WorldWideScience

Sample records for controlled reactors reactores

  1. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  2. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  3. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  4. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  5. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  6. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  7. Reactor-core-reactivity control device

    International Nuclear Information System (INIS)

    Miura, Teruo; Sakuranaga, Tomonobu.

    1983-01-01

    Purpose: To improve the reactor safety upon failures of control rod drives by adapting a control rod not to drop out accidentally from the reactor core but be inserted into the reactor core. Constitution: The control rod is entered or extracted as usual from the bottom of the pressure vessel. A space is provided above the reactor core within the pressure vessel, in which the moving scope of the control rod is set between the space above the reactor core and the reactor core. That is, the control rod is situated above the reactor core upon extraction thereof and, if an accident occurs to the control rod drive mechanisms to detach the control rod and the driving rod, the control rod falls gravitationally into the reactor core to improve the reactor safety. In addition, since the speed limiter is no more required to the control rod, the driving force can be decreased to reduce the size of the rod drive mechanisms. (Ikeda, J.)

  8. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  9. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  10. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  11. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  12. Elements on reactor control

    International Nuclear Information System (INIS)

    Bruna, G.B.

    1998-01-01

    In order to achieve the two-fold goal of maximizing the energy obtained from reactor fuel and ensuring the large flexibility of plant operation in respect to safety regulations and keeping the reactor integrity the control of PWRs is generally based on real time monitoring and analysing of independent neutronic parameters: thermal power release, axial power distribution in the core and temperatures of the primary loop. Two control chains more or less coupled according to the control chosen mode are in charge of the control of these parameters. With the brief history of control in French power reactors the advanced X control mode adopted by Framatome for N4 plants is described in detail. A summary of N4 reactor control and protection system is included

  13. Reactor control device

    International Nuclear Information System (INIS)

    Araki, Takao; Inoue, Toyokazu.

    1981-01-01

    Purpose: To protect the reactor floor by alleviating the shock imparted to the reactor floor by a dropped control rod when a wire rope accidentally breaks. Constitution: A control rod is hung by wire rope from a control rod drive, and shock absorbers are mounted at the upper and lower portions of the control rod. The outer diameter of the upper shock absorber is made larger than the inner diameter of a control rod inserting hole formed in the reactor core. If the control rod drops, the upper absorber is stopped at the upper tapered portion of the inserting hole. Thus, the dropping energy of the control rod can be sufficiently absorbed by the upper and lower shock absorbers. (Kamimura, M.)

  14. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  15. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  16. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  17. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  18. Reactor control device

    International Nuclear Information System (INIS)

    Kameda, Akiyuki.

    1979-01-01

    Purpose: To enable three types of controls, that is, level control, scram control and excess reactivity control required for a reactor by a same mechanism by feeding neutron absorber liquid and pressure control gas to several blind pipes provided in the reactor core. Constitution: A plurality of blind pipes are disposed spaced apart in a reactor core and connected by way of injection pipes to a neutron absorber liquid tank. A pressure regulator is connected to the blind pipes, to which pressure control gas is supplied. The neutron absorber liquid used herein consists of sodium, potassium or their alloy, or mercury as a basic substance incorporated with one or more selected from boron, tantalum, rhenium, europium or their compounds. The level control, scram control and excess reactivity control can be attained by moderating the pressure changes in the pressure control gas or by regulating the fluctuation in the liquid level. (Horiughi, T.)

  19. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  20. Reactor power control device

    International Nuclear Information System (INIS)

    Doi, Kazuyori.

    1981-01-01

    Purpose: To automatically control the BWR type reactor power by simple and short-time searching the load pattern nearest to the required pattern at a nuclear power plant side. Constitution: The reactor power is automatically regulated by periodical modifying of coefficients fitting to a reactor core model, according as a required load pattern. When a load requirement pattern is given, a simulator estimates the total power change and the axial power distribution change from a xenon density change output calculated by a xenon dynamic characteristic estimating device, and a load pattern capable of being realized is searched. The amount to be recirculated is controlled on the basis of the load patteren thus searched, and the operation of the BWR type reactor is automatically controlled at the side of the nuclear power plant. (Kamimura, M.)

  1. Fusion reactor control study. Volume 3. Tandem mirror reactors. Final report

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.; Fisher, J.L.; Madden, P.A.

    1982-03-01

    A study of the control requirements of the Tandem Mirror Reactor concept is reported. The study describes the development of a control simulator that is based upon a spatially averaged physics code of the reactor concept. The simulator portrays the evolution of the plasma through the complete reactor operating cycle; it includes models of the control and measurement system, thus allowing the exploration of various strategies for reactor control. Startup, shutdown, and control during the quasi-steady-state power producing phase were explored. Configurations are described which use a variety of control effectors including modulation of the refueling rate, beam current, and electron cyclotron resonance heating. Multivariable design techniques were used to design the control laws and compensators for the feedback controllers and presume the practical measurement of only a subset of the plasma and machine variables. Performance of the various controllers is explored using the nonlinear control simulator. Derivative control strategies using new or developed sensors and effectors appropriate to a power reactor environment are postulated, based upon the results of the control configurations tested. Research and development requirements for these controls are delineated

  2. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  3. Control of WWER-440 nuclear reactor

    International Nuclear Information System (INIS)

    Wagner, K.; Drab, F.; Grof, V.

    1978-01-01

    The V-1 reactor control systems are described. The data acquisition and processing system fulfils four main functions, ie., reactor start-up and power increase to 10% of the rated power, automatic power control within 3% and 110% of the rated power, reactivity compensation, and reactor protection. The automatic control system ensures constant steam pressure maintained with an accuracy of +-0.05 MPa. Reactivity compensation and spatial power distribution is mainly safeguarded by boric acid control. The V-1 reactor protection system has four levels of accident protection depending on the gravity of the failure. The philosophy of automation of the V-1 reactor control and protection system is based on autonomous automatic controlers and on the direct control of the individual sets and technological equipment. In conclusion, development trends are briefly outlined of control and protection systems of light water reactor power plants. (Z.M.)

  4. Digital control system of advanced reactor

    International Nuclear Information System (INIS)

    Peng Huaqing; Zhang Rui; Liu Lixin

    2001-01-01

    This article produced the Digital Control System For Advanced Reactor made by NPIC. This system uses Siemens SIMATIC PCS 7 process control system and includes five control system: reactor power control system, pressurizer level control system, pressurizer pressure control system, steam generator water level control system and dump control system. This system uses three automatic station to realize the function of five control system. Because the safety requisition of reactor is very strict, the system is redundant. The system configuration uses CFC and SCL. the human-machine interface is configured by Wincc. Finally the system passed the test of simulation by using RETRAN 02 to simulate the control object. The research solved the key technology of digital control system of reactor and will be very helpful for the nationalization of digital reactor control system

  5. Reactor control rod supporting structure

    International Nuclear Information System (INIS)

    Akimoto, Tokuzo; Miyata, Hiroshi.

    1984-01-01

    Purpose: To enable stable reactor core control even in extremely great vertical earthquakes, as well as under normal operation conditions in FBR type reactors. Constitution: Since a mechanism for converting the rotational movement of a control rod into vertical movement is placed at the upper portion of the reactor core at high temperature, the mechanism should cause fusion or like other danger after the elapse of a long period of time. In view of the above, the conversion mechanism is disposed to the lower portion of the reactor core at a lower temperature region. Further, the connection between the control rod and the control rod drive can be separated upon great vertical earthquakes. (Seki, T.)

  6. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  7. Power control system in BWR type reactors

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo.

    1980-01-01

    Purpose: To control the reactor power so that the power distribution can satisfy the limiting conditions, by regulating the reactor core flow rate while monitoring the power distribution in the reactor core of a BWR type reactor. Constitution: A power distribution monitor determines the power distribution for the entire reactor core based on the data for neutron flux, reactor core thermal power, reactor core flow rate and control rod pattern from the reactor and calculates the linear power density distribution. A power up ratio computing device computes the current linear power density increase ratio. An aimed power up ratio is determined by converting the electrical power up ratio transferred from a load demand input device into the reactor core thermal power up ratio. The present reactor core thermal power up ratio is subtracted from the limiting power up ratio and the difference is sent to an operation amount indicator and the reactor core flow rate is changed in a reactor core flow rate regulator, by which the reactor power is controlled. (Moriyama, K.)

  8. Propose Reactor Control and Monitoring System for RTP

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha

    2011-01-01

    Reactor control and monitoring system is a one of the important features used in reactor. The control and monitoring must come together to provide safety, excellent performance and reliable in nuclear reactor technology application. Objectives of this technical paper are to design and propose reactor control system and reactor monitoring system in Research Reactor (RTP) for Reactor Upgrading Project. (author)

  9. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  10. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  11. reactor power control using fuzzy logic

    International Nuclear Information System (INIS)

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  12. Feedwater control system in BWR type reactor

    International Nuclear Information System (INIS)

    Tanji, Jun-ichi; Oomori, Takashi.

    1980-01-01

    Purpose: To improve the water level control performance in BWR type reactor by regulating the water level set to the reactor depending on the rate of change in the recycling amount of coolant to thereby control the fluctuations in the water level resulted in the reactor within an aimed range even upon significant fluctuations in the recycling flow rate. Constitution: The recycling flow rate of coolant in the reactor is detected and the rate of its change with time is computed to form a rate of change signal. The rate of change signal is inputted to a reactor level setter to amend the actual reactor water level demand signal and regulate the water level set to the reactor water depending on the rate of change in the recycling flow rate. Such a regulation method for the set water level enables to control the water level fluctuation resulted in the reactor within the aimed range even upon the significant fluctuation in the recycling flow rate and improve the water level control performance of the reactor, whereby the operationability for the reactor is improved to enhance the operation rate. (Moriyama, K.)

  13. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  14. Reactor feedwater control device

    International Nuclear Information System (INIS)

    Koshi, Yuji.

    1993-01-01

    In the device of the present invention, an excess response is not caused in a reactor feed water system even when voids are fluctuated by using an actual water level signal as a reactor water level signal. That is, a standard water level signal and a reactor water level signal are inputted to a comparator. An adder adds water level difference signal outputted from the comparator and mismatch flow rate signal prepared by multiplying the difference between a main steam flow rate signal and a feed water flow rate signal by a mismatch gain. A feed water controller integrates the added signal and outputs flow rate demand signal. A feed water system receives the flow rate demand signal as input. A water level calculation means is disposed to such a device for calculating an actual water level based on the change of coolant possessing amount of the reactor, and the output thereof is defined as a reactor water level signal. With such procedures, excessive elevation of water level of the reactor can be prevented even upon occurrence of void fluctuation phenomenon or the like in the reactor such as upon sole scram operation. Accordingly, plant shut down caused thereby can be avoided safely. (I.S.)

  15. TREAT Reactor Control and Protection System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab

  16. Reactor control device

    International Nuclear Information System (INIS)

    Kinoshita, Mitsuo.

    1991-01-01

    Heretofore, since the aimed value of a reactor power has been determined only based on the deviation between a temperature variation coefficient and the aimed value, it involves a problem that a region for finely determining a control constant is complicated. In view of the above, in the present invention, an approximate value of the aimed reactor power value is determined based on the aimed value for the temperature variation coefficient, then a compensation value for the aimed power value is determined based on the deviation between the temperature variation coefficient and the aimed value and, further, the aimed power value is determined based on the approximate value and the compensation value. Control elements are automatically operated so that the power follows the aimed value after determining the aimed value. Then, since the aimed reactor power value is controlled finely so that the responsiveness of the temperature variation coefficient is satisfactory and the temperature variation coefficient agrees with the aimed value, the stability for the control of temperature variation coefficient is satisfactory. That is, high performance control is enabled by a simple control algorithm to reduce the number of the steps for the design and the device control. (N.H.)

  17. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  18. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  19. Time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1987-01-01

    Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented

  20. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  1. Nuclear reactor power control device

    International Nuclear Information System (INIS)

    Koshi, Yuji; Sakata, Akira; Karatsu, Hiroyuki.

    1987-01-01

    Purpose: To control abrupt changes in neutron fluxes by feeding back a correction signal obtained from a deviation between neutron fluxes and heat fluxes for changing the reactor core flow rate to a recycling flow rate control system upon abrupt power change of a nuclear reactor. Constitution: In addition to important systems, that is, a reactor pressure control system and a recycling control system in the power control device of a BWR type power plant, a control circuit for feeding back a deviation between neutron fluxes and heat fluxes to a recycling flow rate control system is disposed. In the suppression circuit, a deviation signal is prepared in an adder from neutron flux and heat flux signals obtained through a primary delay filter. The deviation signal is passed through a dead band and an advance/delay filter into a correction signal, which is adapted to be fed back to the recycling flow rate control system. As a result, the reactor power control can be conducted smoothly and it is possible to effectively suppress the abrupt change or over shoot of the neutron fluxes and abrupt power change. (Kamimura, M.)

  2. Design strategy for control of inherently safe reactors

    International Nuclear Information System (INIS)

    Chisholm, G.H.

    1984-01-01

    Reactor power plant safety is assured through a combination of engineered barriers to radiation release (e.g., reactor containment) in combination with active reactor safety systems to shut the reactor down and remove decay heat. While not specifically identified as safety systems, the control systems responsible for continuous operation of plant subsystems are the first line of defense for mitigating radiation releases and for plant protection. Inherently safe reactors take advantage of passive system features for decay-heat removal and reactor shutdown functions normally ascribed to active reactor safety systems. The advent of these reactors may permit restructuring of the present control system design strategy. This restructuring is based on the fact that authority for protection against unlikely accidents is, as much as practical, placed upon the passive features of the system instead of the traditional placement upon the PPS. Consequently, reactor control may be simplified, allowing the reliability of control systems to be improved and more easily defended

  3. MAPLE-X10 reactor digital control system

    International Nuclear Information System (INIS)

    Deverno, M.T.; Hinds, H.W.

    1991-10-01

    The MAPLE-X10 reactor, currently under construction at the Chalk River Laboratories of Atomic Energy of Canada Limited, is a 10 MW t , pool-type, light-water reactor. It will be used for radioisotope production and silicon neutron transmutation doping. The reactor is controlled by a Digital Control System (DCS) and protected against abnormal process events by two independent safety systems. The DCS is an integrated control system used to regulate the reactor power and process systems. The safety philosophy for the control system is to minimize unsafe events arising from system failures and operational errors. this is achieved through redundancy, fail-safe design, automatic fault detection, and the selection of highly reliable components. The DCS provides both computer-controlled reactor regulation from the shutdown state to full power and automated reactor shutdown if safe limits are exceeded or critical sensors malfunction. The use of commercially available hardware with enhanced quality assurance makes the system cost effective while providing a high degree of reliability

  4. Computerized reactor power regulation with logarithmic controller

    International Nuclear Information System (INIS)

    Gossanyi, A.; Vegh, E.

    1982-11-01

    A computerized reactor control system has been operating at a 5 MW WWR-SM research reactor in the Central Research Institute for Physics, Budapest, for some years. This paper describes the power controller used in the SPC operating mode of the system, which operates in a 5-decade wide power range with +-0.5% accuracy. The structure of the controller easily limits the minimal reactor period and produces a reactor transient with constant period if the power demand changes. (author)

  5. Power control device for nuclear reactors

    International Nuclear Information System (INIS)

    Kagawa, Tatsuo

    1984-01-01

    Purpose: To eliminate for requirement of control rods and movable portions, as well as ensure the safety and reliability of the operation. Constitution: A plurality of control tubes are disposed within a reactor core instead of control rods. Tubes are connected from below the reactor core to the control tubes for supplying liquid poisons such as aqueous boric acid to the inside of the control tubes. Further, tubes are connected to the upper portion of the control tubes for guiding the liquid poisons from the reactor core to the outside. The tubes for supplying and discharging the liquid poisons are introduced externally through the flange disposed at the upper portion of a pressure vessel. At the outside of the pressure vessel, are disposed a liquid poison tank, a pressurizing source, a pressure control valve, a liquid level meter and the like. The control for the reactor power is conducted by controlling the level of the liquid poisons in the control tubes. (Ikeda, J.)

  6. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...

  7. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    Weill, J.

    1953-12-01

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author) [fr

  8. Controlling a nuclear reactor with dropped control rods

    International Nuclear Information System (INIS)

    Mc Atee, K.R.; Alsop, B.H.

    1987-01-01

    A control system is described for a nuclear power plant including a reactor with a core having an upper portion and a lower portion and control rods which are inserted into and withdrawn from the core of the reactor vertically to control reactivity in the core. The system comprises: means to measure neutron flux separately in the upper portion and the lower portion of the reactor and to generate from such measurements a signal representative of axial distribution of power between the upper and lower portions of the reactor core; means to detect a dropped control rod in the reactor and to generate a dropped rod signal in response thereto; means to generate an axial power distribution limit signal representative of a critical axial power distribution for a dropped rod condition; means to compare the axial power distribution signal to the axial power distribution limit signal and to generate an axial power distribution out of limits signal when the axial power distribution signal exceeds the axial power distribution limit signal; and means responsive only to the presence of both the dropped rod signal and the axial power distribution out of limits signal to generate a signal for shutting the reactor down

  9. Control rod for FBR type reactor

    International Nuclear Information System (INIS)

    Nakai, Koichi.

    1993-01-01

    In a control rod for an LMFBR type reactor, a thermal resistor is disposed between a temperature sensitive cylinder and a cam unit support rod. A thermal expansion difference due to the temperature difference is caused between the temperature sensitive cylinder and the cam unit support rod only upon abrupt temperature change of coolants. A control rod shaft extending mechanism of downwardly depressing an absorbent portion by amplifying the thermal expansion difference by an extension link mechanism and the cam unit is provided. The thermal resistor comprises inconel 625 or like other steel of small heat conductivity. If a certain abnormality should cause to the reactor system to elevate the coolant temperature in the reactor elevates abruptly and the reactor shutdown system does not actuate, since the control rod extension shaft extends to urge the absorbent and lower the reactor core reactivity, so that leading to serious accident can be prevented surely. Further, the control rod extension shaft does not extend upon moderate temperature elevation in the usual startup and causes no unnecessary reactivity change. (N.H.)

  10. Reactor power control method and device

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Ishii, Yoshihiko; Miyamoto, Yoshiyuki; Ishii, Kazuhiko; Kiyoharu, Norihiko; Aizawa, Yuko.

    1997-01-01

    The present invention provides a method and a device suitable to rise the temperature and increase the pressure of the reactor to an aimed pressure in accordance with an aimed value for a reactor water temperature changing rate in the course of rising temperature and increasing pressure of the reactor upon start up of a BWR type power plant. Namely, neutron fluxes in the reactor and the temperature of reactor water are detected respectively. The maximum value among the detected values for the neutron fluxes is detected. The reactor water temperature changing rate is calculated based on the detected values of the reactor water temperature, from which the maximum value of the reactor water temperature changing rate is detected. An aimed value for the neutron flux is calculated in accordance with both detected maximum values and the aimed value of the reactor water temperature changing rate. The position of control rods is adjusted in accordance with the aimed value for the calculated neutron flux. Then, an aimed value for the neutron flux for realizing the aimed value for the reactor water temperature changing rate can be obtained accurately with no influence of the sensitivity of the detected values of the neutron fluxes and the time delay of the reactor water temperature changing rate. (I.S.)

  11. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  12. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  13. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.; Sandquist, G.M.

    1987-01-01

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  14. Utilization of the research reactors for the power reactor control instrumentation development

    International Nuclear Information System (INIS)

    Duchene, J.; Verdant, R.; Gilbert, J.

    1977-01-01

    Studies on characteristics and reliability of control instruments lead to testing with various radiations of various intensities and energy spectra. Osiris and Triton reactors present this great variety of radiations and a flexibility of use better than power reactors [fr

  15. KS-150 reactor control

    International Nuclear Information System (INIS)

    Wagner, K.

    1974-01-01

    A thorough description is presented of the control and protection system of the Bohunice A-1 reactor. The system including auxiliary facilities was developed, manufactured and installed at the reactor by the SKODA Works, Plzen. The system parameters are listed and a brief account is also given of the development efforts and of the physical and power start-up of the A-1 nuclear power plant. (L.O.)

  16. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  17. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  18. Coordinate control of integral reactor based on single neuron PID controller

    International Nuclear Information System (INIS)

    Liu Yan; Xia Hong

    2014-01-01

    As one of the main type of reactors in the future, the development of the integral reactor has attracted worldwide attention. On the basis of understanding the background of the integral reactor, the author will be familiar with and master the power control of reactor and the feedwater flow control of steam generator, and the speed control of turbine (turbine speed control is associated with the turbine load control). According to the expectative program 'reactor power following turbine load' of the reactor, it will make coordinate control of the three and come to a overall control scheme. The author will use the supervisory learning algorithm of Hebb for single neuron PID controller with self-adaptation to study the coordinate control of integral reactor. Compared with conventional PI or PID controller, to a certain extent, it solves the problems that traditional PID controller is not easy to tune real-time parameters and lack of effective control for a number of complex processes and slow-varying parameter systems. It improves the security, reliability, stability and flexibility of control process and achieves effective control of the system. (authors)

  19. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  20. Aging considerations for PWR [pressurized water reactor] control rod drive mechanisms and reactor internals

    International Nuclear Information System (INIS)

    Ware, A.G.

    1988-01-01

    This paper describes age-related degradation mechanisms affecting life extension of pressurized water reactor control rod drive mechanisms and reactor internals. The major sources of age-related degradation for control rod drive mechanisms are thermal transients such as plant heatups and cooldowns, latchings and unlatchings, long-term aging effects on electrical insulation, and the high temperature corrosive environment. Flow induced loads, the high-temperature corrosive environment, radiation exposure, and high tensile stresses in bolts all contribute to aging related degradation of reactor internals. Another problem has been wear and fretting of instrument guide tubes. The paper also discusses age-related failures that have occurred to date in pressurized water reactors

  1. Design of a nuclear reactor cooperative controller

    International Nuclear Information System (INIS)

    Alang-Rashid, N.K.; Heger, A.S.

    1991-01-01

    This paper describes the development of a fuzzy logic controller software package and explores the feasibility of its use in nuclear reactor operation. The controller complements reactor operator actions, and the operators can override the controller decisions. Techniques of providing learning capability to the controller are also being investigated to improve the reasoning and control skill of the controller. The fuzzy logic controller is implemented in C language and its overall structure is shown. The heart of the systems consists of a fuzzifier, a rule interpreter, and a defuzzifier. The controller is designed as a stand-alone package that can be interfaced to a simulated model of a nuclear reactor. Since no model is an accurate representation of the actual process being modeled, some tuning must be performed to use the controller in an actual reactor. This is accomplished using the learning feature of the controller

  2. Nuclear reactor shutdown control rod assembly

    International Nuclear Information System (INIS)

    Bilibin, K.

    1988-01-01

    This patent describes a nuclear reactor having a reactor core and a reactor coolant flowing therethrough, a temperature responsive, self-actuated nuclear reactor shutdown control rod assembly, comprising: an upper drive line terminating at its lower end with a substantially cylindrical wall member having inner and outer surfaces; a lower drive line having a lower end adapted to be attached to a neutron absorber; a ring movable disposed about the outer surface of the wall member of the upper drive line; thermal actuation means adapted to be in heat exchange relationship with coolant in an associated reactor core and in contact with the ring, and balls located within the openings in the upper drive line. When reactor coolant approaches a predetermined design temperature the actuation means moves the ring sufficiently so that the balls move radially out from the recess and into the space formed by the second portion of the ring thereby removing the vertical support for the lower drive line such that the lower drive line moves downwardly and inserts an associated neutron absorber into an associated reactor core resulting in automatic reduction of reactor power

  3. Fixed-bed Reactor Dynamics and Control - A Review

    DEFF Research Database (Denmark)

    Jørgensen, S. B.

    1986-01-01

    The industrial diversity of fixed bed reactors offers a challenging and relevant set of control problems. These intricate problems arise due to the rather complex dynamics of fixed bed reactors and to the complexity of actual reactor configurations. Many of these control problems are nonlinear...... and multi-variable. During the last decade fixed bed reactor control strategies have been proposed and investigated experimentally. This paper reviews research on these complex control problems with an emphasis upon solutions which have been demon-strated to work in the laboratory and hold promise...

  4. Complete automation of nuclear reactors control

    International Nuclear Information System (INIS)

    Weill, J.

    1955-01-01

    The use of nuclear reactor for energy production induces the installation of automatic control systems which need to be safe enough and can adapt to the industrial scale of energy production. These automatic control systems have to insure the constancy of power level and adjust the power produced to the energy demand. Two functioning modes are considered: nuclear plant connected up to other electric production systems as hydraulic or thermic plants or nuclear plants functioning on an independent network. For nuclear plants connected up with other production plants, xenon poisoning and operating cost lead to keep working at maximum power the nuclear reactors. Thus, the power modulation control system will not be considered and only start-up control, safety control, and control systems will be automated. For nuclear power plants working on an independent network, the power modulation control system is needed to economize fuel. It described the automated control system for reactors functioning with constant power: a power measurement system constituted of an ionization chamber and a direct-current amplifier will control the steadfastness of the power produced. For reactors functioning with variable power, the automated power control system will allow to change the power and maintain it steady with all the necessary safety and will control that working conditions under P max and R max (maximum power and maximum reactivity). The effects of temperature and xenon poisoning will also be discussed. Safety systems will be added to stop completely the functioning of the reactor if P max is reached. (M.P.)

