in favor of the gastro-retention of gabapentin prolonged release layer. The two drugs were delivered at different anatomical sites, since the food presence prolonged the gastric absorption of gabapentin from the floating layer and delayed the flurbiprofen absorption. The attainment of a successful delayed release of flurbiprofen was realized by a matrix based on a polymers' combination. The combined use of three hydrophilic polymers with different pH sensitivity provided the dosage form layer containing flurbiprofen with gastro-resistant characteristics without the use of film coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The present status of rare gas release control

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1974-01-01

    Of the rare gases Ar, Kr and Xe released from nuclear facilities, the problem of release control can be confined to 41 Ar, 85 Kr and 133 Xe. The cases of the latter two are described, as 41 Ar is not much significant. 133 Xe, having relatively short half-life, can be dealt sufficiently by holding-up in case of light water reactors. 85 Kr of long half-life must be removed : the methods are low temperature adsorption, liquefaction distillation, absorption and diaphragm method. As for future problem, there is disposal of concentrated rare gas. (Mori, K.)

  18. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  19. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide.

    Science.gov (United States)

    Graves, Richard A; Ledet, Grace A; Glotser, Elena Y; Mitchner, Demaurian M; Bostanian, Levon A; Mandal, Tarun K

    2015-08-30

    Fenretinide is an anticancer drug with low water solubility and poor bioavailability. The goal of this study was to develop biodegradable polymeric nanoparticles of fenretinide with the intent of increasing its apparent aqueous solubility and intestinal permeability. Three biodegradable polymers were investigated for this purpose: two different poly lactide-co-glycolide (PLGA) polymers, one acid terminated and one ester terminated, and one poly lactide-co-glycolide/polyethylene glycol (PLGA/PEG) diblock copolymer. Nanoparticles were obtained by using an emulsification solvent evaporation technique. The formulations were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analysis. Dissolution studies and Caco-2 cell permeation studies were also carried out for all formulations. Ultra high performance liquid chromatography coupled with mass spectrometry (UPLC/MS) and ultraviolet detection was used for the quantitative determination of fenretinide. Drug loading and the type of polymer affected the nanoparticles' physical properties, drug release rate, and cell permeability. While the acid terminated PLGA nanoparticles performed the best in drug release, the ester terminated PLGA nanoparticles performed the best in the Caco-2 cell permeability assays. The PLGA/PEG copolymer nanoparticles performed better than the formulations with ester terminated PLGA in terms of drug release but had the poorest performance in terms of cell permeation. All three categories of formulations performed better than the drug alone in both drug release and cell permeation studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Design, formulation and evaluation of Aloe vera chewing gum

    Science.gov (United States)

    Aslani, Abolfazl; Ghannadi, Alireza; Raddanipour, Razieh

    2015-01-01

    Background: Aloe vera has antioxidant, antiinflammatory, healing, antiseptic, anticancer and antidiabetic effects. The aim of the present study was to design and evaluate the formulation of Aloe vera chewing gum with an appropriate taste and quality with the indications for healing oral wounds, such as lichen planus, mouth sores caused by cancer chemotherapy and mouth abscesses as well as reducing mouth dryness caused by chemotherapy. Materials and Methods: In Aloe vera powder, the carbohydrate content was determined according to mannose and phenolic compounds in terms of gallic acid. Aloe vera powder, sugar, liquid glucose, glycerin, sweeteners and different flavors were added to the soft gum bases. In Aloe vera chewing gum formulation, 10% of dried Aloe vera extract entered the gum base. Then the chewing gum was cut into pieces of suitable sizes. Weight uniformity, content uniformity, the organoleptic properties evaluation, releasing the active ingredient in the phosphate buffer (pH, 6.8) and taste evaluation were examined by Latin square method. Results: One gram of Aloe vera powder contained 5.16 ± 0.25 mg/g of phenolic compounds and 104.63 ± 4.72 mg/g of carbohydrates. After making 16 Aloe vera chewing gum formulations, the F16 formulation was selected as the best formulation according to its physicochemical and organoleptic properties. In fact F16 formulation has suitable hardness, lack of adhesion to the tooth and appropriate size and taste; and after 30 min, it released more than 90% of its drug content. Conclusion: After assessments made, the F16 formulation with maltitol, aspartame and sugar sweeteners was selected as the best formulation. Among various flavors used, peppermint flavor which had the most acceptance between consumers was selected. PMID:26605214

  1. Dose proportionality and pharmacokinetics of carvedilol sustained-release formulation: a single dose-ascending 10-sequence incomplete block study

