WorldWideScience

Sample records for controlled fusion machines

  1. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    Directory of Open Access Journals (Sweden)

    Woong-Kirl Choi

    2018-01-01

    Full Text Available Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

  2. Magnetic Induction Machines Embedded in Fusion-Bonded Silicon

    National Research Council Canada - National Science Library

    Arnold, David P; Cros, Florent; Zana, Iulica; Allen, Mark G; Das, Sauparna; Lang, Jeffrey H

    2004-01-01

    ...) within etched and fusion-bonded silicon to form the machine structure. The induction machines were characterized in motoring mode using tethered rotors, and exhibited a maximum measured torque...

  3. Man-machine cooperation in remote handling for fusion plants

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-01-01

    Man-machine cooperation in remote handling for fusion plants comprises cooperation for design of equipment and planning of procedures using a CAD system, and cooperation during operation of the equipment with computer aided telemanipulation systems (CAT). This concept is presently being implemented for support of slave positioning, camera tracking, and camera alignment in the KfK manipulator test facility. The pilot implementation will be used to test various man-machine interface layouts, and to establish a set of basic buildings blocks for future implementations of advanced remote handling control systems. (author)

  4. Fusion instrumentation and control: a development strategy

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Greninger, R.C.; Longhurst, G.R.; Madden, P.

    1981-01-01

    We have examined requirements for a fusion instrumentation and control development program to determine where emphasis is needed. The complex, fast, and closely coupled system dynamics of fusion reactors reveal a need for a rigorous approach to the development of instrumentation and control systems. A framework for such a development program should concentrate on three principal need areas: the operator-machine interface, the data and control system architecture, and fusion compatible instruments and sensors. System dynamics characterization of the whole fusion reactor system is also needed to facilitate the implementation process in each of these areas. Finally, the future need to make the instrumentation and control system compatible with the requirements of a commercial plant is met by applying transition technology. These needs form the basis for the program tasks suggested

  5. Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study

    Directory of Open Access Journals (Sweden)

    I. G. Damousis

    2012-01-01

    Full Text Available We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs, Artificial Neural Networks (ANNs, Fuzzy Expert Systems (FESs, and Support Vector Machines (SVMs. The fusion of biometrics leads to security systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the literature.

  6. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  7. Thermonuclear controlled fusion: international cooperation

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2001-01-01

    This report summarizes the current worldwide status of research in the field of thermonuclear controlled fusion as well as the international research programme planed for the next decades. The two main projects will be the ITER facility (International Thermonuclear Experimental Reactor) that should produce 10 times more energy than the energy injected, and the IFMIF (International Fusion Materials Irradiation Facility) designed to study the reactions of materials under intense neutron fluxes. The future of the pioneering JET facility (Joint European Torus) is also discussed. The engagement of the various countries (USA, Japan, Germany, Russian Federation and Canada) and international organisations (EURATOM and IEA) in terms of investment and research is described. Switzerland is involved in this program through an agreement with EURATOM and is mainly dedicated to experimental studies with the TCV machine in Lausanne and numerical studies of plasma configurations. It will participate to the development of the microwave plasma heating system for the ITER machine

  8. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  9. Controlled nuclear fusion, a challenging task with a big payoff

    International Nuclear Information System (INIS)

    Noterdaeme, Jean-Marie

    2003-01-01

    Controlled thermonuclear fusion carries the promise of providing the world with a new source of energy, the same energy that powers the stars. Research in this area has progressed steadily for several decades now, and is ready to move into a new phase. The probability is high that a new international experimental machine (ITER) which will prove the scientific and technological feasibility of fusion energy, will be built. This paper introduces nuclear fusion for people familiar with the fission process. It starts from the basic principles common to fusion and fission. It moves on to point out the differences, explains the reasons for those differences and the consequences. Controlled thermonuclear fusion can be obtained in several ways, which have led to different research lines. One line, on which this talk focuses, is by confining the reacting particles with magnetic fields. Another, which is the subject of a different talk, relies on the inertia of the particles to create the conditions necessary for fusion. The progress of the magnetic confinement research is shown, with examples of major hurdles, which have occurred and have been overcome. Recent results, which make us optimistic that the next machine can prove the feasibility of fusion energy, are highlighted. The talk also addresses the challenges that remain before us, and suggests that the promise of fusion energy opens up new perspectives and opportunities for the development and the use of fission energy. (author)

  10. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  11. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  12. Particle and impurity control in toroidal fusion devices

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1986-01-01

    A review of working particle and impurity control techniques used in and proposed for magnetic fusion devices is presented. The requirements of both present-day machines and envisaged fusion reactors are considered. The various techniques which have been proposed are characterized by whether they affect sources, sinks, or fluxes; in many cases a particular method or device can appear in more than one category. Examples are drawn from published results. The solutions proposed for the large devices which will be operating during the next 5 years are discussed

  13. Innovative safety ideas for fusion experimental machines

    International Nuclear Information System (INIS)

    Brereton, S.J.; Gouge, M.; Piet, S.J.; Merrill, B.J.; Holland, D.F.; Sze, D.K.

    1990-01-01

    Throughout the early stages of design of fusion experimental devices, such as ITER, safety experts have worked with designers to incorporate safety features into the design. Recent efforts have focused on passive safety features. Although designs of near-term fusion machines may appear consistent with expected regulatory requirements, the safety characteristics can potentially be more attractive. Here, a variety of suggestions that appear promising in terms of improving safety are given. These include new concepts, innovative technologies, further support of past concepts, and possible modification to operating scenarios. Some technical discussion on the feasibility of the proposals is provided. The ideas are generally conceptual at this stage and require further assessment and development work. However, each has the potential for enhancing the safety of experimental devices. 33 refs., 6 figs., 9 tabs

  14. FUSION DECISION FOR A BIMODAL BIOMETRIC VERIFICATION SYSTEM USING SUPPORT VECTOR MACHINE AND ITS VARIATIONS

    Directory of Open Access Journals (Sweden)

    A. Teoh

    2017-12-01

    Full Text Available This paw presents fusion detection technique comparisons based on support vector machine and its variations for a bimodal biometric verification system that makes use of face images and speech utterances. The system is essentially constructed by a face expert, a speech expert and a fusion decision module. Each individual expert has been optimized to operate in automatic mode and designed for security access application. Fusion decision schemes considered are linear, weighted Support Vector Machine (SVM and linear SVM with quadratic transformation. The conditions tested include the balanced and unbalanced conditions between the two experts in order to obtain the optimum fusion module from  these techniques best suited to the target application.

  15. Remote control of a fusion facility

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: schissel@fusion.gat.com; Abla, G.; Humphreys, D.A.; Penaflor, B.G.; Sammuli, B.S.; Walker, M.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaboration between experimental sites and laboratories worldwide. This scientific collaboration activity is strong at existing experimental sites, is a major element of machines just coming on line, and is also a thrust of experiments that will come on line in the next decade. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. This paper examines the challenges associated with remote experimental device control and proposes a solution based on a semantic approach that defines a Gatekeeper software system that will be the only channel of interaction for incoming requests to the experimental site. The role of the Gatekeeper is to validate the identification and access privilege of the requestor and to ensure the validity of the proposed request. The Gatekeeper will be a modular system, transparent to end-users, and allow a high volume of activity.

  16. Remote control of a fusion facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Humphreys, D.A.; Penaflor, B.G.; Sammuli, B.S.; Walker, M.L.

    2009-01-01

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaboration between experimental sites and laboratories worldwide. This scientific collaboration activity is strong at existing experimental sites, is a major element of machines just coming on line, and is also a thrust of experiments that will come on line in the next decade. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. This paper examines the challenges associated with remote experimental device control and proposes a solution based on a semantic approach that defines a Gatekeeper software system that will be the only channel of interaction for incoming requests to the experimental site. The role of the Gatekeeper is to validate the identification and access privilege of the requestor and to ensure the validity of the proposed request. The Gatekeeper will be a modular system, transparent to end-users, and allow a high volume of activity.

  17. 50 years of controlled nuclear fusion in the European Union

    International Nuclear Information System (INIS)

    Vandenplas, P.; Wolf, G.H.

    2008-01-01

    The author presents the history of fusion energy since its official birth in 1955 during the first conference on the peaceful uses of atomic energy to the expectations put on the ITER project. Nuclear fusion became a major component of the newly created European Atomic Energy Community (EURATOM). The milestones that were: magnetic mirror machines, pinch versions, stellarators and tokamaks are examined. The construction of the first fusion machines were decisive and gave fusion energy enough momentum to overcome greater and greater technological difficulties. At the scale of the world, major machines that were built like TFTR, Princeton (1974), JET, Culham (1977) or JT60, Tokai (1977), appear like a scientific and necessary strategy towards the demonstration reactor. The ITER project is detailed

  18. Some introductory notes on the problem of nuclear energy by controlled fusion reactions

    International Nuclear Information System (INIS)

    Pedretti, E.

    1988-01-01

    Written for scientists and technologist interested in, but unfamiliar with nuclear energy by controlled fusion reactions, this ''sui generis'' review paper attempts to provide the reader, as shortly as possible, with a general idea of the main issues at stake in nuclear fusion research. With the purpose of keeping this paper within a reasonable length, the various subjects are only outlined in their essence, basic features, underlying principles, etc., without entering into details, which are left to the quoted literature. Due to the particular readership of this journal, vacuum problems and/or aspects of fusion research anyhow related with vacuum science and technology are evidentiated. After reviewing fusion reactions' cross sections, fusion by accelerators and muon catalyzed fusion are described, followed by mention of Lawson's criteria and of plasma confinement features. Then, inertial confinement fusion is dealt with, also including one example of laser system (Nova), one of accelerator facility (PBFA-II) and some guesses on the classified Centurion-Halite program. Magnetic confinement fusion research is also reviewed, in particulary reporting one example of linear machine (MFTF-B), two examples of toroidal machines other than Tokamak (ATF and Eta-Beta-II) and various examples of Tokamaks, including PBX and PBX-M; TFTR, JET, JT-60, T-15 and Tore-Supra (large machines); Alcator A, FT, Alcator C/MTX, Alcator C-Mod and T-14 (compact high field machines). Tokamaks under design for ignition experiments (Ignitor, CIT, Ignitex and NET) are also illustrated. Thermal conversion of fusion power and direct generation of electricity are mentioned; conceptual design of fusion power plants are considered and illustrated by four examples (STARFIRE, WILDCAT, MARS and CASCADE). The D 3 He fuel cycle is discussed as an alternative more acceptable than Deuterium-Tritium, and thw Candor proposal is reported. After recalling past experience of the fission power development, some

  19. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  20. Critical safety issues in the design of fusion machines

    International Nuclear Information System (INIS)

    Kramer, W.

    1991-01-01

    In the course of developing fusion machines both general safety considerations and safety assessments for the various components and systems of actual machines increase in number and become more and more coherent. This is particularly true for the NET/ITER projects where safety analysis plays an increasing role for the design of the machine. Since in a D/T tokamak the radiological hazards will be dominant basic radiological safety objectives are discussed. Critical safety issues as identified in particular by the NET/ITER community are reviewed. Subsequently, issues of major concern are considered both for normal operation and for conceivable accidents. The following accidents are considered to be crucial: Loss of cooling in plasma facing components, loss of vacuum, tritium system failure, and magnet system failure. To mitigate accident consequences a confinement concept based on passive features and multiple barriers including detritiation and filtering has to be applied. The reactor building as final barrier needs special attention to cope with both internal and external hazards. (orig.)

  1. Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Wörgötter, Florentin

    2007-01-01

    as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional...

  2. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  3. Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less effective. More specifically, they cannot cope with various types of Android malware and have limitation in detection by utilizing a single classification algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this approach, we first extract eight types of features from static analysis on Android apps and build two kinds of feature sets after feature selection. Then, a parallel machine learning detection model is developed for speeding up the process of classification. Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can effectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison with real-world Android apps. The experimental results demonstrate that Mlifdect is capable of achieving higher detection accuracy as well as a remarkable run-time efficiency compared to the existing malware detection solutions.

  4. Quality assurance (QA) for operations of fusion machines as applied to the tandem mirror experiment upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Chargin, A.K.; Damm, C.C.; Turner, W.C.

    1983-01-01

    Even the best QA plan and its successful execution during construction of a typical fusion machine will produce hardware that is inoperative for some fraction of time. Operating a machine with its hardware out of tolerance, with respect to the specifications, does produce data which is the goal of the experiment. However, a majority of such data are difficult to interpret and may not contribute to understanding the behavior of the experiment. In addition, few fusion machines just operate. The majority of the machines are in the process of being rebuilt and/or added to as they operate. These modifications can keep an otherwise operational machine from running. To insure quality in operation of TMX-U, the authors employ a series of QA procedures. They start with technical milestones, schedules, and budgets that are all negotiated with DOE. Within that framework they implement a total management scheme which, in addition to normal schedule and budget controls, includes: detailed experimental run plans, definition of machine configuration required to accomplish the run plan, subsystem work-ups, instrument calibration, verification of subsystem operation, and repetition of standard physics plasma parameters. All of these activities must be completed before taking data for the experimental run plan. If a subsystem is found out of tolerance, a decision must be made either to delay operation and fix the problem or to continue on a contingency-run plan which should still produce the data relevant to the project milestones. In this presentation those QA procedures for TMX-U operations that are applied to minimize the cost and time required to achieve the technical objectives are discussed

  5. The European programme for controlled nuclear fusion

    International Nuclear Information System (INIS)

    This illustrated document is intended for information only and should not be used as a technical reference. The nuclear fusion reactors are presented with the two approaches: magnetic confinement and inertial confinement; are described: the place of fusion in the world energy scene and its importance for Europe, how research is at present organized, and the European programme with this next stage: the JET (Joint European Torus), the largest tokamak machine in Europe

  6. Synchronization in a PLC/VAX-based control and data-acquisition system of a nuclear-fusion experiment

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Hemming, O.N.; Luchetta, A.; Manduchi, G.; Vitturi, S.

    1990-01-01

    This paper describes the concept and implementation details of the synchronization mechanisms used in the control and data-acquisition system of the RFX (Reversed-Field Experiment) nuclear-fusion experimental device, at present under construction in Padova, Italy, within the framework of the co-ordinated nuclear-fusion research programme of the European Communities. The system employs industrial PLCs for the 'slow' control and monitoring functions, and a VAX-based CAMAC for the 'fast' functions of trigger-signal generation and data acquisition during the experiment pulses. All subsystems communicate via Ethernet, using compatible software protocols. The operational sequence of the complete system is governed by a single state machine implemented on a PLC-based supervisor system. Equivalent 'slave' state machines are implemented on all other subsystems (PLC- and VAX-based). These state machines are synchronized by means of the exchange of messages via Ethernet. This paper deals in detail with the following components which are involved in system synchronization: The Message Exchange System which implements the system-wide exchange of short messages; the Scheduler programs which implement the state machine on the various computing nodes, and which make use of the Message Exchange System. (orig.)

  7. Tritium control and capture in salt-cooled fission and fusion reactors: Status, challenges, and path forward

    International Nuclear Information System (INIS)

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; Whyte, Dennis G.; Scarlat, Raluca

    2017-01-01

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The Fluoride-salt-cooled High-temperature Reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the base-line salts contain lithium where isotopically separated "7Li is proposed to minimize tritium production from neutron interactions with the salt. The Chinese Academy of Science plans to start operation of a 2-MWt molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in "6Li is proposed to maximize tritium generation the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700 °C liquid salt systems. We describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data is the primary constraint for designing efficient cost-effective methods of tritium control.

  8. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  9. Dreaming Machines : On multimodal fusion and information retrieval using neural-symbolic cognitive agents

    NARCIS (Netherlands)

    Penning, H.L.H. de; Avila Garcez, A. d; Meyer, J.J.C.