  5. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process mea...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  6. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  7. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  8. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  9. Heating control system for nuclear reactor

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1981-01-01

    Purpose: To automatically control reactor heating while keeping the condition of temperature rising rate by determining the deviations based on the reactor water temperature, the aimed temperature and the aimed temperature rising rate and operating control rods. Constitution: Actual temperature in the reactor is measured by a temperature detector and compared with a value from a setter to determine the temperature deviation. While on the other hand, the rising rate for the measured temperature is calculated in a differentiator and compared with a value from a setter to determine the deviation, which is passed through an integrator to calculate the deviation for the temperature rising rate. The signals for the temperature deviation and the temperature rising rate deviation are selected in a lower value preference circuit and the operation amount for the control rod is judged in a control rod operation judging section depending on the deviation amount. The control rod to be operated is determined in a sequence control section for the selection of control rod. The control rod selected and the direction of the operation are displayed on a display and the selected control rod is automatically driven by a control rod drives to thereby carry our reactor heating. (Furukawa, Y.)

  10. Dynamics and Control of Chemical Reactors-Selectively Surveyed

    DEFF Research Database (Denmark)

    Jørgensen, S. B.; Jensen, N.

    1989-01-01

    The chemical reactor or bioreactor is physically at a central position in a process, and often with a decisive role on the overall technical and economical performance. Even though application of feedback control on reactors is gaining momentum and on-line optimization has been implemented....... For bioreactors the theory and practice of reactor design, dynamics and control have to be adapted to the peculiarities of the biological catalysts. Enzymes, the protein catalysts, are the simplest ones, which have many common features with chemical catalysts. The living cells are much more complex, these growing...... in industry, many reactor control problems are still left unsolved or only partly solved using open loop strategies where disturbance rejection and model inaccuracies have to be handled through manual reactor control and feedback control of raw material preprocessing and product purification operations...

  11. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  12. The resonance absorption controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1977-07-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D{sub 2}O/H{sub 2}O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs.

  13. The resonance absorption controlled reactor

    International Nuclear Information System (INIS)

    Caro, R.

    1977-01-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D 2 O/H 2 O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs

  14. Control rod for HTGR type reactor

    International Nuclear Information System (INIS)

    Mogi, Haruyoshi; Saito, Yuji; Fukamichi, Kenjiro.

    1990-01-01

    Upon dropping control rod elements into the reactor core, impact shocks are applied to wire ropes or spines to possibly deteriorate the integrity of the control rods. In view of the above in the present invention, shock absorbers such as springs or bellows are disposed between a wire rope and a spine in a HTGR type reactor control rod comprising a plurality of control rod elements connected axially by means of a spine that penetrates the central portion thereof, and is suspended at the upper end thereof by a wire rope. Impact shocks of about 5 kg are applied to the wire rope and the spine and, since they can be reduced by the shock absorbers, the control rod integrity can be maintained and the reactor safety can be improved. (T.M.)

  15. Reactor power automatically controlling method and device for BWR type reactor

    International Nuclear Information System (INIS)

    Murata, Akira; Miyamoto, Yoshiyuki; Tanigawa, Naoshi.

    1997-01-01

    For an automatic control for a reactor power, when a deviation exceeds a predetermined value, the aimed value is kept at a predetermined value, and when the deviation is decreased to less than the predetermined value, the aimed value is increased from the predetermined value again. Alternatively, when a reactor power variation coefficient is decreased to less than a predetermine value, an aimed value is maintained at a predetermined value, and when the variation coefficient exceeds the predetermined value, the aimed value is increased. When the reactor power variation coefficient exceeds a first determined value, an aimed value is increased to a predetermined variation coefficient, and when the variation coefficient is decreased to less than the first determined value and also when the deviation between the aimed value and an actual reactor power exceeds a second determined value, the aimed value is maintained at a constant value. When the deviation is increased or when the reactor power variation coefficient is decreased, since the aimed value is maintained at predetermined value without increasing the aimed value, the deviation is not increased excessively thereby enabling to avoid excessive overshoot. (N.H.)

  16. Method and device for controlling reactor power

    International Nuclear Information System (INIS)

    Oohashi, Masahisa; Masuda, Hiroyuki.

    1982-01-01

    Purpose: To enable load following-up operation of a reactor adapted to perform power conditioning by the control of the liquid poison density in the core and by the control rods. Constitution: In a case where the reactor power is repeatedly changed in a reactor having a liquid poison density control device and control rods, the time period for the power control is divided depending on the magnitude of the change with time in the reactivity and the optimum values are set for the injection and removal amount of the liquid poison within the divided period. Then, most parts of the control required for the power change are alloted to the liquid poison that gives no effect on the power distribution while minimizing the movement of the control rods, whereby the power change in the reactor as in the case of the load following-up operation can be practiced with ease. (Kawakami, Y.)

  17. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  18. Regulatory Framework for Controlling the Research Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2009-01-01

    Decommissioning is one of important stages in construction and operation of research reactors. Currently, there are three research reactors operating in Indonesia. These reactors are operated by the National Nuclear Energy Agency (BATAN). The age of the three research reactors varies from 22 to 45 years since the reactors reached their first criticality. Regulatory control of the three reactors is conducted by the Nuclear Energy Regulatory Agency (BAPETEN). Controlling the reactors is carried out based on the Act No. 10/1997 on Nuclear Energy, Government Regulations and BAPETEN Chairman Decrees concerning the nuclear safety, security and safeguards. Nevertheless, BAPETEN still lack of the regulation, especially for controlling the decommissioning project. Therefore, in the near future BAPETEN has to prepare the regulations for decommissioning, particularly to anticipate the decommissioning of the oldest research reactors, which probably will be done in the next ten years. In this papers author give a list of regulations should be prepared by BAPETEN for the decommissioning stage of research reactor in Indonesia based on the international regulatory practice

  19. MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER

    Directory of Open Access Journals (Sweden)

    Artur Wodołażski

    2016-09-01

    Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.

  20. Control Rod Malfunction at the NRAD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  1. Distributed expert systems for nuclear reactor control

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1992-01-01

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed

  2. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  3. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  4. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Stevens, W.W.

    1990-01-01

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  5. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  6. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  7. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  8. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J.

    1982-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core where there is established a reactor coolant temperature set point at which it is desired to operate the reactor and first reactor coolant temperature band limits within which the set point is characterized. The reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in the core as the reactor coolant temperature approaches the first band limits to maintain the reactor coolant temperature near the set point and within the first band limits. The reactivity charges associated with movement of respective coolant displacer element clusters is calculated and compared with a calculated derived reactivity charge in order to select the cluster to be moved. (author)

  9. Modernization of control instrumentation and security of reactor IAN - R1

    International Nuclear Information System (INIS)

    Gonzalez, J. M.

    1993-01-01

    The program to modernize IAN-R1 research reactor control and safety instrumentation has been carried out considering two main aspects: updating safety philosophy requirements and acquiring the newest reactor control instrumentation controlled by computer, following the present criteria internationally recognized, for safety and reliable reactor operations and the latest developments of nuclear electronic technology. The new IAN-R1 reactor instrumentation consist of two wide range neutron monitoring channels, commanded by microprocessor a data acquisition system and reactor control, (controlled by computers). The reactor control desk is providing through two displays; all safety and control signals to the reactor operators; furthermore some signals like reactor power, safety and period signals are also showed on digital bar graphics, which are hard wired directly from the neutron monitoring channels

  10. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  11. Liquid-poison type power controlling device for nuclear reactor

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Yamanari, Shozo; Sugisaki, Toshihiko; Goto, Hiroshi.

    1981-01-01

    Purpose: To improve the safety and the operability of a nuclear reactor by adjusting the density of liquid poison. Constitution: The thermal expansion follow-up failure between cladding and a pellet upon abrupt and local variations of the power is avoided by adjusting the density of liquid poison during ordinary operation in combination with a high density liquid poison tank and a filter and smoothly controlling the reactor power through a pipe installed in the reactor core. The high density liquid poison is abruptly charged in to the reactor core under relatively low pressure through the tube installed in the reactor core at the time of control rod insertion failure in an accident, thereby effectively shutting down the reactor and improving the safety and the operability of the reactor. (Yoshihara, H.)

  12. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    Science.gov (United States)

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  14. Device for rearranging control rods of experimental reactors

    International Nuclear Information System (INIS)

    Louda, J.

    1975-01-01

    The invention claims a means for the adjustment of control rods in experimental reactors with a continuously variable pitch of the fuel element spacer. The proposed device permits obtaining maximum variability in the physical modelling of nuclear power reactor cores in experimental reactors. (F.M.)

  15. Centralized digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.

    1987-01-01

    A hardware and software design for the centralized control of a research nuclear reactor by a digital computer are presented, as well as an investigation of automatic-feedback control. Current reactor-control philosophies including redundancy, inherent safety in failure, and conservative-yet-operational scram initiation were used as the bases of the design. The control philosophies were applied to the power-monitoring system, the fuel-temperature monitoring system, the area-radiation monitoring system, and the overall system interaction. Unlike the single-function analog computers currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control-rod movements to conform with operator requests, automatically log the required physical parameters during reactor operation, perform the required system tests, and monitor facility safety and security. Reactor power control is based on signals received from ion chambers located near the reactor core. Absorber-rod movements are made to control the rate of power increase or decrease during power changes and to control the power level during steady-state operation. Additionally, the system incorporates a rudimentary level of artificial intelligence

  16. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  17. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  18. The control of reactor outages

    International Nuclear Information System (INIS)

    Bouget, Y.H.; Berteloot, J.M.

    1995-01-01

    The 1985-1992 period was marked by a continuous decay in French reactors operation. This situation has led the Committee for Outages Mastery to take steps for the improvement of nuclear power plants availability. The control of reactor outages requires an integrated vision of the safety, duration, dosimetry, costs and security aspects and a perfect management of contractors. The paper describes the methodology used for the management and the maintenance of the French PWR reactors stock. A detailed schedule of maintenance tasks with dose estimations is now required from each site to anticipate and optimize the duration of outages. Thanks to this action, a significant reduction of the maintenance costs is observed for the 1992-1995 period. (J.S.). 2 figs

  19. Control aid for xenon vibration in reactor

    International Nuclear Information System (INIS)

    Kanekawa, Takashi.

    1990-01-01

    In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)

  20. Control rod for the operation of nuclear reactor

    International Nuclear Information System (INIS)

    Ishida, Hiromi

    1987-01-01

    Purpose: To conduct spectrum shift operation without complicating the reactor core structures, reducing the probability of failures. Constitution: An operation control rod which is driven while passed vertically in the reactor core comprises a strong absorption portion, moderation portion and weak moderation portion defined orderly from above to below and the length for each of the portions is greater than the effective reactor core height. If the operation control rod is lifted to the maximum limit in the upward direction of the reactor core, the weak moderation portion is corresponded over the effective length of the reactor core. Since the weak moderation portion is filled with zirconium and moderators are not present in the operation control rod, water draining gap is formed, neutron spectral shift is formed, excess reactivity is suppressed, absorption of neutrons to fuel fertile material is increased and the formation of nuclear fission material is increased. From the middle to the final stage of the cycle, the control rod is lowered, by which the moderator/fuel effective volume ratio is increased to increase the reactivity. (Kamimura, M.)

  1. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  2. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  3. Computer Controlled Chemical Micro-Reactor

    International Nuclear Information System (INIS)

    Mechtilde, Schaefer; Eduard, Stach; Adreas, Foitzik

    2006-01-01

    Chemical reactions or chemical equilibria can be influenced and controlled by several parameters. The ratio of two liquid ingredients, the so called reactants or educts, plays an important role in determining the end product and its yield. The reactants must be weighed and accordingly mixed with the conventional batch mode. If the reaction is done in a microreactor or in several parallel working micro-reactors, units for allotting the educts in appropriate quantities are required. In this report we present a novel micro-reactor that allows the constant monitoring of the chemical reaction via Raman spectroscopy. Such monitoring enables an appropriate feedback on the steering parameters for the PC controlled micro-pumps for the appropriate educt flow rate of both liquids to get optimised ratios of ingredients at an optimised total flow rate. The micro-reactors are the core pieces of the design and are easily removable and can therefore be changed at any time to adapt the requirements of the chemical reaction. One type of reactor consists of a stainless steel base containing small scale milled channels covered with anodically bonded Pyrex glass. Another type of reactor has a base of anisotropically etched silicon, and is also covered with anodically bonded Pyrex glass. The glass window allows visual observation of the initial phase interface of the two educts in the reaction channels by optical microscopy and does not affect, in contrast to infrared spectroscopy, the Raman spectroscopic signal for detection of the reaction kinetics. On the basis of a test reaction, we present non-invasive and spatially highly resolved in-situ reaction analysis using Raman spectroscopy measured along the reaction channel at different locations

  4. Reactor container

    International Nuclear Information System (INIS)

    Fukazawa, Masanori.

    1991-01-01

    A system for controlling combustible gases, it has been constituted at present such that the combustible gases are controlled by exhausting them to the wet well of a reactor container. In this system, however, there has been a problem, in a reactor container having plenums in addition to the wet well and the dry well, that the combustible gases in such plenums can not be controlled. In view of the above, in the present invention, suction ports or exhaust ports of the combustible gas control system are disposed to the wet well, the dry well and the plenums to control the combustible gases in the reactor container. Since this can control the combustible gases in the entire reactor container, the integrity of the reactor container can be ensured. (T.M.)

  5. Method of changing the control rod pattern in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to change the control rod pattern in a short time with ease, as well as improve the availability factor of the reactor. Method: Control rods other than those being inserted into the reactor core are inserted into the reactor core to reduce the power by the reduction in the reactor core flow rate. Then, the control rod to be operated is operated partially for the change of the control rod pattern to restrict the linear heat rating of the fuels to less than 0.1 kW/ft per one hour to change the control pattern to the aimed control rod pattern. Then, the reactor core flow rate is increased after the pattern exchange for the control rod to increase the power. Since only the control rod operation is performed without adjusting the reactor core flow rate upon change of the control rod pattern, procedures can be made simply in a short time to thereby improve the availability factor of the reactor. (Moriyama, K.)

  6. Digital control for nuclear reactors - lessons learned

    International Nuclear Information System (INIS)

    Bernard, J.A.; Aviles, B.N.; Lanning, D.D.

    1992-01-01

    Lessons learned during the course of the now decade-old MIT program on the digital control of nuclear reactors are enumerated. Relative to controller structure, these include the importance of a separate safety system, the need for signal validation, the role of supervisory algorithms, the significance of command validation, and the relevance of automated reasoning. Relative to controller implementation, these include the value of nodal methods to the creation of real-time reactor physics and thermal hydraulic models, the advantages to be gained from the use of real-time system models, and the importance of a multi-tiered structure to the simultaneous achievement of supervisory, global, and local control. Block diagrams are presented of proposed controllers and selected experimental and simulation-study results are shown. In addition, a history is given of the MIT program on reactor digital control

  7. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  8. An autonomous control framework for advanced reactors

    Directory of Open Access Journals (Sweden)

    Richard T. Wood

    2017-08-01

    Full Text Available Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  9. An autonomous control framework for advanced reactors

    International Nuclear Information System (INIS)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C.

    2017-01-01

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors

  10. An autonomous control framework for advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  11. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  12. Study on reactor power transient characteristics (reactor training experiments). Control rod reactivity calibration by positive period method and other experiment

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Sunagawa, Takeyoshi

    2014-01-01

    In this paper, it is reported about some experiments that have been carried out in the reactor training that targets sophomore of the department of applied nuclear engineering, FUT. Reactor of Kinki University Atomic Energy Research Institute (UTR-KINKI) was used for reactor training. When each critical state was achieved at different reactor output respectively in reactor operating, it was confirmed that the control rod position at that time does not change. Further, control rod reactivity calibration experiments using positive Period method were carried out for shim safety rod and regulating rod, respectively. The results were obtained as reasonable values in comparison with the nominal value of the UTR-KINKI. The measurement of reactor power change after reactor scram was performed, and the presence of the delayed neutron precursor was confirmed by calculating the half-life. The spatial dose rate measurement experiment of neutrons and γ-rays in the reactor room in a reactor power 1W operating conditions were also performed. (author)

  13. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  14. MATLAB/SIMULINK model of CANDU reactor for control studies

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2006-01-01

    In this paper a MATLAB/SIMULINK model is developed for a CANDU type reactor. The data for the reactor are taken from an Indian PHWR, which is very similar to CANDU in its design. Among the different feedback mechanisms in the core of the reactor, only xenon has been considered which plays an important role in spatial oscillations. The model is verified under closed loop scenarios with simple PI controller. The results of the simulation show that this model can be used for controller design and simulation of the reactor systems. Adding models of the other components of a CANDU reactor would ultimately result in a complete model of CANDU plant in MATLAB/SIMULINK. (author)

  15. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  16. Dynamics and control of molten-salt breeder reactor

    Directory of Open Access Journals (Sweden)

    Vikram Singh

    2017-08-01

    Full Text Available Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  17. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Magrotti, G. [Laboratorio Energia Nucleare Applicata (L.E.N.A.), University of Pavia, Via Aselli 41, 27100 (Italy); Cammi, A.; Memoli, V. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Gadan, M. A. [Instrumentation and Control Department, National Atomic Energy Comission of Argentina, University of Pavia (Italy)

    2009-07-01

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  18. Power controlling method for BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1983-01-01

    Purpose: To enable reactor operation exactly following after an aimed curve in the high power resuming and maintaining period without failures in cladding tubes. Method: Upon recovery of the reactor power to a high power level after changing the reactor power from the high power to the low power level, control rod is operated under such conditions that the linear power density after operation of the control rod does not exceed the PC envelope in the low power period, and the core flow rate is coordinated to the control rod operation. The linear power density can be suppressed within an allowable linear power density by the above operation during high power resuming and maintaining period and, as the result, PCI failures can be prevented. (Kamimura, M.)

  19. Fission reactor control rod

    International Nuclear Information System (INIS)

    Irie, Tomoo.

    1991-01-01

    The present invention concerns a control rod in a PWR type reactor. A control rod has an inner cladding tube and an outer cladding tube disposed coaxially, and a water draining hole is formed at the inside of the inner cladding tube. Neutron absorbers are filled in an annular gap between the outer cladding tube and the inner cladding tube. The water draining hole opens at the lower end thereof to the top end of the control rod and at the upper end thereof to the side of the upper end plug of the control rod. If the control rod is dropped to a control rod guide thimble for reactor scram, coolants from the control rod guide thimble are flown from the lower end of the water draining hole and discharged from the upper end passing through the water draining hole. In this way, water from the control rod guide thimble is removed easily when the control rod is dropped. Further, the discharging amount of water itself is reduced by the provision of the water draining hole. Accordingly, sufficient control rod dropping speed can be attained. (I.N.)

  20. Methods for reactor physics calculations for control rods in fast reactors

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Rowlands, J.L.

    1988-12-01

    The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs

  1. Method of controlling the reactor operation

    International Nuclear Information System (INIS)

    Ishiguro, Akira; Nakakura, Hiroyuki.

    1987-01-01

    Purpose: To moderate vibratory response due to delayed operation thereby obtain stable controlled response in the operation control for a PWR type reactor. Method: the reactor operation is controlled by the axial power distribution control by regulating the boron concentration in primary coolants with a boron density control system and controlling the average temperature for the primary coolants with the control rod control system. In this case, the control operation and the control response become instable due to transmission delay, etc. of aqueous boric acid injection to the primary coolant circuits to result in vibratory response. In the present invention, signals are prepared by adding the amount in proportion to the variation coefficient with time of xenone concentration obtained from the measured value for the reactor power added to the conventional axial power distribution parameter deviation and used as the input signals for the boron concentration control system. As a result, the instability due to the transmission delay of the aqueous boric acid injection is improved by the preceding control by the amount in proportion with the variation coefficient with time of the xenone concentration. An advantageous effect can be expected for the load following operation during day time according to the present invention. (Kamimura, M.)

  2. The design and construction of a controllable reactor with a HTS control winding

    International Nuclear Information System (INIS)

    Wass, Torbjoern; Hoernfeldt, Sven; Valdemarsson, Stefan

    2006-01-01

    Reactive power compensation is vital for obtaining efficient operation of long transmission power lines or cables. The need of reactive power changes with the load of the transmission line. Discrete units of conventional reactors are therefore switched in and out in order to obtain more efficient reactive power compensation. A continuous reactive compensation will reduce the transmission losses and increase the transmission capacity of active power. We have designed and constructed a one phase small scale prototype of a controllable shunt reactor with a high temperature superconducting control winding. The reactor consists basically of two windings and an iron core. The control winding is placed so that it generates a DC magnetic field perpendicular to the main AC magnetic field. Thus the DC current in the control winding can control the direction of the magnetization of the iron core and thereby the reactance of the reactor. Such a control winding will have low losses and give the reactor a large dynamic range. For this small scale reactor we found that the reactive power could be varied with a factor six. We have demonstrated the feasibility to design large scale controllable shunt reactors with large dynamic range and low losses utilizing a control winding made of a high temperature superconductor

  3. Level controlling system in BWR type reactors

    International Nuclear Information System (INIS)

    Joge, Toshio; Higashigawa, Yuichi; Oomori, Takashi.

    1981-01-01

    Purpose: To reasonably attain fully automatic water level control in the core of BWR type nuclear power plants. Constitution: A feedwater flow regulation valve for reactor operation and a feedwater flow regulation valve for starting are provided at the outlet of a motor-driven feedwater pump in a feedwater system, and these valves are controlled by a feedwater flow rate controller. While on the other hand, a damp valve for reactor clean up system is controlled either in ''computer'' mode or in ''manual'' mode selected by a master switch, that is, controlled from a computer or the ON-OFF switch of the master switch by way of a valve control analog memory and a turn-over switch. In this way, the water level in the nuclear reactor can be controlled in a fully automatic manner reasonably at the starting up and shutdown of the plant to thereby provide man power saving. (Seki, T.)

  4. Optimization and control of a continuous polymerization reactor

    Directory of Open Access Journals (Sweden)

    L. A. Alvarez

    2012-12-01

    Full Text Available This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO, the Model Predictive Control (MPC and a Target Calculation (TC that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

  5. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  6. MATLAB/SIMULINK platform for simulation of CANDU reactor control system

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2007-01-01

    In this paper a simulation platform for CANDU reactors' control system is presented. The platform is built on MATLAB/SIMULINK interactive graphical interface. Since MATLAB/SIMULINK are powerful tools to describe systems mathematically, all the subsystems in a CANDU reactor are represented in MATLAB's language and are implemented in SIMULINK graphical representation. The focus of the paper is on the flux control loop of CANDU reactors. However, the ideas can be extended to include other parts in CANDU power plants and the same technique can be applied to other types of nuclear reactors and their control systems. The CANDU reactor model and xenon feedback model are also discussed in this paper. (author)

  7. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  8. REACTOR CONTROL ROD OPERATING SYSTEM

    Science.gov (United States)

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  9. Design of Multi Objectives Control Systems to Control Nuclear Reactor Power

    International Nuclear Information System (INIS)

    Abdelaal, M.M.Z.

    2013-01-01

    The Egyptian Testing Research Reactor (ETRR-2) nonlinear twelfth order model is linearized and reduced to lower order model. Model order reduction methodologies such as balanced truncation, Schur reduction method, Hankel approximation and Coprime factorization have been used in the reduction process. The reactor actually controlled by PD controller with fixed tuning parameters. LMI state feedback, LMI-pool assignment, H ∞ and observer based controllers based third order model are proposed to be used in the reactor power control instead of the PD controller. A comparison of LMI, LMI-Pole placement,H ∞ control systems and those of based observer relative to the PD controller has been performed which showed better response and disturbance rejection for the proposed controllers.

  10. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  11. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  12. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  13. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  14. Control rod for nuclear reactor

    International Nuclear Information System (INIS)

    Tada, Kaoru; Kawano, Shohei

    1998-01-01

    A guide roller is prepared by forming an oxide membrane on the surface of a molded roller product comprising, as a material, a deposition-reinforced type nickel-based alloy reinforced by deposition of fine particles by applying a heat treatment to a nickel-based alloy. When the guide roller is used in reactor water, since the roller has an oxide membrane on the surface, leaching of nickel to reactor water is reduced, and radioactive corrosive products including cobalt 58 are reduced to decrease an operator's exposure dose upon periodical inspections of a plant. The oxide membrane is formed by applying heat treatment under an oxidative atmosphere. Then, the amount of abrasion of pins and rollers in association with start-up or shut down of a reactor and control of the power can be reduced thereby enabling to suppress increase of radiation dose due to cobalt 60 and cobalt 58. (N.H.)

  15. Nuclear reactor, reactor core thereof, and device for constituting the reactor

    International Nuclear Information System (INIS)

    Takiyama, Masashi.

    1994-01-01

    A reactor core is constituted by charging coolants (light water) in a reactor pressure vessel and distributing fuel assemblies, reflecting material sealing pipes, moderator (heavy water and helium gas) sealing pipes, and gas sealing pipes therein. A fuel guide tube is surrounded by a cap and the gap therebetween is made hollow and filled with coolant steams. The cap is supported by a baffle plate. The moderator sealing pipe is disposed in a flow channel of coolants in adjacent with the cap. The position of the moderator sealing tube in the reactor core is controlled by water stream from a hydraulic pump with a guide tube extending below the baffle plate being as a guide. Then, the position of the moderator sealing tube is varied to conduct power control, burnup degree compensation, and reactor shut down. With such procedures, moderator cooling facility is no more necessary to simplify the structure. Further, heat generated from the moderator is transferred to the coolants thereby improving heat efficiency of the reactor. (I.N.)

  16. Method and device for controlling nuclear reactor power

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Ebata, Shigeo.

    1988-01-01

    Purpose: To detect and suppress the special power oscillations in the reactor core. Method: Four pairs of LPRM detectors, each pair comprising two detectors are disposed at an identical axial direction of the reactor core and situated at substantially insymmetrical positions at least in longitudinal, vertical and orthogonal directions with respect to the center of te reactor core and LPRM signals from them are inputted into a device for judging special power oscillations. In this case, a standardized mutual relation function is determined on every pair for the respective LPRM signals. Generation of special power oscillations in the reactor core is judged when it is detected that peaks appearing at least in one of the function forms for each pair are negative and have absolute values exceeding a predetermined value and that time of peak is within a predetermined time. The judged signal is inputted to a selected control rod insertion device. The selected control rod insertion device, upon preceiving the signal, inserts selected control rods into the reactor core to suppress the special power oscillations. Accordingly, it is possible to improve the fuel integrity. (Horiuchi, T.)