    Directory of Open Access Journals (Sweden)

    Kim YH

    2015-06-01

    Full Text Available Yo Han Kim,1 Hee Youn Choi,1 Yook-Hwan Noh,1 Shi Hyang Lee,1 Hyeong-Seok Lim,1 Chin Kim,2 Kyun-Seop Bae11Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, 2Chong Kun Dang Clinical Research and Clinical Epidemiology and Medical Information, CKD Pharmaceuticals, Seoul, Republic of KoreaBackground: Carvedilol is a third-generation β-blocker indicated for congestive heart failure and high blood pressure. The aim of this study was to investigate the dose proportionality of the carvedilol sustained-release (SR formulation in healthy male subjects.Methods: An open-label, single dose-ascending, 10-sequence, 3-period balanced incomplete block study was performed using healthy male subjects. In varying sequences, each subject received three of five carvedilol SR formulations (8, 16, 32, 64, or 128 mg once. The treatment periods were separated by a washout period of 7 days. Serial blood samples were collected up to 48 h after dosing. The plasma concentrations of carvedilol were determined by using validated liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters including the area under the plasma concentration–time curve (AUC from time 0 to the last measurable time (AUClast, AUC extrapolated to infinity (AUCinf, and the measured peak plasma concentration (Cmax were obtained by noncompartmental analysis. Dose proportionality was evaluated if the ln–ln plots of AUClast, AUCinf, and Cmax versus dose were linear and the 90% confidence intervals (CIs of the slopes were within 0.9195 and 1.0805. Tolerability was assessed by vital signs, electrocardiogram, clinical laboratory tests, and monitoring of adverse events (AEs throughout the study.Results: A total of 31 subjects were enrolled, and 30 completed the study. The assessment of dose proportionality meets the statistical criteria; the point estimates of slope were 1.0104 (90% CI: 0.9849–1.0359 for AUClast, 1

  2. Control of the Root-Knot Nematode (Meloidogyne spp. on Cucumber by a Liquid Bio-Formulation Containing Chitinolytic Bacteria, Chitin and Their Products

    Directory of Open Access Journals (Sweden)

    Woo Jong Ha

    2014-06-01

    Full Text Available A liquid bio-formulation containing chitinolytic bacteria, chitin and their products was assessed for its potential biological control against root-knot nematodes on cucumber. The bio-formulation was prepared by cultures of three chitinolytic bacteria, Chromobacterium sp. strain C-61, Lysobacter engymogenes and Serratia plymuthica in minimal medium supplemented with chitin. Under pot conditions, the bio-formulation showed better growth of cucumber plants, and less root galls and population density of Meloidogyne spp. than control media without the bio-formulation. In a greenhouse, 75-fold diluted bio-formulations were treated instead of water around cucumber plants through hoses for drip irrigation six times at 5-day intervals from the transplanting date. After 30 and 60 days, the treatment provided about 7% and 10% enhancement in the plant height and about 78% and 69% reduction in population density of Meloidogyne spp. in the rhizosphere, respectively. In addition, the experiments showed that the control effects occurred only in the soils contacted with the bio-formulation. Undiluted bio-formulations were drenched three times at 10-day intervals around cucumber plants severely infested with Meloidogyne spp. The treatment showed about 37% plant enhancement without dead plants compared with 37% death in the untreated control, and about 82% nematode reduction. These results suggest that the bio-formulation can be practically used to control the root-knot nematode on cucumber.

  3. Update on prescription extended-release opioids and appropriate patient selection

    Directory of Open Access Journals (Sweden)

    Brennan MJ

    2013-07-01

    Full Text Available Michael J Brennan The Pain Center of Fairfield, Fairfield, CT, USA Abstract: Chronic pain is largely underdiagnosed, often undertreated, and expected to increase as the American population ages. Many patients with chronic pain require long-term treatment with analgesic medications, and pain management may involve use of prescription opioids for patients whose pain is inadequately controlled through other therapies. Yet because of the potential for abuse and addiction, many clinicians hesitate to treat their patients with pain with potentially beneficial agents. Finding the right opioid for the right patient is the first – often complicated – step. Ensuring that patients continue to properly use the medication while achieving therapeutic analgesic effects is the long-term goal. Combined with careful patient selection and ongoing monitoring, new formulations using extended-release technologies incorporating tamper-resistant features may help combat the growing risk of abuse or misuse, which will hopefully reduce individual suffering and the societal burden of chronic pain. The objective of this manuscript is to provide an update on extended-release opioids and to provide clinicians with a greater understanding of which patients might benefit from these new opioid formulations and how to integrate the recommended monitoring for abuse potential into clinical practice. Keywords: chronic pain, opioid analgesics, extended release, abuse prevention