    2013-01-01

    Deep Boltzmann Machines (DBM) have been used as a computational cognitive model in various AI-related research and applications, notably in computational vision and multimodal fusion. Being regarded as a biological plausible model of the human brain, the DBM is also becoming a popular instrument to

  10. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  11. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  12. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-01-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load

  13. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    1966-01-01

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  14. A Perspective on Remote Handling Operations and Human Machine Interface for Remote Handling in Fusion

    International Nuclear Information System (INIS)

    Haist, B.; Hamilton, D.; Sanders, St.

    2006-01-01

    A large-scale fusion device presents many challenges to the remote handling operations team. This paper is based on unique operational experience at JET and gives a perspective on remote handling task development, logistics and resource management, as well as command, control and human-machine interface systems. Remote operations require an accurate perception of a dynamic environment, ideally providing the operators with the same unrestricted knowledge of the task scene as would be available if they were actually at the remote work location. Traditional camera based systems suffer from a limited number of viewpoints and also degrade quickly when exposed to high radiation. Virtual Reality and Augmented Reality software offer great assistance. The remote handling system required to maintain a tokamak requires a large number of different and complex pieces of equipment coordinating to perform a large array of tasks. The demands on the operator's skill in performing the tasks can escalate to a point where the efficiency and safety of operations are compromised. An operations guidance system designed to facilitate the planning, development, validation and execution of remote handling procedures is essential. Automatic planning of motion trajectories of remote handling equipment and the remote transfer of heavy loads will be routine and need to be reliable. This paper discusses the solutions developed at JET in these areas and also the trends in management and presentation of operational data as well as command, control and HMI technology development offering the potential to greatly assist remote handling in future fusion machines. (author)

  15. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Artaserse, G.; Cenedese, A.; Piccolo, F.; Sartori, F.

    2007-01-01

    The magnetic vacuum topology reconstruction using magnetic measurements is essential in controlling and understanding plasmas produced in magnetic confinement fusion devices. In a wide range of cases, the instruments used to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently, a new approach has been used for developing new magnetic software called FELIX. The adopted solution in the design allows the use of the software not only at JET but also at other machines. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. This results in a large portability and in particular it allows using the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution. Thanks to this feature, in order to improve the plasma magnetic reconstruction in real-time, a set of different models has been run using FELIX. FELIX is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology

  16. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  17. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  18. Solar PV Power Forecasting Using Extreme Learning Machine and Information Fusion

    OpenAIRE

    Le Cadre , Hélène; Aravena , Ignacio; Papavasiliou , Anthony

    2015-01-01

    International audience; We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the ag-gregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d'Azur, to evaluate ...

  19. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  20. Remote leak localization approach for fusion machines

    International Nuclear Information System (INIS)

    Durocher, Au.; Bruno, V.; Chantant, M.; Gargiulo, L.; Gherman, T.; Hatchressian, J.-C.; Houry, M.; Le, R.; Mouyon, D.

    2013-01-01

    Highlights: ► Description of leaks issue. ► Selection of leak localization concepts. ► Qualification of leak localization concepts. -- Abstract: Fusion machine operation requires high-vacuum conditions and does not tolerate water or gas leak in the vacuum vessels, even if they are micrometric. Tore Supra, as a fully actively cooled tokamak, has got a large leak management experience; 34 water leaks occurred since the beginning of its operation in 1988. To handle this issue, after preliminary machine protection phases, the current process for leak localization is based on water or helium pressurization network by network. It generally allows the identification of a set of components where the leakage element is located. However, the unique background of CEA-IRFM laboratory points needs of accuracy and promptness out in the leak localization process. Moreover, in-vessel interventions have to be performed trying to minimize time and risks for the persons. They are linked to access conditions, radioactivity, tracer gas high pressure and vessel conditioning. Remote operation will be one of the ways to improve these points on future fusion machines. In this case, leak sensors would have to be light weight devices in order to be integrated on a carrier or to be located outside with a sniffing process set up. A leak localization program is on-going at CEA-IRFM Laboratory with the first goal of identifying and characterizing relevant concepts to localize helium or water leaks on ITER. In the same time, CEA has developed robotic carrier for effective in-vessel intervention in a hostile environment. Three major tests campaigns with the goal to identify leak sensors have been achieved on several CEA test-beds since 2010. Very promising results have been obtained: relevant scenario of leak localization performed, concepts tested in a high volume test-bed called TITAN, and, in several conditions of pressure and temperature (ultrahigh vacuum to atmospheric pressure and 20

  1. Remote leak localization approach for fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, Au., E-mail: aurelien.durocher@cea.fr [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Bruno, V.; Chantant, M.; Gargiulo, L. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Gherman, T. [Floralis UJF Filiale, F-38610 Gières (France); Hatchressian, J.-C.; Houry, M.; Le, R.; Mouyon, D. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► Description of leaks issue. ► Selection of leak localization concepts. ► Qualification of leak localization concepts. -- Abstract: Fusion machine operation requires high-vacuum conditions and does not tolerate water or gas leak in the vacuum vessels, even if they are micrometric. Tore Supra, as a fully actively cooled tokamak, has got a large leak management experience; 34 water leaks occurred since the beginning of its operation in 1988. To handle this issue, after preliminary machine protection phases, the current process for leak localization is based on water or helium pressurization network by network. It generally allows the identification of a set of components where the leakage element is located. However, the unique background of CEA-IRFM laboratory points needs of accuracy and promptness out in the leak localization process. Moreover, in-vessel interventions have to be performed trying to minimize time and risks for the persons. They are linked to access conditions, radioactivity, tracer gas high pressure and vessel conditioning. Remote operation will be one of the ways to improve these points on future fusion machines. In this case, leak sensors would have to be light weight devices in order to be integrated on a carrier or to be located outside with a sniffing process set up. A leak localization program is on-going at CEA-IRFM Laboratory with the first goal of identifying and characterizing relevant concepts to localize helium or water leaks on ITER. In the same time, CEA has developed robotic carrier for effective in-vessel intervention in a hostile environment. Three major tests campaigns with the goal to identify leak sensors have been achieved on several CEA test-beds since 2010. Very promising results have been obtained: relevant scenario of leak localization performed, concepts tested in a high volume test-bed called TITAN, and, in several conditions of pressure and temperature (ultrahigh vacuum to atmospheric pressure and 20

  2. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  3. Survey of mirror machine reactors

    International Nuclear Information System (INIS)

    Condit, W.C.

    1978-01-01

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10 14 /cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject

  4. Modular control of fusion power heating applications

    International Nuclear Information System (INIS)

    Demers, D. R.

    2012-01-01

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment

  5. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  6. Advanced real-time control systems for magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Fernandes, H.; Rodrigues, A.P.; Carvalho, B.B.; Neto, A.; Varandas, C.A.F.

    2008-01-01

    Real-time control of magnetically confined plasmas is a critical issue for the safety, operation and high performance scientific exploitation of the experimental devices on regimes beyond the current operation frontiers. The number of parameters and the data volumes used for the plasma properties identification scale normally not only with the machine size but also with the technology improvements, leading to a great complexity of the plant system. A strong computational power and fast communication infrastructure are needed to handle in real-time this information, allowing just-in-time decisions to achieve the fusion critical plasma conditions. These advanced control systems require a tiered infrastructure including the hardware layer, the signal-processing middleware, real-time timing and data transport, the real-time operating system tools and drivers, the framework for code development, simulation, deployment and experiment parameterization and the human real-time plasma condition monitoring and management. This approach is being implemented at CFN by offering a vertical solution for the forthcoming challenges, including ITER, the first experimental fusion reactor. A given set of tools and systems are described on this paper, namely: (i) an ATCA based hardware multiple-input-multiple-output (MIMO) platform, PCI and PCIe acquisition and control modules; (ii) FPGA and DSP parallelized signal processing algorithms; (iii) a signal data and event distribution system over a 2.5/10Gb optical network with sub-microsecond latencies; (iv) RTAI and Linux drivers; and (v) the FireSignal, FusionTalk, SDAS FireCalc application tools. (author)

  7. Two computational approaches for Monte Carlo based shutdown dose rate calculation with applications to the JET fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Batistoni, P.; Migliori, S. [Associazione EURATOM ENEA sulla Fusione, Frascati (Roma) (Italy); Chen, Y.; Fischer, U.; Pereslavtsev, P. [Association FZK-EURATOM Forschungszentrum Karlsruhe (Germany); Loughlin, M. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX (United Kingdom); Secco, A. [Nice Srl Via Serra 33 Camerano Casasco AT (Italy)

    2003-07-01

    In deuterium-deuterium (D-D) and deuterium-tritium (D-T) fusion plasmas neutrons are produced causing activation of JET machine components. For safe operation and maintenance it is important to be able to predict the induced activation and the resulting shut down dose rates. This requires a suitable system of codes which is capable of simulating both the neutron induced material activation during operation and the decay gamma radiation transport after shut-down in the proper 3-D geometry. Two methodologies to calculate the dose rate in fusion devices have been developed recently and applied to fusion machines, both using the MCNP Monte Carlo code. FZK has developed a more classical approach, the rigorous 2-step (R2S) system in which MCNP is coupled to the FISPACT inventory code with an automated routing. ENEA, in collaboration with the ITER Team, has developed an alternative approach, the direct 1 step method (D1S). Neutron and decay gamma transport are handled in one single MCNP run, using an ad hoc cross section library. The intention was to tightly couple the neutron induced production of a radio-isotope and the emission of its decay gammas for an accurate spatial distribution and a reliable calculated statistical error. The two methods have been used by the two Associations to calculate the dose rate in five positions of JET machine, two inside the vacuum chamber and three outside, at cooling times between 1 second and 1 year after shutdown. The same MCNP model and irradiation conditions have been assumed. The exercise has been proposed and financed in the frame of the Fusion Technological Program of the JET machine. The scope is to supply the designers with the most reliable tool and data to calculate the dose rate on fusion machines. Results showed that there is a good agreement: the differences range between 5-35%. The next step to be considered in 2003 will be an exercise in which the comparison will be done with dose-rate data from JET taken during and

  8. Two computational approaches for Monte Carlo based shutdown dose rate calculation with applications to the JET fusion machine

    International Nuclear Information System (INIS)

    Petrizzi, L.; Batistoni, P.; Migliori, S.; Chen, Y.; Fischer, U.; Pereslavtsev, P.; Loughlin, M.; Secco, A.

    2003-01-01

    In deuterium-deuterium (D-D) and deuterium-tritium (D-T) fusion plasmas neutrons are produced causing activation of JET machine components. For safe operation and maintenance it is important to be able to predict the induced activation and the resulting shut down dose rates. This requires a suitable system of codes which is capable of simulating both the neutron induced material activation during operation and the decay gamma radiation transport after shut-down in the proper 3-D geometry. Two methodologies to calculate the dose rate in fusion devices have been developed recently and applied to fusion machines, both using the MCNP Monte Carlo code. FZK has developed a more classical approach, the rigorous 2-step (R2S) system in which MCNP is coupled to the FISPACT inventory code with an automated routing. ENEA, in collaboration with the ITER Team, has developed an alternative approach, the direct 1 step method (D1S). Neutron and decay gamma transport are handled in one single MCNP run, using an ad hoc cross section library. The intention was to tightly couple the neutron induced production of a radio-isotope and the emission of its decay gammas for an accurate spatial distribution and a reliable calculated statistical error. The two methods have been used by the two Associations to calculate the dose rate in five positions of JET machine, two inside the vacuum chamber and three outside, at cooling times between 1 second and 1 year after shutdown. The same MCNP model and irradiation conditions have been assumed. The exercise has been proposed and financed in the frame of the Fusion Technological Program of the JET machine. The scope is to supply the designers with the most reliable tool and data to calculate the dose rate on fusion machines. Results showed that there is a good agreement: the differences range between 5-35%. The next step to be considered in 2003 will be an exercise in which the comparison will be done with dose-rate data from JET taken during and

  9. Solar PV power forecasting using extreme machine learning and experts advice fusion

    OpenAIRE

    Le Cadre, Hélène; Aravena Solís, Ignacio Andrés; Papavasiliou, Anthony; European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

    2015-01-01

    We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the aggregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d’Azur, to evaluate the algorithm performance...

  10. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  11. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  12. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  13. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)

    2010-12-15

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)

  14. Distributed intelligence in a LAN architecture increases the flexibility in control systems for fusion experiments

    International Nuclear Information System (INIS)

    Tenten, W.; Fuss, L.; Hoge, W.

    1987-01-01

    The control system for the TEXTOR Neutral Beam Injectors is designed implementing approved concepts and techniques. A powerful super mini computer serves as a central node between the operators console and the experimental process. Devices form a console for suitable man machine interaction. The link to the process is mainly based on communication with a network of industry standard programmable controllers. A distinction is made between the functionally dedicated and in most cases locally distributed logic controllers, a central controller and the computerized console level. Introduction of such networks in control system for fusion experiments results in a number of advantages

  15. Cybernics fusion of human, machine and information systems

    CERN Document Server

    Suzuki, Kenji; Hasegawa, Yasuhisa

    2014-01-01

    Cybernics plays a significant role in coping with an aging society using state-of-the-art technologies from engineering, clinical medicine and humanities. This new interdisciplinary field studies technologies that enhance, strengthen, and support physical and cognitive functions of human beings, based on the fusion of human, machine, and information systems. The design of a seamless interface for interaction between the interior and exterior of the human body is described in this book from diverse aspects such as the physical, neurophysiological, and cognitive levels. It is the first book to cover the many aspects of cybernics, allowing readers to understand the life support robotics technology for the elderly, including remote, in-home, hospital, institutional, community medical welfare, and vital-sensing systems. Serving as a valuable resource, this volume will interest not only graduate students, scientists, and engineers but also newcomers to the field of cybernics.

  16. Real-time control of fusion reactors

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Varandas, C.A.F.

    2010-01-01

    The next generation fusion experiments, e.g. ITER, will be highly complex and raise new challenges in the field of control and data acquisition systems. The more advanced operation scenarios have to be capable of sustaining long pulse steady-state plasma and to suppress plasma instabilities almost completely. Such scenarios will heavily rely on Multiple-Input-Multiple-Output (MIMO) fast control systems. To ensure safety for the operation these systems have to be robust and resilient to faults while ensuring high availability. Mindful of the importance of such features for future fusion experiments ATCA based systems have been successfully used in fusion experiment as MIMO fast controller. This is the most promising architecture to substantially enhance the performance and capability of existing standard systems delivering well high throughput as well as high availability. The real-time control needs of a fusion experiment, the rational for the presently pursued solutions, the existing problems and the broad scientific and technical questions that need to be addressed on the path to a fusion power plant will be discussed.

  17. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed

  18. Asynchronous machines. Direct torque control; Machines asynchrones. Commande par controle direct de couple

    Energy Technology Data Exchange (ETDEWEB)

    Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)

    2006-05-15

    The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)

  19. The light controlled fusion

    International Nuclear Information System (INIS)

    Gong, BingXin

    2013-01-01

    Highlights: • This is a new technique for controlled fusion. • There will be an attraction force between the two oscillating nuclei. • The attraction force is greater than the Coulomb repulsion between the two nuclei. • The kinetic energy and the density of the two nuclei can be controlled. • The electric vector and the frequency of the light can be controlled. - Abstract: This is a new technique for controlled fusion. When two nuclei are colliding with each other, light, whose the frequency is higher than the minimal threshold frequency of lithium, will be aimed directly at the two nuclei, the two nuclei will perform the simple harmonic oscillation, the charged particle’s simple harmonic oscillation can be considered as an oscillating electric dipole, and the two oscillating nuclei will radiate the electromagnetic wave. Either of the two oscillating electric dipoles will attract each other, or they will repulse each other. There will be an attraction force between the two oscillating nuclei. When the attraction force is greater than the Coulomb repulsion between the two nuclei, the two nuclei will fuse together. Where the kinetic energy and the density of the two nuclei can be controlled, the electric vector and the frequency of the light can be controlled also and, therefore, the fusion can be controlled

  20. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1984-01-01

    A simplified review on the status of the controlled thermonuclear fusion research aiming to present the motivation, objective, necessary conditions and adopted methods to reach the objective. (M.C.K.) [pt

  1. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  2. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine

    Science.gov (United States)

    Maimaitijiang, Maitiniyazi; Ghulam, Abduwasit; Sidike, Paheding; Hartling, Sean; Maimaitiyiming, Matthew; Peterson, Kyle; Shavers, Ethan; Fishman, Jack; Peterson, Jim; Kadam, Suhas; Burken, Joel; Fritschi, Felix

    2017-12-01

    Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was

  3. Fusion Machines

    International Nuclear Information System (INIS)

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  4. 49 CFR 236.771 - Machine, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...