  17. Status of fast reactor control rod development in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, B.T.

    1984-01-01

    The two large fast reactors constructed in the United Kingdom, that is the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR) differed substantially in their control systems. DFR was controlled by variation of the neutron leakage from the core while PFR uses conventional control rods containing neutron absorbing materials. This paper describes the development of the PFR control systems, the progressive design of the control systems for the prototype Civil Fast Reactor (CFR) and the supporting research and development programmes. (author)

  18. Design of controller for control rod of research reactors

    International Nuclear Information System (INIS)

    Abou-Zaid, R.M.F.M

    2008-01-01

    Designing and testing digital control system for any nuclear research reactor can be costly and time consuming. In this thesis, a rapid, low-cost proto typing and testing procedure for digital controller design is proposed using the concept of Hardware-In-The-Loop (HIL). Some of the control loop components are real hardware components and the others are simulated. First, the whole system is modeled and tested by Real-Time Simulation (RTS) using conventional simulation techniques such as MATLAB / SIMULINK. Second the Hardware-in-the-loop simulation is tested using Real-Time Windows Target in MATLAB and Visual C ++ . The control parts are included as hardware components which are the reactor control rod and its drivers. Three kinds of controllers are studied, Proportional-Derivative (PD), Proportional-Integral-Derivative (PID) and Fuzzy controller. An experimental setup for the hardware used in HIL concept for the control of the nuclear research reactor has been realized. Experimental results are obtained and compared with the simulation results. The experimental results indicate the validation of HIL method in this domain.

  19. Development of Reactor Protection System (RPS) in Reactor Digital Instrumentation and Control System (ReDICS)

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib

    2013-01-01

    RTP Research Reactor are in the process upgraded from analogue control console system to a digital control console system . Upgrade process requires a statistical study to improve safety during reactor operation. RPS was developed to meet the needs of operational safety and at the same time comply with the guidelines set by the IAEA. RPS is in analog and hardware with industry standard interfaced with digital DAC (Data Acquisition and Control) and OWS (Operator Work Station). (author)

  20. The matter of probability controlling melting of nuclear ship reactor

    International Nuclear Information System (INIS)

    Pihowicz, W.; Sobczyk, S.

    2008-01-01

    In the first part of this work beside description of split power, power of radioactivity disintegration and afterpower and its ability to extinguish, the genera condition of melting nuclear reactor core and its detailed versions were described. This paper also include the description of consequences melting nuclear reactor core both in case of stationary and mobile (ship) reactor and underline substantial differences. Next, fulfilled with succeed, control under melting of stationary nuclear reactor core was characterized.The middle part describe author's idea of controlling melting of nuclear ship reactor core. It is based on: - the suggestion of prevention pressure's untightness in safety tank of nuclear ship reactor by '' corium '' - and the suggestion of preventing walls of this tank from melting by '' corium ''. In the end the technological and construction barriers of the prevention from melting nuclear ship reactor and draw conclusions was presented. (author)

  1. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  2. Method of driving control rod in reactor

    International Nuclear Information System (INIS)

    Osa, Hirotaka.

    1986-01-01

    Purpose: To improve security and safety of the reactor by reducing reactor output automatically and quickly when circulation of cooling water is stopped. Constitution: When the circulating pump is under operation, fluid pressure in the discharge pipe is transferred to the fluid room of fluid pressure cylinder via the control rod drive pipe and lift up the piston, and then the control rod is drawn out of the reactor core. When the circulating pump is lowered in its functions, discharge pipe fluid pressure decreases, fluid pressure in the fluid room decreases, and with less force of piston movement, the control rod gets lowered by its own weight. At this time, the blocked state of the opening by the piston is released, fluid flows into the room. Lowering of pressure and the control rod is promoted by transferring out fluid below the piston in the fluid room to the upper part of the piston via a small gap when the control rod falls by gravity. (Horiuchi, T.)

  3. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  6. Automatic power control for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Yung Joon

    1994-02-01

    During a normal operation of a pressurized water reactor (PWR), the reactivity is controlled by control rods, boron, and the average temperature of the primary coolant. Especially in load follow operation, the reactivity change is induced by changes in power level and effects of xenon concentration. The control of the core power distribution is concerned, mainly, with the axial power distribution which depends on insertion and withdrawal of the control rods resulting in additional reactivity compensation. The utilization of part strength control element assemblies (PSCEAs) is quite appropriate for a control of the power distribution in the case of Yonggwang Nuclear Unit 3 (YGN Unit 3). However, control of the PSCEAs is not automatic, and changes in the boron concentration by dilution/boration are done manually. Thus, manual control of the PSCEAs and the boron concentration require the operator's experience and knowledge for a successful load follow operation. In this thesis, the new concepts have been proposed to adapt for an automatic power control in a PWR. One of the new concepts is the mode K control, another is a fuzzy power control. The system in mode K control implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial power shape change, which allows automatic control of the axial power distribution. And the mode K enables precise regulation, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1000-MWe PWR which is a reference plant for the YGN Unit 3. The simulation results illustrate that the mode K would be

  7. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure......With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...

  8. Application of fuzzy logic control system for reactor feed-water control

    International Nuclear Information System (INIS)

    Iijima, T.; Nakajima, Y.

    1994-01-01

    The successful actual application of a fuzzy logic control system to the a nuclear Fugen nuclear power reactor is described. Fugen is a heavy-water moderated, light-water cooled reactor. The introduction of fuzzy logic control system has enabled operators to control the steam drum water level more effectively in comparison to a conventional proportional-integral (PI) control system

  9. Optimized Control Rods of the BR2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, Silva; Koonen, E.

    2007-09-15

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  10. Optimized Control Rods of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, E.

    2007-01-01

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  11. Method for controlling FBR type reactor

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Iwashita, Tsuyoshi; Sakuragi, Masanori

    1991-01-01

    The present invention provides a controlling method for moderating thermal transient upon trip in an FBR type reactor. A flow channel for bypassing an intermediate heat exchanger is disposed in a secondary Na system. Then, bypassing flow rate is controlled so as to suppress fluctuations of temperature at a primary exit of the intermediate heat exchanger. Bypassing operation by using the bypassing flow channel is started at the same time with plant trip, to reduce the flow rate of secondary Na flown to the intermediate heat exchanger, so that the imbalance between the primary and the secondary Na flowrates is reduced. Accordingly, fluctuations of the temperature at the primary exit of the intermediate heat exchanger upon trip is suppressed. In view of the above, thermal transient applied to the reactor container upon plant trip can be moderated. As a result, the working life of the reactor can be extended, to improve plant integrity and safety. (I.S.)

  12. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-01-01

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt 6 Li as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented

  13. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  14. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  15. Problems of control of WWER-type pressurized water reactors (PWR's)

    International Nuclear Information System (INIS)

    Drab, F.; Grof, V.

    1978-01-01

    The problems are dealt with of nuclear power reactor control. Special attention is paid to the reactor of the WWER type, which will play the most important part in the Czechoslovak power system in the near future. The subsystems are described which comprise the systems of reactor control and protection. The possibilities are outlined of using Czechoslovak instrumentation for the control and safety system of the WWER-type PWR. (author)

  16. Control rod drives for FBR type reactor

    International Nuclear Information System (INIS)

    Ikakura, Hiroaki.

    1990-01-01

    The control rod drives for an FBR type reactor of the present invention eliminate obstacles deposited on attracting surfaces between an electromagnet and an armature which connect control rods to recover their retaining power. That is, a sealed chamber capable of controlling its inner pressure by an operation from the outside of a reactor is disposed in an extension pipe, and a nozzle connected to the sealed chamber and facing at the lower end thereof to the attracting surface is disposed. Liquid sodium sucked by evacuating the sealed chamber is jetted out from the nozzle by pressurizing the chamber to simultaneously eliminate obstacles deposited to the attracting surfaces of the electromagnet and the control rod. Alternatively, a nozzle protruding from and retracting to the lower surface of the electromagnet is disposed opposing to each of the attracting surfaces of the electromagnet and the control rod. Similar effect can also be obtained if gases are jetted out in this state. As a result, control rod drives of high reliability for a FBR type reactor can be obtained. (I.S.)

  17. Protective guide structure for reactor control rod

    International Nuclear Information System (INIS)

    Ban, Minoru; Umeda, Kenji; Kubo, Noboru; Ito, Tomohiro.

    1996-01-01

    The present invention provides an improved protective guide structure for control rods, which does not cause swirling of coolants and resonance even though a slit is formed on a protective tube which surrounds a control rod element in a PWR type reactor. Namely, a reactor control rod is constituted with elongated control elements collectively bundled in the form of a cluster. The protective guide structure protectively guides the collected constituent at the upper portion of a reactor container. The protective structure comprises a plurality of protective tubes each having a C-shaped cross section disposed in parallel for receiving control rod elements individually in which the corners of the opening of the cross section of the protective tube are chamfered to an appropriate configuration. With such a constitution, even if coolant flows in a circumferential direction along the protective tubes surrounding the control rod elements, no shearing stream is caused to the coolants flow since the corners of the cross sectional opening (slit) of the tube are chamfered. Accordingly, occurrence of swirlings can be suppressed. (I.S.)

  18. Control of ZrH reactor reactivity perturbations during orbital maneuvers

    International Nuclear Information System (INIS)

    Audette, R.F.

    1970-01-01

    Scheduled and inadvertent vehicle maneuvers in manned and unmanned space missions may result in reactivity perturbations to the ZrH reactor due to fuel and control drum motion from acceleration forces. Potential power and outlet coolant temperature excursions could result in interruptions of PCS power generation, or excessive coolant temperatures if uncontrolled. This analysis compares potential uncontrolled reactor transients with allowable transients for uninterrupted electrical power generation from a Brayton system, and presents a control scheme to limit transient reactor outlet temperatures to 1250 0 F for a system designed to operate at a nominal 1200 0 F reactor outlet. Potential uncontrolled transients could result in a reactor outlet temperature swing of +-77 0 F about a nominal 1200 0 F and a reactor power swing of +92 Kwt and -67 Kwt about a nominal 130 Kwt for the Brayton System. (U.S.)

  19. Digital control for the Penn State Breazeale reactor

    International Nuclear Information System (INIS)

    Raiskums, G.A.

    1991-01-01

    Digital control has been an integral part of Canada deuterium uranium (CANDU) nuclear power reactor technology since the 1960s. Much of the high CANDU production reliability can be attributed to the fault-tolerant and flexible control algorithms achievable with digital control. Atomic Energy of Canada Limited (AECL) has now transported this technology to research reactors, using industrial-grade microcomputers to solve equipment aging and spares obsolescence problems so prevalent at older installations. The open architecture of the Intel 8086-based computers provides for wide availability and reasonably priced, quality hardware from numerous sources. AECL recently supplied the Pennsylvania State University Breazeale Reactor (PSBR) with a new console containing a digital control and monitoring system. The reactor safety system (RSS) was also replaced with hardwired relay logic and truly analog state-of-the-art wide range nuclear instrumentation supplied by AECL's subcontractor, Gamma-Metrics. Retaining analog hardware for the mandated RSS functions was key to minimizing licensing efforts and the extensive verification and validation that would be required for safety system software. This paper elaborates on the digital control and monitoring portion of the PSBR console replacement, with emphasis on the key system objectives

  20. Control parameter optimization for AP1000 reactor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu

    2016-01-01

    Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization

  1. Computer simulation of nuclear reactor control by means of heuristic learning controller

    International Nuclear Information System (INIS)

    Bubak, M.; Moscinski, J.

    1976-01-01

    A trial of application of two techniques of Artificial Intelligence: heuristic Programming and Learning Machines Theory for nuclear reactor control is presented. Considering complexity of the mathematical models describing satisfactorily the nuclear reactors, value changes of these models parameters in course of operation, knowledge of some parameters value with too small exactness, there appear diffucluties in the classical approach application for these objects control systems design. The classical approach consists in definition of the permissible control actions set on the base of the set performance index and the object mathematical model. The Artificial Intelligence methods enable construction of the control system, which gets during work an information being a priori inaccessible and uses it for its action change for the control to be the optimum one. Applying these methods we have elaborated the reactor power control system. As the performance index there has been taken the integral of the error square. For the control system there are only accessible: the set power trajectory, the reactor power and the control rod position. The set power trajectory has been divided into time intervals called heuristic intervals. At the beginning of every heuristic interval, on the base of the obtained experience, the control system chooses from the control (heuristic) set the optimum control. The heuristic set it is the set of relations between the control rod rate and the state variables, the set and the obtained power, similar to simplifications applied by nuclear reactors operators. The results obtained for the different control rod rates and different reactor (simulated on the digital computer) show the proper work of the system. (author)

  2. Method and apparatus for controlling the neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Minnick, L.E.

    1979-01-01

    A control rod assembly in a nuclear reactor that automatically scrams the reactor when a loss of coolant flow occurs and that can also control the level of neutron flux in the reactor is described. The control rod assembly includes a separator plate having an orifice through which the reactor coolant flows and a sealing surface around the orifice. The control rod in the assembly has a complementary sealing surface. When the control rod and separator plate are brought into contact, the differential pressure across the separator plate caused by the flow of the primary coolant through the reactor core retains the two sealing surfaces together. If the flow of coolant stops or the differential pressure across the separator plate decreases for any reason, the control rod drops by gravity and the reactor is scrammed. The control rod is also automatically dropped as a result of the lateral vibration of an earthquake or by the downward motion of the rod drive shaft, either of which will open the sealing surfaces and reduce the sealing pressure

  3. Control for nuclear reactor

    International Nuclear Information System (INIS)

    Ash, E.B.; Bernath, L.; Facha, J.V.

    1980-01-01

    A nuclear reactor is provided with several hydraulically-supported spherical bodies having a high neutron absorption cross section, which fall by gravity into the core region of the reactor when the flow of supporting fluid is shut off. (auth)

  4. Status of control assembly materials in Indian water reactors

    International Nuclear Information System (INIS)

    Date, V.G.; Kulkarni, P.G.

    2000-01-01

    India's present operating water cooled power reactors comprise boiling water reactors of Tarapur Atomic Power Station (TAPS) and pressurized heavy water reactors (PHWRs) at Kota (RAPS), Kalpakkam (MAPS), Narora (NAPS) and Kakrapara (KAPS). Boiling water reactors of TAPS use boron carbide control blades for control of power as well as for shut down (scram). PHWRs use boron steel and cobalt absorber rods for power control and Cd sandwiched shut off rods (primary shut down system) and liquid poison rods (secondary shut down system) for shut down. In TAPS, Gadolinium rods (burnable poison rods) are also incorporated in fuel assembly for flux flattening. Boron carbide control blades and Gadolinium rods for TAPS, cobalt absorber rods and shut down assemblies for PHWRs are fabricated indigenously. Considerable development work was carried out for evolving material specifications, component and assembly drawings, and fabrication processes. Details of various control and shut off assemblies being fabricated currently are highlighted in the paper. (author)

  5. Nuclear reactor plants and control systems therefor

    International Nuclear Information System (INIS)

    de Boer, G.A.; de Hex, M.

    1976-01-01

    A nuclear reactor plant is described comprising at least two hydraulically separated but thermally interconnected heat conveying circuits, of which one is the reactor circuit filled with a non-water medium and the other one is the water-steam-circuit equipped with a steam generator, a feed water conduit controlled by a valve and a steam turbine, and a control system mainly influenced by the pressure drop caused in said feed water conduit and its control valve and having a value of at least 10 bars at full load

  6. The optimal control of ITU TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Can, Burhanettin

    2008-01-01

    In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)

  7. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  8. Characterisation of reactor control rod drives. Specification 1-6

    International Nuclear Information System (INIS)

    1975-03-01

    The committee 'Kernreaktorregelung' of VDI/VDE-Gesellschaft Mess- und Regelungstechnik has developed 6 specifications (Typenblaetter) of reactor control rod drives. The specifications are aimed at giving engineers in reactor control systems an outline concerning the function as well as some construction characteristics. (orig./LN) [de

  9. Neutron density optimal control of A-1 reactor analoque model

    International Nuclear Information System (INIS)

    Grof, V.

    1975-01-01

    Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)

  10. Control rod studies in small and medium sized fast reactors

    International Nuclear Information System (INIS)

    John, T.M.; Mohanakrishnan, P.; Mahalakshmi, B.; Singh, R.S.

    1988-01-01

    Control rods are the primary safety mechanism in the operation of fast reactors. Neutronic parameters associated with the control rods have to be evaluated precisely for studying the behaviour of the reactor under various operating conditions. Control rods are strong neutron absorbers discretely distributed in the reactor core. Accurate estimation of control rod parameters demand, in principle transport theory solutions in exact geometry. But computer codes for such evaluations usually consume exorbitantly large computer time and memory for even a single parameter evaluation. During the design of reactors, evaluation of these parameters will be required for many configurations of control rods. In this paper, the method used at Indira Gandhi Centre for Atomic Research for estimating the parameters associated with control rods is presented. Diffusion theory solutions were used for computations. A scheme using three dimensional geometry represented by triangular meshes and diffusion theory solutions in few energy groups for control rod parameter evaluation is presented. This scheme was employed in estimating the control rod parameters in a 500 Mw(e) fast reactor. Error due to group collapsing is estimated by comparing with 25 group calculations in three dimensions for typical cases. (author). 5 refs, 4 figs, 3 tabs

  11. Integrated Management System, Configuration and Document Control for Research Reactors

    International Nuclear Information System (INIS)

    Steynberg, B.J.; Bruyn, J.F. du

    2017-01-01

    An integrated management system is a single management framework establishing all the processes necessary for the organisation to address all its goals and objectives. Very often only quality, environment and health & safety goals are included when referred to an integrated management system. However, within the research reactor environment such system should include goals pertinent to economic, environmental, health, operational, quality, safeguards, safety, security, and social considerations. One of the important objectives of an integrated management is to create the environment for a healthy safety culture. Configuration management is a disciplined process that involves both management and technical direction to establish and document the design requirements and the physical configuration of the research reactor and to ensure that they remain consistent with each other and the documentation. Configuration is the combination of the physical, functional, and operational characteristics of the structures, systems, and components (SSCs) or parts of the research reactor, operation, or activity. The basic objectives and general principles of configuration management are the same for all research reactors. The objectives of configuration management are to: a) Establish consistency among design requirements, physical configuration, and documentation (including analyses, drawings, and procedures) for the research reactor; b) Maintain this consistency throughout the life of the research reactor, particularly as changes are being made; and c) Retain confidence in the safety of the research reactor. The key elements needed to manage the configuration of research reactors are design requirements, work control, change control, document control, and configuration management assessments. The objective of document control is to ensure that only the most recently approved versions of documents are used in the process of operating, maintaining, and modifying the research reactor

  12. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  13. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    International Nuclear Information System (INIS)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza

    2017-01-01

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  14. Three-dimensional harmonic control of a nuclear reactor

    International Nuclear Information System (INIS)

    Potapenko, P.T.

    1989-01-01

    Algorithms for neutron flux control based on harmonic three-dimensional core are considered. The essence of the considered approach includes determination of harmonics amplitudes by signals self-powered detectors placed in reactor channels and reconstruction of neutron field distribution over the reactor core volume using the data obtained. Neutron field harmonic control is shown to be reduced to independent measurement and calculation of height harmonics in channels using techniques developed for channel power control

  15. The digital reactor protection system for the instrumentation and control of reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Mohd Idris Taib; Zareen Khan Abdul Jalil Khan

    2010-01-01

    Reactor Protection System (RPS) is important for Reactor Instrumentation and Control System. The RPS comprises all redundant electrical devices and circuitry involved in the generation of those initiating signals associated to the trip protective function. The instrumentation system for the RPS provides automatic protection signals against unsafe and improper reactor operation. The physical separation is provided for all of the redundant instrumentation systems to preserve redundancy. The safety protection systems using circuits composed of analog instruments and relays with relay contacts is difficult to realize from various reasons. Therefore, an application of digital technology can be said a logical conclusion also in the light of its functional superiority. (author)

  16. Overall aspects of control of ISIS-type nuclear reactor

    International Nuclear Information System (INIS)

    Amato, S.; Santinelli, A.

    1996-01-01

    The paper describes the main aspects related to the definition of main controls required to operate an ISIS-type nuclear power reactors. ISIS is a PWR-type intrinsically safe nuclear reactor designed by ANSALDO, based on density lock concept; it presents, between the other safety functions, self-depressurization and core cooling capability for unlimited time. Due to its specific characteristics, the ISIS reactor required to development of new control philosophy (if compared with actual nuclear power reactor) with the implementation of new control functions, for instance the density locks hot/cold interface locations control. This paper describes the main control functions implemented, their rationale, as well as the dynamic simulation performed to verify the adequacy of controls definitions. The dynamic simulations here described refers to a step-wise power ramp of 100-90-100 (% of nominal power) and to a power ramp of 100-50-100 with a slope of 5%/min; the results obtained have shown the ISIS capability to perform such operational transients, despite its innovative design was mainly focused on intrinsically safe behaviour. (author)

  17. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  18. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  19. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  20. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  1. Application of H∞ control theory to power control of a nonlinear reactor model

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Shimazaki, Junya; Shinohara, Yoshikuni

    1993-01-01

    The H∞ control theory is applied to the compensator design of a nonlinear nuclear reactor model, and the results are compared with standard linear quadratic Gaussian (LQG) control. The reactor model is assumed to be provided with a control rod drive system having the compensation of rod position feedback. The nonlinearity of the reactor model exerts a great influence on the stability of the control system, and hence, it is desirable for a power control system of a nuclear reactor to achieve robust stability and to improve the sensitivity of the feedback control system. A computer simulation based on a power control system synthesized by LQG control was performed revealing that the control system has some stationary offset and less stability. Therefore, here, attention is given to the development of a methodology for robust control that can withstand exogenous disturbances and nonlinearity in view of system parameter changes. The developed methodology adopts H∞ control theory in the feedback system and shows interesting features of robustness. The results of the computer simulation indicate that the feedback control system constructed by the developed H∞ compensator possesses sufficient robustness of control on the stability and disturbance attenuation, which are essential for the safe operation of a nuclear reactor

  2. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, Kevan

    1986-01-01

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  3. Prevention device for rapid reactor core shutdown in BWR type reactors

    International Nuclear Information System (INIS)

    Koshi, Yuji; Karatsu, Hiroyuki.

    1986-01-01

    Purpose: To surely prevent rapid shutdown of a nuclear reactor upon partial load interruption due to rapid increase in the system frequency. Constitution: If a partial load interruption greater than the sum of the turbine by-pass valve capacity and the load setting bias portion is applied in a BWR type power plant, the amount of main steams issued from the reactor is decreased, the thermal input/output balance of the reactor is lost, the reactor pressure is increased, the void is collapsed, the neutron fluxes are increased and the reactor power rises to generate rapid reactor shutdown. In view of the above, the turbine speed signal is compared with a speed setting value in a recycling flowrate control device and the recycling pump is controlled to decrease the recycling flowrate in order to compensate the increase in the neutron fluxes accompanying the reactor power up. In this way, transient changes in the reactor core pressure and the neutron fluxes are kept within a setting point for the rapid reactor shutdown operation thereby enabling to continue the plant operation. (Horiuchi, T.)

  4. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  5. Modern control technology for improved nuclear reactor performance

    International Nuclear Information System (INIS)

    Oakes, L.C.

    1986-01-01

    One of the main complaints leveled at reactor control systems by utility spokesmen is complexity. One only has to look inside a power reactor control room to appreciate this viewpoint. The high reliability and versatility of modern microprocessors makes possible distributed control systems with only performance data and abnormal conditions being relayed to the control room. In a sense, this emulates the human-body control system where routine repetitive actions are handled in an involuntary manner. The significance of expert systems to the nuclear reactor control and safety systems is their ability to capture human and other expertise and make it available, upon demand, and under almost all circumstances. Thus, human problem-solving skills acquired by the learning process over a long period of time can be captured and employed with the reliability inherent in computers. This is especially important in nuclear plants when human operators are burdened by stress and emotional factors that have a dramatic effect on performance level

  6. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Edlund, M.C.

    1990-06-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in larger neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 show that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies have been carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, effort will focus on performing the final design calculations and continuing the research to develop improved methods for tight lattice analysis

  7. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  8. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  9. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  10. The reactor power control system based on digital control in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Chong; Zhou Jianliang; Tan Ping

    2010-01-01

    The PLC (Programmable Logical Controller), digital communication and redundant techniques are applied in the rod control and position indication system(namely the reactor power control system) to perform the power control in the 300 MW reactor automatically and integrally in Qinshan Phase I project. This paper introduces the features, digital design methods of hardware of the instrumentation and control system (I and C) in the reactor power control. It is more convenient for the information exchange by human-machine interface (HMI), operation and maintenance, and the system reliability has been greatly improved after the project being reconstructed. (authors)

  11. Development and study of a control and reactor shutdown device for FBR-type reactors with a modified open core

    International Nuclear Information System (INIS)

    Goswami, S.

    1983-01-01

    The doctoral thesis at hand presents a newly designed control and shutdown device to be used for output control and fast shutdown of modified open core FBR-type reactors. The task was the design of a new control and shutdown device having economic and operation advantages, using reactor components time-tested under reactor conditions. This control and shutdown device was adapted to the specific needs concerning dimensions and design. The actuation is based on the magnetic-jack principle, which has been upgraded for the purpose. The principle is now combined with pneumatic acceleration. The improvements mainly concern a smaller number of piece parts and system simplification. (orig./RW) [de

  12. Shielding device for control rod in nuclear reactor

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo; Tomatsu, Tsutomu.