  4. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  5. Estudio de bioequivalencia de dos formulaciones de tabletas de carbamazepina de liberación retardada Study of bioequivalence of two carbamazepine retard-release tablet formulations

    Directory of Open Access Journals (Sweden)

    2000-03-01

    Full Text Available En 12 voluntarios sanos se efectuó un estudio de bioequivalencia de dos preparados comerciales de carbamazepina en tabletas de liberación retardada. Este estudio permitió comparar la biodisponibilidad de la formulación de referencia Tegretol® Retard de Ciba Geigy elaborado en Colombia por Novartis, y la formulación de prueba Carbamazepina MK Retard, de Tecnoquímicas. Para evaluar la bioequivalencia se determinaron las curvas de concentración plasmática vs tiempo de las dos formulaciones y se calcularon las áreas bajo la curva (AUC y las concentraciones máximas (Cmáx. Para la formulación de prueba el intervalo de confianza del 90% para el AUC estuvo entre 95.7 y 100.7% y para el C(máx entre el 88.6 y el 106.1%. Para ambas determinaciones el rango de aceptación, según normas internacionales, está entre 80 y 125% de la formulación de referencia. Esto demuestra la bioequivalencia de las dos formulaciones. A study of the bioequivalence of two comercial carbamazepine retard-release formulations was carried out in 12 healthy volunteers. Studies of bioequivalence allow to compare the bioavailability of the innovator formulation with generic, alternative or branch formulations. In order to evaluate the bioequivalence, plasma carbamazepine concentration/time curves were obtained for the Tegretol® Retard Tablets –reference formulationand for the test formulation; the area under each curve and the maximum concentration were calculated. After the calculation, statistical analysis of data for the area under the curve of the Carbamazepine Retard Tablets –test formulation, was between 95.7% and 100.7 % and the maximum concentration of the test formulation was between 88.6% and 106.1%; both parameters with the 90% confidence interval. Since the acceptance range was determined to be between 80.0% and 125.0% of the reference formulation, we concluded from this study that the two formulations are bioequivalent.

  6. Controlled release of tetracycline-HCl from halloysite-polymer composite films.

    Science.gov (United States)

    Ward, Christopher J; Song, Shang; Davis, Edward W

    2010-10-01

    The first direct comparison between two common methods for loading halloysite with a small molecule for controlled release is presented. While the methods differ in the degree of simplicity, they provide essentially the same level of loading and release kinetics. A tentative explanation of the "burst" effect often seen in the release of low molecular weight molecules from halloysite is provided. The ability of halloysite to mediate the release rate of a water soluble drug, tetracycline, from solution cast polyvinyl alcohol and polymethyl methacrylate films was evaluated. In some films, montmorillonite was also incorporated. The addition of montmorillonite to solutions used to cast tetracycline containing films significantly reduced the release rate from the dried films. The same overall effect was seen when the drug was loaded into halloysite prior to preparation of the films. In both cases, the release was best fit with the simple Higuchi model. However, when montmorillonite was added to solutions of polyvinyl alcohol and drug loaded halloysite the release profiles were better fit by the Ritgar-Peppas model for anomalous transport. Release from polymethyl methacrylate was reduced by a factor of three by incorporating the drug in halloysite prior to producing the films.

  7. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  8. Formulation and Characterization of Benzoyl Peroxide Gellified Emulsions

    Science.gov (United States)

    Thakur, Naresh Kumar; Bharti, Pratibha; Mahant, Sheefali; Rao, Rekha

    2012-01-01

    The present investigation was carried out with the objective of formulating a gellified emulsion of benzoyl peroxide, an anti-acne agent. The formulations were prepared using four different vegetable oils, viz. almond oil, jojoba oil, sesame oil, and wheat germ oil, owing to their emollient properties. The idea was to overcome the skin irritation and dryness caused by benzoyl peroxide, making the formulation more tolerable. The gellified emulsions were characterized for their homogeneity, rheology, spreadability, drug content, and stability. In vitro permeation studies were performed to check the drug permeation through rat skin. The formulations were evaluated for their antimicrobial activity, as well as their acute skin irritation potential. The results were compared with those obtained for the marketed formulation. Later, the histopathological examination of the skin treated with various formulations was carried out. Formulation F3 was found to have caused a very mild dysplastic change to the epidermis. On the other hand, the marketed formulation led to the greatest dysplastic change. Hence, it was concluded that formulation F3, containing sesame oil (6%w/w), was the optimized formulation. It exhibited the maximum drug release and anti-microbial activity, in addition to the least skin irritation potential. PMID:23264949