  5. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  6. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  7. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC)

  8. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  9. Man-machine interface for the MFTF

    International Nuclear Information System (INIS)

    Speckert, G.C.

    1979-01-01

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface

  10. Man-machine interface for the MFTF

    Energy Technology Data Exchange (ETDEWEB)

    Speckert, G.C.

    1979-11-09

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface.

  11. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  12. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  13. Summary report for IAEA CRP on lifetime prediction for the first wall of a fusion machine (JAERI contribution)

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Araki, Masanori; Akiba, Masato

    1993-03-01

    IAEA Coordinated Research Program (CRP) on 'Lifetime Prediction for the First Wall of a Fusion Machine' was started in 1989. Five participants, Joint Research Centre (JRC-Ispra), The NET team, Kernforschungszentrum Karlsruhe (KfK), Russian Research Center and Japan Atomic Energy Research Institute, contributed in this activity. The purpose of the CRP is to evaluate the thermal fatigue behavior of the first wall of a next generation fusion machine by means of numerical methods and also to contribute the design activities for ITER (International Thermonuclear Experimental Reactor). Thermal fatigue experiments of a first wall mock-up which were carried out in JRC-Ispra were selected as a first benchmark exercise model. All participants performed finite element analyses with various analytical codes to predict the lifetime of the simulated first wall. The first benchmark exercise has successfully been finished in 1992. This report summarizes a JAERI's contribution for this first benchmark exercise. (author)

  14. History of controlled nuclear fusion in Japan

    International Nuclear Information System (INIS)

    Uematsu, Eisui; Nishio, Shigeko; Takeda, Tatsuoki

    2001-01-01

    A research development of nuclear fusion was divided four periods: the first period as prehistory (until about 1955), the second period as begin of research (1955 to 1969), the third as the growth period (1970 to 1985) and the forth as the large tokamak age. In this paper I explained the second period, because general physicists and young plasma and controlled nuclear fusion researcher did not know about this period. The controlled nuclear fusion research was begun by the experiment of hydrogen bomb by USA and USSR in 1952 and 1953. In Japan, on the basis of many societies, 'The Controlled Nuclear Fusion Meeting' was established as an independent system and KAKEA (Journal of Fusion Research) was published in 1958. Japan government began to make the system by the Nuclear Commission in 1957. The main research devices in 1962 were linear pinch, mirror device, toroidal pinch, helical system, plasma gun and plasma measurement. USSR showed the excellent results of tokamak device in 1968. Ookawa spoke the effect of the average minimum-B, the best report in this period, at the second IAEA meeting, 1965. JAERI constructed JFT-1 and JFT-2, the latter was the first class device in the world and made the first step of Japanese research into the world, for examples, to attain the equilibrium of divertor plasma and to control impurity. Many research centers of controlled fusion were established in many universities in Japan from 1966 to 1980. Cooperation researchs between Japan and USA, USSR and many countries has been carried out after 1978: JIFT (Joint Institute for Fusion Theory) and FPPC (Fusion Power Coordinating Committee). The important results increased in this period. After 1985, the research activities are processing and data increased very fast depend on the larger devices and system, good measurement system and development of information system. JT-60 in JAERI opened to the large tokamak period. It led controlled fusion researchs in the world the same as TFTR (US

  15. Feature-Fusion Guidelines for Image-Based Multi-Modal Biometric Fusion

    Directory of Open Access Journals (Sweden)

    Dane Brown

    2017-07-01

    Full Text Available The feature level, unlike the match score level, lacks multi-modal fusion guidelines. This work demonstrates a new approach for improved image-based biometric feature-fusion. The approach extracts and combines the face, fingerprint and palmprint at the feature level for improved human identification accuracy. Feature-fusion guidelines, proposed in our recent work, are extended by adding a new face segmentation method and the support vector machine classifier. The new face segmentation method improves the face identification equal error rate (EER by 10%. The support vector machine classifier combined with the new feature selection approach, proposed in our recent work, outperforms other classifiers when using a single training sample. Feature-fusion guidelines take the form of strengths and weaknesses as observed in the applied feature processing modules during preliminary experiments. The guidelines are used to implement an effective biometric fusion system at the feature level, using a novel feature-fusion methodology, reducing the EER of two groups of three datasets namely: SDUMLA face, SDUMLA fingerprint and IITD palmprint; MUCT Face, MCYT Fingerprint and CASIA Palmprint.

  16. Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Salman Qadri

    2017-01-01

    Full Text Available Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.

  17. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Piccolo, F.; Sartori, F.; Albanese, R.; Cenedese, A.

    2006-01-01

    The magnetic vacuum topology reconstruction using the magnetic measurements is essential in controlling and understanding plasmas produced by fusion machines. In a wide range of the cases, the instruments to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently a new approach has been used by developing new magnetic software called Felix. The adopted solution in the design allows the use of the software not only at JET but also at different machines by simply changing a configuration file. A database describing the tokamak in the magnetic point of view is used to provide different vacuum magnetic models (polynomial, moments, filamentary) that can be solved by Felix without any recompiling or testing. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. That results in a large portability and in particular it allows use of the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution by changing its configuration file. In order to improve the plasma magnetic reconstruction in real time a set of models has been run using Felix. An improved polynomial based model compared with the one presently used and two models using current filaments have been tested and compared. The new system has also been improved the calculation of plasma magnetic parameters. Double null configurations smooth transitions, more accurate gap and strike-point calculations, detailed boundary reconstruction are now systematically available. Felix is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology such as control of the plasma shape, the wall protection system [F.Piccolo et al.'Upgrade of the protection system for the first wall at JET in the ITER Be and W tiles prespective' this conference], the magnetic

  18. Controlled Nuclear Fusion: Status and Outlook

    Science.gov (United States)

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  19. Tool set for distributed real-time machine control

    Science.gov (United States)

    Carrott, Andrew J.; Wright, Christopher D.; West, Andrew A.; Harrison, Robert; Weston, Richard H.

    1997-01-01

    Demands for increased control capabilities require next generation manufacturing machines to comprise intelligent building elements, physically located at the point where the control functionality is required. Networks of modular intelligent controllers are increasingly designed into manufacturing machines and usable standards are slowly emerging. To implement a control system using off-the-shelf intelligent devices from multi-vendor sources requires a number of well defined activities, including (a) the specification and selection of interoperable control system components, (b) device independent application programming and (c) device configuration, management, monitoring and control. This paper briefly discusses the support for the above machine lifecycle activities through the development of an integrated computing environment populated with an extendable software toolset. The toolset supports machine builder activities such as initial control logic specification, logic analysis, machine modeling, mechanical verification, application programming, automatic code generation, simulation/test, version control, distributed run-time support and documentation. The environment itself consists of system management tools and a distributed object-oriented database which provides storage for the outputs from machine lifecycle activities and specific target control solutions.

  20. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  1. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  2. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  3. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  4. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  5. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  6. Fusion reactor critical issues

    International Nuclear Information System (INIS)

    1987-11-01

    The document summarizes the results of a series of INTOR-related meetings organized by the IAEA in 1985-1986 with the following topics: Impurity control modelling, non-inductive current-drive, confinement in tokamaks with intense heating and DEMO requirements. These results are useful to the specialists involved in research on large fusion machines or in the design activity on the next generation tokamaks. Refs, figs and tabs

  7. Blue energy - The story of thermonuclear fusion energy

    International Nuclear Information System (INIS)

    Laval, G.

    2007-01-01

    The author has written a story of thermonuclear fusion as a future source of energy. This story began about 50 years ago and its last milestone has been the decision of building the ITER machine. This decision has been taken by an international collaboration including a large part of the humanity which shows how great are the expectations put on fusion and that fusion deserves confidence now. For long years fusion energy has been the subject of large controversy due to the questioning about the overcoming of huge theoretical and technological difficulties. Different machines have been built to assess new theoretical developments and to prepare the next step. The physics of hot plasmas has been understood little by little at the pace of the discovery of new instabilities taking place in fusion plasmas. The 2 unique today options: the tokamak-type machine and the laser-driven inertial confinement machine took the lead relatively quickly. (A.C.)

  8. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  9. Design of Control System for Kiwifruit Automatic Grading Machine

    Directory of Open Access Journals (Sweden)

    Xingjian Zuo

    2013-05-01

    Full Text Available The kiwifruit automatic grading machine is an important machine for postharvest processing of kiwifruit, and the control system ensures that the machine realizes intelligence. The control system for the kiwifruit automatic grading machine designed in this paper comprises a host computer and a slave microcontroller. The host computer provides a visual grading interface for the machine with a LabVIEW software, the slave microcontroller adopts an STC89C52 microcontroller as its core, and C language is used to write programs for controlling a position sensor module, push-pull type electromagnets, motor driving modules and a power supply for controlling the operation of the machine as well as the rise or descend of grading baffle plates. The ideal control effect is obtained through test, and the intelligent operation of the machine is realized.

  10. AC machine control : robust and sensorless control by parameter independency

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Dag Andreas Hals

    2009-06-15

    In this thesis it is first presented how robust control can be used to give AC motor drive systems competitive dynamic performance under parameter variations. These variations are common to all AC machines, and are a result of temperature change in the machine, and imperfect machine models. This robust control is, however, dependent on sensor operation in the sense that the rotor position is needed in the control loop. Elimination of this control loop has been for many years, and still is, a main research area of AC machines control systems. An integrated PWM modulator and sampler unit has been developed and tested. The sampler unit is able to give current and voltage measurements with a reduced noise component. It is further used to give the true derivative of currents and voltages in the machine and the power converter, as an average over a PWM period, and as separate values for all states of the power converter. In this way, it can give measurements of the currents as well as the derivative of the currents, at the start and at the end of a single power inverter state. This gave a large degree of freedom in parameter and state identification during uninterrupted operation of the induction machine. The special measurement scheme of the system achieved three main goals: By avoiding the time frame where the transistors commutate and the noise in the measurement of the current is large, filtering of the current measurement is no longer needed. The true derivative of the current in the machine is can be measured with far less noise components. This was extended to give any separate derivative in all three switching states of the power converter. Using the computational resources of the FPGA, more advanced information was supplied to the control system, in order to facilitate sensor less operation, with low computational demands on the DSP. As shown in the papers, this extra information was first used to estimate some of the states of the machine, in some or all of the

  11. Machine throughput improvement achieved using innovative control technique

    International Nuclear Information System (INIS)

    Sharma, V.; Acharya, S.; Mittal, K.C.

    2012-01-01

    In any type of fully or semi automatic machine the control systems plays an important role. The control system on the one hand has to consider the human psychology, intelligence requirement for an operator, and attention needed from him. On the other hand the complexity of the control has also to be understood well before designing a control system that can be handled comfortably and safely by the operator. As far as the user experience/comfort is concerned the design of control system GUI is vital. Considering these two aspects related to the user of the machine it is evident that the control system design is very important because it is has to accommodate the human behaviour and skill sets required/available as well as the capability of the machine under the control of the control system. An intelligently designed control system can enhance the productivity of the machine. (author)

  12. Breeder control fusion reactor. Topical interview

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, A [Max-Planck-Institut fuer Plasmaphysik, Garching/Muenchen (Germany, F.R.)

    1977-09-01

    The energy sources of the future are extremely controversial. The consumption of fossil fuel shall decrease during the next decades, because exhaustion of the resources, pollution, increase of CO/sub 2/ in the atmosphere and other reasons. But at present the question it not yet settled which alternative energy system should replace the fossil fuel. First of all nuclear energy in the form of fission reactions seems to come into operation to a larger extent. The next step may be the controlled thermonuclear fusion reaction. Furthermore, a comparison between fusion and fission is given which shows that fusion would bring about less risks than the breeders. An advantage of the fusion reactor would be the fact that the fuel cycle is closed. Unfortunately, the physical questions are not as yet satisfactorily clarified so that one cannot be sure whether a fusion reactor can really be built.

  13. Flocking small smart machines: An experiment in cooperative, multi-machine control

    International Nuclear Information System (INIS)

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm's individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation's configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above

  14. Control System Design for Automatic Cavity Tuning Machines

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; /Fermilab; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  15. Control System Design for Automatic Cavity Tuning Machines

    International Nuclear Information System (INIS)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.

    2009-01-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  16. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  17. Operator-machine interface at a large laser-fusion facility

    International Nuclear Information System (INIS)

    Sutton, J.G.; Howell, J.A.

    1982-01-01

    The operator-machine interface at the Antares Laser Facility provides the operator with a means of controlling the laser system and obtaining operational and performance information. The goal of this interface is to provide an operator with access to the control system in a comfortable way, and to facilitate meeting operational requirements. We describe the philosophy and requirements behind this interface, the hardware used in building it, and the software environment

  18. Research program. Controlled thermonuclear fusion. Synthesis report 2013

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.

    2014-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. The progress realized in the framework of EURATOM has led to the design of the experimental reactor ITER which is being built at Cadarache (France). The future prototype reactor DEMO is foreseen in 2040-2050. In 2013, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. A new improved confinement regime, called IN-mode, was discovered on TCV. The theory and numerical simulation group interprets the experimental results and foresees those of futures machines. It requires very high performance computers. The Gyrotron group develops radiofrequency sources in the mm range for heating the TCV plasma as well as for ITER and the Wendelstein-7 stellarator. Concerning superconductivity, tests are conducted at PSI on toroidal cables of ITER. The development of conductors and coils for the DEMO reactor has been pursued. In the context of international

  19. A perfomance assesment of a 2 axis scanning mirror galvanometer for powder bed fusion

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Andersen, Sebastian Aagaard; Nielsen, Jakob Skov

    2017-01-01

    Additive Manufacturing by powder bed fusion allows production of high strength parts with complex features, not possible through conventional manufacturing. To experiment and test current theory within laser processing of metal powder, an open and customizable laser scanner platform is developed...... and constructed. The platform seeks to fully support and enable the laser driven process of selective consolidation metal powder, as most industrially available powder bed fusion machine tools are closed and proprietary systems. This allows the machine tool manufacturer to strictly control how the system is used...

  20. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  1. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  2. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  3. Control of tritium permeation through fusion reactor strucural materials

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1978-01-01

    The intention of this paper is to provide a brief synopsis of the status of understanding and technology pertaining to the dissolution and permeation of tritium in fusion reactor materials. The following sections of this paper attempt to develop a simple perspective for understanding the consequences of these phenomena and the nature of the technical methodology being contemplated to control their impact on fusion reactor operation. Considered in order are: (1) the occurrence of tritium in the fusion fuel cycle, (2) a set of tentative criteria to guide the analysis of tritium containment and control strategies, (3) the basic mechanisms by which tritium may be released from a fusion plant, and (4) the methods currently under development to control the permeation-related release mechanisms. To provide background and support for these considerations, existing solubility and permeation data for the hydrogen isotopes are compared and correlated under conditions to be expected in fusion reactor systems

  4. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Merrill, B.