    1995-01-01

    The device of the present invention shields radiation emitted from control rods to greatly reduce an operator's radiation exposure even if reactor water level is lowered and the upper portion of the control rod is exposed upon inspection of a BWR type reactor. Namely, a shield assembly has a structure comprising a set of four columnar shields in a two-row and two-column arrangement, which can be inserted into a control rod guide tube. Upon conducting inspection, the control rod is lowered into the control rod guide tube, and in this state, the columnar shields of the shield assembly are inserted to the control rod in the control rod guide tube. With such procedures, the upper portion of the control rod protruded from the control rod guide tube is covered with the shield assembly. As a result, radiation leaked from the control rod is shielded. Accordingly, irradiation in the reactor due to leaked radiation can be prevented thereby enabling to reduce an operator's radiation exposure. (I.S.)

  13. Power control device in nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Kazuaki.

    1981-01-01

    Purpose: To enable smooth power changes in power conditioning systems by calculating forecast values for the neutron flux distribution and power distribution and by controlling the driving speed of control rods so as to correspond the forecast values with aimed values. Constitution: Control rod position is detected by a position detector and sent to a control computer as the position information. At the same time, the neutron flux distribution information is obtained by the neutron monitors, the power distribution information is obtained by a reactor power computer and they are outputted to the control computer. The control computer calculates the forecast values for the neutron flux distribution and the reactor power distribution from the information, and compares them with the aimed values from a setter and then outputs control signals so as to correspond the forecast values with the aimed values. The control rods can be inserted in appropriate velocity by the control signals. (Horiuchi, T.)

  14. Research reactor instrumentation and control technology. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-10-01

    The majority of research reactors operating today were put into operation 20 years ago, and some of them underwent modifications, upgrading and refurbishing since their construction to meet the requirements for higher neutron fluxes. However, a few of these ageing research reactors are still operating with their original instrumentation and control systems (I and C) which are important for reactor safety to guard against abnormal occurrences and reactor control involving startup, shutdown and power regulation. Worn and obsolete I and C systems cause operational problems as well as difficulties in obtaining replacement parts. In addition, satisfying the stringent safety conditions laid out by the nuclear regulatory bodies requires the modernization of research reactors I and C systems and integration of additional instrumentation units to the reactor. In order to clarify these issues and to provide some guidance to reactor operators on state-of-art technology and future trends for the I and C systems for research reactors, a Technical Committee Meeting on Technology and Trends for Research Reactor Instrumentation and Controls was held in Ljubljana, Slovenia, from 4 to 8 December 1995. This publication summarizes the discussions and recommendations resulting from that meeting. This is expected to benefit the research reactor operators planning I and C improvements. Refs, figs, tabs

  15. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  16. Self-operation type power control device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru.

    1993-07-23

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.).

  17. Self-operation type power control device for nuclear reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1993-01-01

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.)

  18. Reactor power control method upon accidents of electrical power system

    International Nuclear Information System (INIS)

    Hirose, Masao.

    1983-01-01

    Purpose: To enable to continue the operation of a BWR type reactor by avoiding the scram while suppressing the reactor power, just after the external disturbance such as earth-trouble in power-transmission network. Method: Steep power drop of an electrical generator is to be detected not only by a current-type power-load-unbalance relay but also with a power-type power-load-unbalance-relay. If steep power-drop was detected by the latter relay, a previously selected control rod is rapidly inserted into the reactor. In this way, in the case where there is a possibility of the reactor scram, the scram can be avoided by suppressing the reactor power, thus the reactor operation can be continued. (Kamimura, M.)

  19. BWR type reactors

    International Nuclear Information System (INIS)

    Hayashi, Katsuhisa; Watanabe, Shigeru.

    1983-01-01

    Purpose: To simplify the structure of control rod driving systems, as well as improve the safety and maintainability thereof. Constitution: Control-rod-guide tubes are disposed vertically above the reactor core and control-rod drives are disposed further thereabove, by which the control rods are moved upwardly and downwardly from above the reactor core through the guide tubes. Further, a partitioning cylinder is provided between the inner cirumferential wall at the upper portion of a pressure vessel and the control-rod-guide tubes and a gas-liquid separator is disposed to the space between the partitioning cylinder and the pressure vessel wall, to which steams generated in the reactor core are introduced. In such a structure of the reactor, since all of the control rods are inserted or extracted by the control rod drive system from above the reactor core, if the control rod drives or the likes should fail and accidentally drop the control rods, they exert in the direction of suppressing the nuclear reaction, whereby the safety can be improved. (Sekiya, K.)

  20. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  1. Optimal power and distribution control for weakly-coupled-core reactor

    International Nuclear Information System (INIS)

    Oohori, Takahumi; Kaji, Ikuo

    1977-01-01

    A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)

  2. A basic design of SR4 instrumentation and control system for research reactor

    International Nuclear Information System (INIS)

    Syahrudin Yusuf; M Subhan; Ikhsan Shobari; Sutomo Budihardjo

    2010-01-01

    An SR4 instrumentation and control systems of research reactor is the equipment of nuclear research reactors as power protection devices and control systems. The equipment is to monitor safety parameters and process parameters in the state of reactor shut down, start-up, and in operation at fixed power. In the engineering of Instrumentation and control systems SR4 research reactor, its basic design consists of technical specifications of the reactor protection system devices, technical specifications of the reactor power control system devices, technical specifications information system devices, and systems process termination cabling as a support system. This basic design is used as the basis for the preparation of detailed design and subsequent engineering development of instrumentation systems and control system integrated. (author)

  3. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  4. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  5. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  6. Control of PWR reactor energy supplied to a stream turbine

    International Nuclear Information System (INIS)

    Petetrot, J.F.; Parent, Pierre.

    1981-01-01

    This patent presents a process for regulating the power provided by a pressurized water nuclear reactor to a steam turbine, by moving the control rods absorbing the neutrons in the reactor core and by diverting a fraction of the steam produced by the reactor, outside the turbine circuit, by opening by-pass valves [fr

  7. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki; Im, Ki Hong

    2013-01-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  8. Nuclear reactor control with fuzzy logic approaches - strengths, weakness, opportunities, and threats

    International Nuclear Information System (INIS)

    Ruan, Da

    2004-01-01

    As part of the special track on 'Lessons learned from computational intelligence in nuclear applications' at the forthcoming FLINS 2004 conference on Applied Computational Intelligence (Blankenberge, Belgium, September 1-3, 2004), research experiences on fuzzy logic techniques in applications of nuclear reactor control operation are critically reviewed in this presentation. Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined thought a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK-CEN) and the Mexican Nuclear Centre (ININ) on the fuzzy logic control for nuclear reactor control project under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (Author)

  9. The control of emissions from nuclear power reactors in Canada

    International Nuclear Information System (INIS)

    Gorman, D.J.; Neil, B.C.J.; Chatterjee, R.M.

    1988-01-01

    Nuclear power reactors in Canada are of the CANDU pressurised heavy water design. These are located in the provinces of Ontario, Quebec, and New Brunswick. Most of the nuclear generating capacity is in the province of Ontario which has 16 commissioned reactors with a total capacity of 11,500 MWe. There are four reactors under construction with an additional capacity of 3400 MWe. Nuclear power currently accounts for approximately 50% of the electrical power generation of Ontario. Regulation of the reactors is a Federal Government responsibility administered by the Atomic Energy Control Board (AECB) which licenses the reactors and sets occupational and public dose limits

  10. Fuzzy power control algorithm for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Y.J.; Lee, B.W.

    1994-01-01

    A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations

  11. Reactor trip on turbine trip inhibit control system for nuclear power generating system

    International Nuclear Information System (INIS)

    Torres, J.M.; Musick, C.R.

    1976-01-01

    A reactor trip on turbine trip inhibit control system for a nuclear power generating system which utilizes steam bypass valves is described. The control system inhibits a normally automatic reactor trip on turbine trip when the bypass valves have the capability of bypassing enough steam to prevent reactor trip limits from being reached and/or to prevent opening of the secondary safety pressure valves. The control system generates a bypass valve capability signal which is continuously compared with the reactor power. If the capability is greater than the reactor power, then an inhibit signal is generated which prevents a turbine trip signal from tripping the nuclear reactor. 10 claims, 4 figures

  12. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  13. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  14. Modelling of Control Bars in Calculations of Boiling Water Reactors

    International Nuclear Information System (INIS)

    Khlaifi, A.; Buiron, L.

    2004-01-01

    The core of a nuclear reactor is generally composed of a neat assemblies of fissile material from where neutrons were descended. In general, the energy of fission is extracted by a fluid serving to cool clusters. A reflector is arranged around the assemblies to reduce escaping of neutrons. This is made outside the reactor core. Different mechanisms of reactivity are generally necessary to control the chain reaction. Manoeuvring of Boiling Water Reactor takes place by controlling insertion of absorbent rods to various places of the core. If no blocked assembly calculations are known and mastered, blocked assembly neutronic calculation are delicate and often treated by case to case in present studies [1]. Answering the question how to model crossbar for the control of a boiling water reactor ? requires the choice of a representation level for every chain of variables, the physical model, and its representing equations, etc. The aim of this study is to select the best applicable parameter serving to calculate blocked assembly of a Boiling Water Reactor. This will be made through a range of representative configurations of these reactors and used absorbing environment, in order to illustrate strategies of modelling in the case of an industrial calculation. (authors)

  15. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  16. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  17. Closed-loop digital control of nuclear reactors characterized by spatial dynamics

    International Nuclear Information System (INIS)

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1991-03-01

    This report describes the theoretical development and the evaluation via both simulation and, to a lesser degree, experiment of a digital method for the closed-loop control of power and temperature in reactors characterized by spatial dynamics. The major conclusions of the research are that (1) the sophistication of advanced reactor physics and thermal-hydraulic nodal methods is now such that accurate, real-time models of spatially-dependent, heterogeneous reactor cores can be run on present-generation minicomputers; (2) operation of both present-day commercial reactors as well as the multi-modular reactors now being considered for construction in the United States could be significantly improved by incorporating model-generated information on in-core conditions in a digital controller; and (3) digital controllers for spatially-dependent reactors should have a hierarchical or multi-tiered structure consisting of supervisory algorithms that preclude challenges to the safety system, global control laws designed to provide an optimal response to temperature and power perturbations, and local control laws that maintain parameters such as the margin to departure from nucleate boiling within specification. The technology described is appropriate to present-day pressurized water reactors and to the proposed multi-modular designs. The end-product of this research was a (near) real-time analytic plant-estimation code that was given the acronym POPSICLE for POwer Plant SImulator and ControlLEr. POPSICLE's core neutronics model is based on a quasi-static transient solution of the analytic nodal diffusion equations. 126 refs., 159 figs., 17 tabs

  18. Closed-loop digital control of nuclear reactors characterized by spatial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Nuclear Engineering)

    1991-03-01

    This report describes the theoretical development and the evaluation via both simulation and, to a lesser degree, experiment of a digital method for the closed-loop control of power and temperature in reactors characterized by spatial dynamics. The major conclusions of the research are that (1) the sophistication of advanced reactor physics and thermal-hydraulic nodal methods is now such that accurate, real-time models of spatially-dependent, heterogeneous reactor cores can be run on present-generation minicomputers; (2) operation of both present-day commercial reactors as well as the multi-modular reactors now being considered for construction in the United States could be significantly improved by incorporating model-generated information on in-core conditions in a digital controller; and (3) digital controllers for spatially-dependent reactors should have a hierarchical or multi-tiered structure consisting of supervisory algorithms that preclude challenges to the safety system, global control laws designed to provide an optimal response to temperature and power perturbations, and local control laws that maintain parameters such as the margin to departure from nucleate boiling within specification. The technology described is appropriate to present-day pressurized water reactors and to the proposed multi-modular designs. The end-product of this research was a (near) real-time analytic plant-estimation code that was given the acronym POPSICLE for POwer Plant SImulator and ControlLEr. POPSICLE's core neutronics model is based on a quasi-static transient solution of the analytic nodal diffusion equations. 126 refs., 159 figs., 17 tabs.

  19. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor; Control difuso adaptable de la potencia neutronica del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Rojas R, E.

    2014-07-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n{sub o} up to a predetermined final level n{sub f}. During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  20. Method of nuclear reactor control using a variable temperature load dependent set point

    International Nuclear Information System (INIS)

    Kelly, J.J.; Rambo, G.E.

    1982-01-01

    A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow

  1. Cyber security for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: dave.trask@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Jung, C. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); MacDonald, M., E-mail: marienna.macdonald@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  2. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  3. Neutron field control cybernetics model of RBMK reactor operator

    International Nuclear Information System (INIS)

    Polyakov, V.V.; Postnikov, V.V.; Sviridenkov, A.N.

    1992-01-01

    Results on parameter optimization for cybernetics model of RBMK reactor operator by power release control function are presented. Convolutions of various criteria applied previously in algorithms of the program 'Adviser to reactor operator' formed the basis of the model. 7 refs.; 4 figs

  4. Simulation of the TREAT-Upgrade Automatic Reactor Control System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Kirsch, L.W.; Valente, A.D.

    1984-01-01

    This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design and to completely test and verify its operation before installation at the TREAT facility

  5. Simulation and control of the site-dependent neutron density in a nuclear reactor

    International Nuclear Information System (INIS)

    Stark, K.

    1974-01-01

    The present work deals with the simulation and control of a pressurized-water reactor such as is used in nuclear power plants today. In the first part of the work, the mathematical model equations of the reactor are set up. They take into consideration the local distribution of the various reactor parameters as far as seems necessary for further investigations. Taking the given approximations, the mathematical model is locally one-dimensional; it is valid for the period of time in which a power control of the reactor must work. The model equations set up are calculated on an analog/hybride computer according to the modal simulation method in true time. The method is distinguished in the present problem here through good convergence and enables the observation of the simulation results as a stationary picture on an oscillograph screen. For this reason, a simulation of this type seems particularly suitable for the training of operational personnel. The aim of the second part of the work is the development of a simple control concept which enables the control of the total power of the reactor as well as of the distribution of the power density in the reactor core. The fundamentals of the control design are the non-linear system equations of the nuclear reactor. The developed control is based on the controlling of eigenfunctions; it controls the total power of the reactor as well as the distribution of the power density in the reactor core where a uniform burn-up of the nuclear fuel is seen to. Part-absorbing control rods amongst others are used as actuators like they are already used in that type of reactors. (orig./LH) [de

  6. A digital controller for the Omega West Reactor

    International Nuclear Information System (INIS)

    Minor, M.M.; Kaufman, M.D.; Smith, T.W.

    1992-05-01

    A new nuclear reactor control system for the Omega West Reactor (OWR) has been designed to replace the aging and hard to maintain controller presently installed. The controller uses single board computers, digital and analog input and output modules, and stepping motor indexers installed on a standard bus (VME bus). The eight poison control rod drive motors are replaced with stepping motors. The control algorithm for the OWR was not changed in order to expedite approval for installation. This report presents the results of the development of the new control system. Included in the report are copies of some of the software that drives the new controller

  7. Implementation of digital control and protection systems of China advanced research reactor

    International Nuclear Information System (INIS)

    Zeng Hai; Jin Huajin; Xu Qiguo; Zhang Mingkui

    2005-01-01

    China Advanced Research Reactor (CARR), a reactor of the 21st century with high performance is being constructed in China. The requirements of reliability and stability on the control and protection (c and p) system are the main points raised. Especially, with the development of digital technology, the c and p system of CARR is demanded to match the trend of digitization in the field of reactor control. The c and p system, including reactor protection system, reactor monitoring and control system, reactor power regulating system, and the mitigation system for ATWS (Anticipate Transient Without Scram), adopts digital technology, and the digital display screen will replace the analog panels in the main control room. The c and p system of CARR adopts redundant technology with 2 or 3 redundant channels to improve the system reliability. The 10/100 Mbps self-adaptive redundant optic fiber industry Ethernet ring network is used to interlink operator workstations, supervisor workstation, and I/O control stations. Commercial grade equipment with mature experience in industrial application are applied to the c and p system of CARR, which have high reliability, good interchangeability, and is easily purchased, the software-developing tools fully match the international industry standards. The realization of digital c and p system of CARR will promote the progress of digital control technology for reactors in China, and certainly become a technical basic platform for developing informational and intelligent reactors in China. (authors)

  8. Use of reactivity constraints for the automatic control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Lanning, D.D.; Ray, A.

    1985-01-01

    A theoretical framework for the automatic control of reactor power has been developed and experimentally evaluated on the 5 MWt Research Reactor that is operated by the Massachusetts Institute of Technology. The controller functions by restricting the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally designated as ''feasibility of control''. It has been shown experimentally that maintenance of feasibility of control is a sufficient condition for the automatic control of reactor power. This research should be of value in the design of closed-loop controllers, in the creation of reactivity displays, in the provision of guidance to operators regarding the timing of reactivity changes, and as an experimental envelope within which alternate control strategies can be evaluated

  9. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  10. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  11. LMFBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1988-01-01

    Purpose: To flatten the power distribution while maintaining the flattening in the axial power distribution in LMFBR type reactors. Constitution: Main system control rods are divided into control rods used for the operation and starting rods used for the starting of the reactor, and the starting rods are disposed in the radial periphery of the reactor core, while the control rods are disposed to the inside of the starting rods. With such a constitution, adjusting rods can be disposed in the region where the radial power peaking is generated to facilitate the flattening of the power distribution even in such a design that the ratio of the number of control rods to that of fuel assemblies is relatively large. That is, in this reactor, the radial power peaking is reduced by about 10% as compared with the conventional reactor core. As a result, the maximum linear power density during operation is reduced by about 10% to increase the thermal margin of the reactor core. If the maximum linear power density is set identical, the number of the fuel assemblies can be decreased by about 10%, to thereby reduce the fuel production cost. (K.M.)

  12. On some control problems of dynamic of reactor

    Science.gov (United States)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  13. Device for controlling water supply to nuclear reactor

    International Nuclear Information System (INIS)

    Iwasaki, Toshio.

    1974-01-01

    Object: To smoothly control automatic water supply for realizing stable operation of a nuclear reactor by providing a flow rate limiting signal selection circuit and a preferential circuit in a water supply control device for a nuclear reactor wherein the speed of a recirculation pump may be changed in two-steps. Structure: Opening angle signals for a water supply regulating valve are controlled by a nuclear reactor water level signal, a vapor flow rate signal and a supplied water flow rate signal through an adder and an adjuster in response to a predetermined water level setting signal. When the water in the reactor is maintained at a predetermined level, a selection circuit receives a water pump condition signal for selecting one of the signals from a supplied water rate limiting signal generator generating signals for indicating whether one or two water supply pumps are operated. A low value preferential circuit passes the lower of the values generated from the selection circuit and the adder. The selection circuit receives a recirculation pump condition signal and selects either one of the signals from the supplied water flow rate limiting signal generator operated at high speed or low speed. A high value preferential circuit passes the higher value

  14. Fuzzy algorithm for an automatic reactor power control in a PWR

    International Nuclear Information System (INIS)

    Hah, Yung Joon; Song, In Ho; Yu, Sung Sik; Choi, Jung In; Lee, Byong Whi

    1994-01-01

    A fuzzy algorithm is presented for automatic reactor power control in a pressurized water reactor. Automatic power shape control is complicated by the use of control rods because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability for the load - follow operation including frequency control. In an attempt to achieve automatic power shape control without any design modification of the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multi - input multi - output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to the Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of the pressurized water reactor during the load - follow operation

  15. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  16. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  17. Innovative Control concepts for German pressurized water reactors

    International Nuclear Information System (INIS)

    Brzozowski, Raphael; Kuhn, Andreas

    2010-01-01

    Controlling reactor power without any manual support is becoming more and more important. The READIG project (READIG = Reactor Instrumentation and Digital Control) power control system installed in unit 2 of the Philippsburg nuclear power station (KKP 2) requires no manual intervention except for specific strategy criteria settings. It was even possible to eliminate the power distribution set points. With minor adaptations, this concept can be applied in other PWR plants as well. KKP 2 is a PWR plant with particularly sophisticated core charges; as a consequence, the I and C systems were adapted accordingly. The increase in integral reactor power and the low-leakage core charges are the main reasons for lower limiting margins, especially in peak limiting. The standard control concept was supplemented in such a way that a more precise fine control concept for power distribution in the full-load regime is achieved. The READIG project fully utilizes the possibilities offered by digital TXS Technology, which is why use is also made of physical parameterization. The new power distribution control concept has these advantages: - Operation at small peak-/DNB-reactor output limitation margins. - Stable control without manual intervention also in load cycles and in the frequency control mode. - Simplified operation due to omission of the power distribution set point. - Reduction to zero of the frequency of L-bank steps at constant power with superimposed frequency control mode. - Reduction to zero of the frequency of D-bank steps at constant power with superimposed frequency control mode. - Lower quantities of demineralized water to be fed at constant power with superimposed frequency control mode (±1%). (orig.)

  18. Graphics and control for in-reactor operations

    International Nuclear Information System (INIS)

    Smith, A.L.

    1996-01-01

    A wide range of manipulator systems has been developed to carry out remotely operated inspection, repair and maintenance tasks at the Magnox reactors in the United Kingdom. A key factor in the improvement of these systems in recent years has been the extensive use of computer graphics as a real-time aid to the manipulator operator. This is exemplified by the reactor pressure vessel inspection work at the Bradwell reactor which is described in detail. The graphics sub-system of the control system for the manipulator plays a unique and wide-ranging role. The 3D modelling and simulation capability of the IGRIP software has contributed to the conceptual design, detailed path planning, rehearsal support, public relations, real-time manipulator display, post inspection documentation and quality assurance. (UK)

  19. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  20. On-line computer control of a nuclear reactor using optimal control and state estimation methods

    International Nuclear Information System (INIS)

    Tye, C.

    1980-01-01

    This paper describes the experimental implementation of a nuclear reactor control system using combined optimal state feedback based on the Quadratic Regulator and state estimation using Kalman filtering techniques. The results obtained from the experiments indicate that a reactor control loop designed using this approach has improved stability margins, greater speed of response and noise filtering properties compared with a conventional reactor control loop. 11 refs

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  2. Reactor feedwater pump control device

    International Nuclear Information System (INIS)

    Nishiyama, Hiroyuki.

    1990-01-01

    An amount of feedwater necessary for ensuring reactor inventory after scram is ensured automatically based on the reactor output before scram of a BWR type reactor. That is, if scram should occur, a feedwater flow rate just before the scram is stored by reactor output signals. Further, the amount of feedwater required after the scram is determined based on the output of the memory. The reactor power after the scram based on a feedwater flow rate and a main steam flow rate is inputted to an integrator, to calculate and output the amount of the feedwater flow rate (1) injected after the scram for the inventory. A coast down flowrate (2) in a case of pump trip is forecast by the output signals. Automatic trip is outputted to all turbine driving feedwater pumps when the sum of (1) and (2) exceeds a necessary and sufficient amount of feedwater required for ensuring inventory. For motor driving feedwater pumps, only a portion, for example, one of the pumps is automatically started while other pumps are stopped their operation, only in this case, to prevent excess water feeding. (I.S.)

  3. Control device for start-up of reactor depressurization system

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Saito, Minoru; Oda, Shingo; Miura, Satoshi; Hashimoto, Koji; Tate, Hitoshi; Fujii, Kazunobu

    1998-01-01

    The present invention concerns are emergency reactor core cooling system (ECCS) of a BWR type reactor and provides a control device for start-up of an automatic depressurization system. Namely, the device has an object of preventing erroneous opening of a main steam escape safety value when testing a start-up signal circuit of an automatic depressurization system for testing the automatic depressurization system. A start-up signal circuit receives both signals of a reactor container pressure high signal and a reactor pressure vessel water level low signal and outputs an automatic start-up signal for compulsorily opening a main steam escape safety valve automatically. A test switch having a self-holding circuit is disposed to a central control chamber. A test signal circuit is disposed for preventing transfer of an erroneous start-up signal to the main steam escape safety valve due to a simulation signal during output test signals by the test switch. (I.S.)

  4. Comparative analysis of nuclear reactor control system designs

    International Nuclear Information System (INIS)

    Russcher, G.E.

    1975-01-01

    Control systems are vital to the safe operation of nuclear reactors. Their seismic design requirements are some of the most important criteria governing reactor system design evaluation. Consequently, the seismic analysis for nuclear reactors is directed to include not only the mechanical and structural seismic capabilities of a reactor, but the control system functional requirements as well. In the study described an alternate conceptual design of a safety rod system was compared with a prototypic system design to assess their relative functional reliabilities under design seismic conditions. The comparative methods utilized standard success tree and decision tree techniques to determine the relative figures of merit. The study showed: (1) The methodology utilized can provide both qualitative and quantitative bases for design decisions regarding seismic functional capabilities of two systems under comparison, (2) the process emphasizes the visibility of particular design features that are subject to common mode failure while under seismic loading, and (3) minimal improvement was shown to be available in overall system seismic performance of an independent conceptual design, however, it also showed the system would be subject to a new set of operational uncertainties which would have to be resolved by extensive development programs

  5. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  6. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  7. Constrained model predictive control for load-following operation of APR reactors

    International Nuclear Information System (INIS)

    Kim, Jae Hwan; Lee, Sim Won; Kim, Ju Hyun; Na, Man Gyun; Yu, Keuk Jong; Kim, Han Gon

    2012-01-01

    The load-following operation of APR+ reactor is needed to control the power effectively using the control rods and to restrain the reactivity control from using the boric acid for flexibility of plant operation. Usually, the reason why the disproportion of axial flux distribution occurs during load-following operation is xenon-induced oscillation. The xenon has a very high absorption cross-section and makes the impact on the reactor delayed by the iodine precursor. The power maneuvering using automatically load-following operation has advantage in terms of safety and economic operation of the reactor, so the controller has to be designed efficiently. Therefore, an advanced control method that meets the conditions such as automatic control, flexibility, safety, and convenience is necessary to load-following operation of APR+ reactor. In this paper, the constrained model predictive control (MPC) method is applied to design APR reactor's automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control. Some controllers use only the current tracking command, but MPC considers future commands in addition to the current tracking command. So, MPC can achieve better tracking performance than others. Furthermore, an MPC is to used in many industrial process control systems. The basic concept of the MPC is to solve an optimization problem for a finite future time interval at present time and to implement the first optimal control input as the current control input. The KISPAC-1D code, which models the APR+ nuclear power plants, is interfaced to the proposed controller to verify the tracking performance of the reactor power level and ASI. It is known that the proposed controller exhibits very fast tracking responses

  8. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  9. RB research reactor safety report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document

  10. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  11. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  12. BWR type reactors

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka

    1983-01-01

    Purpose: To decrease the control rod exchanging frequency by increasing the working life of control rods for ordinary operation with large neutron irradiation dose, to thereby decrease the exposure dose for operators performing exchanging work, as well as decrease the amount of radioactive wastes resulted upon exchange of the control rods. Constitution: Hafnium solid metal is employed as the neutron absorber of control rods for usual operation inserted into and withdrawn from fuel assemblies for the reactor power control over the entire cycle of the ordinary reactor operation and boron carbide powder is employed as the neutron absorber for emergency control rods to be inserted between the fuel assemblies only upon reactor scram or shutdown, whereby the working life of the control rods for ordinary reactor operation with greater neutron irradiation dose can be improved. Accordingly, the control rod exchanging frequency can be reduced to decrease the exposure dose to the operator for conducting the exchanging work. (Yoshihara, H.)