  9. Kinetic Modelling of Drug Release from Pentoxifylline Matrix Tablets based on Hydrophilic, Lipophilic and Inert Polymers

    Directory of Open Access Journals (Sweden)

    Mircia Eleonora

    2015-12-01

    Full Text Available Pentoxifylline is a xanthine derivative used in the treatment of peripheral vascular disease, which because of its pharmacokinetic and pharmacologic profile is an ideal candidate for the development of extended release formulations. The aim of this study is to present a kinetic analysis of the pentoxifylline release from different extended release tablets formulations, using mechanistic and empirical kinetic models. A number of 28 formulations were prepared and analysed; the analysed formulations differed in the nature of the matrix forming polymers (hydrophilic, lipophilic, inert and in their concentrations. Measurements were conducted in comparison with the reference product Trental 400 mg (Aventis Pharma. The conditions for the dissolution study were according to official regulations of USP 36: apparatus no. 2, dissolution medium water, volume of dissolution medium is 1,000 mL, rotation speed is 50 rpm, spectrophotometric assay at 274 nm. Six mathematical models, five mechanistic (0 orders, 1st-order release, Higuchi, Hopfenberg, Hixson-Crowell and one empirical (Peppas, were fitted to pentoxifylline dissolution profile from each pharmaceutical formulation. The representative model describing the kinetics of pentoxifylline release was the 1st-order release, and its characteristic parameters were calculated and analysed.

  10. pH-controlled drug loading and release from biodegradable microcapsules.

    Science.gov (United States)

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  11. Budget impact of switching from an immediate-release to a prolonged-release formulation of tacrolimus in renal transplant recipients in the UK based on differences in adherence

    Directory of Open Access Journals (Sweden)

    Muduma G

    2014-03-01

    Full Text Available Gorden Muduma,1 Isaac Odeyemi,1 Jayne Smith-Palmer,2 Richard F Pollock21Astellas Pharma Europe, Chertsey, UK; 2Ossian Health Economics and Communications, Basel, SwitzerlandBackground and aims: Advagraf is a once-daily prolonged-release formulation of tacrolimus with proven noninferiority to Prograf, a twice-daily immediate-release formulation of tacrolimus, in biopsy-proven acute rejection, graft survival and patient survival in renal transplant recipients. Advagraf is associated with improved adherence compared with Prograf, which may ultimately improve long-term outcomes. The present study assessed the budget impact of switching patients from Prograf to Advagraf in the UK.Materials and methods: A budget-impact model was constructed based on published data on acute rejection, graft failure, and mortality in the UK setting. Patients were assumed to convert from Prograf to Advagraf on a 1:1 milligram:milligram basis. In a study comparing the adherence rates between once-daily versus twice-daily formulations of tacrolimus, the proportion of patients taking the prescribed number of daily doses was 88.2% in Advagraf patients and 78.8% in Prograf patients. The model applied a relative risk of graft failure of 3.47 to nonadherent patients based on data from a 2004 meta-analysis (based on graft-failure rates of 1.3%–40.0% in adherent patients, compared with 6.1%–100% in nonadherent patients. Cost data were taken from the March 2013 British National Formulary and 2012–2013 National Health Service tariff information. The analysis was performed over a 5-year time horizon and future costs were not discounted, in line with International Society for Pharmacoeconomics and Outcomes Research guidelines.Results: Over a 5-year time horizon, the mean cost per patient (including tacrolimus, concomitant immunosuppressive medications, dialysis after graft failure, and treatment for acute rejection was £29,328 (standard deviation [SD] £2,844 for Advagraf

  12. Development of sustained release capsules containing "coated matrix granules of metoprolol tartrate".

    Science.gov (United States)

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-09-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.

  13. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging

    Directory of Open Access Journals (Sweden)

    Mahdi ES

    2011-10-01

    Full Text Available Elrashid Saleh Mahdi1, Azmin Mohd Noor1, Mohamed Hameem Sakeena1, Ghassan Z Abdullah1, Muthanna F Abdulkarim1, Munavvar Abdul Sattar2 1Department of Pharmaceutical Technology, 2Department of Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia Background: Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria for skin antiaging. Methods: Palm kernel oil esters (PKOEs-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH method. Results: Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween® 80/Span® 80 (9/1 with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween® 80/Span® 80 (9/1 with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane

  14. Effect of Formulation Methods on the Mechanical and Release ...

    African Journals Online (AJOL)

    The mechanical properties of the tablets were assessed using the crushing strength (CS), friability(F) and crushing strength-friability ratio (CSFR) of the tablets, while drug release properties were assessed using disintegration time and dissolution profile. The granules possessed better flow properties than the powder ...