    2014-01-01

    Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively

  5. Applicability of LBB concept to tokamak-type fusion machine

    International Nuclear Information System (INIS)

    Nakahira, Masataka

    2003-12-01

    A tokamak-type fusion machine has been characterized as having inherent plasma shutdown safety. An extremely small leakage of impurities such as primary cooling water, i.e., less than 0.1 g/s, will cause a plasma disruption. This plasma disruption will induce electromagnetic forces (EM forces) acting in the Vacuum Vessel (VV) and plasma-facing components. The VV forms the physical barrier that encloses tritium and activated dust. If the VV has the possibility of sustaining an unstable fracture from a through crack caused by EM forces, the structural safety will be assured and the inherent safety will be demonstrated. This paper analytically assures the Leak-Before-Break (LBB) concept as applied to the VV and is based on experimental leak rate data of a through crack having a very small opening. Based on the analysis, the critical crack length to terminate plasma is evaluated as about 2 mm. On the other hand, the critical crack length for unstable fracture is obtained as about 400 mm. It is therefore concluded that EM forces induced by small leak to terminate plasma will not cause the unstable fracture of VV, and then the inherent safety is demonstrated. (author)

  6. A cloud platform for remote diagnosis of breast cancer in mammography by fusion of machine and human intelligence

    Science.gov (United States)

    Jiang, Guodong; Fan, Ming; Li, Lihua

    2016-03-01

    Mammography is the gold standard for breast cancer screening, reducing mortality by about 30%. The application of a computer-aided detection (CAD) system to assist a single radiologist is important to further improve mammographic sensitivity for breast cancer detection. In this study, a design and realization of the prototype for remote diagnosis system in mammography based on cloud platform were proposed. To build this system, technologies were utilized including medical image information construction, cloud infrastructure and human-machine diagnosis model. Specifically, on one hand, web platform for remote diagnosis was established by J2EE web technology. Moreover, background design was realized through Hadoop open-source framework. On the other hand, storage system was built up with Hadoop distributed file system (HDFS) technology which enables users to easily develop and run on massive data application, and give full play to the advantages of cloud computing which is characterized by high efficiency, scalability and low cost. In addition, the CAD system was realized through MapReduce frame. The diagnosis module in this system implemented the algorithms of fusion of machine and human intelligence. Specifically, we combined results of diagnoses from doctors' experience and traditional CAD by using the man-machine intelligent fusion model based on Alpha-Integration and multi-agent algorithm. Finally, the applications on different levels of this system in the platform were also discussed. This diagnosis system will have great importance for the balanced health resource, lower medical expense and improvement of accuracy of diagnosis in basic medical institutes.

  7. Physics of thermo-nuclear fusion and the ITER project; La physique de la fusion thermonucleaire et le projet ITER

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee - DRFC, 13 - Saint-Paul-lez-Durance (France)

    2003-01-01

    This document gathers the slides of the 6 contributions to the workshop 'the physics of thermo-nuclear fusion and the ITER project': 1) the feasibility of magnetic confinement and the issue of heat recovery, 2) heating and current generation in tokamaks, 3) the physics of wall-plasma interaction, 4) recent results at JET, 5) inertial confinement and fast ignition, and 6) the technology of fusion machines based on magnetic confinement. This document presents the principles of thermo-nuclear fusion machines and gives a lot of technical information about JET, Tore-Supra and ITER.

  8. Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available This paper presents a dynamic characteristic-based fuzzy adaptive control algorithm (DCbFACA to avoid the influence of cutting force changing rapidly on the machining stability and precision. The cutting force is indirectly obtained in real time by monitoring and extraction of the motorized spindle current, the feed speed is fuzzy adjusted online, and the current was used as a feedback to control cutting force and maintain the machining process stable. Different from the traditional fuzzy control methods using the experience-based control rules, and according to the complex nonlinear characteristics of CNC machining, the power bond graph method is implemented to describe the dynamic characteristics of process, and then the appropriate variation relations are achieved between current and feed speed, and the control rules are optimized and established based on it. The numerical results indicated that DCbFACA can make the CNC machining process more stable and improve the machining precision.

  9. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  10. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  11. Sensor fusion for mobile robot navigation

    International Nuclear Information System (INIS)

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion

  12. Trust metrics in information fusion

    Science.gov (United States)

    Blasch, Erik

    2014-05-01

    Trust is an important concept for machine intelligence and is not consistent across many applications. In this paper, we seek to understand trust from a variety of factors: humans, sensors, communications, intelligence processing algorithms and human-machine displays of information. In modeling the various aspects of trust, we provide an example from machine intelligence that supports the various attributes of measuring trust such as sensor accuracy, communication timeliness, machine processing confidence, and display throughput to convey the various attributes that support user acceptance of machine intelligence results. The example used is fusing video and text whereby an analyst needs trust information in the identified imagery track. We use the proportional conflict redistribution rule as an information fusion technique that handles conflicting data from trusted and mistrusted sources. The discussion of the many forms of trust explored in the paper seeks to provide a systems-level design perspective for information fusion trust quantification.

  13. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  14. Large-scale cryopumping for controlled fusion

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1977-01-01

    Vacuum pumping by freezing out or otherwise immobilizing the pumped gas is an old concept. In several plasma physics experiments for controlled fusion research, cryopumping has been used to provide clean, ultrahigh vacua. Present day fusion research devices, which rely almost universally upon neutral beams for heating, are high gas throughput systems, the pumping of which is best accomplished by cryopumping in the high mass-flow, moderate-to-high vacuum regime. Cryopumping systems have been developed for neutral beam injection systems on several fusion experiments (HVTS, TFTR) and are being developed for the overall pumping of a large, high-throughput mirror containment experiment (MFTF). In operation, these large cryopumps will require periodic defrosting, some schemes for which are discussed, along with other operational considerations. The development of cryopumps for fusion reactors is begun with the TFTR and MFTF systems. Likely paths for necessary further development for power-producing reactors are also discussed

  15. Large-scale cryopumping for controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Pittenger, L.C.

    1977-07-25

    Vacuum pumping by freezing out or otherwise immobilizing the pumped gas is an old concept. In several plasma physics experiments for controlled fusion research, cryopumping has been used to provide clean, ultrahigh vacua. Present day fusion research devices, which rely almost universally upon neutral beams for heating, are high gas throughput systems, the pumping of which is best accomplished by cryopumping in the high mass-flow, moderate-to-high vacuum regime. Cryopumping systems have been developed for neutral beam injection systems on several fusion experiments (HVTS, TFTR) and are being developed for the overall pumping of a large, high-throughput mirror containment experiment (MFTF). In operation, these large cryopumps will require periodic defrosting, some schemes for which are discussed, along with other operational considerations. The development of cryopumps for fusion reactors is begun with the TFTR and MFTF systems. Likely paths for necessary further development for power-producing reactors are also discussed.

  16. Initiation and propagation of damage in actively cooled CFC armoured high heat flux components in fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.; Escourbiac, F.

    2009-01-01

    Plasma facing components (PFCs) in magnetic confinement controlled fusion machines are armoured with carbon fibre composite (CFC) bonded to a copper alloy heat sink. The manufacturing process induces high level of residual stresses due to the thermal expansion mismatch between CFC and copper and PFCs have to withstand strong stress ranges during operation. To study the initiation and propagation of damage in the CFC part, the ONERA damage model is used to describe the behaviour of the N11 material. The finite element simulations show that the damage is located near the interface and develops during the manufacturing of the PFCs as a consequence of the high amplitude of shear stresses. Under high heat flux, stresses decrease and the damage does not evolve. Further studies will take into account the damageable behaviour of the composite/copper interface, which will lead to geometrical optimisations and better knowledge of the link between damage and conductivity.

  17. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  18. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C., E-mail: wongc@fusion.gat.com [General Atomics, San Diego, CA (United States); Merrill, B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • With the use of a system code, tritium burn-up fraction (f{sub burn}) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f{sub burn} of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW{sub fusion} class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  19. Controls and Machine Protection Systems

    CERN Document Server

    Carrone, E.

    2016-01-01

    Machine protection, as part of accelerator control systems, can be managed with a 'functional safety' approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS).

  20. Calculation and classification of the radioactive waste inventory in the structural components of a compact ignition fusion machine

    International Nuclear Information System (INIS)

    Cepraga, D.G.; Siddiqui, S.A.M.M.

    1995-01-01

    The radioactive inventory, decay heat and contact dose rate of certain materials (graphite in the first wall, INCONEL 625 in the vacuum vessel and copper in the magnet) of the IGNITOR-ULT fusion machine are evaluated. The XSDRNPM-S code is used to perform the neutron transport fixed source analysis. The ANITA-2 code, using updated cross-sections and decay data libraries based on EAF-3 and IRDF90 evaluation files, is used for activation calculations. The fusion neutron source has been normalized to a neutron wall load of 2 MW m -2 . The results show that, although the first wall graphite proves to be a relatively benign material, INCONEL 625 in the vacuum vessel and copper in the magnet can become highly radioactive and may need long waiting times before they can be transported to deep geological repositories or recycled. The impact of the variation in the composition of INCONEL 625 on the contact dose has been assessed as a function of the cooling time and its implications for the choice of structural materials in fusion plants are discussed. (orig.)

  1. VVER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2002-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two Fuel Handling Machine (FHM) Control System units have been already supplied for Temelin NPP and others supply are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China.The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide.The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders).All control logic were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing and easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure of 1090 Work-stations (APMS - Advanced Plant Monitoring System, or Tenore NT) has been successfully used to interface the

  2. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  3. US fusion community discussion on fusion strategies

    International Nuclear Information System (INIS)

    Marton, W.A.

    1998-01-01

    On April 26 - May 1, 1998, a US Fusion Community Forum for Major Next-Step Experiments was held at Madison, Wisconsin, USA. Both the Single Integrated Step strategy and the Multiple Machine strategy have substantial support from the about 180 scientists and engineers who participated

  4. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  5. Grammatical Metaphor, Controlled Languageand Machine Translation

    DEFF Research Database (Denmark)

    Møller, Margrethe

    2003-01-01

    It is a general assumption that 1) the readability and clarity of LSP texts written in a controlled language are better than uncontrolled texts and 2) that controlled languages produce better results with machine translation than uncontrolled languages. Controlled languages impose lexical...

  6. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-02-01

    The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)

  7. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-01-01

    The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing

  8. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  9. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  10. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, de M.R.

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  11. Fusion Canada issue 19

    International Nuclear Information System (INIS)

    1992-12-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the IAEA Plasma Biasing Meeting, the new IEA program -Nuclear Technology of Fusion reactors, TFTR tritium purification system, an update by CCFM on machine additions and modifications, and news of a new compact Toroid injector at the University of Saskatchewan. 1 fig

  12. Fusion safety regulations in the United States: Progress and trends

    International Nuclear Information System (INIS)

    DeLooper, J.

    1994-01-01

    This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion's safety and environmental potential

  13. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  14. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  15. Methods and apparatus for controlling rotary machines

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Barnes, Gary R [Delanson, NY; Fric, Thomas Frank [Greer, SC; Lyons, James Patrick Francis [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Holley, William Edwin [Greer, SC; Barbu, Corneliu [Guilderland, NY

    2009-09-01

    A control system for a rotary machine is provided. The rotary machine has at least one rotating member and at least one substantially stationary member positioned such that a clearance gap is defined between a portion of the rotating member and a portion of the substantially stationary member. The control system includes at least one clearance gap dimension measurement apparatus and at least one clearance gap adjustment assembly. The adjustment assembly is coupled in electronic data communication with the measurement apparatus. The control system is configured to process a clearance gap dimension signal and modulate the clearance gap dimension.

  16. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  17. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  18. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  19. Applications of intelligent-measurement systems in controlled-fusion research

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Lindquist, W.B.; Peterson, R.L.; Wyman, R.H.

    1981-01-01

    The paper describes the control and instrumentation for the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory, California, USA. This large-scale scientific experiment in controlled thermonuclear fusion, which is currently being expanded, originally had 3000 devices to control and 7000 sensors to monitor. A hierarchical computer control system, is used with nine minicomputers forming the supervisory system. There are approximately 55 local control and instrumentation microcomputers. In addition, each device has its own monitoring equipment, which in some cases consists of a small computer. After describing the overall system a more detailed account is given of the control and instrumentation for two large superconducting magnets

  20. Methods of control the machining process

    Directory of Open Access Journals (Sweden)

    Yu.V. Petrakov

    2017-12-01

    Full Text Available Presents control methods, differentiated by the time of receipt of information used: a priori, a posteriori and current. When used a priori information to determine the mode of cutting is carried out by simulation the process of cutting allowance, where the shape of the workpiece and the details are presented in the form of wireframes. The office for current information provides for a system of adaptive control and modernization of CNC machine, where in the input of the unit shall be computed by using established optimization software. For the control by a posteriori information of the proposed method of correction of shape-generating trajectory in the second pass measurement surface of the workpiece formed by the first pass. Developed programs that automatically design the adjusted file for machining.

  1. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    Science.gov (United States)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  2. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  3. COMPARISON OF STATISTICALLY CONTROLLED MACHINING SOLUTIONS OF TITANIUM ALLOYS USING USM

    Directory of Open Access Journals (Sweden)

    R. Singh

    2010-06-01

    Full Text Available The purpose of the present investigation is to compare the statistically controlled machining solution of titanium alloys using ultrasonic machining (USM. In this study, the previously developed Taguchi model for USM of titanium and its alloys has been investigated and compared. Relationships between the material removal rate, tool wear rate, surface roughness and other controllable machining parameters (power rating, tool type, slurry concentration, slurry type, slurry temperature and slurry size have been deduced. The results of this study suggest that at the best settings of controllable machining parameters for titanium alloys (based upon the Taguchi design, the machining solution with USM is statistically controlled, which is not observed for other settings of input parameters on USM.

  4. A method of numerically controlled machine part programming

    Science.gov (United States)

    1970-01-01

    Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.

  5. Controlled nuclear fusion. Theoretical and technical-physical aspects

    International Nuclear Information System (INIS)

    Donne, T.; Oomens, N.

    1995-01-01

    It is stated that the realization of controlled fusion is not only a matter of solving technical problems. Also theoretical research in the field of plasma physics is required. A brief state-of-the-art is given of theoretical and technical-physical aspects of nuclear fusion. Attention is paid to magnetic confinement, the importance of theoretical research, plasma heating, plasma diagnostics, and the control of plasma transport. Throughout the article special attention is paid to the International Thermonuclear Experimental Reactor (ITER) project. 5 figs., 1 tab., 3 refs

  6. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  7. Laser Fusion: status, future, and tritium control

    International Nuclear Information System (INIS)

    Coyle, P.E.

    1978-11-01

    At Livermore the 10 kJ, 20 to 30 TW Shiva facility is now operational and producing regular new fusion results. Design work has begun on a 200 to 300 TW laser designed to carry the program through the first breakeven demonstration experiments in the mid-1980's. Confidence in reaching this goal is based on the significant progress we have made in state-of-the-art, high-power Nd:glass laser technology, in experimental laser fusion and laser plasma interaction physics, and in theoretical and analytical computer codes which reliably model and predict experimental results. For all of these experiments, a variety of fusion targets are being fabricated in the laboratory, and the control and handling of tritium is now a regular and routine part of ongoing inertial fusion experiments. Target design with gains of about 1000 have been studied and the means to mass produce such pellets at low cost are also being developed

  8. Data-driven machine control : a feasibility study on YieldStar

    NARCIS (Netherlands)

    Mehrafrouz, M.