  13. Automatic Control of Reactor Temperature and Power Distribution for a Daily Load following Operation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [Korea Hydro and Nuclear Power Institute, Daejeon (Korea, Republic of)

    2010-10-15

    An automatic control method of reactor power and power distribution was developed for a daily load following operation of APR1400. This method used a model predictive control (MPC) methodology having second-order plant data. And it utilized a reactor power ratio and axial shape index as control variables. However, the reactor regulating system of APR1400 is operated by the difference between the average temperature of the reactor core and the reference temperature, which is proportional to the turbine load. Thus, this paper reports on the model predictive control methodology using fourth-order plant data and a reactor temperature instead of the reactor power shape. The purpose of this study is to develop a revised automatic controller and analyze the behavior of the nuclear reactor temperature (Tavg) and the axial shape index (ASI) using the MPC method during a daily load following operation

  14. The slightly-enriched spectral shift control reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering); Edlund, M.C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering)

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  15. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Larsen, E.W.; Edlund, M.C.

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC

  16. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  17. Identification of nuclear reactor characteristics by the reactor noise analysis

    International Nuclear Information System (INIS)

    Yashima, Hideyuki

    1980-01-01

    Reactor noise analysis method was applied to TRIGA II Research Reactor (Atomic Research Laboratory, Musashi Institute of Technology) and computed power spectral density (PSD) from the CIC current record. PSD has provided many valuable informations regarding to the reactor kinetics, including the effect of control rods vibration. Another information of neutron physics parameters were obtained and this result was compared with the parameter which was formerly measured by the Feynman-α experiment. Through these experiments we could find overall frequency characteristics of TRIGA II Reactor. (author)

  18. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  19. Reactor safety device

    International Nuclear Information System (INIS)

    Okada, Yasumasa.

    1987-01-01

    Purpose: To scram control rods by processing signals from a plurality of temperature detectors and generating abnormal temperature warning upon occurrence of abnormal temperature in a nuclear reactor. Constitution: A temperature sensor comprising a plurality of reactors each having a magnetic body as the magnetic core having a curie point different from each other and corresponding to the abnormal temperature against which reactor core fuels have to be protected is disposed in an identical instrumentation well near the reactor core fuel outlet/inlet of a reactor. A temperature detection device actuated upon detection of an abnormal temperature by the abrupt reduction of the reactance of each of the reactors is disposed. An OR circuit and an AND circuit for conducting OR and AND operations for each of the abnormal temperature detection signals from the temperature detection device are disposed. The output from the OR circuit is used as the abnormal temperature warning signal, while the output from the AND circuit is utilized as a signal for actuating the scram operation of control rod drive mechanisms. Accordingly, it is possible to improve the reliability of the reactor scram system, particularly, improve the reliability under a high temperature atmosphere. (Kamimura, M.)

  20. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  1. Reactivity control of nuclear power reactors: new options

    International Nuclear Information System (INIS)

    Alcala, F.

    1984-01-01

    Some actual aspects (referring to economy, non-proliferation and environmental impact) of nuclear power reactors has been analyzed from the point of view of the reactivity control physics. Specially studied have been the physical mechanisms related with the spectral shift control method and their general positive effects on those aspects. The analysis carried out suggested the application of the above method of control to reactors with non-hydrogenous fuel cells, which are mainly characterized by their high moderator/fuel ratio. Finally three different types of such fuel cells are presented and some results about one of them (belonging to a PHWR controlled by graphite rods) are given. (author)

  2. Experimental development of power reactor intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Lee, K.Y.

    1992-01-01

    The US nuclear utility industry initiated an ambitious program to modernize the control systems at a minimum of ten existing nuclear power plants by the year 2000. That program addresses urgent needs to replace obsolete instrumentation and analog controls with highly reliable state-of-the-art computer-based digital systems. Large increases in functionality that could theoretically be achieved in a distributed digital control system are not an initial priority in the industry program but could be logically considered in later phases. This paper discusses the initial development of an experimental sequence for developing, testing, and verifying intelligent fault-accommodating control for commercial nuclear power plant application. The sequence includes an ultra-safe university research reactor (TRIGA) and a passively safe experimental power plant (Experimental Breeder Reactor 2)

  3. Development of a nuclear reactor control system simulator using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2011-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  4. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  5. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  6. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  7. Development and design of control rod drive mechanisms for pressurized water reactors

    International Nuclear Information System (INIS)

    Leme, Francisco Louzano

    2003-01-01

    The Control Rod Drive Mechanisms (CRDM) for a Pressurized Water Reactor (PWR) are equipment, integrated to the reactor pressure vessel, incorporating mechanical and electrical components designed to move and position the control rods to guarantee the control of power and shutdown of the nuclear reactor, during normal operation, either in emergency or accidental situations. The type of CRDM used in PWR reactors, whose detailed individual description will be presented in this monograph are the Roller-Nut and Magnetic-Jack. The environment, where the CRDM performs its above presented operational functions, includes direct contact with the fluid used as coolant peculiar to the interior of the reactor, and its associated chemical characteristics, the radiation field next to the reactor core, and also the temperature and pressure in the reactor pressure vessel. So the importance of the CRDM design requirements related to its safety functions are emphasized. Finally, some aspects related to the mechanical and structural design of CRDM of a case study, considering the CRDM for a PWR from the experimental nuclear plant to be applied by CTMSP (Centro Tecnologico da Marinha em Sao Paulo), are pointed out. The design and development of these equipment (author)

  8. Canada-India Reactor (CIR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1960-12-15

    Design information on the Canada-India Reactor is presented. Data are given on reactor physics, the core, fuel elements, core heat transfer, control, reactor vessel, fluid flow, reflector and shielding, containment, cost estimates, and research facilities. Drawings of vertical and horizontal sections of the reactor and fluid flow are included. (M.C.G.)

  9. Control of operational transients in power reactors - Methodology

    International Nuclear Information System (INIS)

    Vukovic, D.

    1983-01-01

    By introducing the nuclear power stations in the electric power system, questions of their possibilities to satisfy system's demand arise. Control of operational transients (temperature and Xe 135 ) in power reactors by determining the optimal control rod strategy is given. Ti optimize the Xe 135 transients, the Pantryagin theorem of optimal processes is applied. For solving three dimensional, two-group diffusion equations the heterogeneous Feinberg-Galanin method with axial flux harmonics is adopted. An application of this formalism to three-dimensional, finite cylindrical pressurised water reactor radially reflected is presented. (author)

  10. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  11. Synthesis of relay control systems for nuclear reactors

    International Nuclear Information System (INIS)

    Postnikov, N.S.

    1996-01-01

    The problem on stabilizing an oscillatory-unstable reactor by a single-link relay system, the characteristics whereof have a dead zone and hysteresis loop, is considered. The methodology of synthesis of feedback law, providing for stochastic steady-state mode of reactor operation with the minimum frequency of control impact introduction is proposed. This methodology is applicable to general-type relay systems with arbitrary oscillatory-unstable objects. 6 refs., 5 figs

  12. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  13. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  14. Control unit of a nuclear reactor

    International Nuclear Information System (INIS)

    Desfontaines, Guy; Le Helloco, Michel.

    1981-01-01

    Control unit comprising multiple leak-tight vessels, in communication with the inside of the reactor vessel, extending this vessel above its cover, in the vertical direction and each one enclosing a mechanism for moving a cluster of material absorbing the neutrons in the reactor core, actuated by a motor. This control unit is of reduced height above the vessel cover and provides efficient protection of the leak tight containments and the mechanisms in the event of earthquakes, easy removal and refitting of the vessel cover, good ventilation of the power devices of the mechanisms without the use of a complex ventilation system, efficient thermal insulation of the leak-tight containments assembly, as well as easy access to the motors and mechanism located in the leak-tight containment for carrying out any maintenance and repairs that might be required [fr

  15. Cobalt-60 control in Ontario Hydro reactors

    International Nuclear Information System (INIS)

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  16. Cyclic movement pin mechanism for controlling a nuclear reactor

    International Nuclear Information System (INIS)

    Joly, J.G.; Martin, Jean.

    1981-01-01

    This invention concerns a recurring movement pin mechanism for controlling a nuclear reactor by shifting a neutron absorbing assembly, vertically mobile in the nuclear reactor, to adjust the power and for emergency shut-down. This mechanism ensures a continuous movement and accurate shut-down at any level of the travel height of the absorbing assembly in the core. It also prevents the impacts of the pivoting pins in the control rod slots [fr

  17. Overview of environmental control aspects for the gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Nolan, A.M.

    1981-05-01

    Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included

  18. Method of controlling the water quality in nuclear reactors

    International Nuclear Information System (INIS)

    Ibe, Hidefumi.

    1985-01-01

    Purpose: To obtain a simple and reliable water quality calculation system and water quality control method based thereon for the entire primary coolant circuits in BWR type reactors. Method: In a method of controlling the water quality of the reactor water by injecting hydrogen into the primary coolant circuits of a nuclear reactor, by utilizing a first linear relationship established between the concentration of oxygen and hydrogen in the main steam system and the concentration of radiolysis products in the reactor core and separators and mixing plenum portions, each of the above-mentioned concentrations is calculated from the concentrations for hydrogen or oxygen. Further, by utilizing the first linear relationship established between the concentrations for the oxygen and hydrogen in the recycling system and the concentration of the radiolysis products in the system from the downcomer to the lower plenum portion, the above-mentioned concentration is calculated from the concentration for oxygen and hydrogen. Then, the hydrogen injection rate into the primary coolant system is determined such that the calculated value takes an aimed value. (Ikeda, J.)

  19. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  20. Method of reactor operation

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1982-01-01

    Purpose: To prevent stress corrosion cracks in stainless steels caused from hydrogen peroxide in reactor operation in which the density of hydrogen peroxide in the reactor water is controlled upon reactor start-up. Method: A heat exchanger equipped with a heat source for applying external heat is disposed into the recycling system for reactor coolants. Upon reactor start-up, the coolants are heated by the heat exchanger till arriving at a temperature at which the dissolving rate is faster than the forming rate of hydrogen peroxide in the coolants, and nuclear heating is started after reaching the above temperature. The temperature of the reactor water is increased in such a manner and, when it arrives at 140 0 C, extraction of control elements is started and the heat source for the heat exchanger is interrupted simultaneously. In this way spikes in the density of hydrogen peroxide are suppressed upon reactor start-up to thereby decrease the stress corrosion cracks in stainless steels. (Horiuchi, T.)

  1. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  2. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  3. Use of hafnium in control bars of nuclear reactors; Uso de hafnio en barras de control de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin-mx

    2003-07-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  4. molecular weight control of a batch suspension polymerization reactor

    International Nuclear Information System (INIS)

    Shahrokhi, M.; Fanaei, M. A.

    2002-01-01

    This paper concerns molecular weight control of a batch polymerization reactor where suspension polymerization of methyl methylacrylate (MMA) takes place. For this purpose, a cascade control structure with two control loops has been selected. The slave loop is used for temperature control using on-line temperature measurements, and the master loop controls the average molecular weights based on its estimated values. Two different control algorithms namely proportional-integral (PI) controller and globally linearizing controller (GLC) have been used for temperature control. An estimator, which has the structure of an extended Kalman filter(EKF), is used for estimating monomer conversion and average molecular weights of polymer using reactor temperature measurements. The performance of proposed control algorithm is evaluated through simulation and experimental studies. The results indicate that a constant average molecular weight cannot be achieved in case of strong gel effect. However, the polydispersity of product will be lower in comparison to isothermal operation. It is also shown that in case of mo dek mismatch, the performance of cascade control is superior compared to the case where only reactor temperature is controlled based on desired temperature trajectory obtained through cascade strategy

  5. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1978-10-01

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  6. Design analysis and microprocessor based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Sabbakh, N.J.

    1988-01-01

    The object of this thesis is to design and test a microprocessor based controller, to a simulated nuclear reactor system. The mathematical model that describes the dynamics of a typical nuclear reactor of one group of delayed neutrons approximations with temperature feedback was chosen. A digital computer program has been developed for the design and analysis of a simulated model based on the concept of state-variable feedback in order to meet a desired system response with maximum overshoot of 3.4% and setting time of 4 sec. The state variable feedback coefficients are designed for the continuous system, then an approximation is used to obtain in the state variable feedback vector for the discrete system. System control was implemented utilizing Direct Digital Control (DDC) of a nuclear reactor simulated model through a control algorithm that was performed by means of a microprocessor based system. The controller performance was satisfactorily tested by exciting the reactor system with a transient reactivity disturbance and by a step change in power demand. Direct digital control, when implemented on a microprocessor adds versatility, flexibility in system design with the added advantage of possible use of optimal control algorithms. 6 tabs.; 30 figs.; 46 refs.; 6 apps

  7. Reactor container

    International Nuclear Information System (INIS)

    Kojima, Yoshihiro; Hosomi, Kenji; Otonari, Jun-ichiro.

    1997-01-01

    In the present invention, a catalyst for oxidizing hydrogen to be disposed in a reactor container upon rupture of pipelines of a reactor primary coolant system is prevented from deposition of water droplets formed from a reactor container spray to suppress elevation of hydrogen concentration in the reactor container. Namely, a catalytic combustion gas concentration control system comprises a catalyst for oxidizing hydrogen and a support thereof. In addition, there is also disposed a water droplet deposition-preventing means for preventing deposition of water droplets in a reactor pressure vessel on the catalyst. Then, the effect of the catalyst upon catalytic oxidation reaction of hydrogen can be kept high. The local elevation of hydrogen concentration can be prevented even upon occurrence of such a phenomenon that various kinds of mobile forces in the container such as dry well cooling system are lost. (I.S.)

  8. Recycling flow rate control device in BWR type reactor

    International Nuclear Information System (INIS)

    Fujiwara, Tadashi; Koda, Yasushi

    1988-01-01

    Purpose: To reduce the recycling pump speed if the pressure variation width and the variation ratio in the nuclear reactor exceed predetermined values, to thereby avoid the shutdown of the plant. Constitution: There has been proposed a method of monitoring the neutron flux increase thereby avoiding unnecessary plant shutdown, but it involves a problems of reactor scram depending on the state of the plant and the set values. In view of the above, in the plant using internal pumps put under the thyristor control and having high response to recycling flow rate, the reactor pressure is monitored and the speed of the internal pump is rapidly reduced when the pressure variation width and variation ratio exceed predetermined values to reduce the reactor power and avoid the plant shutdown. This can reduce the possibility of unnecessary power reduction due to neutron flux noises or the possibility of plant shutdown under low power conditions. Further, since the reactor operation can be continued without stopping the recycling pump, the operation upon recovery can be made rapid. (Horiuchi, T.)

  9. Some safety considerations in laser-controlled thermonuclear reactors. Final report

    International Nuclear Information System (INIS)

    Botts, T.E.; Breton, D.; Chan, C.K.; Levy, S.I.; Sehnert, M.; Ullman, A.Z.

    1978-07-01

    A major objective of this study was to identify potential safety questions for laser controlled thermonuclear reactors. From the safety viewpoint, it does not appear that the actual laser controlled thermonuclear reactor conceptual designs present hazards very different than those of magnetically confined fusion reactors. Some aspects seem beneficial, such as small lithium inventories, and the absence of cryogenic devices, while other aspects are new, for example the explosion of pressure vessels and laser hazards themselves. Major aspects considered in this report include: (a) general safety considerations, (b) tritium inventories, (c) system behavior during loss of flow accidents, and (d) safety considerations of laser related penetrations

  10. Autonomous Control Capabilities for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-01-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission

  11. Vent control device for nuclear reactor container

    International Nuclear Information System (INIS)

    Kubota, Ryuji.

    1989-01-01

    The present invention concerns automatic prevention of abnormal over-pressure and hydrogen gas flashing in a BWR type reactor container. That is, (1) if the pressure in the container is abnormally increased, the gas in the pressure suppression chamber is released to reduce the pressure thereby preventing over-pressure damage to the container. (2) Then, if exhaust gases are burnt to cause flashing explosion danger for the gases in the reactor container, the gas release is interrupted. The foregoing two functioins are automatically conducted in this device. Specifically, when the pressure in the reactor container reaches a predetermined allowable limit, a remote control operation valve is opened by automatic control means to release the gas in the vessel. Since the gas flow rate at the start of the release exceeds flame propagation velocity, there is no worry for flashing explosion. Further, if the pipeway flow velocity near the atmospheric release is reduced to less than the flame propagation velocity of the hydrogen gas, the opened valve is automatically closed. Accordingly, propagation of hydrogen gas flame into the container thus causing explosion can surely be prevented. (K.M.)

  12. Self operation type reactor control device

    International Nuclear Information System (INIS)

    Saito, Makoto; Gunji, Minoru.

    1990-01-01

    A boiling-requefication chamber containing transporting materials having somewhat higher boiling point that the usual reactor operation temperature and liquid neutron absorbers having a boiling point sufficiently higher than that of the transporting materials is disposed near the coolant exit of a fuel assembly and connected with a tubular chamber in the reactor core with a moving pipe at the bottom. Since the transporting materials in the boiling-requefication chamber is boiled and expanded by heating, the liquid neutron absorbers are introduced passing through the moving pipe into the cylindrical chamber to control the nuclear reactions. When the temperature is lowered by the control, the transporting materials are liquefied to contract the volume and the liquid neutron absorbers in the cylindrical chamber are returned passing through the moving tube into the boiling-liquefication chamber to make the nuclear reaction vigorous. Thus, self-operation type power conditioning and power stopping are enabled not by way of control rods and not requiring external control, to prevent scram failure or misoperation. (N.H.)

  13. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  14. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  15. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  16. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  17. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  18. Reactor shutdown device

    International Nuclear Information System (INIS)

    Matsumiya, Hirohito; Endo, Hiroshi; Tsuboi, Yasushi.

    1993-01-01

    The present invention concerns a reactor shutdown device capable of suppressing change of a core insertion amount relative to temperature change during normal operation and having a great extension amount due to thermal expansion and high mechanical strength. A control rod main body is contained vertically movably in a guide tube disposed in a reactor core. An extension member extends upward from the upper end of a control rod main body and suspends the control rod main body. A shrinkable member intervenes at a midway of the extension member and is made shrinkable. A temperature sensitive member contains coolants at the inside and surrounds the shrinkable member. Thus, if the temperature of external coolants rises abruptly, the shrinkable member is extended by thermal expansion of the coolants in the temperature sensitive member. Upon usual reactor startup, the coolants in the temperature sensitive member cause no substantial thermal expansion by temperature elevation from a cold shutdown temperature to a rated power operation temperature, and the shrinkable member maintains its original state, so that the control rod main body is not inserted into the reactor core. However, upon abrupt temperature elevation, the control rod main body is inserted into the reactor core. (I.S.)

  19. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1980-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1979 are described. The work of the Division is closely related to development of multi-purpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committees on Reactor Physics and on Decomissioning of Nuclear Facilities. (author)

  20. Stop valve with automatic control and locking for nuclear reactors

    International Nuclear Information System (INIS)

    Chung, D.K.

    1980-01-01

    This invention generally concerns an automatic control and locking stop valve. Specifically it relates to the use of such a valve in a nuclear reactor of the type containing absorber elements supported by a fluid and intended for stopping the reactor in complete safety [fr

  1. Use of university research reactors to teach control engineering

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1991-01-01

    University research reactors (URRs) have provided generations of students with the opportunity to receive instruction and do hands-on work in reactor dynamics, neutron scattering, health physics, and neutron activation analysis. Given that many URRs are currently converting to programmable control systems, the opportunity now exists to provide a similar learning experience to those studying systems control engineering. That possibility is examined here with emphasis on the need for the inclusion of experiment in control engineering curricula, the type of activities that could be performed, and safety considerations

  2. Distributed computer control system for reactor optimization

    International Nuclear Information System (INIS)

    Williams, A.H.

    1983-01-01

    At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management

  3. Reactor protecting device

    International Nuclear Information System (INIS)

    Ono, Hiroshi; Kasuga, Hajime; Kasuga, Hiroshi.

    1984-01-01

    Purpose: To reduce the recycling flowrate thereby decrease the neutron flux level before the reactor shutdown upon generation of abnormality such as increase in the neutron flux, by setting the safety level lower than the value for generating the reaction scram signal. Constitution: A netron flux safety level setter and an instruction signal generator are disposed between a neutron flux detector and a recycling flowrate control device. A neutron flux safety level lower than the level for generating a reactor scram signal and higher that the level for the ordinary operation is set and, if the detection level for the neutron flux in the reactor core arrives at the safety level, a neutron flux decreasing instruction signal is outputted from the instruction signal generator to the recycling flowrate control device to thereby decrease the recycling flowrate and decrease the neutron flux without reaching the reactor shutdown, whereby the thermal safety of the fuel rod can be maintained and the reactor operation performance can be improved. (Moriyama, K.)

  4. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

    Science.gov (United States)

    Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

    2005-07-01

    This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

  5. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    International Nuclear Information System (INIS)

    Edwards, Robert M.

    2003-01-01

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs

  6. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  8. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  10. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    Bruno, S.J.; Dunn, S.A.; Raber, M.

    1978-01-01

    A method of operating a nuclear power reactor is disclosed which enables an accelerated power reduction of the reactor without completely shutting the reactor down. The method includes monitoring the incidents which, upon their occurrence, would require an accelerated power reduction in order to maintain the reactor in a safe operation mode; calculating the power reduction required on the occurrence of such an incident; determining a control rod insertion sequence for the normal operation of the reactor, said sequence being chosen to optimize reactor power capability; selecting the number of control rods necessary to respond to the accelerated power reduction demand, said selection being made according to a priority determined by said control rod insertion sequence; and inserting said selected control rods into the reactor core. 11 claims, 13 figures

  11. Minimization of PWR reactor control rods wear

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Moura Angelkorte, Gunther de

    1995-01-01

    The Rod Cluster Control Assemblies (RCCA's) of Pressurized Water Reactors (PWR's) have experienced a continuously wall cladding wear when Reactor Coolant Pumps (RCP's) are running. Fretting wear is a result of vibrational contact between RCCA rodlets and the guide cards which provide lateral support for the rodlets when RCCA's are withdrawn from the core. A procedure is developed to minimize the rodlets wear, by the shuffling and axial reposition of RCCA's every operating cycle. These shuffling and repositions are based on measurement of the rodlet cladding thickness of all RCCA's. (author). 3 refs, 2 figs, 2 tabs

  12. New digital control system for the operation of the Colombian research reactor IAN-R1; Nuevo sistema de control digital para la operacion del reactor de investigacion Colombiano IAN-R1

    Energy Technology Data Exchange (ETDEWEB)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J., E-mail: lina.celis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  13. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  14. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  15. Operation control equipment for BWR type reactor

    International Nuclear Information System (INIS)

    Izumi, Masayuki; Takeda, Renzo.

    1981-01-01

    Purpose: To improve the temperature balance in a feedwater heater by obtaining the objective value of a feedwater enthalpy upon calculation of respective measured values and controlling the opening or closing of an extraction valve so that the objective value may coincide with the measured value, thereby averaging the axial power distribution. Constitution: A plurality of stages of extraction lines are connected to a turbine, and extraction valves are respectively provided at the lines. By calculating the measured values of ractor pressure, reactor core flow rate, vapor flow rate and reactor core inlet enthalpy determined to predetermined value using heat balance the objective feedwater enthalpy is obtained, is fed as an extraction valve opening or closing signal from a control equipment, the extraction stages of the turbine extraction are altered in accordance with this signal, and the feedwater enthalpy is controlled. (Sekiya, K.)

  16. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  17. Description of a research reactor control system using a programmable controller

    International Nuclear Information System (INIS)

    Battle, R.E.

    1986-01-01

    This paper describes the design features, testing methods, and operational experience of a programmable controller (PC) installed as a neutron flux controller in the Oak Ridge Research Reactor (ORR) at Oak Ridge National Laboratory (ORNL). The PC was designed to control neutron flux from 1 to 105% for three selectable ranges. The PC generates a flux setpoint under operator control, calculates the reactor heat power from flow and temperature signals, calculates a neutron flux calibration factor based on the heat power, and positions a control rod based on the flux-setpoint difference. The programmable controller was tested by controlling an analog computer model of the ORR. The equipment was installed in August 1985, and except for some startup problems, the system has performed well

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  19. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  20. Wide-range nuclear reactor temperature control using automatically tuned fuzzy logic controller

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Edwards, R.M.; Lee, K.Y.