  15. Colon cancer risk and different HRT formulations: a case-control study

    Directory of Open Access Journals (Sweden)

    Thai Do

    2007-05-01

    Full Text Available Abstract Background Most studies have found no increased risk of colon cancer associated with hormone replacement therapy (HRT, or even a decreased risk. But information about the effects of different HRT preparations is lacking. Methods A case-control study was performed within Germany in collaboration with regional cancer registries and tumor centers. Up to 5 controls were matched to each case of colon cancer. Conditional logistic regression analysis was applied to estimate crude and adjusted odds ratios (OR and 95% confidence intervals (95% CI. Stratified analyses were performed to get an impression of the risk associated with different estrogens and progestins. Results A total of 354 cases of colon cancer were compared with 1422 matched controls. The adjusted overall risk estimate for colon cancer (ColC associated with ever-use of HRT was 0.97 (0.71 – 1.32. No clinically relevant trends for ColC risk were observed with increasing duration of HRT use, or increasing time since first or last HRT use in aggregate. Whereas the overall risk estimates were stable, the numbers in many of the sub-analyses of HRT preparation groups (estrogens and progestins were too small for conclusions. Nevertheless, if the ColC risk estimates are taken at face value, most seemed to be reduced compared with never-use of HRT, but did not vary much across HRT formulation subgroups. In particular, no substantial difference in ColC risk was observed between HRT-containing conjugated equine estrogens (CEE or medroxyprogesterone acetate (MPA and other formulations more common in Europe. Conclusion Ever-use of HRT was not associated with an increased risk of colon cancer. In contrary, most risk estimates pointed non-significantly toward a lower ColC risk in HRT ever user. They did not vary markedly among different HRT formulations (estrogens, progestins. However, the small numbers and the overlapping nature of the subgroups suggest cautious interpretation.

  16. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  17. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    Science.gov (United States)

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  18. Controlled release of simvastatin from biomimetic β-TCP drug delivery system.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.

  19. Emulsions and rectal formulations containing myrrh essential oil for better patient compliance.

    Science.gov (United States)

    Etman, M; Amin, M; Nada, A H; Shams-Eldin, M; Salama, O

    2011-06-01

    Myrrh has long been used for its circulatory, disinfectant, analgesic, antirheumatic, antidiabetic, and schistosomicidal properties. Myrrh essential oil (MEO) was extracted from the oleo-gum resin of Commiphora molmol and formulated into emulsions and suppositories to mask/avoid its bitter taste. Three oil-in-water emulsions (E1-E3) were formulated and taste was evaluated by 10 volunteers. Particle size distribution was measured and correlated with excipients and the method of preparation. Physical and chemical stability testing was carried out for the optimum formulation (E2). Seven suppository formulations were investigated (F1-F7). Suppocire AML (F1) and Suppocire CM (F2) were chosen as fatty bases, and polyethylene glycol (PEG) 1500 (F3), PEG 4000 (F4), and a PEG blend (50% PEG 6000 + 30% PEG 1500 + 20% PEG 400) (F5) were chosen as water-soluble bases. A blend of PEG 1500 and Suppocire CM was also used (F7). Camphor (5%) was added to PEG 1500 (F6). Disintegration time, release rate, DSC, fracture points, and weight uniformity were evaluated. The overall average bitterness for formulations E1, E2, and E3 was 6.44, 4.15, and 3.45, respectively. Suppositories containing Suppocire AML had the fastest disintegration time (1.5 min) with dissolution efficiency (DE) of 56.8%. F3 containing PEG 1500 had a fast disintegration time of 2.5 min and maximum DE of 93.5%. The PEG blend had satisfactory release: (DE = 90.9%). A mixed fatty and water-soluble base (F7) had a disintegration time of 5 min and low DE (33.4%). A stable MEO emulsion with acceptable taste was formulated to improve patient acceptance and compliance. F3 suppositories yielded satisfactory results, while formulations containing fatsoluble bases exhibited poor release.

  20. 77 FR 30025 - Importer of Controlled Substances; Notice of Registration; Formulation Technologies, LLC

    Science.gov (United States)

    2012-05-21

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of Registration; Formulation Technologies, LLC By Notice dated January 26, 2012, and published in the Federal..., Austin, Texas 78758, made application by renewal to the Drug Enforcement Administration (DEA) to be...