    2014-01-01

    Traditionally machine control software focusses on the control flow; this is also the situation within ASML and YieldStar. With the increased complexity of the machine control software more and more data is needed to accurately control a tool like YieldStar. In other software application areas, like

  9. Plans for the CIT [Compact Ignition Tokamak] instrumentation and control system

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1987-01-01

    Extensive experience with previous fusion experiments (TFTR, MFTF-B and others) is driving the design of the Instrumentation and Control System (I and C) for the Compact Ignition Tokamak (CIT) to be built at Princeton. The new design will reuse much equipment from TFTR and will be subdivided into six major parts: machine control, machine data acquisition, plasma diagnostic instrument control and instrument data acquisition, the database, shot sequencing and safety interlocks. In a major departure from previous fusion experiment control systems, the CIT machine control system will be a commercial process control system. Since the machine control system will be purchased as a completely functional product, we will be able to concentrate development manpower in plasma diagnostic instrument control, data acquisition, data processing and analysis, and database systems. We will discuss the issues driving the design, give a design overview and state the requirements upon any prospective commercial process control system

  10. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  11. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  12. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  13. Synthetic report 2012. Research programme on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2013-01-01

    Since 1961, Switzerland participates in the research on thermonuclear fusion thanks to the creation of the Research Centre in Plasma Physics. In 1979 it entered into partnership with the European programme on fusion through its adhesion to EURATOM. The thermonuclear fusion is an interesting energy source because the basic fuel is practically inexhaustible and its use does not release any significant CO 2 quantity and very little radioactive residues. But its working up faces enormous physical and technological difficulties. The International Thermonuclear Reactor (ITER), presently in construction, has to demonstrate the technological feasibility of the controlled fusion. Il will be followed by DEMO, foreseen for 2040-2050, which must guarantee the economical rentability. At CRPP the research projects are partitioned onto several sites: at the Swiss Federal Institute of Technology (EPFL) in Lausanne, they concern the physics of the magnetic confinement with the Variable Geometry Tokamak (TCV), the development of theoretical models and the numerical simulation, the plasma heating and the generation of hyper frequency waves; the Paul Scherrer Institute (PSI) studies the superconductivity and the materials; the interactions between the plasma and the Tokamak walls are studied at the Basel University for the structures of ITER. Thanks to its large flexibility, TCV allows the creation and the control of plasmas of very different forms. The injection system of millimetric waves allows orienting the injected power according to specific profiles. By using the asymmetry of the flow in the toroidal sense, the plasma rotation could be measured with a much better accuracy than before. In TCV, by playing on the form of the plasma, it was possible to strongly reduce the energy quantity which is expelled by the Edge Localized Modes (ELM) onto the wall of the vacuum chamber. The ‘snowflake’ configuration created in TCV allows distributing the ELM energy onto several impact

  14. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  15. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  16. Nuclear fusion: The issues

    International Nuclear Information System (INIS)

    Griffin, R.D.

    1993-01-01

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included

  17. The development of controlled nuclear fusion

    International Nuclear Information System (INIS)

    Pease, R.S.

    1978-01-01

    The high temperature conditions needed in a controlled nuclear fusion reactor are now being approached in experiments using magnetic fields to confine and isolate the plasma, especially in systems of the tokamak type. The underlying reasons for the successes are discussed and it is concluded that the remaining advances needed in temperature and thermal insulation may well be achieved in new large tokamak experiments now under construction. Comparable progress is being made also in inertial confinement systems; key experiments on achieving the required super-high densities with high-powered pulsed laser systems are about to commence. To achieve fusion reactors will require the combination of three major disciplines: plasma physics, electromechanical engineering and nuclear engineering. Proposals have been made for an international study group to be set up under the IAEA auspices to consider technical objectives and the nature of the next large fusion device which could be constructed internationally, and in which this synthesis could be attempted. (author)

  18. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  19. Browsing the fusion data in a Google map way

    International Nuclear Information System (INIS)

    Song, Xianming; Pan, W.; Chen, L.; Song, Xiao; Pan, L.; Luo, C.; Zhang, G.

    2015-01-01

    Full text of publication follows. How to access the ITER data is still an open issue. Concepts from KSTAR(1), W7X(2), EAST(3), and DIIID(4) have been presented. In this paper, a new web application to browse the fusion data in a Google map way is demonstrated on HL-2A database. This dynamic and interactive web application can run in any popular browser(IE, safari, Firefox, Opera), by any hardware (smart phone, PC, ipad, Mac) and operating system (ios, android, windows, linux, Mac OS). No any plug-ins is needed. The details of the framework for this web application are presented. The framework consists of three layers. The front top client layer is developed by Jquery code. The middle layer, which plays a role of a bridge to connect the server and client is developed by PHP code. The behind server layer is developed by Matlab, which responses any command from the front top client, retrieves the data from the HL-2A database, analyses and processes the data, and finally, returns the data to the client in client's favorite way. The way to browse and retrieve the fusion data is well welcomed by many researchers who access fusion data from many other machines. This way may apply to other machines, and present useful idea to the way for accessing ITER data in the future. References: 1) Kim, E.N., Web-based (HTML5) Interactive Graphics for Fusion Research and Collaboration, O4-2, 8. IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research. June 20-24,2011, San Francisco, CA; 2)Davis, W.M., Easy Web Interfaces to IDL Code for NSTX Data Analysis Progress on Standardization and Automation in Software Development on W7X, P2-1. 8. IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research. June 20-24,2011, San Francisco, CA; 3) Yang, F., A Web Based MDSPLUS Data Analysis and Visualization System for EAST, P2-16. 8th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for

  20. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  1. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  2. Magnetic fusion energy and computers. The role of computing in magnetic fusion energy research and development (second edition)

    International Nuclear Information System (INIS)

    1983-01-01

    This report documents the structure and uses of the MFE Network and presents a compilation of future computing requirements. Its primary emphasis is on the role of supercomputers in fusion research. One of its key findings is that with the introduction of each successive class of supercomputer, qualitatively improved understanding of fusion processes has been gained. At the same time, even the current Class VI machines severely limit the attainable realism of computer models. Many important problems will require the introduction of Class VII or even larger machines before they can be successfully attacked

  3. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-01-01

    Fabrication of laser fusion targets requires a number of special techniques. We have developed both laser and spark erosion machining to produce minute parts of complex targets. A high repetition rate YAG laser at double frequency is used to etch various materials. For example, marks or patterns are often necessary on structured or advanced targets. The laser is also used to thin down plastic coated stalks. A spark erosion system has proved to be a versatile tool and we describe current fabrication processes like cutting, drilling, and ultra precise machining. Spark erosion has interesting features for target fabrication: it is a highly controllable and reproducible technique as well as relatively inexpensive

  4. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  5. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  6. The achievements of the Z-machine; Les exploits de la Z-machine

    Energy Technology Data Exchange (ETDEWEB)

    Larousserie, D

    2008-03-15

    The ZR-machine that represents the latest generation of Z-pinch machines has recently begun preliminary testing before its full commissioning in Albuquerque (Usa). During its test the machine has well operated with electrical currents whose intensities of 26 million Ampere are already 2 times as high as the intensity of the operating current of the previous Z-machine. In 2006 the Z-machine reached temperatures of 2 billions Kelvin while 100 million Kelvin would be sufficient to ignite thermonuclear fusion. In fact the concept of Z-pinch machines was imagined in the fifties but the technological breakthrough that has allowed this recent success and the reborn of Z-machine, was the replacement of gas by an array of metal wires through which the electrical current flows and vaporizes it creating an imploding plasma. It is not well understood why Z-pinch machines generate far more radiation than theoretically expected. (A.C.)

  7. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  8. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  9. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  10. Construction machine control guidance implementation strategy.

    Science.gov (United States)

    2010-07-01

    Machine Controlled Guidance (MCG) technology may be used in roadway and bridge construction to improve construction efficiencies, potentially resulting in reduced project costs and accelerated schedules. The technology utilizes a Global Positioning S...

  11. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  12. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  13. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  14. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  15. A new combination of membranes and membrane reactors for improved tritium management in breeder blanket of fusion machines

    International Nuclear Information System (INIS)

    Demange, D.; Staemmler, S.; Kind, M.

    2011-01-01

    Tritium used as fuel in future fusion machines will be produced within the breeder blanket. The tritium extraction system recovers the tritium to be routed into the inner-fuel cycle of the machine. Accurate and precise tritium accountancy between both systems is mandatory to ensure a reliable operation. Handling in the blanket huge helium flow rates containing tritium as traces in molecular and oxide forms is challenging both for the process and the accountancy. Alternative tritium processes based on combinations of membranes and membrane reactors are proposed to facilitate the tritium management. The PERMCAT process is based on counter-current isotope swamping in a palladium membrane reactor. It allows recovering tritium efficiently from any chemical species. It produces a pure hydrogen stream enriched in tritium of advantage for integration upstream of the accountancy stage. A pre-separation and pre-concentration stage using new zeolite membranes has been studied to optimize the whole process. Such a combination could improve the tritium processes and facilitate accountancy in DEMO.

  16. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...

  17. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  18. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  19. Status report on controlled nuclear fusion as a source of hydrogen energy

    International Nuclear Information System (INIS)

    Powell, J.

    1975-01-01

    The present status of controlled fusion research is reviewed. Possible future reseach is also described. Tokamak systems using both fusion and fissionable fuels are discussed. Various aspects of hydrogen production by fusion reactors are described according to cost and economics. auth)

  20. Vacuum fusion of uranium; Fusion de l'uranium sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J. A.

    1957-06-04

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results.

  1. High Level Information Fusion (HLIF) with nested fusion loops

    Science.gov (United States)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  2. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant.

    Science.gov (United States)

    Boboc, A; Bieg, B; Felton, R; Dalley, S; Kravtsov, Yu

    2015-09-01

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  3. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Boboc, A., E-mail: Alexandru.Boboc@ccfe.ac.uk; Felton, R.; Dalley, S. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bieg, B.; Kravtsov, Yu. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institute of Physics, Maritime University of Szczecin, Szczecin (Poland)

    2015-09-15

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  4. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  5. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  6. Application of a 16-bit microprocessor to the digital control of machine tools

    International Nuclear Information System (INIS)

    Issaly, Alain

    1979-01-01

    After an overview of machine tools (various types, definition standardization, associated technologies for motors and position sensors), this research thesis describes the principles of computer-based digital control: classification of machine tool command systems, machining programming, programming languages, dialog function, interpolation function, servo-control function, tool compensation function. The author reports the application of a 16-bit microprocessor to the computer-based digital control of a machine tool: feasibility, selection of microprocessor, hardware presentation, software development and description, machining mode, translation-loading mode

  7. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  8. Reliability, availability, and quality assurance considerations for fusion components

    International Nuclear Information System (INIS)

    Buende, R.

    1995-01-01

    The complexity of magnetic confinement machines has been a matter of concern in developing fusion power plants as electricity generating stations because it might reduce plant availability. A comprehensive reliability and availability (R and A) programme to determine the availability of a next step fusion machine was performed during definition and conceptual design of the Next European Torus. In addition to giving an overview of the expected contributions to unavailability of the various components, this activity identified the basic approach to be taken to specify and to achieve necessary improvements. This paper, after giving some basic definitions, describes the essentials of the R and A programme, its results, and the guidelines derived for further work towards a sufficiently reliable fusion plant. These guidelines refer to improvement of the reliability database and the quality assurance to be performed at the design stage of a next step machine. (orig.)

  9. Remote assembly and maintenance of fusion reactors

    International Nuclear Information System (INIS)

    Becquet, M.C.; Farfaletti-Casali, F.

    1991-01-01

    This paper intend to present the state of the art in the field of remote assembly and maintenance, including system analysis design and operation for controlled fusion device such as JET, and the next NET and ITER reactors. The operational constraints of fusion reactors with respect to temperature, radiations dose rates and cumulated doses are considered with the resulting design requirements. Concepts like articulated boom, in-vessel vehicle and blanket handling device are presented. The close relations between computer simulations and experimental validation of those concepts are emphasized to ensure reliability of the operational behavior. Mockups and prototypes in reduced and full scale, as operating machines are described to illustrate the progress in remote operations for fusion reactors. The developments achieved at the Institute for System Engineering and Informatics of the Joint Research Center, in the field of remote blanket maintenance, reliability assessment of RH systems and remote cut and welding of lips joints are considered. (author)

  10. Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Maddaluno, Giorgio

    2012-01-01

    Graphical abstract: Laser-Induced-Breakdown-Spectroscopy was used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines. Highlights: ► Description and characterization of an LIBS set-up for diagnostics in fusion machines. ► Identification of atomic composition of multilayered tiles simulating plasma facing components. ► Qualitative applicability of the Calibration Free method for quantitative analysis. ► Feasibility of large scale application in the processes of control during the tiles fabrication. ► Feasibility of erosion monitoring during operation of fusion machines. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is nowadays a well established tool for qualitative, semi-quantitative and quantitative analyses of surfaces, with micro-destructive characteristics and capabilities for stratigraphy. LIBS is an appealing technique compared with many other types of elemental analysis thanks to the set up versatility facilitating non-invasive and remote analyses, as well as suitability to diagnostics in harsh environments. In this work, LIBS capabilities were used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines such as ITER. A new experimental setup was designed and realized in order to optimize the characteristics of an LIBS system working at low pressure and remotely, as it should be for an in situ system to be applied in monitoring the erosion and redeposition phenomena occurring on the inner walls of a fusion device. The effects of time delay and laser fluence on LIBS sensitivity at reduced pressure were examined, looking for operational conditions suitable to analytical applications. The quantitative analysis of some atomic species in the superficial layer has been carried out using a Calibration Free (CF) approach in the time

  11. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.

  12. Information Fusion of Conflicting Input Data

    Directory of Open Access Journals (Sweden)

    Uwe Mönks

    2016-10-01

    Full Text Available Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation employing the μBalTLCS (fuzzified balanced two-layer conflict solving fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.

  13. Information Fusion of Conflicting Input Data.

    Science.gov (United States)

    Mönks, Uwe; Dörksen, Helene; Lohweg, Volker; Hübner, Michael

    2016-10-29

    Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μ BalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.

  14. In-vessel maintenance concepts for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Yount, J.A.

    1983-01-01

    Concepts for rail-mounted and guided in-vessel handling machines (IVM) for remote maintenance inside tokamak fusion reactors are described. The IVM designs are based on concepts for tethered remotely operated vehicles and feature the use of multiple manipulator arms for remote handling and remote-controlled TV cameras for remote viewing. The concepts include IVMs for both single or dual rail systems located in the top or bottom of the reactor vessel

  15. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  16. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  17. Dispersion interferometer for controlled fusion devices

    International Nuclear Information System (INIS)

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  18. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  19. Decision Fusion System for Bolted Joint Monitoring

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-01-01

    Full Text Available Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

  20. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    OpenAIRE

    Hakan ATEŞ; Ramazan BAYINDIR

    2003-01-01

    In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control sys...

  1. An ensemble machine learning approach to predict survival in breast cancer.

    Science.gov (United States)

    Djebbari, Amira; Liu, Ziying; Phan, Sieu; Famili, Fazel

    2008-01-01

    Current breast cancer predictive signatures are not unique. Can we use this fact to our advantage to improve prediction? From the machine learning perspective, it is well known that combining multiple classifiers can improve classification performance. We propose an ensemble machine learning approach which consists of choosing feature subsets and learning predictive models from them. We then combine models based on certain model fusion criteria and we also introduce a tuning parameter to control sensitivity. Our method significantly improves classification performance with a particular emphasis on sensitivity which is critical to avoid misclassifying poor prognosis patients as good prognosis.

  2. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  3. The ORNL Controlled Fusion Atomic Data Center

    International Nuclear Information System (INIS)

    Schultz, D.R.; Krstic, P.S.; Ownby, F.M.; Meyer, F.W.; Havener, C.C.; Bannister, M.E.; Liu, W.; Jeffery, D.J.; Stancil, P.C.

    1997-01-01

    The principal mission of the Controlled Fusion Atomic Data Center is the collection evaluation, and dissemination of atomic collision data relevant to fusion energy development. With the advent of the widespread use of the World Wide Web, the data center's resources are being placed on-line to facilitate their use by end-users (cf. http://www-cfadc.phy.ornl.gov/). As this development continues, initially disparate, individually compiled resources will be transformed into integrated tools for retrieving recommended data, or displaying and manipulating the information available. The data center's present capabilities, recent data production/evaluation efforts, and goals for future development are highlighted here

  4. Surface effects in controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1975-08-01

    During the operation of large size plasma facilities and future controlled thermonuclear fusion reactors the surfaces of such major components as container walls, beam limiters, diverter walls and beam-dump walls of the injector region will be exposed to particle and photon bombardment from primary plasma radiations and from secondary radiations. Such radiations can cause, for example, physical and chemical sputtering, blistering, particle- and photon-impact induced desorption, secondary electron and x-ray emission, backscattering, nuclear reactions, photo-decomposition of surface compounds, photocatalysis, and vaporization. Such effects in turn can (a) seriously damage and erode the bombarded surface and (b) release major quantities of impurities which will contaminate the plasma. The effects of some of the major surface phenomena on the operation of plasma facilities and future fusion reactors are discussed

  5. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  6. Plasma physics for controlled fusion. 2. ed.