    1992-01-01

    In this paper, a fuzzy logic controller design for optimal reactor temperature control is presented. Since fuzzy logic controllers rely on an expert's knowledge of the process, they are hard to optimize. An optimal controller is used in this paper as a reference model, and a Kalman filter is used to automatically determine the rules for the fuzzy logic controller. To demonstrate the robustness of this design, a nonlinear six-delayed-neutron-group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed-neutron-group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  1. Control of tritium permeation through fusion reactor strucural materials

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1978-01-01

    The intention of this paper is to provide a brief synopsis of the status of understanding and technology pertaining to the dissolution and permeation of tritium in fusion reactor materials. The following sections of this paper attempt to develop a simple perspective for understanding the consequences of these phenomena and the nature of the technical methodology being contemplated to control their impact on fusion reactor operation. Considered in order are: (1) the occurrence of tritium in the fusion fuel cycle, (2) a set of tentative criteria to guide the analysis of tritium containment and control strategies, (3) the basic mechanisms by which tritium may be released from a fusion plant, and (4) the methods currently under development to control the permeation-related release mechanisms. To provide background and support for these considerations, existing solubility and permeation data for the hydrogen isotopes are compared and correlated under conditions to be expected in fusion reactor systems

  2. Direct digital temperature control of the A-1 nuclear reactor

    International Nuclear Information System (INIS)

    Karpeta, C.

    1975-01-01

    The application is described of one of the modern control methods for designing an experimental digital temperature control system for heavy water moderated gas cooled reactors. The synthesis of the optimal stochastic regulator for reactor control in the area of the rated steady state was carried out using the method of dynamic programming and the Kalman filter technique. The analysis of the feedback circuit was conducted using control simulation on a universal digital computer. Results and experience are summed up. (author)

  3. Monte Carlo verification of control-rod worth for the Savannah River K reactor

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1992-01-01

    The Savannah River K Reactor is a heavy-water reactor that relies on control-rod movement to control its reactivity and power distribution during normal operations. It is necessary, therefore, to have an accurate estimate of the reactivity worth of its control rods in order to predict the behavior of the reactor. Westinghouse Savannah River Company (WSRC) uses the GLASS lattice-physics code to calculate few-group cross sections for fuel and control-rod assemblies in the K reactor. This paper compares the control-rod worth calculated by GLASS to that calculated by the MCNP Monte Carlo program. The GLASS calculations utilize its standard 37-group cross-section library, while the MCNP calculations employ continuous-energy isotopic cross-section libraries derived from ENDF/B-V. The MCNP calculations therefore combine the most rigorous analytical model and the most accurate cross sections currently available for thermal-reactor analysis. Consequently, the MCNP results comprise a computational benchmark against which the accuracy of the GLASS code can be evaluated

  4. Study, design and evaluation of nuclear reactor computer control system

    International Nuclear Information System (INIS)

    Menacer, S.

    1988-01-01

    Nuclear reactor control is a complex process that varies with each reactor and there is no universal agreement as to the best type of control system. After the use of conventional systems for a long time, attention turned towards digital techniques in the reactor control system. This interest emerged because of the difficulties faced in the data manipulation, mainly for post-incident analysis. However, it is not sufficient to insert a computer in a system to solve all the data-handling problems and also the insertion of a computer in a real-time system is not without any effect on the overall system. The scope of this thesis is to show the important parameters that have to be taken into account when choosing and evaluate the performances of the selected system

  5. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  6. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  7. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  8. A multi-purpose reactor

    International Nuclear Information System (INIS)

    Changwen Ma

    2000-01-01

    An integrated natural circulation self pressurized reactor can be used for sea water desalination, electrogeneration, ship propulsion and district or process heating. The reactor can be used for ship propulsion because it has following advantages: it is a integrated reactor. Whole primary loop is included in a size limited pressure vessel. For a 200 MW reactor the diameter of the pressure vessel is about 5 m. It is convenient to arranged on a ship. Hydraulic driving facility of control rods is used on the reactor. It notably decreases the height of the reactor. For ship propulsion, smaller diameter and smaller height are important. Besides these, the operation reliability of the reactor is high enough, because there is no rotational machine (for example, circulating pump) in safety systems. Reactor systems are simple. There are no emergency water injection system and boron concentration regulating system. These features for ship propulsion reactor are valuable. Design of the reactor is based on existing demonstration district heating reactor design. The mechanic design principles are the same. But boiling is introduced in the reactor core. Several variants to use the reactor as a movable seawater desalination plant are presented in the paper. When the sea water desalination plant is working to produce fresh water, the reactor can supply electricity at the same time to the local electricity network. Some analyses for comprehensive application of the reactor have been done. Main features and parameters of the small (Thermopower 200 MW) reactor are given in the paper. (author)

  9. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  10. Mathematical modelling and quality indices optimization of automatic control systems of reactor facility

    International Nuclear Information System (INIS)

    Severin, V.P.

    2007-01-01

    The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed

  11. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  12. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  13. Development and testing of control rod drives for ship reactors

    International Nuclear Information System (INIS)

    Bruelheide, K.; Mundt, D.; Peters, C.-H.; Manthey, H.-J.

    1978-01-01

    The following paper deals with the development and testings of a new control rod drive design for marine reactors. Starting from the good operating experience with the advanced pressurized water reactor (FDR) of the NS OTTO HAHN a control rod drive system with an hermetically sealed drive principle was developed. A prototype control rod drive system was put through extensive tests and developed ready for standard production at the 'Gesellschaft fuer Kernenergieverwertung in Schiffbau und Schiffahrt'

  14. Modernization of turbine control system and reactor control system in Almaraz 1 and 2; MOdernizacion de los sistemas de control de turbina y del reactor en Almaraz 1 y 2

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-07-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  15. Investigating The Integral Control Rod Worth Of The Miniature Neutron Source Reactor MNSR

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Determining control rod characteristics is an essential problem of nuclear reactor analysis. In this research, the integral control rod worth of the miniature neutron source reactor MNSR is investigated. Some other parameters of the nuclear reactor, such as core excess reactivity, shut down margin, are also calculated. Group constants for all reactor components are generated by the WIMSD code and then are used in the CITATION code to solve the neutron diffusion equations. The maximum relative error of the calculated results compared with the measurement data is about 3.5%. (author)

  16. Modernization of turbine control system and reactor control system in Almaraz 1 and 2

    International Nuclear Information System (INIS)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-01-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  17. Guide to power reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The IAEA's major first scientific publication is the Directory of Power Reactors now in operation or under construction in various parts of the world. The purpose of the directory is to present important details of various power projects in such a way as to provide a source of easy reference for anyone interested in the development of the peaceful uses of atomic energy, either at the technical or management level. Six pages have been devoted to each reactor the first of which contains general information, reactor physics data and information about the core. The second and third contain sketches of the fuel element or of the fuel element assembly, and of the horizontal and vertical sections of the reactor. On the fourth page information is grouped under the following heads: fuel element, core heat transfer, control, reactor vessel and over-all dimensions, and fluid flow. The fifth page shows a simplified flow diagram, while the sixth provides information on reflector and shielding, containment and turbo generator. Some information has also been given, when available, on cost estimates and operating staff requirements. Remarks and a bibliography constitute the last part of the description of each reactor. Reactor projects included in this directory are pressurized light water cooled power reactors. Boiling light water cooled power reactors, heavy water cooled power reactors, gas cooled power reactors, organic cooled power reactors liquid metal cooled power reactors and liquid metal cooled power reactors

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  19. Power distribution monitoring and control in the RBMK type reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Postnikov, V.V.; Volod'ko, Yu.I.

    1980-01-01

    Considered are the structures of monitoring and control systems for the RBMK-1000 reactor including three main systems with high independence: the control and safety system (CSS); the system for physical control of energy distribution (SPCED) as well as the Scala system for centralized control (SCC). Main functions and peculiarities of each system are discussed. Main attention is paid to new structural solutions and new equipment components used in these systems. Described are the RBMK operation software and routine of energy distribution control in it. It is noted that the set of reactor control and monitoring systems has a hierarchical structure, the first level of which includes analog systems (CSS and SPCED) normalizing and transmitting detector signals to the systems of the second level based on computers and realizing computer data processing, data representation to the operator, automatic (through CSS) control for energy distribution, diagnostics of equipment condition and local safety with provision for existing reserves with respect to crisis and thermal loading of fuel assemblies. The third level includes a power computer carrying out complex physical and optimization calculations and providing interconnections with the external computer of power system. A typical feature of the complex is the provision of local automatic safety of the reactor from erroneous withdrawal of any control rod. The complex is designed for complete automatization of energy distribution control in reactor in steady and transient operation conditions

  20. Evaluation of 'period-generated' control laws for the time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1988-01-01

    Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors

  1. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  2. Reactor controller design using genetic algorithm with simulated annealing

    International Nuclear Information System (INIS)

    Willjuice Iruthyarajan, M.

    2012-01-01

    Many reactor control design work, specifically the problem of synthesis and optimization of reactor networks involving the classical reaction schemes was studied, considering a superstructure formed by a CSTR and a PFR and their possible arrangements. A genetic algorithm was proposed, together with a systematic procedure. Two case studies were solved with the proposed systematic. Both of them present similar results than the published in the literature. The first case studied was the Trambouze reaction scheme. Although selectivity values are smaller then the values published in the referred papers, the reactors system combined volume is always minor them the other ones. The second case studied was the Van de Vusse reaction scheme. In this case, the obtained value for the total volume is always minor then the considered papers. One can conclude that when compared with the other works presented in the literature results are compatible and very interesting. The developed algorithms can be used as a good alternative for reactor networks design and optimization problem

  3. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1979-01-01

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  4. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  5. Development of automated controller system for controlling reactivity by using FPGA in research reactor application

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib

    2012-01-01

    The scope for this research paper is to produce a detail design for Development of Automated Controller System for Controlling Reactivity by using FPGA in Research Reactor Application for high safety nuclear operation. The development of this project including design, purchasing, fabrication, installation, testing and validation and verification for one prototype automated controller system for controlling reactivity in industry local technology for human capacity and capability development towards the first Nuclear Power Programme (NPP) in Malaysia. The specific objectives of this research paper are to Development of Automated Controller System for Controlling Reactivity (ACSCR) in Research Reactor Application (PUSPATI TRIGA Reactor) by using simultaneous movement method; To design, fabricate and produce the accuracy of Control Rods Drive Mechanism to 0.1 mm resolution using a stepper motor as an actuator; To design, install and produce the system response to be more faster by using Field Programmable Gate Array (FPGA) and High Speed Computer; and to improve the Safety Level of the Research Reactor in high safety nuclear operation condition. (author)

  6. Device for the nuclear reactor automatic start-up and power control

    International Nuclear Information System (INIS)

    Nikiforov, B.N.; Volkov, A.V.; Ogon'kov, A.I.

    1978-01-01

    A description and flowsheet of a reactor start-up and power-control automatic device containing no nonlinear elements with a relay characteristic are presented. The device consists of two independent channels for measuring the physical power and time (period) constant of the reactor. Requirements for the device are considered, based on the condition of a minimum permissible number of a servomechanism operations due to fluctuations of an input signal which appear because of the statistical nature of processes taking place in the reactor. It is noted that the threshold amplifier used in the device allows a considerable decrease of the reactor start-up time

  7. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  8. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  9. On-line method to identify control rod drops in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Souza, T.J.; Martinez, A.S.; Medeiros, J.A.C.C.; Palma, D.A.P.; Gonçalves, A.C.

    2014-01-01

    Highlights: • On-line method to identify control rod drops in PWR reactors. • Identification method based on the readings of the ex-core detector. • Recognition of the patterns in the ex-core detector responses. - Abstract: A control rod drop event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimise undesirable effects in such a scenario. The goal of this work is to develop an online method to identify control rod drops in PWR reactors. The method entails the construction of a tool based on ex-core detector responses. It proposes to recognize patterns in the neutron ex-core detectors responses and thus to make an online identification of a control rod drop in the core during the reactor operation. The results of the study, as well as the behaviour of the detector responses demonstrated the feasibility of this method

  10. Primary circuit and reactor core T-H characteristics determination of WWER 440 reactors

    International Nuclear Information System (INIS)

    Hermansky, J.; Petenyi, V.; Zavodsky, M.

    2010-01-01

    The WWER-440 nuclear fuel vendor permanently improves the assortment of produced nuclear fuel assemblies for achieving better fuel cycle economy and reactor operation safety. During unit refuelling there also could be made some other changes in hydraulic parameters of primary circuit (change of impeller wheels, hydraulic resistance coefficient changes of internal parts of primary circuit, etc.). Therefore it is necessary to determine real coolant flow rate through the reactor during units start-up after their refuelling, and also to have the skilled methodology and computing code for analyzing factors, which affecting the inaccuracy of coolant flow redistribution determination through reactor on flows through separate parts of reactor core in any case of parallel operation of different assembly types. Computing code TH-VCR and CORFLO are used for reactor core characteristics determination for one type of fuel and control assemblies and also in case of parallel operation of different assembly types. The code TH-VCR is able to calculate coolant flow rate for different combinations of three different fuel assembly channel types and three different control assembly channel types. The CORFLO code deals the area of the reactor core which consists of 312 fuel assemblies and 37 control assemblies. Regarding the rotational 60 deg symmetry of reactor core only 1/6 of reactor core with 59 fuel assemblies is taken into account. Computing code CORFLO is verified and validated at this time. Paper presents some results from measurements of coolant flow rate through reactors during start-up after unit refuelling and short description of computing code TH-VCR and CORFLO with some calculated results. (Authors)

  11. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  12. Multi-component controllers in reactor physics optimality analysis

    International Nuclear Information System (INIS)

    Aldemir, T.

    1978-01-01

    An algorithm is developed for the optimality analysis of thermal reactor assemblies with multi-component control vectors. The neutronics of the system under consideration is assumed to be described by the two-group diffusion equations and constraints are imposed upon the state and control variables. It is shown that if the problem is such that the differential and algebraic equations describing the system can be cast into a linear form via a change of variables, the optimal control components are piecewise constant functions and the global optimal controller can be determined by investigating the properties of the influence functions. Two specific problems are solved utilizing this approach. A thermal reactor consisting of fuel, burnable poison and moderator is found to yield maximal power when the assembly consists of two poison zones and the power density is constant throughout the assembly. It is shown that certain variational relations have to be considered to maintain the activeness of the system equations as differential constraints. The problem of determining the maximum initial breeding ratio for a thermal reactor is solved by treating the fertile and fissile material absorption densities as controllers. The optimal core configurations are found to consist of three fuel zones for a bare assembly and two fuel zones for a reflected assembly. The optimum fissile material density is determined to be inversely proportional to the thermal flux

  13. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  14. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  16. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  17. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  18. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  19. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  20. Halden Reactor Project Workshop: Understanding Advanced Instrumentation and Controls Issues

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1991-01-01

    A Halden Reactor Project Workshop on 'Understanding Advanced Instrumentation and Controls Issues' was held in Halden, Norway, during June 17-18, 1991. The objectives of the workshop were to (1) identify and prioritize the types of technical information that the Halden Project can produce to facilitate the development of man-machine interface guidelines and (2) to identify methods to effectively integrate and disseminate this information to signatory organizations. As a member of the Halden Reactor Project, the Nuclear Regulatory Commission (NRC) requested the workshop. This request resulted from the NRC's need for human factors guidelines for the evaluation of advanced instrumentation and controls. The Halden Reactor Project is a cooperative agreement among several countries belonging to the Organization for Economic Cooperation and Development (OECD). The US began its association with the Halden Project in 1958 through the Atomic Energy Commission. The project's activities are centered at the Halden heavy-water reactor and its associated man-machine laboratory in Halden, Norway. The research program conducted at Halden consists of studies on fuel performance and computer-based man-machine interfaces

  1. Simulation development for TRIGA reactor

    International Nuclear Information System (INIS)

    Handoyo, D.

    1997-01-01

    A simulator of the dynamic of TRIGA reactor has been made. this simulator is meant to study the reactor kinetic behavior and for operator training to more assure the safety and the reliability of the real operation of TRIGA reactor. the simulator consists of PC (Personal Computer) for processing the calculation of reactivity, neutron flux, period, ect and control panel for regulating the input data such as the change of power range, control rod position as well as cooling flow rate. the result will be displayed on screen monitor of personal computer as given in the real control room of TRIGA reactor. the output of simulator will be verified by comparing with measurement result in the real TRIGA MARK II reactor of Musashi institute of technology. for the change of reactivity of 0.3, 0.5 and 0.7 the reactor power and fuel temperature between the simulator and measurements are comparable

  2. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  3. Radiation protection at the RA Reactor in 1993, RA research reactor, Part

    International Nuclear Information System (INIS)

    Ninkovic, M.; Pavlovic, R.; Mandic, M.; Sipka, V.; Grsic, Z.

    1993-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry and radiation protection at the RA reactor; (2) decontamination, collecting and treatment of fluid effluents and solid wastes; (3) Radioactivity control in the vicinity of the reactor and (4)meteorology measurements; (3). Each of the category is described as a separate annex of this report [sr

  4. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  5. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Matsuura, S.; Nakahara, Y.; Takano, H.

    1983-09-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  6. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  7. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  8. Principle of human system interface (HSI) design for new reactor console of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Mohd Sabri Minhat; Izhar Abu Hussin

    2013-01-01

    Full-text: This paper will describe the principle of human system interface design for new reactor console in control room at TRIGA reactor facility. In order to support these human system interface challenges in digital reactor console. Software-based instrumentation and control (I and C) system for new reactor console could lead to new human machine integration. The proposed of Human System Interface (HSI) which included the large display panels which shows reactor status, compact and computer-based workstations for monitoring, control and protection function. The proposed Human System Interface (HIS) has been evaluated using various human factor engineering. It can be concluded that the Human System Interface (HIS) is designed as to address the safety related computer controlled system. (author)

  9. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Doshi, P.K.; George, R.A.; Dollard, W.J.

    1982-01-01

    A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)

  10. Knowledge base expert system control of spatial xenon oscillations in pressurized water reactors

    International Nuclear Information System (INIS)

    Alten, S.

    1992-01-01

    Nuclear reactor operators are required to pay special attention to spatial xenon oscillations during the load-follow operation of pressurized water reactors. They are expected to observe the axial offset of the core, and to estimate the correct time and amount of necessary control action based on heuristic rules given in axial xenon oscillations are knowledge intensive, and heuristic in nature. An expert system, ACES (Axial offset Control using Expert Systems) is developed to implement a heuristic constant axial offset control procedure to aid reactor operators in increasing the plant reliability by reducing the human error component of the failure probability. ACES is written in a production system language, OPS5, based on the forward chaining algorithm. It samples reactor data with a certain time interval in terms of measurable parameters, such as the power, period, and the axial offset of the core. It then processes the core status utilizing a set of equations which are used in a back of the envelope calculations by domain experts. Heuristic rules of ACES identify the control variable to be used among the full and part length control rods and boron concentration, while a knowledge base is used to determine the amount of control. ACES is designed as a set of generic rules to avoid reducing the system into a set of patterns. Instead ACES evaluates the system, determines the necessary corrective actions in terms of reactivity insertion, and provides this reactivity insertion using the control variables. The amount of control action is determined using a knowledge base which consists of the differential rod worth curves, and the boron reactivity worth of a given reactor. Having the reactor dependent parameters in its knowledge base, ACES is applicable to an arbitrary reactor for axial offset control purposes

  11. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  12. Backfitting in Rossendorf research reactor control and instrumentation system

    International Nuclear Information System (INIS)

    Klebau, J.; Seidler, S.

    1985-01-01

    The paper generally describes a decentralized Hierarchical Information System (HIS) which has been developed for backfitting in Rossendorf Research Reactor (RFR) control and instrumentation system. The RFR was put into operation in 1957 and reconstructed from 2 MW up to a thermal power of 10 MW at the end of the sixties. Backfitting is planned by use of an advanced computerized control system for the next years. Main tasks of HIS are: Processmonitoring, online-disturbance analysis, technical diagnosis, direct digital control and use of a special industrial robot for discharging of irradiated materials out of the reactor. Experiences obtained by HIS during a testperiod will be presented. (author)

  13. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  14. FFTF reactor assembly system technology

    International Nuclear Information System (INIS)

    Mangelsdorf, T.A.

    1975-01-01

    An overview is presented of the FFTF reactor and plant together with descriptions of core components, core internals, core system, primary and secondary control rod system, reactor instrumentation, reactor vessel and closure head, and supporting test programs

  15. Inherent reactor power controller for a metal-fueled ALMR

    International Nuclear Information System (INIS)

    Wood, R.T.; Wilson, T.L. Jr.

    1990-01-01

    Inherent power control for metal-fueled ALMR designs involves using reactivity thermal feedback effects to control reactor power. This paper describes how, using classical control design techniques, a control system for normal load following maneuvers was deigned for a pool-type ALMR. This design provides active control of power removal in the balance of plant, direct control of selected primary and intermediate loop temperatures, and passive control of reactor power. The inherent stability of the strong, fast reactivity feedback effects bring heat production in the core into balance with the heat removal system temperatures, which are controlled to meet power demand. A simulation of the control system successfully responded to a 10% step change in power demand by changing power at an acceptable rate without causing large temperature fluctuations or exceeding thermal limits

  16. Nuclear reactor control assembly

    International Nuclear Information System (INIS)

    Negron, S.B.

    1991-01-01

    This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other

  17. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  18. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  19. Vibration analysis of reactor assembly internals for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Jalaldeen, S.; Srinivasan, R.; Chetal, S.C.; Bhoje, S.B.

    2003-01-01

    Vibration analysis of the reactor assembly components of 500 MWe Prototype Fast Breeder Reactor (PFBR) is presented. The vibration response of primary pump as well as dynamic forces developed at its supports are predicted numerically. The stiffness properties of hydrostatic bearing are determined by formulating and solving governing fluid and structural mechanics equations. The dynamic forces exerted by pump are used as input data for the dynamic response of reactor assembly components, mainly inner vessel, thermal baffle and control plug. Dynamic response of reactor assembly components is also predicted for the pressure fluctuations caused by sodium free level oscillations. Thermal baffle (weir shell) which is subjected to fluid forces developed at the associated sodium free levels is analysed by formulating and solving a set of non-linear equations for fluids, structures and fluid structure interaction (FSI). The control rod drive mechanism is analysed for response under flow induced forces on the parts subjected to cross flow in the zone just above the core top, taking into account FSI between sheaths of control and safety rod and absorber pin bundle. Based on the analysis results, it is concluded that the reactor assembly internals are free from any risk of mechanical as well as flow induced vibrations. (author)

  20. The activities of the committee 'Kernreaktorregelung' (nuclear reactor control) in the past few years and future projects

    International Nuclear Information System (INIS)

    Knecht, O.

    1976-01-01

    Results achieved so far and future projects are portrayed in detail: 1) VDI/VDE 3527-Graphical symbols for nuclear reactor control; 2) VDI/VDE 3528-Special terms and definitons for nuclear reactor control; 3) 8 data sheets on reactor control; 4) VDI/VDE 3530-Characterisation of reactor control rod drives. (orig./HP) [de

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  2. Enhanced situation awareness and decision making for an intelligent reconfigurable reactor power controller

    International Nuclear Information System (INIS)

    Kenney, S.J.; Edwards, R.M.

    1996-01-01

    A Learning Automata based intelligent reconfigurable controller has been adapted for use as a reactor power controller to achieve improved reactor temperature performance. The intelligent reconfigurable controller is capable of enforcing either a classical or an optimal reactor power controller based on control performance feedback. Four control performance evaluation measures: dynamically estimated average quadratic temperature error, power, rod reactivity and rod reactivity rate were developed to provide feedback to the control decision component of the intelligent reconfigurable controller. Fuzzy Logic and Neural Network controllers have been studied for inclusion in the bank of controllers that form the intermediate level of an enhanced intelligent reconfigurable reactor power controller (IRRPC). The increased number of alternatives available to the supervisory level of the IRRPC requires enhanced situation awareness. Additional performance measures have been designed and a method for synthesizing them into a single indication of the overall performance of the currently enforced reactor power controller has been conceptualized. Modification of the reward/penalty scheme implemented in the existing IRRPC to increase the quality of the supervisory level decision process has been studied. The logogen model of human memory (Morton, 1969) and individual controller design information could be used to allocate reward to the most appropriate controller. Methods for allocating supervisory level attention were also studied with the goal of maximizing learning rate

  3. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1990-01-01

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author) [es

  4. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  5. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  6. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  7. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  8. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Rojas R, E.

    2014-01-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n o up to a predetermined final level n f . During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  9. Power probability density function control and performance assessment of a nuclear research reactor

    International Nuclear Information System (INIS)

    Abharian, Amir Esmaeili; Fadaei, Amir Hosein

    2014-01-01

    Highlights: • In this paper, the performance assessment of static PDF control system is discussed. • The reactor PDF model is set up based on the B-spline functions. • Acquaints of Nu, and Th-h. equations solve concurrently by reformed Hansen’s method. • A principle of performance assessment is put forward for the PDF of the NR control. - Abstract: One of the main issues in controlling a system is to keep track of the conditions of the system function. The performance condition of the system should be inspected continuously, to keep the system in reliable working condition. In this study, the nuclear reactor is considered as a complicated system and a principle of performance assessment is used for analyzing the performance of the power probability density function (PDF) of the nuclear research reactor control. First, the model of the power PDF is set up, then the controller is designed to make the power PDF for tracing the given shape, that make the reactor to be a closed-loop system. The operating data of the closed-loop reactor are used to assess the control performance with the performance assessment criteria. The modeling, controller design and the performance assessment of the power PDF are all applied to the control of Tehran Research Reactor (TRR) power in a nuclear process. In this paper, the performance assessment of the static PDF control system is discussed, the efficacy and efficiency of the proposed method are investigated, and finally its reliability is proven

  10. Boiling water reactor radiation shielded Control Rod Drive Housing Supports

    Energy Technology Data Exchange (ETDEWEB)

    Baversten, B.; Linden, M.J. [ABB Combustion Engineering Nuclear Operations, Windsor, CT (United States)

    1995-03-01

    The Control Rod Drive (CRD) mechanisms are located in the area below the reactor vessel in a Boiling Water Reactor (BWR). Specifically, these CRDs are located between the bottom of the reactor vessel and above an interlocking structure of steel bars and rods, herein identified as CRD Housing Supports. The CRD Housing Supports are designed to limit the travel of a Control Rod and Control Rod Drive in the event that the CRD vessel attachement went to fail, allowing the CRD to be ejected from the vessel. By limiting the travel of the ejected CRD, the supports prevent a nuclear overpower excursion that could occur as a result of the ejected CRD. The Housing Support structure must be disassembled in order to remove CRDs for replacement or maintenance. The disassembly task can require a significant amount of outage time and personnel radiation exposure dependent on the number and location of the CRDs to be changed out. This paper presents a way to minimize personal radiation exposure through the re-design of the Housing Support structure. The following paragraphs also delineate a method of avoiding the awkward, manual, handling of the structure under the reactor vessel during a CRD change out.

  11. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  12. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  13. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires]|[Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  14. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; [Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  15. Control of Canadian once-through direct cycle supercritical water-cooled reactors

    International Nuclear Information System (INIS)

    Sun, Peiwei; Wang, Baosheng; Zhang, Jianmin; Su, Guanghui

    2015-01-01

    Highlights: • Dynamic characteristics of Canadian SCWR are analyzed. • Hybrid feedforward and feedback control is adopted to deal with cross-coupling. • Gain scheduling control with smooth weight is applied to deal with nonlinearity. • It demonstrates through simulation that the control requirements are satisfied. - Abstract: Canadian supercritical water-cooled reactor (SCWR) can be modelled as a Multiple-input Multiple-output (MIMO) system. It has a high power-to-flow ratio, strong cross-coupling and high degree of nonlinearity in its dynamic characteristics. Among the outputs, the steam temperature is strongly affected by the reactor power and the most challenging to control. It is difficult to adopt a traditional control system design methodology to obtain a control system with satisfactory performance. In this paper, feedforward control is applied to reduce the effect on steam temperature from the reactor power. Single-input Single-output (SISO) feedback controllers are synthesized in the frequency domain. Using the feedforward controller, the steam temperature variation due to disturbances at the reactor power has been significantly suppressed. The control system can effectively maintain the overall system stability and regulate the plant around a specified operating condition. To deal with the nonlinearities, gain scheduling control strategy is adopted. Different sets of controllers combined by smooth weight functions are used for the plant at different load conditions. The proposed control strategies have been evaluated under various operating scenarios. Simulation results show that satisfactory performance can successfully achieved by the designed control system

  16. Design of Simulink module for dynamic reactivity simulation of marine reactor automatic control rod

    International Nuclear Information System (INIS)

    Chen Zhiyun; Luo Lei; Chen Wenzhen; Gui Xuewen

    2010-01-01

    The power of marine reactor varies frequently and acutely, which induces the frequent and acute adjustment of the automatic control rod. According to the characteristics of marine reactor and the problem of improper control rod reactivity insertion in previous literatures, the Simulink module for dynamic reactivity simulation of automatic control rod was designed and adopted as a sub-module of Simulink program for the fast calculation of the physical and thermal parameters of marine reactor. A typical dynamic process of the marine reactor was used as the benchmark, which indicates that the designed Simulink module is capable of the dynamic simulation of automatic control rod position and reactivity, and is adequate to the fast calculation of physic and thermal parameters. The Simulink module is of significant meaning to the simulation of the dynamic process of marine reactor and the fast calculation of the operating parameters. (authors)

  17. Optimal control of xenon concentration by observer design under reactor model uncertainty

    International Nuclear Information System (INIS)

    Cho, Nam Z.; Yang, Chae Y.; Woo, Hae S.

    1989-01-01

    The state feedback in control theory enjoys many advantages, such as stabilization and improved transient response, which could be beneficially used for control of the xenon oscillation in a power reactor. It is, however, not possible in nuclear reactors to measure the state variables, such as xenon and iodine concentrations. For implementation of the optimal state feedback control law, it is thus necessary to estimate the unmeasurable state variables. This paper uses the Luenberger observer to estimate the xenon and iodine concentrations to be used in a linear quadratic problem with state feedback. To overcome the stiffness problem in reactor kinetics, a singular perturbation method is used

  18. Control rod drives for HTGR type reactor

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Katagiri, Shigeo.

    1991-01-01

    The device of the present invention has a feature of having stable braking characteristics upon scram operation of control rods. That is, control rod drives are moved upon and down by a dram which rotates the control rod suspended from to a wire rope, and the dram is disconnected from the driving mechanism by a crutch mechanism upon scram, to rapidly insert the control rod in the reactor by its own weight. An electric generator is used as a braking mechanism for controlling the scram speed of the control rod. A plurality of resistors disposed outside of the reactor coolants boundary are connected in parallel between input/output terminals of the electric generator. With such a constitution, braking characteristics are determined by the intensity of the permanent magnet, number of the coil windings and values of the resistors constituting the power generator. Accordingly, the braking characteristics are less changed relative to the working circumstantial conditions, the history of use and the state of mounting. As a result, stable braking characteristics can always be obtained. Further, braking characteristics can easily be controlled by varying the resistance value. (I.S.)

  19. Pneumatic transport systems for TRIGA reactors

    International Nuclear Information System (INIS)

    Bolton, John A.

    1970-01-01

    Main parameters and advantages of pneumatically operated systems, primarily those operated by gas pressure are discussed. The special irradiation ends for the TRIGA reactor are described. To give some idea of the complexity of some modern systems, the author presents the large system currently operating at the National Bureau of Standards in Washington. In this system, 13 stations are located throughout the radiochemistry laboratories and three irradiation ends are located in the reactor, which is a 14-megawatt unit. The system incorporates practically every fail-safe device possible, including ball valves located on all capsule lines entering the reactor area, designed to close automatically in the event of a reactor scram, and at that time capsules within the reactor would be diverted by means of switches located on the inside of the reactor wall. The whole system is under final control of a permission control panel located in the reactor control room. Many other safety accessories of the system are described

  20. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  1. Basic principles of accounting and control of nuclear materials in the BOR-60 experimental fast reactor

    International Nuclear Information System (INIS)

    Gryazev, V.M.; Gadzhiev, G.I.; Alekseev, I.N.

    1979-01-01

    Under a contract with the International Atomic Energy Agency, the V.I. Lenin Atomic Reactor Research Institute is currently carrying out a study of ways of organizing a nuclear materials accounting and control system for the BOR-60 fast reactor. Some results of this study are presented in the paper. The special physical and technological features of fast reactors create additional difficulties in safeguards systems and give rise to a number of new possibilities for the illicit removal of nuclear materials. These questions are discussed with reference to the BOR-60 reactor but the conclusions are probably applicable to all fast reactors. The proposed accounting and control system is based on non-destructive measurements of the amount of fissile materials in the operating fuel assemblies and screened bundles of the reactor, on the independent control of the principal facility parameters (a list of which is given) and on an automated information collection and evaluation system. Visual means of inspection can be very effective in fast reactor safeguards systems, especially for controlling storage, but they are not used with the BOR-60 reactor. (author)

  2. Modeling and Control of a Large Nuclear Reactor A Three-Time-Scale Approach

    CERN Document Server

    Shimjith, S R; Bandyopadhyay, B

    2013-01-01

    Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property,...

  3. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  4. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  5. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  6. Realtime control of biogas reactors. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Allan K.

    2010-12-15

    In this project several online methods were connected to a biogas pilot plant designed and built by Xergi A/S (Foulum, Denmark). The pilot plant was composed of two stainless steel tanks used as substrate storage and as digester, respectively. The total volume of the reactor tank was 300 L, the working volume 200 L and the headspace volume 100 L. The process temperature in the biogas reactor was maintained at 52 {+-} 0.5 deg. C during normal operating conditions. The biogas production was measured with a flow meter and a controller was used for automatic control of temperature, effluent removal, feeding and for data logging. A NIRS (near infrared spectrometer) was connected to a recurrent loop measuring on the slurry while a {mu}-GC (micro gas chromatograph) and a MIMS (membrane inlet mass spectrometer) enabled online measurements of the gas phase composition. During the project period three monitoring campaigns were accomplished. The loading rate of the biogas reactor was increased stepwise during the periods while the process was monitored. In the first two campaigns the load was increased by increasing the mass of organic material added to the reactor each day. However, this increasing amount changed the retention time in the reactor and in order to keep the retention time constant an increasing amount of inhibitor of the microbial process was instead added in the third campaign and as such maintaining a constant organic load mass added to the reactor. The effect is similar to an increase in process load, while keeping the load of organic material and hence retention time constant. Methods have been developed for the following online technologies and each technology has been evaluated with regard to future use as a tool for biogas process monitoring: 1) {mu}-GC was able to quantitative monitor important gas phase parameters in a reliable, fast and low-maintenance way. 2) MIMS was able to quantitative monitor gas phase composition in a reliable and fast manner

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  8. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  9. RA Research nuclear reactor, Part II: radiation protection at the RA reactor in 1987

    International Nuclear Information System (INIS)

    Ninkovic, M.; Ajdacic, N.; Zaric, M.; Vukovic, Z.

    1987-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor and radiation protection; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Decontamination and relevant actions, collecting and treatment of fluid effluents; and and solid radioactive wastes [sr

  10. Radiation protection at the RA Reactor in 1988, Part -2, RA reactor annual report

    International Nuclear Information System (INIS)

    Ninkovic, M.; Ajdacic, N.; Zaric, M.; Vukovic, Z.

    1988-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor and radiation protection; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Decontamination and relevant actions, collecting and treatment of fluid effluents; and and solid radioactive wastes [sr

  11. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  12. Applied research into direct numerical control of A-1 reactor temperature

    International Nuclear Information System (INIS)

    Karpeta, C.; Volf, K.

    1974-01-01

    Partial results of research efforts aimed at applying modern control theory in the control of the reactor of the A-1 nuclear power station are presented. A mathematical model of the process dynamics was developed. Some parameters of the model were determined using the results of an experimentally performed reactor scram. The optimal stochastic discrete regulator was determined and closed-loop transients were studied. The possibilities of implementing control routines were investigated using the RPP-16 computer. (author)

  13. Technique of nuclear reactors controls; Technique des controles des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1953-12-15

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author) [French] Nous avons aborde le probleme de la ''Technique du Controle des reacteurs nucleaires'' dans le but de realiser le controle du reacteur de Saclay. C'est ainsi que nous avons ete amene a etudier le probleme dans son ensemble, tel qu'il se pose pour tout reacteur a uranium naturel. Ce travail traite principalement du domaine des mesures a caractere nucleaire et s'etend dans le domaine des mesures thermodynamque de niveaux, etc... mettant en relief les caracteristiques nouvelles exigees de la part des detecteurs du fait de leur utilisation dans le flux de neutrons thermiques. Dans le domaine de mesures nucleaires, nous indiquons principalement les realisations et les resultats obtenus pour les detecteurs de neutrons thermiques et pour la mesure de courants d'ionisations. Nous traitons egalement du probleme technique du demarrage d'un reacteur et du probleme de la mesure de la reactivite. Nous donnons les details necessaires a la comrehension de tous les schemas et plans de cablages essentiels mis au point, en particulier, pour le reacteur de Saclay. (auteur)

  14. Some particular aspects of control in nuclear power reactors

    International Nuclear Information System (INIS)

    Vathaire, F. de; Vernier, Ph.; Pascouet, A.

    1964-01-01

    This paper reviews the experience acquired in France on the question, of reactor safety. Since a special paper is being presented on reactors of the graphite gas type, the safety of the other types studied in France is discussed here: - heavy water-gas reactors, - fast neutron reactors, - water research reactors of the swimming-pool and tank types. The safety rules peculiar to the different types are explained, with emphasis on their influence on the reactor designs and on the power limits they impose. The corresponding safety studies are presented, particular stress being placed on the original work developed in these fields. Special mention is made of the experimental systems constructed for these studies: the reactor CABRI, pile loop for depressurization tests, loops outside the pile, mock-ups etc. (authors) [fr

  15. Reactor control device for controlling load of nuclear power plant

    International Nuclear Information System (INIS)

    Hirota, Tadakuni; Yokoyama, Terukuni; Masuda, Jiro.

    1981-01-01

    Purpose: To improve the load follow-up capacity of a nuclear reactor by automatically controlling the width of the not-sensing band of a control rod inserting and removing discriminator circuit. Constitution: When load control operations such as automatic load control, automatic frequency control, governor free operation and so forth are conducted, the width of a not sensing band of a control rod inserting and removing discriminator circuit is ao automatically controlled that the not sensing band width may return to ordinary value in a normal operation by avoiding the fast repetition of inserting and removing control rods by increasing the width of the insensing band if the period of a control deviation signal produced due to the variation in the load is quickly repeated and varied in correspondence to the control deviation signal. That is, a circuit for varying the insensing band of the control circuit for driving a control mechanism is provided to reduce the amount of driving the control rods in a load control operation and to reduce the strain of the power distribution of the nuclear reactor, thereby improving the load control capacity. (Yoshihara, H.)

  16. Development of control rod position indicator using seismic-resistance reed switches for integral reactor

    International Nuclear Information System (INIS)

    Yu, Je Yong; Kim, Ji Ho; Huh, Hyung; Choi, Myoung Hwan; Sohn, Dong Seong

    2008-01-01

    The Reed Switch Position Transmitter (RSPT) is used as a position indicator for the control rod in commercial nuclear power plants made by ABB-CE. But this position indicator has some problems when directly adopting it to the integral reactor. The Control Element Drive Mechanism (CEDM) for the integral reactor is designed to raise and lower the control rod in steps of 2mm in order to satisfy the design features of the integral reactor which are the soluble boron free operation and the use of a nuclear heating for the reactor start-up. Therefore the resolution of the position indicator for the integral reactor should be achieved to sense the position of the control rod more precisely than that of the RSPT of the ABB-CE. This paper adopts seismic resistance reed switches to the position indicator in order to reduce the damages or impacts during the handling of the position indicator and earthquake

  17. An automatic regulating control system for a graphite moderated reactor using digital techniques

    International Nuclear Information System (INIS)

    Carvalho Goncalves Junior, J. de.

    1989-01-01

    The work propose an automatic regulating control system for a graphite moderated reactor using digital techniques. The system uses a microcomputer to monitor the power and the period, to run the control algorithm, and to generate electronic signals to excite the motor, which moves vertically the control rod banks. A nuclear reactor simulator was developed to test the control system. The simulator consists of a software based on the point kinetic equations and implanted in an analogical computer. The results show that this control system has a good performance and versatility. In addition, the simulator is capable of reproducing with accuracy the behavior of a nuclear reactor. (author)

  18. Method of operating BWR type reactors

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1980-01-01

    Purpose: To enable reactor control depending on any demanded loads by performing control by the insertion of control rods in addition to the control by the regulation of the flow rate of the reactor core water at high power operation of a BWR type reactor. Method: The power is reduced at high power operation by decreasing the flow rate of reactor core water from the starting time for the power reduction and the flow rate is maintained after the time at which it reaches the minimum allowable flow rate. Then, the control rod is started to insert from the above time point to reduce the power to an aimed level. Thus, the insufficiency in the reactivity due to the increase in the xenon concentration can be compensated by the withdrawal of the control rods and the excess reactivity due to the decrease in the xenon concentration can be compensated by the insertion of the control rods, whereby the reactor power can be controlled depending on any demanded loads without deviating from the upper or lower limit for the flow rate of the reactor core water. (Moriyama, K.)

  19. Breeder control fusion reactor. Topical interview

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, A [Max-Planck-Institut fuer Plasmaphysik, Garching/Muenchen (Germany, F.R.)

    1977-09-01

    The energy sources of the future are extremely controversial. The consumption of fossil fuel shall decrease during the next decades, because exhaustion of the resources, pollution, increase of CO/sub 2/ in the atmosphere and other reasons. But at present the question it not yet settled which alternative energy system should replace the fossil fuel. First of all nuclear energy in the form of fission reactions seems to come into operation to a larger extent. The next step may be the controlled thermonuclear fusion reaction. Furthermore, a comparison between fusion and fission is given which shows that fusion would bring about less risks than the breeders. An advantage of the fusion reactor would be the fact that the fuel cycle is closed. Unfortunately, the physical questions are not as yet satisfactorily clarified so that one cannot be sure whether a fusion reactor can really be built.

  20. A relay rack for a control and protection system for nuclear reactors

    International Nuclear Information System (INIS)

    Miyata, Yasuyuki; Oda, Noriaki; Akiyama, Toyoshi

    1975-01-01

    It is obvious that all the equipment in the various systems that constitute a nuclear power plant must exhibit the highest levels of reliability, but the reactor control and protection system is of vital importance, and thus it requires a particularly thorough approach, incorporating redundancy, independence and separation. The paper describes the functions, construction and specifications of the relay rack - one of the most important items of equipment for reactor control and protection in a generating facility using a pressurized-water reactor - and it gives details of the extent to which these three requirements are satisfied. (author)

  1. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  2. Future view of total energy system and reactor engineering and reactor physics

    International Nuclear Information System (INIS)

    Ozawa, T.

    1974-01-01

    This paper outlines the present status of fission reactors and fusion reactors. The conversion ratio of light water reactors is 0.5, and the efficiency is 32% because of relatively low temperature. Both pressurized water reactors and boiling water reactors are technically well developed, their performances are well known, and the fuel cycle is well developed, so that both reactors have monopolized power reactor market. But the reprocessing of spent fuel and the treatment of their hazards are inevitable, and the construction and enlargement of reprocessing facilities are indispensable. In LMFBR's tight sealing is easy because they are non-pressurized, and the efficiency is 41%. But liquid sodium is strongly activated and recirculated, so that chemical obstruction due to the breakage of recirculating pumps, pipings, and heat exchangers may occur, and the hazard of plutonium is large. Regarding controlled thermo-nuclear fusion reactors, because Lawson criterion must be satisfied, two methods of plasma confinement are now experimented. One is the plasma confinement by strong magnetic field of 50 KG to 100 KG, and the other is the confinement by the implosion method with high-power laser beam. The latter has much more uncertainties than the former, but recently both methods have made much progress. (Tai, I)

  3. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    Directory of Open Access Journals (Sweden)

    Isaac Skavdahl

    2016-12-01

    Full Text Available Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (Tco and the hot outlet temperature of the intermediate heat exchanger (Tho2 by manipulating the hot-side flow rates of the heat exchangers (Fh/Fh2 responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (Tco only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1 flow rate manipulation; (2 reactor power manipulation; or (3 a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

  4. Control of advanced reactor-coupled heat exchanger system: Incorporation of reactor dynamics in system response to load disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Skavdahi, Isaac; Utgikar, Vivek [Dept. of Chemical and Materials Engineering, University of Idaho, Moscow (United States); Christensen, Richard [Nuclear Engineering Program, University of Idaho, Idaho Falls (United States); Chen, Ming Hui; Sun, Xiao Dong [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus (United States); Sabharwall, Piyush [Idaho National Laboratory, Idaho Falls (United States)

    2016-12-15

    Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T{sub co}) and the hot outlet temperature of the intermediate heat exchanger (Th{sub o2}) by manipulating the hot-side flow rates of the heat exchangers (F{sub h}/F{sub h2}) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (T{sub co}) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

  5. Control of advanced reactor-coupled heat exchanger system: Incorporation of reactor dynamics in system response to load disturbances

    International Nuclear Information System (INIS)

    Skavdahi, Isaac; Utgikar, Vivek; Christensen, Richard; Chen, Ming Hui; Sun, Xiao Dong; Sabharwall, Piyush

    2016-01-01

    Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T_c_o) and the hot outlet temperature of the intermediate heat exchanger (Th_o_2) by manipulating the hot-side flow rates of the heat exchangers (F_h/F_h_2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (T_c_o) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change

  6. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    International Nuclear Information System (INIS)

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described

  7. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  8. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  9. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  10. Computerized supervision and control system for movement at the RP-10 reactor control rods bank

    International Nuclear Information System (INIS)

    Padilla M, C.E.

    1998-01-01

    The project involves the use of a compatible microcomputer, Labwindows/CVI software, as well as National Instruments data acquisition cards AT-MIO16-E10 and PC-DIO96 to modify the sequence of movement of the reactor's rods and control them from a graphic interface in a computer's monitor. This graphic presentation is set as console of virtual instruments from where rod movement can be conducted. Normal rod movement, bank rod movement, and rod calibration have been considered. These experiences involve different logic of rod movements, which will determine movement sequence. Control of the automatic range of a current amplifier module was also considered. This module is know as 'automatic pilot amplifier' and given the strategic location of its detector (compensated ionizing camera) at the reactor's core, it delivers neutron flux current considered as reference to superficial neutron flux distribution at the reactor's core. Lecture and monitoring of this signal allows taking the reactor to a certain power, current of this signal is proportional to the power we want the reactor to reach. Advantages obtained with this system include the update of the control console, more uniform distribution of neutron flux, with lower and uniform burnup of nuclear fuel. (author)

  11. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  12. Modernization of Safety and Control Instrumentation of the IEA-R1 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, P.V., E-mail: paulov@ien.gov.br [Institute of Nuclear Engineering (IEN), National Nuclear Energy Commission (CNEN), Rio de Janeiro (Brazil)

    2014-08-15

    The research reactor IEA-R1 located in the Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil, obtained its first criticality on 16 September 1957 and since then has served the scientific and medical community in the performance of experiments in applied nuclear physics, as well as the provision of radioisotopes for production of radiopharmaceuticals. The reactor produces radioisotopes {sup 82}Br and {sup 41}Ar for special processes in industrial inspection and {sup 192}Ir and {sup 198}Au as sources of radiation used in brachytherapy, {sup 153}Sm for pain relief in patients with bone metastasis, and calibrated sources of {sup 133}Ba, {sup 137}Cs, {sup 57}Co, {sup 60}Co, {sup 241}Am and {sup 152}Eu used in medical clinics and hospitals practicing nuclear medicine and research laboratories. Services are offered in regular non-destructive testing by neutron radiography, neutron irradiation of silicon for phosphorous doping and other various irradiations with neutrons. The reactor is responsible for producing approximately 70% of radiopharmaceutical {sup 131}I used in Brazil, which saves about US$ 800 000 annually for the country. After more than 50 years of use, most of its equipment and systems have been modernized, and recently the reactor power was increased to 5 MW in order to enhance radioisotope production capability. However, the control room and nuclear instrumentation system used for reactor safety have operated more than 30 years and require constant maintenance. Many equipment and electronic components are obsolete, and replacements are not available in the market. The modernization of the nuclear safety and control instrumentation systems of IEA-R1 is being carried out with consideration for the internationally recognized criteria for safety and reliable reactor operations and the latest developments in nuclear electronic technology. The project for the new reactor instrumentation system specifies three wide range neutron monitoring

  13. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  14. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  15. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  16. Fast breeder reactor

    International Nuclear Information System (INIS)

    Ito, Shin-ichi; Maki, Koichi.

    1975-01-01

    Object: To conserve loaded fuel, aquire controllable surplus reaction degree, increase the breeding index, flatten output and improve sealing of neutrons by inserting a decelerating substance in a blanket section. Structure: A decelerating substance such as beryllium or beryllium oxide is inserted in a blanket section between an outer reactor core and reflector. With this arrangement, neutrons are decelerated to increase the low energy components, which are partly subjected to reflection by the outer reactor core to thereby reduce leakage of neutrons from the reactor core. (Kamimura, M.)

  17. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  18. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  19. Coolant cleaning facility for nuclear reactor

    International Nuclear Information System (INIS)

    Kuboniwa, Takao; Konno, Yasuhiro; Kumaya, Shin; Osumi, Katsumi.

    1982-01-01

    Purpose: To remove cation of radioactive cobalt 60 produced in a reactor water during the ordinary operation of the reactor and chlorine when sea water is leaked in a condenser as well as to suppress an increase in iron clad containing radioactive cobalt 60 in the reactor water when the reactor is stopped. Constitution: A large flow rate high temperature cleaning system having an electromagnetic filter capable of removing radioactive substance in a reactor water, a low temperature cleaning system having a desalting unit using ion exchanger resin, a turbidity meter for measuring the turbidity of the reactor water and a conductivity meter for measuring the conductivity are provided. Further, flow rate control means are provided in the high and low temperature cleaning systems. The flow rate control means of the high temperature cleaning system is controlled by a measured signal of the turbidity meter, and the flow rete control means of the low temperature cleaning system is controlled by the measured signal of the conductivity meter. (Aizawa, K.)

  20. Safety of 5 MW district heating reactor (DHR) and hydraulic dynamic pressure drive control rods

    International Nuclear Information System (INIS)

    Wu Yuanqiang; Wang Dazhong

    1991-11-01

    The principles and movement characteristic of the hydraulic dynamic pressure drive for control rods in 5 MW district heating reactor are described with stress on analysis of its effects on reactor safety features. The drive is different from electric-magnetic drive for PWR or hydraulic drive for BWR. The drive cylinder is driven by dynamic pressure. In the new drive system, the reactor coolant (water) used as actuating medium is pressed by pump, then injected into a step cylinder which is set in the reactor core. The cylinder will move step by step by controlling flow, then the cylinder drives the neutron absorber and controls nuclear reaction. The drive is characterized by simplicity in structure, high reliability, inherent safety, reduction in reactor height, economy, etc

  1. Control system design for a 100 MW(th) research reactor

    International Nuclear Information System (INIS)

    Seshadri, S.N.; Ranganath, M.V.; Singh, Manjit.