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  7. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  8. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  9. Automated reasoning in man-machine control systems

    International Nuclear Information System (INIS)

    Stratton, R.C.; Lusk, E.L.

    1983-01-01

    This paper describes a project being undertaken at Argonne National Laboratory to demonstrate the usefulness of automated reasoning techniques in the implementation of a man-machine control system being designed at the EBR-II nuclear power plant. It is shown how automated reasoning influences the choice of optimal roles for both man and machine in the system control process, both for normal and off-normal operation. In addition, the requirements imposed by such a system for a rigorously formal specification of operating states, subsystem states, and transition procedures have a useful impact on the analysis phase. The definitions and rules are discussed for a prototype system which is physically simple yet illustrates some of the complexities inherent in real systems

  10. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  11. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  12. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  13. Cyclic Processing for Context Fusion

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2007-01-01

    Many machine-learning techniques use feedback information. However, current context fusion systems do not support this because they constrain processing to be structured as acyclic processing. This paper proposes a generalization which enables the use of cyclic processing in context fusion systems....... A solution is proposed to the inherent problem of how to avoid uncontrollable looping during cyclic processing. The solution is based on finding cycles using graph-coloring and breaking cycles using time constraints....

  14. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    Science.gov (United States)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  15. Materials for heat flux components of the first wall in fusion reactors

    International Nuclear Information System (INIS)

    Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1985-08-01

    Materials of the First Wall in near-fusion plasma machines are subjected to a complex load system resulting from the plasma-wall interaction. The materials for their part also influence the plasma. Suitable materials must be available in order to ensure that the wall components achieve a sufficiently long dwell time and that their effects on the plasma remain small and controllable. The present report discusses relations between the plasma-wall interaction, the reactions of the materials and testing and examination methods for specific problems in developing and selecting suitable materials for highly stressed components on the First Wall of fusion reactors. (orig.)

  16. A transformational product to improve self-control strength: The Chocolate Machine

    OpenAIRE

    Kehr, Flavius; Hassenzahl, Marc; Laschke, Matthias; Diefenbach, Sarah

    2012-01-01

    Lack of self-control is at the heart of many undesirable behaviors, such as overeating, overspending, and evenoverworking. While the field of persuasive technologies explicitly searches for ways to change attitudes and behaviors, it more or less neglects the science of self-control. We present the Chocolate Machine, an interactive device to train self-control strength based upon Ego Depletion theory. A longitudinal, control-group, field study showed the machine to increase self-control str...

  17. Continuous internal channels formed in aluminum fusion welds

    Science.gov (United States)

    Gault, J.; Sabo, W.

    1967-01-01

    Process produces continuous internal channel systems on a repeatable basis in 2014-T6 aluminum. Standard machining forms the initial channel, which is filled with tungsten carbide powder. TIG machine fusion welding completes formation of the channel. Chem-mill techniques enlarge it to the desired size.

  18. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hakan ATEŞ

    2003-02-01

    Full Text Available In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control system has been worked successfully.

  19. TPX foams for inertial fusion laser experiments: foam preparation, machining, characterization, and discussion of density issues

    International Nuclear Information System (INIS)

    Grosse, M.; Guillot, L.; Reneaume, B.; Fleury, E.; Hermerel, C.; Choux, A.; Jeannot, L.; Geoffray, I.; Faivre, A.; Breton, O.; Andre, J.; Collier, R.; Legaie, O.

    2011-01-01

    Low density foams (in this work, foam density refers to apparent density) are materials of interest for fusion experiments. Low density poly(4-methyl-1-pentene)(commercial name TPX) foams have been produced for 30 years. TPX foams have been shown to have densities as low as 3 mg.cm -3 , which is very close to air density (1.2 mg.cm -3 ). Around this density foams are very light and highly fragile. Their fabrication is thus a real technological challenge. However, shrinking always appears in ranges ranking from 25% to almost 200%. As a result, the apparent density of the final foam never matches the expected value given by the precursor solution concentration. Besides, even if the mold dimensions are precisely known, shrinkage is never linear, and foams have to be machined for precise density measurement. In our work we present a fabrication process for TPX foams and discuss machining and density measuring issues. Particularly, we have found that there are volume and weight limits for a determination of density within the range of 3% uncertainty. This raises the question whether density should rather be determined directly on millimeter-sized targets or should be performed on a bigger scale sample prepared from the same batch. (authors)

  20. Remote maintenance of future fusion reactors - a challenge for rad-hard components and smart control strategies

    International Nuclear Information System (INIS)

    Decreton, M.; Geeter, J. De

    1996-01-01

    The future fusion reactor will need frequent maintenance turns, involving inspection, repair and parts replacement inside the vacuum vessel. These operations will require high payload manipulations in constrained space under very high gamma-radiation dose-rates and temperature. Present research is being undertaken to qualify the components of the handling machine under representative conditions, in the framework of the ITER international consortium. Simultaneously, challenging control strategies will be needed to achieve reliable tasking under very poor viewing conditions and elementary sensing help. The paper reviews the present state of the art on both issues and present results of the ongoing research themes among the partners of the ITER programme. In particular, SCK''centre-dot''CEN coordinates the ITER T252 task on Radiation Tolerance Assessment of Remote Handling Components. (UK)

  1. Fusion Control of Flexible Logic Control and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2014-01-01

    Full Text Available Based on the basic physical meaning of error E and error variety EC, this paper analyzes the logical relationship between them and uses Universal Combinatorial Operation Model in Universal Logic to describe it. Accordingly, a flexible logic control method is put forward to realize effective control on multivariable nonlinear system. In order to implement fusion control with artificial neural network, this paper proposes a new neuron model of Zero-level Universal Combinatorial Operation in Universal Logic. And the artificial neural network of flexible logic control model is implemented based on the proposed neuron model. Finally, stability control, anti-interference control of double inverted-pendulum system, and free walking of cart pendulum system on a level track are realized, showing experimentally the feasibility and validity of this method.

  2. Energy saving work of frequency controlled induction cage machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 8, 81-225 Gdynia (Poland)]. E-mail: piotrg@am.gdynia.pl

    2007-03-15

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor.

  3. Energy saving work of frequency controlled induction cage machine

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2007-01-01

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor

  4. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  5. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  6. International collaboration in the development of materials for fusion

    International Nuclear Information System (INIS)

    Amelinckx, S.

    1988-01-01

    International collaboration in the field of fusion physics research has become a tradition since many years. There are good reasons for this. Fusion physics experiments require progressively larger and more expensive machines. The construction of a major fusion device is beyond the possibility of single nations, except for the largest ones. Moreover it is desirable to test several fundamentally different design options. It would therefore be unreasonable to duplicate major fusion physics experiments. The necessity to pool and coordinate efforts in this area has therefore been recognized since many years and not only within the European community, but even on a global scale. The situation is somewhat different in the area of fusion materials research. In a number of areas of materials research 'big machines' are not required and meaningful research is within the reach of even small countries, moreover it can be done in decentralized fashion. It should nevertheless be noted that the number of properties to be studied and the number of materials options to be evaluated is so extensive that even here excessive duplication would be harmful. (orig.)

  7. Numerical controlled diamond fly cutting machine for grazing incidence X-ray reflection mirrors

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Moriyama, Shigeo; Seya, Eiiti

    1992-01-01

    Synchrotron radiation has reached the stage of practical use, and the application to the wide fields that support future advanced technologies such as spectroscopy, the structural analysis of matters, semiconductor lithography and medical light source is expected. For the optical system of the equipment utilizing synchrotron radiation, the total reflection mirrors of oblique incidence are used for collimating and collecting X-ray. In order to restrain their optical aberration, nonspherical shape is required, and as the manufacturing method with high precision for nonspherical mirrors, a numerically controlled diamond cutting machine was developed. As for the cutting of soft metals with diamond tools, the high precision machining of any form can be done by numerical control, the machining time can be reduced as compared with grinding, and the cooling effect is large in metals. The construction of the cutting machine, the principle of machining, the control system, the method of calculating numerical control data, the investigation of machinable forms and the result of evaluation are reported. (K.I.)

  8. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  9. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  10. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  11. Application of Artificial Intelligence Techniques for the Control of the Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    F. Khammar

    2016-01-01

    Full Text Available The induction machine is experiencing a growing success for two decades by gradually replacing the DC machines and synchronous in many industrial applications. This paper is devoted to the study of advanced methods applied to the command of the asynchronous machine in order to obtain a system of control of high performance. While the criteria for response time, overtaking, and static error can be assured by the techniques of conventional control, the criterion of robustness remains a challenge for researchers. This criterion can be satisfied only by applying advanced techniques of command. After mathematical modeling of the asynchronous machine, it defines the control strategies based on the orientation of the rotor flux. The results of the different simulation tests highlight the properties of robustness of algorithms proposed and suggested to compare the different control strategies.

  12. Hemi-fused structure mediates and controls fusion and fission in live cells.

    Science.gov (United States)

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission.

  13. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  14. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    The International Fusion Research Council has prepared this report on the current status of fusion, an update of its 1978 report, at the request of the Director General of the International Atomic Energy Agency. The report consists of an introductory note by the Director General, an Executive Summary and General Overview published in this document, and a series of technical reports. The background of fusion as an energy source is documented and compared with fission. The two approaches to thermonuclear fusion, magnetic confinement and inertial confinement, are discussed. The viability with respect to economic, environmental, and safety aspects is discussed. Fusion programs in the European Community, Japan, the USSR, the USA, as well as smaller programs in other countries are described. The status of fusion physics and technology is elucidated, and future directions and plans are indicated. 5 refs, 6 figs

  15. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  16. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  17. Pellets for fusion reactor refueling. Annual progress report, 1 January 1975--31 December 1975

    International Nuclear Information System (INIS)

    Turnbull, R.J.

    1976-01-01

    The feasibility of refueling fusion reactors using pellets of deuterium-tritium is discussed. A pellet injector has been constructed and experiments have been done injecting solid pellets into the ORMAK machine. Theoretical explanations of the results from these experiments have been successful. Other experiments underway include techniques for charging the pellets in order to accelerate and control them

  18. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  19. Control processes and machine protection on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Raupp, G.; Treutterer, W.; Mertens, V.; Neu, G.; Sips, A.; Zasche, D.; Zehetbauer, Th.

    2007-01-01

    Safe operation of ASDEX Upgrade is guaranteed by a conventional hierarchy of simple and robust hard-wired systems for personnel and machine protection featuring standardized switch-off procedures. Machine protection and handling of off-normal events is further enhanced and peak and lifetime stress minimized through the plasma control system. Based on a real-time process model supporting safety critical applications with data quality tagging, process self-monitoring, watchdog monitoring and alarm propagation, processes detect complex and critical failures and reliably perform case-sensitive counter measures. Intelligent real-time failure handling is done with hardware or software redundancy and performance degradation, or modification of reference values to continue or terminate discharges with reduced machine stress. Examples implemented so far on ASDEX Upgrade are given, such as recovery from measurement failures, switch-over of redundant actuators, handling of actuator limitations, detection of plasma instabilities, plasma state dependent soft landing, or handling of failed switch-off procedures through breakers disconnecting the machine from grid

  20. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  1. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  2. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 2. Comprehending the divertor structure

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Akiba, Masato; Saito, Masakatsu

    2006-01-01

    Divertor is given the largest heat load in the in-vessel components of fusion machine. The functions and conditions of divertor are stated from the point of view of thermal and structural dynamics. The way of thinking of structure design of divertor of JT-60 and the ITER (International Thermonuclear Experimental Reactor) is explained. As the conditions of divertor, the materials for large heat load, heat removal, pressure boundary, control of damage, and thermal stress/strain are considered. The divertor has to be changed periodically. The materials are required the heat removal function for high heat load. CuCrZr will be used to cooling tube and heat sink, and CFC materials for the surface. The cross section of ITER, a part of divertor, heat load of divertor and other components, the thermal conductivity of CFC and metal materials, conditions of cooling water for divertor of BWR, PWR and ITER, the thermal stress produced on rod, vertical target of ITER, structure of cooling tube, distribution of temperature and critical heart flux of inner wall of cooling tube, and fatigue clack of cooling tube are shown. (S.Y.)

  3. The achievements of the Z-machine

    International Nuclear Information System (INIS)

    Larousserie, D.

    2008-01-01

    The ZR-machine that represents the latest generation of Z-pinch machines has recently begun preliminary testing before its full commissioning in Albuquerque (Usa). During its test the machine has well operated with electrical currents whose intensities of 26 million Ampere are already 2 times as high as the intensity of the operating current of the previous Z-machine. In 2006 the Z-machine reached temperatures of 2 billions Kelvin while 100 million Kelvin would be sufficient to ignite thermonuclear fusion. In fact the concept of Z-pinch machines was imagined in the fifties but the technological breakthrough that has allowed this recent success and the reborn of Z-machine, was the replacement of gas by an array of metal wires through which the electrical current flows and vaporizes it creating an imploding plasma. It is not well understood why Z-pinch machines generate far more radiation than theoretically expected. (A.C.)

  4. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  5. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  6. Man-machine communication in reactor control using AI methods

    International Nuclear Information System (INIS)

    Klebau, J.; Lindner, A.; Fiedler, U.

    1987-01-01

    In the last years the interest in process control has expecially focused on problems of man-machine communication. It depends on its great importance to process performance and user acceptance. Advanced computerized operator aids, e.g. in nuclear power plants, are as well as their man-machine interface. In the Central Institute for Nuclear Research in Rossendorf a computerized operator support system for nuclear power plants is designed, which is involved in a decentralized process automation system. A similar but simpler system, the Hierarchical Informational System (HIS) at the Rossendorf Research Reactor, works with a computer controlled man-machine interface, based on menu. In the special case of the disturbance analysis program SAAP-2, which is included in the HIS, the limits of menu techniques are obviously. Therefore it seems to be necessary and with extended hard- and software possible to realize an user controlled natural language interface using Artificial Intelligence (AI) methods. The draft of such a system is described. It should be able to learn during a teaching phase all phrases and their meanings. The system will work on the basis of a self-organizing, associative data structure. It is used to recognize a great amount of words which are used in language analysis. Error recognition and, if possible, correction is done by means of a distance function in the word set. Language analysis should be carried out with a simplified word class controlled functional analysis. With this interface it is supposed to get experience in intelligent man-machine communication to enhance operational safety in future. (author)

  7. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  8. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  9. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  10. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  11. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  12. Fusion of remote sensing images based on pyramid decomposition with Baldwinian Clonal Selection Optimization

    Science.gov (United States)

    Jin, Haiyan; Xing, Bei; Wang, Lei; Wang, Yanyan

    2015-11-01

    In this paper, we put forward a novel fusion method for remote sensing images based on the contrast pyramid (CP) using the Baldwinian Clonal Selection Algorithm (BCSA), referred to as CPBCSA. Compared with classical methods based on the transform domain, the method proposed in this paper adopts an improved heuristic evolutionary algorithm, wherein the clonal selection algorithm includes Baldwinian learning. In the process of image fusion, BCSA automatically adjusts the fusion coefficients of different sub-bands decomposed by CP according to the value of the fitness function. BCSA also adaptively controls the optimal search direction of the coefficients and accelerates the convergence rate of the algorithm. Finally, the fusion images are obtained via weighted integration of the optimal fusion coefficients and CP reconstruction. Our experiments show that the proposed method outperforms existing methods in terms of both visual effect and objective evaluation criteria, and the fused images are more suitable for human visual or machine perception.