    1983-01-01

    This paper presents the computer simulation carried out to evolve a suitable analog controller for a 100 MW(th) heavy water moderated research reactor under construction at Trombay. The control action is based on the average neutron flux in the reactor core and the reactivity is controlled by adjusting the moderator level in the calandria. A dual control scheme controlling the inflow as well as the outflow was adopted in order to fully exploit the capabilities of control elements. For reasons of reliability, the system consists of three identical channels enabling safe operation even under one channel failure. Based on the simulation studies a suitable compensation network was incorporated to achieve satisfactory system response. (author)

  2. Study of power peak migration due to insertion of control bars in a PWR reactor

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Costa, Danilo Leite; Borges, Diogo da Silva; Lava, Deise Diana; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2014-01-01

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown

  3. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  4. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  5. Backfitting of research reactors

    International Nuclear Information System (INIS)

    Delrue, R.; Noesen, T.

    1985-01-01

    The backfitting of research reactors covers a variety of activities. 1. Instrumentation and control: Control systems have developed rapidly and many reactor operators wish to replace obsolete equipment by new systems. 2. Pool liners: Some pools are lined internally with ceramic tiles. These may become pervious with time necessitating replacement, e.g. by a new stainless steel liner. 3. Heat removal system: Deficiencies can occur in one or more of the cooling system components. Upgrading may require modifications of the system such as addition of primary loops, introduction of deactivation tanks, pump replacement. Recent experience in such work has shown that renewal, backfitting and upgrading of an existing reactor is economically attractive since the related costs and delivery times are substantially lower than those required to install a new research reactor

  6. Design and optimization of fuzzy-PID controller for the nuclear reactor power control

    International Nuclear Information System (INIS)

    Liu Cheng; Peng Jinfeng; Zhao Fuyu; Li Chong

    2009-01-01

    This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.

  7. Calculation of neutron activation of control rods of a nuclear reactor, using MCNP5; Calculo de activacion neutronica de barras de control de un reactor nuclear, utilizando MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Pena V, J.D.

    2016-07-01

    The control rods of a nuclear reactor are activated by neutron irradiation. The generated activity produces a dose around the rod which is irrelevant inside the reactor, but significant when the rod is withdrawn and placed in a storage pool, because this dose is a potential risk to the surrounding personnel. On the other hand, most of the activation occurs in the stainless steel components of the rod. The Monte Carlo model can reliably determine the activation produced in a stainless steel part exposed to a neutron flux in a reactor and the dose measurement around this part. This thesis presents the Monte Carlo models developed for the activation of the control rods of the TRIGA Mark III reactor of Instituto Nacional de Investigaciones Nucleares (ININ) when only standard fuel was available. Therefore, the validations of the Monte Carlo models are reliable. (Author)

  8. New digital control system for the operation of the Colombian research reactor IAN-R1

    International Nuclear Information System (INIS)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J.

    2015-09-01

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  9. Multilayer robust control for safety enhancement of reactor operations

    International Nuclear Information System (INIS)

    Edwards, R.M.; Lee, K.Y.; Ray, A.

    1991-01-01

    A novel concept of reactor power and temperature control has been recently reported in which a conventional output feedback controller is embedded within a state feedback setting. The embedded output feedback controller at the inner layer largely compensates for plant modeling uncertainties and external disturbances, and the outer layer generates an optimal control signal via feedback of the estimated plant states. A major advantage of this embedded architecture is the robustness of the control system relative to parametric and nonparametric uncertainties and thus the opportunity for designing fault-accommodating control algorithms to improve reactor operations and plant safety. The paper illustrates the architecture of the state-feedback-assisted classical (SFAC) control, which utilizes an embedded output feedback controller designed via classical techniques. It demonstrates the difference between the performance of conventional state feedback control and SFAC by examining the sensitivity of the dominant eigenvalues of the individual closed-loop systems

  10. Characterisation of reactor control rod drives. Specification 1-6. Reaktorstellstabantriebe. Typenblaetter 1-6

    Energy Technology Data Exchange (ETDEWEB)

    1975-03-01

    The committee 'Kernreaktorregelung' of VDI/VDE-Gesellschaft Mess- und Regelungstechnik has developed 6 specifications (Typenblaetter) of reactor control rod drives. The specifications are aimed at giving engineers in reactor control systems an outline concerning the function as well as some construction characteristics. (orig./LN).

  11. A master-follower type distributed scheme for reactor inlet temperature control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Dean, E.M.; Vilim, R.B.

    1995-01-01

    This paper describes the implementation of a computer-based controller for regulating reactor inlet temperature in a pool-type power plant. The elements of the control system are organized in a master-follower hierarchical architecture that takes advantage of existing in-plant hardware and software to minimize the need for plant modifications. Low level control algorithms are executed on existing local digital controllers (followers) with the high level algorithms executed on a new plant supervisory computer (master). A distributed computing strategy provides integration of the existing and additional computer platforms. The control system operates by having the master controller first estimate the secondary sodium flow needed to achieve a given reactor inlet temperature. The estimated flow is then used as a setpoint by the follower controller to regulate sodium flow using a motor-generator pump set. The control system has been implemented in a Hardware-In-the-Loop (FM) setup and qualified for operation in the Experimental Breader reactor 11 of Argonne National Laboratory. Some HIL results are provided

  12. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  13. Human factors engineering applied to Control Centre Design of a research nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Larissa P. de; Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R., E-mail: larissapfarias@ymail.com [Instituto de Engenharia Nuclear (DENN/SEESC/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab, de Usabilidade e Confiabilidade Humana; Monteiro, Beany G. [Universidade Federal do Rio Janeiro (UFRJ), Rio Janeiro, RJ (Brazil). Departamento de Desenho Industrial

    2017-07-01

    The Human Factors Engineering (HFE) program is an essential aspect for the design of nuclear installations. The overall aim of the HFE program is the improvement of the operational reliability and safety of plant operation. The HFE program main purpose is to ensure that human factor practices are incorporated into the plant design, emphasizing man-machine interface issues and design improvement of the nuclear reactor Control Centre. The Control Centre of nuclear reactor is a combination of control rooms, control suites and local control stations, which are functionally connected and located on the reactor site. The objective of this paper is to present a design approach for the Control Centre of a nuclear reactor used to produce radioisotopes and for nuclear research, including human factor issues. The design approach is based on participatory design principles, using human factor standards, ergonomic guidelines, and the participation of a multidisciplinary team during all design phases. Using the information gathered, an initial sketch 3D of the Control Centre was developed. (author)

  14. Human factors engineering applied to Control Centre Design of a research nuclear reactor

    International Nuclear Information System (INIS)

    Farias, Larissa P. de; Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R.; Monteiro, Beany G.

    2017-01-01

    The Human Factors Engineering (HFE) program is an essential aspect for the design of nuclear installations. The overall aim of the HFE program is the improvement of the operational reliability and safety of plant operation. The HFE program main purpose is to ensure that human factor practices are incorporated into the plant design, emphasizing man-machine interface issues and design improvement of the nuclear reactor Control Centre. The Control Centre of nuclear reactor is a combination of control rooms, control suites and local control stations, which are functionally connected and located on the reactor site. The objective of this paper is to present a design approach for the Control Centre of a nuclear reactor used to produce radioisotopes and for nuclear research, including human factor issues. The design approach is based on participatory design principles, using human factor standards, ergonomic guidelines, and the participation of a multidisciplinary team during all design phases. Using the information gathered, an initial sketch 3D of the Control Centre was developed. (author)

  15. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Berkan, R.C.

    1990-06-01

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs

  16. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO

    Energy Technology Data Exchange (ETDEWEB)

    Cajko, Frantisek; Secansky, Michal; Chrebet, Tomas; Zajac, Radoslav; Darilek, Petr [VUJE, a.s., Trnava (Slovakia)

    2016-09-15

    Experimental reactor ALLEGRO is a gas cooled fast reactor in the design stage. The current design of its reactivity control system is based on control rods filled with boron carbide as the absorber. Because of disadvantages connected to high boron enrichment a possibility of using other absorbent materials was explored to lower the boron enrichment and increase the worth of the control rods. The results of neutronic Monte-Carlo analyses in a computational supercell are presented in this paper. Three absorbent materials most suitable for a use in reactor ALLEGRO (B{sub 4}C, EuB{sub 6} and ReB{sub 2}) have been analysed also in a full core model. A possible benefit of a neutron trap concept is explored as well but materials with satisfactory neutronic properties proved to be not suitable for expected high temperatures in the reactor.

  17. Magnetic switch for reactor control rod

    International Nuclear Information System (INIS)

    Germer, J.H.

    1986-01-01

    This patent describes a control rod system for a nuclear reactor utilizing an electromagnetic grapple mechanism for holding and releasing a control rod, the improvement comprising a magnetic reed switch assembly having a Curie-point magnetic shunt and responsive to reactor coolant temperature for short circuiting the electromagnetic grapple mechanism causing release of the control rod when the coolant temperature reaches the Curie-point of the magnetic shunt. The magnetic reed switch assembly includes a: a permanent magnet, a pair of magnetic pole pieces located at and in contact with opposite ends of the permanent magnet, the Curie-point magnetic shunt being positioned adjacent the permanent magnet and in contact with the pair of magnetic pole pieces, and a reed switch positioned intermediate the pole pieces and provided with a pair of ferromagnetic reeds, a nonmagnetic enclosure around the reeds, a first of the reeds being secured at one end to a first of the pair of pole pieces, a second of the reeds having one end extending into and secured to a hollow member positioned in and extending through a second of the pair of pole pieces, the one end of the second of the reeds secured to a condector adapted to be connected to the electromagnetic grapple mechanism

  18. Application of 2DOF controller for reactor power control. Verification by numerical simulation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1996-09-01

    In this report the usefulness of the two degree of freedom (2DOF) control is discussed to improve the reference response characteristics and robustness for reactor power control system. The 2DOF controller consists of feedforward and feedback elements. The feedforward element was designed by model matching method and the feedback element by solving the mixed sensitivity problem of H ∞ control. The 2DOF control gives good performance in both reference response and robustness to disturbance and plant perturbation. The simulation of reactor power control was performed by digitizing the 2DOF controller with the digital control periods of 10[msec]. It is found that the control period of 10[msec] is enough not to make degradation of the control performance by digitizing. (author)

  19. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  20. Reactor instrumentation renewal of the TRIGA reactor Vienna, Austria

    International Nuclear Information System (INIS)

    Boeck, H.; Weiss, H.; Hood, W.E.; Hyde, W.K.

    1992-01-01

    The TRIGA Mark-II reactor at the Atominstitut in Vienna, Austria is replacing its twenty-four year old instrumentation system with a microprocessor based control system supplied by General Atomics. Ageing components, new governmental safety requirements and a need for state of the art instrumentation for training students has spurred the demand for new reactor instrumentation. In Austria a government appointed expert is assigned the responsibility of reviewing the proposed installation and verifying all safety aspects. After a positive review, final assembly and checkout of the instrumentation system may commence. The instrumentation system consists of three basic modules: the control system console, the data acquisition console and the NH-1000 wide range channel. Digital communications greatly reduce interwiring requirements. Hardwired safety channels are independent of computer control, thus, the instrumentation system in no way relies on any computer intervention for safety function. In addition, both the CSC and DAC computers are continuously monitored for proper operation via watchdog circuits which are capable of shutting down the reactor in the event of computer malfunction. Safety channels include two interlocked NMP-1000 multi-range linear channels for steady state mode, an NPP-1000 linear safety channel for pulse mode and a set of three independent fuel temperature monitoring channels. The microprocessor controlled wide range NM- 1000 digital neutron monitor (fission chamber based) functions as a startup/operational channel, and provides all power level related Interlocks. The Atominstitut TRIGA reactor is configured for four modes of operation: manual mode, automatic mode (servo control), pulsing mode and square wave mode. Control of the standard control rods is via stepping motor control rod drives, which offers the operator the choice of which control rods are operated by the servo system in automatic and square wave model. (author)

  1. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  2. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  3. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  4. Radiation protection at the RA Reactor in 1998, RA reactor annual report, Part -2

    International Nuclear Information System (INIS)

    Ninkovic, M.; Pavlovic, R.; Mandic, M.; Pavlovic, S.; Grsic, Z.

    1998-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Collecting and treatment of fluid effluents; and (4) radioactive wastes, decontamination and actions. Each of the category is described as a separate annex of this report [sr

  5. Integrity of pressurized water electronuclear reactor vessels. The case of French reactors

    International Nuclear Information System (INIS)

    2012-01-01

    This document aims at identifying elements related to design, manufacturing and control during operation of reactor vessels of the French electronuclear fleet, and more precisely as far as vessel ferrule is concerned. It briefly describes the typical design and elements of most of French PWR vessels with respect to the reactor type (900 MWe, 1300 MWe, 1450 MWe, EPR). It recalls some measures regarding design (for embrittlement assessment) and manufacturing processes (forging operations for shell fabrication, coatings). It discusses the different manufacturing defects which have been noticed (under the coatings, due to hydrogen, and intergranular loss of cohesion due to re-heating). It more particularly comments defects noticed on a Belgium power station reactor in Doel, defects due to hydrogen and some other defects noticed in the French reactor fleet. It presents the different types of control which are performed on vessel shells during operation

  6. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  7. Method of operating a nuclear reactor

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Schaefer, W.F.

    1978-01-01

    A method of controlling a nuclear power generting station in the event of a malfunction of particular operating components is described. Upon identification of a malfunction, preselected groups of control rods are fully inserted sequentially until a predetermined power level is approached. Additional control rods are then selectively inserted to quickly bring the reactor to a second given power level to be compatible with safe operation of the system with the malfunctioning component. At the time the thermal power output of the reactor is being reduced, the turbine is operated at a rate consistent with the output of the reactor. In the event of a malfunction, the power generating system is operated in a turbine following reactor mode, with the reactor power rapidly reduced, in a controlled manner, to a safe level compatible with the type of malfunction experienced

  8. Device for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Yutaro; Kawarazaki, Yuki; Sugiyama, Yu.

    1996-01-01

    A member comprising hydrogen occluding materials is introduced to a reactor incorporated with U-235 as fuels in order to moderate and breed fast neutrons and to control the reactor. Since the amount of light hydrogen or heavy hydrogen is substantially the same as that of metal, etc. of hydrogen occluding material, a moderating efficiency substantially equal with that of a moderator comprising H 2 O can be obtained. In addition, since the member acting as a moderator has an effect of multiplying neutrons, use of only natural uranium 0.72% as nuclear fuels causes chain reaction to provide a function as a nuclear reactor. Further, the hydrogen occluding material can be used also as a control rod for controlling the reactor. The hydrogen occluding material may be Ti, Zr, Pd, proton conductor, Ag, Pt, Rh or oxides thereof or alloys thereof. The member comprising hydrogen occluding materials is preferably coated with a material not permeating hydrogen. (N.H.)

  9. Reactor power control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Nakajima, Kazuo.

    1980-01-01

    Purpose: To enable power control by automatic control rod operation based on the calculated amounts of operation for the control rods determined depending on a power set value from reactor operators or on power variation amounts from other devices. Constitution: When an operator designates an automatic selection by way of a control rod operation panel, automatic signals are applied to a manual-automatic switching circuit and the mode judging circuit of a rod pattern control device. Then, mode signals such as for single operation, load setting, load following and the like produced by the operator are judged in a circuit, wherein a control rod pattern operation circuit calculates the designation for the control rods and the operation amounts for the control rods depending on the designated modes and automatic control is conducted for the control rods by a rod position control circuit, a rod drive control device and the like connected at a rod position monitor device. The reactor power is thus controlled automatically to reduce the operator's labours. The automatic power control can also be conducted in the same manner by the amount of power variations applied to the device from the external device. (Yoshino, Y.)

  10. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1989-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor. 1 fig., 1 tab

  11. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1990-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  12. Experimental evaluation of reactivity constraints for the closed-loop control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Lanning, D.D.; Ray, A.

    1984-01-01

    General principles for the closed-loop, digital control of reactor power have been identified, quantitatively enumerated, and experimentally demonstrated on the 5 MWt Research Reactor, MITR-II. The basic concept is to restrict the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally referred to as ''feasibility of control''. A series of ten experiments have been conducted over a period of eighteen months to demonstrate the efficacy of this property for the automatic control of reactor power. It has been shown that a controller which possesses this property is capable of both raising and lowering power in a safe, efficient manner while using a control rod of varying differential worth, that the reactivity constraints are a sufficient condition for the automatic control of reactor power, and that the use of a controller based on reactivity constraints can prevent overshoots either due to attempts to control a transient with a control rod of insufficient differential worth or due to failure to properly estimate when to commence rod insertion. Details of several of the more significant tests are presented together with a discussion of the rationale for the development of closed-loop control in large commercial power systems. Specific consideration is given to the motivation for designing a controller based on feasibility of control and the associated licensing issues

  13. Reactor modification, preparation and operation

    International Nuclear Information System (INIS)

    Weill, J.; Furet, J.; Baillet, J.; Donvez, G.; Duchene, J.; Gras, R.; Mercier, R.; Chenouard, J.; Leconte, J.

    1962-01-01

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system

  14. Reactor modification, preparation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Furet, J; Baillet, J; Donvez, G; Duchene, J; Gras, R; Mercier, R [Electronics Dept., Independent Section of Reactor Electronics, Saclay (France); Chenouard, J; Leconte, J [Dept. of Physical Chemistry, Stable Isotopes Section, Saclay (France)

    1962-03-01

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system.

  15. Reactor modification, preparation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Furet, J; Baillet, J; Donvez, G; Duchene, J; Gras, R; Mercier, R [Electronics Dept., Independent Section of Reactor Electronics, Saclay (France); Chenouard, J; Leconte, J [Dept. of Physical Chemistry, Stable Isotopes Section, Saclay (France)

    1962-03-15

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system.

  16. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  17. Nuclear reactor control device by vertical displacement of neutron absorber scram rods

    International Nuclear Information System (INIS)

    Defaucheux, Jacques; Pasqualini, Gilbert; Wiart, Albert; Martin, Jean.

    1981-01-01

    Nuclear reactor control system by vertical displacement of an assembly absorbing the neutrons inside a reactor core and drop of the absorbing assembly in maximum insertion position under the effect of its own weight for emergency shutdown. The absorbing assembly is secured to the bottom end of a vertical control rod, the displacement of which is actuated by an electro-magnetic device [fr

  18. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  19. Reactor handbook. 2. rev. ed.

    International Nuclear Information System (INIS)

    Lederer, B.J.; Wildberg, D.W.

    1992-01-01

    On the basis of the guidelines on expert knowledge, the book discusses the subjects of atomic physics, heat transfer, nuclear power plants, reactor materials, radiation protection, reactor safety, reactor instrumentation, and reactor operation, with special regard to nuclear power plants with LWR-type reactors. The book is intended for shift personnel, especially gang bosses, reactor operators, and control station operators: for this reason a practical and rather popular style has been chosen. However, the book will also be a manual for other operating personnel, personnel of producer companies, expert organisations, authorities, and students. It can be used as a textbook for staff training, a manual for the practice, and as accompanying book for teaching at nuclear engineering schools. (orig.) With 173 figs [de

  20. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  1. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  2. Calculation of neutron spectra in the reactor cell of the RA experimental reactor in Vinca

    International Nuclear Information System (INIS)

    Bosevski, T.; Altiparmakov, D.; Marinkovic, N.

    1974-01-01

    In the frame of neutron properties of RA experimental reactor the study of energy neutron spectra in the reactor cell are planned. Complex reactor cell geometry, nine cylindrical regions causes high space-energy variations of neutron flux with a significant gradient both in energy and space variables. Treatment of such a complex problem needs adequate methodology which ensures reliable results and control of accuracy. This paper describes in detail the method for calculating group constants based on lattice cell calculation for the need of calculation of reactor core parameters. In 26 group approximation for the energy region from 0 - 10.5 MeV, values of neutron spectra are obtained in 18 space points chosen to describe, with high accuracy, integral reactor cell parameters of primary importance for the reactor core calculation. Obtained space-energy distribution of neutron flux in the reactor cell is up to now unique in the study of neutron properties of Ra reactor [sr

  3. Expert system driven fuzzy control application to power reactors

    International Nuclear Information System (INIS)

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ''supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment

  4. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  5. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  6. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  7. Water feeding method upon reactor isolation

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Takahara, Kuniaki; Hamamura, Kenji; Arakawa, Masahiro.

    1990-01-01

    The present invention concerns a method of feeding water upon reactor isolation in a plural loop type reactor having a plurality of reactor cooling systems. Water can be injected to a plurality of pools even if the pressure between the pools is not balanced and the water level in the reactor cooling system is optimally controlled. That is, water can be injected in accordance with the amount required for each of the pools by setting the opening of a turbine inlet steam control valve to somewhat higher than the cooling system pressure of the highest pressure loop. Water feeding devices upon reactor isolation were required by the same number as that for the reactor cooling systems. Whereas since pumps and turbines are used in common without worsening the water injection controllability to each of the loops according to the method of this invention and, accordingly, the cost performance can be improved. Further, since the opening degree of the turbine inlet steam control valve is controlled while making the difference pressure constant between the turbine inlet pressure and the pump exhaust pressure, the amount of the turbine exhausted steams can be reduced and, further, water injection controllability of the flow rate control valve in the injection line is improved. (I.S.)

  8. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  9. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  10. Protection of semiconductor converters for controlled bypass reactors

    International Nuclear Information System (INIS)

    Dolgopolov, A. G.; Akhmetzhanov, N. G.; Karmanov, V. F.

    2010-01-01

    Possible ways of protecting thyristor converters in systems for magnetizing 110 - 500 kV controlled bypass reactors during switching and automatic reclosing are examined based on experience with the development of equipment, line tests, and mathematical modelling.

  11. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  12. Use of hafnium in control bars of nuclear reactors

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.

    2003-01-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  13. Mechanism design for the control rods conduction of TRIGA Mark III reactor in the NINR; Diseno del mecanismo para la conduccion de las barras de control del reactor Triga Mark III del ININ.

    Energy Technology Data Exchange (ETDEWEB)

    Franco C, A

    1997-12-01

    This work presents in the first chapter a general studio about the reactor and the importance of control rods in the reactor , the mechaniucal design attending to requisitions that are imposed for conditions of operation of the reactor are present in the second chapter, the narrow relation that exists with the new control console and the mechanism is developed in the thired chapter, this relation from a point of view of an assembly of components is presents in fourth chapter, finally reaches and perspectives of mechanism forming part of project of the automation of reactor TRIGA MARK III, are present in the fifth chapter. (Author).

  14. Materials accountancy and control for power reactors and associated spent-fuel storage

    International Nuclear Information System (INIS)

    Ek, P.

    1982-01-01

    Materials accountancy and control at power reactors is an integrated part of the Swedish National System of Accuntancy and Control of Nuclear Materials. The nuclear material is stratified on the basis of measurement accuracy. The physical form of the material makes item accountability applicable on the rod level. Consequently, fuel assembly dismantling and fuel rod exchanges present special problems. Both physical inventory verification and the shipment of irradiated fuel are extensive operations involving inspections and controls on inventory records and fuel elements. A method for nondestructive measurement of irradiated fuel is under development in cooperation with the IAEA. The method has been tested at a reactor station with encouraging results. An away from reactor storage facility for spent fuel is under construction in Sweden. Optical verificationof each fuel element at all times is one of the basic facility control requirements. The receiving/shipping area of the storage facility is being designed and equipped to make NDA-measurements feasible. The overlal cooperation with the IAEA in matters related to safeguarding power reactors is proceeding smoothly. There are, however, some differences of opinion, for example, as regards material stratification (Key Measurement Points) and verification procedures

  15. Application study of EPICS-based redundant method for reactor control system

    International Nuclear Information System (INIS)

    Zhang Ning; Han Lifeng; Chen Yongzhong; Guo Bing; Yin Congcong

    2013-01-01

    In the reactor control system prototype development of TMSR (Thorium Molten Salt Reactor system, CAS) project, EPICS (Experimental Physics and Industrial Control System) is adopted as Instrument and Control software platform. For the aim of IOC (Input/Output Controller) redundancy and data synchronization of the system, the EPICS-based RMT (Redundancy Monitor Task ) software package and its data-synchronization component CCE (Continuous Control Executive) were introduced. By the development of related IOC driver, redundant switch-over control of server IOC was implemented. The method of redundancy implementation using RMT in server and redundancy performance test for power control system are discussed in this paper. (authors)

  16. Plant with nuclear reactor, in particular a thermal reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The reactor core of the plant has tubular and vertically movable control rods moved by a flow of coolant under pressure. Each control rod surrounds a similarly tubular guide rod, stationary relative to the reactor core, leaving an annular slot-like space therebetween. The inside of each guide rod forms a first pressure chamber supplied with the coolant under pressure. The upper end of each control rod is closed and has a vertical shaft that extends into the inside of the guide rod and forms therewith a second annular slot-like space. At least one first restriction is provided in the first annular slot-like space and at least one second restriction is provided in the second annular slot-like space. A second pressure chamber is formed between both restrictions. The coolant supplied to the guide rod thus returns to the pressure vessel surrounding the reactor core through the second annular slot-like space, the second pressure chamber and the first annular slot-like space. Controlling means are provided, with which pressure thrusts can be generated if necessary in the coolant within the first pressure chamber. (author) 5 refs., 10 figs

  17. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  18. Preparing the construction of a school reactor

    International Nuclear Information System (INIS)

    Matejka, K.

    1977-01-01

    The possibilities are discussed of teaching and training nuclear reactor operation and control, teaching experimental reactor physics and investigating reactor lattice parameters using a training reactor to be installed at the Faculty of Nuclear Science and Physical Engineering in Prague. Requirements are indicated for the reactor's technical design and the Faculty's possibilities to contribute to its construction. (J.B.)

  19. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  20. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)