  13. Fusion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (3/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    This is the second half of a lecture series on fusion and will concentrate on fusion technology. The early phase of fusion development was concentrated on physics. However, during the 1980s it was realized that if one wanted to enter the area of fusion reactor plasmas, even in an experimental machine, a significant advance in fusion technologies would be needed. After several conceptual studies of reactor class fusion devices in the 1980s the engineering design phase of ITER started in earnest during the 1990s. The design team was in the beginning confronted with many challenges in the fusion technology area as well as in physics for which no readily available solution existed and in a few cases it was thought that solutions may be impossible to find. However, after the initial 3 years of intensive design and R&D work in an international framework utilizing basic fusion technology R&D from the previous decade it became clear that for all problems a conceptual solution could be found and further devel...

  14. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  15. Conceptual design study of quasi-steady state fusion experimental reactor (FER-Q), part 2

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 FER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included: heating/current drive system, plasma position control, power supply, diagnostics, neutronics, blanket test module, repair and maintenance and safety. (author)

  16. Rotamak offers new twist in the search for fusion

    International Nuclear Information System (INIS)

    Hoffman, A.

    1998-01-01

    Nuclear fusion - the energy source of the stars - could one day become an unlimited source of energy on Earth. But to achieve fusion, a hydrogen plasma must be heated to temperatures of 100 million degrees and confined at high enough densities for thermonuclear reactions to occur. This is usually achieved on Earth by confining the plasma in a toroidal (doughnut-shaped) machine known as a tokamak. However, tokamaks are large and complex machines, and next-generation devices are expected to cost around $10bn. Although such a machine has already been designed by an international collaboration, it is proving extremely difficult to secure funding to build it, and the search is on for simpler and cheaper alternatives. One possibility, which has been developed in Australia over the last 20 years, is a compact machine known as a rotamak. Recent experiments by Ieuan Jones and colleagues at Flinders University in Adelaide have demonstrated a new mode of operation for this type of device, which they call a rotamak-ST (where ST stands for spherical tokamak). In the process, they achieved the best-ever performance for a rotamak (I R Jones et al. 1998 Phys. Rev. Lett. 81 2072). The results are so encouraging that larger facilities in the UK and the US are now planning similar experiments. In this article the author describes the latest fusion research. (UK)

  17. Direct torque control design and experimental evaluation for the brushless doubly fed machine

    International Nuclear Information System (INIS)

    Sarasola, Izaskun; Poza, Javier; Rodriguez, Miguel A.; Abad, Gonzalo

    2011-01-01

    In this paper, a direct torque control (DTC) strategy for the brushless doubly fed machine (BDFM) is presented. After analyzing the mathematical model of this machine, the voltage vectors look-up table of classical DTC techniques is derived. Then, the behavior of the machine is studied when it is controlled by the developed DTC technique, concluding that under some specific operation conditions, a BDFM could present a time interval where the torque and the flux can not be controlled simultaneously. In these cases, two different control solutions have been defined: 'flux priority' and 'torque priority'. Finally, simulation and experimental results validate the effectiveness of the proposed control algorithms.

  18. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  19. The use of folding structures in fusion reactors

    International Nuclear Information System (INIS)

    Haines, T.

    1992-01-01

    Folding structures can be used with advantage in fusion machines. They have been used in Space for decades to extend antennas, sensors and solar panels; terrestrial versions have been used as retractable antennas and antennas masts. They have also been used in the Joint European Torus (JET) and other nuclear applications. In this paper, three types are described, together with concepts for use in fusion machines. The Storable Tubular Extendible Member (STEM) was conceived by the National Research Council of Canada and developed by Spar Aerospace Limited. The Astromast is a folding truss developed by Astro Aerospace Corporation, a US subsidiary of Spar. The X-Beam is an ultra-stiff folding truss

  20. Evolution of the mirror machine

    International Nuclear Information System (INIS)

    Damm, C.C.

    1983-01-01

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor

  1. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  2. Virtual Machine Language Controls Remote Devices

    Science.gov (United States)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  3. Equivalent model of a dually-fed machine for electric drive control systems

    Science.gov (United States)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  4. Which Management Control System principles and aspects are relevant when deploying a learning machine?

    OpenAIRE

    Martin, Johansson; Mikael, Göthager

    2017-01-01

    How shall a business adapt its management control systems when learning machines enter the arena? Will the control system continue to focus on humans aspects and continue to consider a learning machine to be an automation tool as any other historically programmed computer? Learning machines introduces productivity capabilities that achieve very high levels of efficiency and quality. A learning machine can sort through large amounts of data and make conclusions difficult by a human mind. Howev...

  5. Brazilian programme for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Reusch, M.F.; Nascimento, I.C.; Pantuso-Sudano, J.

    1992-01-01

    A proposal for a National Programme of Plasma Physics and Controlled Thermonuclear Fusion in Brazil is presented, aimimg the dissemination of the researchers thought in plasma physics for the national authorities and the scientific community. (E.O.)

  6. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  7. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  8. Italy, EURATOM and Early Research on Controlled Thermonuclear Fusion (1957-1962)

    International Nuclear Information System (INIS)

    Curli, Barbara

    2017-01-01

    This chapter traces the early origins of European collaboration in controlled thermonuclear fusion research, within the larger picture of Cold War nuclear policy in the late 1950s-early 1960s, and as a consequence of the signing of the EURATOM treaty in 1957. It then presents some preliminary findings on the Association contract which was signed in 1960 between EURATOM and Italy, in order to carry out research in controlled thermonuclear fusion at the then newly created 'Laboratori nazionali di Frascati', near Rome, within the framework of the Comitato Nazionale Energia Nucleare (CNEN), the Italian civilian nuclear energy agency.

  9. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  10. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  11. The present role of superconductivity in fusion

    International Nuclear Information System (INIS)

    Shimamoto, S.

    1986-01-01

    After completion of large fusion devices in the world, such as JT-60, JET and TFTR, high temperature plasma is proceeding to critical condition for fusion. The devices up to now use mainly conventional magnet. However, for the next generation machine which demonstrates fusion reaction, deuterium-tritium burning, superconducting magnet system is indispensable from view point of both net energy extraction and capacity limitation of power supply. In order to realize such a large and complicated system, a lot of development works is being carried out. This paper describes required parameters of superconducting magnet and helium refrigerator, the state of plasma condition and superconducting magnet. It is shown that the present technology of superconducting magnet is not so far from realization of fusion experimental reactor

  12. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  13. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    Science.gov (United States)

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  14. Gene Fusion Markup Language: a prototype for exchanging gene fusion data.

    Science.gov (United States)

    Kalyana-Sundaram, Shanker; Shanmugam, Achiraman; Chinnaiyan, Arul M

    2012-10-16

    An avalanche of next generation sequencing (NGS) studies has generated an unprecedented amount of genomic structural variation data. These studies have also identified many novel gene fusion candidates with more detailed resolution than previously achieved. However, in the excitement and necessity of publishing the observations from this recently developed cutting-edge technology, no community standardization approach has arisen to organize and represent the data with the essential attributes in an interchangeable manner. As transcriptome studies have been widely used for gene fusion discoveries, the current non-standard mode of data representation could potentially impede data accessibility, critical analyses, and further discoveries in the near future. Here we propose a prototype, Gene Fusion Markup Language (GFML) as an initiative to provide a standard format for organizing and representing the significant features of gene fusion data. GFML will offer the advantage of representing the data in a machine-readable format to enable data exchange, automated analysis interpretation, and independent verification. As this database-independent exchange initiative evolves it will further facilitate the formation of related databases, repositories, and analysis tools. The GFML prototype is made available at http://code.google.com/p/gfml-prototype/. The Gene Fusion Markup Language (GFML) presented here could facilitate the development of a standard format for organizing, integrating and representing the significant features of gene fusion data in an inter-operable and query-able fashion that will enable biologically intuitive access to gene fusion findings and expedite functional characterization. A similar model is envisaged for other NGS data analyses.

  15. Sensor fusion III: 3-D perception and recognition; Proceedings of the Meeting, Boston, MA, Nov. 5-8, 1990

    Science.gov (United States)

    Schenker, Paul S. (Editor)

    1991-01-01

    The volume on data fusion from multiple sources discusses fusing multiple views, temporal analysis and 3D motion interpretation, sensor fusion and eye-to-hand coordination, and integration in human shape perception. Attention is given to surface reconstruction, statistical methods in sensor fusion, fusing sensor data with environmental knowledge, computational models for sensor fusion, and evaluation and selection of sensor fusion techniques. Topics addressed include the structure of a scene from two and three projections, optical flow techniques for moving target detection, tactical sensor-based exploration in a robotic environment, and the fusion of human and machine skills for remote robotic operations. Also discussed are K-nearest-neighbor concepts for sensor fusion, surface reconstruction with discontinuities, a sensor-knowledge-command fusion paradigm for man-machine systems, coordinating sensing and local navigation, and terrain map matching using multisensing techniques for applications to autonomous vehicle navigation.

  16. Improved Controls for Fusion RF Systems. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Jeffrey A. [Rockfield Research Inc., Las Vegas, NV (United States)

    2011-11-08

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.

  17. Improved Controls for Fusion RF Systems. Final technical report

    International Nuclear Information System (INIS)

    Casey, Jeffrey A.

    2011-01-01

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration

  18. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  19. Propagation of nuclear data uncertainties for fusion power measurements

    Directory of Open Access Journals (Sweden)

    Sjöstrand Henrik

    2017-01-01

    Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  20. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  1. Controlled thermonuclear fusion: Tore Supra back bone of the EURATOM-CEA programme for the next ten years

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The decision to grant priority operation status to the French Tokamak Tore Supra will make it possible to start on the construction of this large machine and to bring together at the Cadarache Nuclear Study Centre all the facilities of the CEA for their research on fusion by magnetic confinement. The work is scheduled to begin in 1982 and to last until 1985. The financing is indicated and Tore Supra is briefly described [fr

  2. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  3. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2010-01-01

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  4. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  5. Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer

    Directory of Open Access Journals (Sweden)

    Thang Diep

    2010-06-01

    Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.

  6. Online learning control using adaptive critic designs with sparse kernel machines.

    Science.gov (United States)

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  7. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    Science.gov (United States)

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

  8. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  9. Twentyseventh European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Igitkhanov, Y.

    2000-01-01

    The twentyseventh European physical society conference on controlled fusion and plasma physics was held in Budapest, 12-16 June 2000. About 10 invited papers were presented, covering a wide range of problems in plasma physics, including confinement and transport issues in fusion devices, astrophysics and industrial application of plasmas. More than 100 papers were presented on plasma theory and experiments from tokamaks and stellarators. Some of the ITER-relevant issues covered are described in this newsletter

  10. Line-Tension Controlled Mechanism for Influenza Fusion

    NARCIS (Netherlands)

    Risselada, Herre Jelger; Marelli, Giovanni; Fuhrmans, Marc; Smirnova, Yuliya G.; Grubmueller, Helmut; Marrink, Siewert Jan; Mueller, Marcus

    2012-01-01

    Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim

  11. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  12. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  13. Implications of the second law for future directions in controlled fusion research

    International Nuclear Information System (INIS)

    Roth, J.R.; Miley, G.H.

    1980-01-01

    Many existing energy related technologies have developed under the influence of social, economic, or state of the art constraints, and they cannot be viewed as optimum systems according to the second law of thermodynamics. Controlled fusion research presents an opportunity to optimize a nascent technology with respect to second law considerations in order to develop a practical energy source. In its present state of development, fusion research offers several independent approaches that may result in a net power producing fusion reactor. This paper discusses how second law considerations might be used to narrow the range of choices that must be made among various fusion fuel cycles. From a second law point of view, the most desirable fusion reactors are those for which the energy of charged particles can be converted directly into d.c. electrical power, while still allowing the energy that could be recovered by an efficient high-temperature 'blanket' to be transported largely by radiation. Fusion research in all major industrialized countries is developing the deuterium-tritium (D-T) fuel cycle for first-generation fusion power plants. It will be shown that other fuel cycles have significant advantages over the D-T fuel cycle according to second law principles. (author)

  14. Issues in radioactivity for fusion energy: remote maintenance rating

    International Nuclear Information System (INIS)

    Dorn, D.W.; Maninger, R.C.

    1983-01-01

    Recent technical progress in fusion research has been sufficient to encourage the development of conceptual designs for fusion power systems. These design efforts suggest that more attention should be paid to the safety and environmental effects of the radioactivity induced in the structural materials by the fusion neutrons. In particular, radioactivity from neutron activation of the structural components of a fusion power system will be a concern for occupational exposure of personnel. Careful choice of structural materials can significantly reduce this exposure. We propose the Remote Maintenance Rating (RMR) as a numerical means of comparing materials and machine designs with respect to occupational exposures. The RMR is defined as the dose rate at the surface of a uniformly activated, thick, infinite slab with the same composition and density as the machine component. We used the RMR rating system to evaluate the suitability of several different iron-based alloys. The specific fusion power system design used in our evaluation was a conceptual design from the Mirror Advanced Reactor Study (MARS). We determined that HT-9 is significantly better in terms of radiological dose rates at early times than the other iron-based alloys (by a factor of 3 to 7). We also calculated the behavior of both silicon carbide (SiC) and aluminum (Al), two low activation materials often proposed for reactors

  15. Constrained state-feedback control of an externally excited synchronous machine

    NARCIS (Netherlands)

    Carpiuc, S.C.; Lazar, M.

    2013-01-01

    State-feedback control of externally excited synchronous machines employed in applications such as hybrid electric vehicles and full electric vehicles is a challenging problem. Indeed, these applications are characterized by fast dynamics that are subject to hard physical and control constraints.

  16. Quality control and performance evaluation of microselectron HDR machine over 30 months

    International Nuclear Information System (INIS)

    Balasubramanian, N.; Annex, E.H.; Sunderam, N.; Patel, N.P.; Kaushal, V.

    2008-01-01

    To assess the performance evaluation of Microselectron HDR machine the standard quality control and quality assurance checks were carried out after each loading of new 192 Ir brachytherapy source In the machine. Total 9 loadings were done over a period of 30 months

  17. Research program. Controlled thermonuclear fusion. Synthesis report 2013; Programme de recherche. Fusion thermonucléaire contrôlée -- Rapport de synthèse 2013

    Energy Technology Data Exchange (ETDEWEB)

    Villard, L. [Swiss Federal Institute of Technology (EPFL), Center for Research In Plasma Physics, CRPP, Lausanne (Switzerland); Marot, L. [University of Basel, Department of Physics, Basel (Switzerland)

    2014-07-01

    In 1961, 3 years after the 2{sup nd} International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. The progress realized in the framework of EURATOM has led to the design of the experimental reactor ITER which is being built at Cadarache (France). The future prototype reactor DEMO is foreseen in 2040-2050. In 2013, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. A new improved confinement regime, called IN-mode, was discovered on TCV. The theory and numerical simulation group interprets the experimental results and foresees those of futures machines. It requires very high performance computers. The Gyrotron group develops radiofrequency sources in the mm range for heating the TCV plasma as well as for ITER and the Wendelstein-7 stellarator. Concerning superconductivity, tests are conducted at PSI on toroidal cables of ITER. The development of conductors and coils for the DEMO reactor has been pursued. In the context of

  18. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  19. Vector control of three-phase AC machines system development in the practice

    CERN Document Server

    Quang, Nguyen Phung; Dittrich, J

    2015-01-01

    This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based  nonlinear

  20. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  1. The effect of controlled shot peening on fusion welded joints

    International Nuclear Information System (INIS)

    Lah, Nur Azida Che; Ali, Aidy; Ismail, Napsiah; Chai, Lim Poon; Mohamed, Abdul Aziz

    2010-01-01

    This work examines the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel welded joint. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity, inclusions, lack of penetration, and undercut found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 50% on MMA-welded, 63% on MIG-welded, and 60% on TIG-welded samples.

  2. Machine learning-based Landsat-MODIS data fusion approach for 8-day 30m evapotranspiration monitoring

    Science.gov (United States)

    Im, J.; Ke, Y.; Park, S.

    2016-12-01

    Continuous monitoring of evapotranspiration (ET) is important for understanding of hydrological cycles and energy flux dynamics. At regional and local scales, routine ET estimation is a critical for efficient water management, drought impact assessment and ecosystem health monitoring, etc. Remote sensing has long been recognized to be able to provide ET monitoring over large areas. However, no single satellite could provide temporally continuous ET at relatively high spatial resolution due to the trade-off between the spatial and temporal resolution of current satellite sensors. Landsat-series satellites provide optical and thermal imagery at 30-100m resolution, whereas the 16-day revisit cycle hinders the observation of ET dynamics; MODIS provides sources of ET estimation at daily basis, but the 500-1000m ground sampling distance is too coarse for field level applications. In this study, we present a machine learning and STARFM based method for Landsat/MODIS ET fusion. The approach first downscales MODIS 8-day 1km ET (MOD16A2) to 30m based on eleven Landsat-derived indicators such as NDVI, EVI, NDWI etc on the cloud-free Landsat-available days using Random Forest approach. For the days when Landsat data are not available, downscaled ET is synthesized by MODIS and Landsat data fusion with STARFM and STI-FM approaches. The models are evaluated using in situ flux tower measurements at US-ARM and US-Twt AmeriFlux sites the United States. Results show that the downscaled 30m ET have good agreement with MODIS ET (RMSE=0.42-3.4mm/8days, rRMSE=3.2%-26%) and the downscaled ET have higher accuracy than MODIS ET when compared to in-situ measurements.

  3. Use of micro gas chromatography in the fuel cycle of fusion reactors

    International Nuclear Information System (INIS)

    Laesser, R.; Gruenhagen, S.; Kawamura, Y.

    2003-01-01

    Various analytical techniques exist to determine the compositions of gases handled in the fuel cycle of future fusion machines. Gas chromatography was found to be the most appropriate method. The main disadvantages of conventional gas chromatography were the long retention times for the heavy hydrogen species of >30 min. Recent progress in the development of micro-gas chromatography has reduced these retention times to ∼3 min. The usefulness of micro-gas chromatography for the analysis of hydrogen and impurity gas mixtures in the fuel cycle of future fusion machines is presented and the advantages and drawbacks are discussed

  4. Unique sensor fusion system for coordinate-measuring machine tasks

    Science.gov (United States)

    Nashman, Marilyn; Yoshimi, Billibon; Hong, Tsai Hong; Rippey, William G.; Herman, Martin

    1997-09-01

    This paper describes a real-time hierarchical system that fuses data from vision and touch sensors to improve the performance of a coordinate measuring machine (CMM) used for dimensional inspection tasks. The system consists of sensory processing, world modeling, and task decomposition modules. It uses the strengths of each sensor -- the precision of the CMM scales and the analog touch probe and the global information provided by the low resolution camera -- to improve the speed and flexibility of the inspection task. In the experiment described, the vision module performs all computations in image coordinate space. The part's boundaries are extracted during an initialization process and then the probe's position is continuously updated as it scans and measures the part surface. The system fuses the estimated probe velocity and distance to the part boundary in image coordinates with the estimated velocity and probe position provided by the CMM controller. The fused information provides feedback to the monitor controller as it guides the touch probe to scan the part. We also discuss integrating information from the vision system and the probe to autonomously collect data for 2-D to 3-D calibration, and work to register computer aided design (CAD) models with images of parts in the workplace.

  5. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  6. Burn Control in Fusion Reactors via Nonlinear Stabilization Techniques

    International Nuclear Information System (INIS)

    Schuster, Eugenio; Krstic, Miroslav; Tynan, George

    2003-01-01

    Control of plasma density and temperature magnitudes, as well as their profiles, are among the most fundamental problems in fusion reactors. Existing efforts on model-based control use control techniques for linear models. In this work, a zero-dimensional nonlinear model involving approximate conservation equations for the energy and the densities of the species was used to synthesize a nonlinear feedback controller for stabilizing the burn condition of a fusion reactor. The subignition case, where the modulation of auxiliary power and fueling rate are considered as control forces, and the ignition case, where the controlled injection of impurities is considered as an additional actuator, are treated separately.The model addresses the issue of the lag due to the finite time for the fresh fuel to diffuse into the plasma center. In this way we make our control system independent of the fueling system and the reactor can be fed either by pellet injection or by puffing. This imposed lag is treated using nonlinear backstepping.The nonlinear controller proposed guarantees a much larger region of attraction than the previous linear controllers. In addition, it is capable of rejecting perturbations in initial conditions leading to both thermal excursion and quenching, and its effectiveness does not depend on whether the operating point is an ignition or a subignition point.The controller designed ensures setpoint regulation for the energy and plasma parameter β with robustness against uncertainties in the confinement times for different species. Hence, the controller can increase or decrease β, modify the power, the temperature or the density, and go from a subignition to an ignition point and vice versa

  7. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-06-01

    The International Fusion Research Council (IFRC), an advisory body to the International Atomic Energy Agency, reports on the current status of fusion; this report updates its 1978 status report. This report contains a General Overview and Executive Summary, and reports on all current approaches to fusion throughout the world; a series of technical reports is to be published elsewhere. This report is timely in that it not only shows progress which has occurred over the past, but interfaces with possible future devices, in particular the International Thermonuclear Experimental Reactor (ITER), whose conceptual design phase is nearing completion. 5 refs, 6 figs

  8. rhBMP-2 for posterolateral instrumented lumbar fusion: a multicenter prospective randomized controlled trial.

    Science.gov (United States)

    Hurlbert, R John; Alexander, David; Bailey, Stewart; Mahood, James; Abraham, Ed; McBroom, Robert; Jodoin, Alain; Fisher, Charles

    2013-12-01

    Multicenter randomized controlled trial. To evaluate the effect of recombinant human bone morphogenetic protein (rhBMP-2) on radiographical fusion rate and clinical outcome for surgical lumbar arthrodesis compared with iliac crest autograft. In many types of spinal surgery, radiographical fusion is a primary outcome equally important to clinical improvement, ensuring long-term stability and axial support. Biologic induction of bone growth has become a commonly used adjunct in obtaining this objective. We undertook this study to objectify the efficacy of rhBMP-2 compared with traditional iliac crest autograft in instrumented posterolateral lumbar fusion. Patients undergoing 1- or 2-level instrumented posterolateral lumbar fusion were randomized to receive either autograft or rhBMP-2 for their fusion construct. Clinical and radiographical outcome measures were followed for 2 to 4 years postoperatively. One hundred ninety seven patients were successfully randomized among the 8 participating institutions. Adverse events attributable to the study drug were not significantly different compared with controls. However, the control group experienced significantly more graft-site complications as might be expected. 36-Item Short Form Health Survey, Oswestry Disability Index, and leg/back pain scores were comparable between the 2 groups. After 4 years of follow-up, radiographical fusion rates remained significantly higher in patients treated with rhBMP-2 (94%) than those who received autograft (69%) (P = 0.007). The use of rhBMP-2 for instrumented posterolateral lumbar surgery significantly improves the chances of radiographical fusion compared with the use of autograft. However, there is no associated improvement in clinical outcome within a 4-year follow-up period. These results suggest that use of rhBMP-2 should be considered in cases where lumbar arthrodesis is of primary concern.

  9. New drive and control concept of the paper-board machine at the board factory "Umka"

    Directory of Open Access Journals (Sweden)

    Jeftenić Borislav

    2004-01-01

    Full Text Available This paper describes the reconstruction of the drives of a paper machine for the press and drying part of the machine during June, 2001, as well as the expansion of the paper machine with a "third coating" during July, 2002 at the board factory "Umka". The existing old drive of the press and the drying groups was realized as a 76 meter long line shaft drive. The coating section of the machine was realized with sectional drives with DC motors fed from thyristor converters. The concept of the new drive is based on standard squirrel cage induction motors, fed from frequency converters. The system is controlled by a programmable logic controller. The communication between the controller, frequency converters and control panels is realized with a profibus protocol. The Laboratory for Electric Drives, of the Faculty of Electrical Engineering, Belgrade, was contracted for the drive part of the reconstruction of the paper-board machine. The complete project, supervision of the work of the investor's own technical services and final commissioning of the drives were organized in such a way that the drives were changed during the planned periods for the repair of the machine.

  10. Energy balance of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Hashmi, M.; Staudenmaier, G.

    2000-01-01

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor-an energy producing device-seems to be beyond the realms of realization. (orig.)

  11. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    Highlights: • Test procedures for the qualification of the tightness of actively cooled plasma facing components were defined. • The test is performed after the component manufacturing and before its set-up in the vacuum vessel. • It allows improving the fusion machine availability. • The lessons of tests over 20 years at Tore Supra are presented. - Abstract: The fusion machines under development or construction (ITER, W7X) use several hundreds of actively cooled plasma facing components (ACPFC). They are submitted to leak tightness requirements in order to get an appropriate vacuum level in the vessel to create the plasma. During the ACPFC manufacturing and before their installation in the machine, their leak tightness performance must be measured to check that they fulfill the vacuum requirements. A relevant procedure is needed which allows to segregate potential defects. It must also be optimized in terms of test duration and costs. Tore Supra, as an actively cooled Tokamak, experienced several leaks on ACPFCs during the commissioning and during the operation of the machine. A test procedure was then defined and several test facilities were set-up. Since 1990 the tightness of all the new ACPFCs is systematically tested before their installation in Tore Supra. During the qualification test, the component is set up in a vacuum test tank, and its cooling circuits are pressurized with helium. It is submitted to 3 temperature cycles from room temperature up to the baking temperature level in Tore Supra (200 °C) and two pressurization tests are performed (6 MPa at room temperature and 4 MPa at 200 °C) at each stage. At the end of the last cycle when the ACPFC is at room temperature and pressurized with helium at 6 MPa, the measured leak rate must be lower than 5 × 10{sup −11} Pa m{sup 3} s{sup −1}, the pressure in the test tank being <5 × 10{sup −5} Pa. A large experience has been gained on ACPFCs with carbon parts on stainless steel and Cu

  12. Structural materials for fusion reactors

    International Nuclear Information System (INIS)

    Victoria, M.; Baluc, N.; Spaetig, P.

    2001-01-01

    In order to preserve the condition of an environmentally safe machine, present selection of materials for structural components of a fusion reactor is made not only on the basis of adequate mechanical properties, behavior under irradiation and compatibility with other materials and cooling media, but also on their radiological properties, i.e. activity, decay heat, radiotoxicity. These conditions strongly limit the number of materials available to a few families of alloys, generically known as low activation materials. We discuss the criteria for deciding on such materials, the alloys resulting from the application of the concept and the main issues and problems of their use in a fusion environment. (author)

  13. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  14. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  15. Machine function based control code algebras

    NARCIS (Netherlands)

    Bergstra, J.A.

    Machine functions have been introduced by Earley and Sturgis in [6] in order to provide a mathematical foundation of the use of the T-diagrams proposed by Bratman in [5]. Machine functions describe the operation of a machine at a very abstract level. A theory of hardware and software based on

  16. Information fusion in personal biometric authentication based on the iris pattern

    International Nuclear Information System (INIS)

    Wang, Fenghua; Han, Jiuqiang

    2009-01-01

    Information fusion in biometrics has received considerable attention. This paper focuses on the application of information fusion techniques in iris recognition. To improve the reliability and accuracy of personal identification based on the iris pattern, this paper proposes the schemes of multialgorithmic fusion and multiinstance fusion. Multialgorithmic fusion integrates the improved phase algorithm and the DCT-based algorithm, and multiinstance fusion combines information from the left iris and the right iris of an individual. Both multialgorithmic fusion and multiinstance fusion are carried out at the matching score level and the support vector machine (SVM)-based fusion rule is utilized to generate fused scores for final decision. The experimental results on the noisy iris database UBIRIS demonstrate that the proposed fusion schemes can perform better than the single recognition systems, and further prove that information fusion techniques are feasible and effective to improve the accuracy and robustness of iris recognition especially under noisy conditions

  17. Implementation of a Microcode-controlled State Machine and Simulator in AVR Microcontrollers (MICoSS

    Directory of Open Access Journals (Sweden)

    S. Korbel

    2005-01-01

    Full Text Available This paper describes the design of a microcode-controlled state machine and its software implementation in Atmel AVR microcontrollers. In particular, ATmega103 and ATmega128 microcontrollers are used. This design is closely related to the software implementation of a simulator in AVR microcontrollers. This simulator communicates with the designed state machine and presents a complete design environment for microcode development and debugging. These two devices can be interconnected by a flat cable and linked to a computer through a serial or USB interface.Both devices share the control software that allows us to create and edit microprograms and to control the whole state machine. It is possible to start, cancel or step through the execution of the microprograms. The operator can also observe the current state of the state machine. The second part of the control software enables the operator to create and compile simulating programs. The control software communicates with both devices using commands. All the results of this communication are well arranged in dialog boxes and windows. 

  18. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  19. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  20. Gesture-controlled interfaces for self-service machines and other applications

    Science.gov (United States)

    Cohen, Charles J. (Inventor); Beach, Glenn (Inventor); Cavell, Brook (Inventor); Foulk, Gene (Inventor); Jacobus, Charles J. (Inventor); Obermark, Jay (Inventor); Paul, George (Inventor)

    2004-01-01

    A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.

  1. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-02-01

    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  2. Base isolation technique for tokamak type fusion reactor using adaptive control

    International Nuclear Information System (INIS)

    Koizumi, T.; Tsujiuchi, N.; Kishimoto, F.; Iida, H.; Fujita, T.

    1991-01-01

    In this paper relating to the isolation device of heavy structure such as nuclear fusion reactor, a control rule for reducing the response acceleration and relative displacement simultaneously was formulated, and the aseismic performance was improved by employing the adaptive control method of changing the damping factors of the system adaptively every moment. The control rule was studied by computer simulation, and the aseismic effect was evaluated in an experiment employing a scale model. As a results, the following conclusions were obtained. (1) By employing the control rule presented in this paper, both absolute acceleration and relative displacement can be reduced simultaneously without making the system unstable. (2) By introducing this control rule in a scale model assuming the Tokamak type fusion reactor, the response acceleration can be suppressed down to 78 % and also the relative displacement to 79 % as compared with the conventional aseismic method. (3) The sensitivities of absolute acceleration and relative displacement with respect to the control gain are not equal. However, by employing the relative weighting factor between the absolute acceleration and relative displacement, it is possible to increase the control capability for any kind of objective structures and appliances. (author)

  3. Customer requirement modeling and mapping of numerical control machine

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2015-10-01

    Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.

  4. A tape-controlled remote automatic diameter measurement machine

    International Nuclear Information System (INIS)

    Jennison, W.; Salmon, A.M.

    1978-01-01

    The machine is designed for the automatic measurement of fuel pins after irradiation in the fast reactors and is a modified version of a machine which has been in use for several years. These modifications consist of mechanical improvements and solid state control circuitry but the design criteria are unchanged. Irradiated fuel pins with diameters up to 0.875 in. are measured at fixed axial positions and angular intervals. Axial stepping of either 1 cm or 1 in. with a standard deviation of 5 x 10 -4 in. and angular rotation by multiples of 18 0 with a non-cumulative error of 1 0 can be selected. Data on axial position to 0.1 in. or 0.1 cm and fuel element diameter to 5 x 10 -5 in. are both punched and printed out for computer evaluation. The standard deviation of a single measurement on cylindrical specimens with an eccentricity of up to at least 0.1 in. should be no worse than 1 x 10 -4 in. No operator attention is required after the pin is positioned in the machine and 40 sets of 10 diameter readings at 36 0 intervals can be performed in an hour. Switches can be set between 1 and 99 to terminate an examination when power is switched off with the machine in its rest position. (author)

  5. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1992-01-01

    The author gives a chronological account of the research about thermonuclear fusion and presents the principle of JET thermonuclear reactor based upon the magnetic confinement. The problems of heating and confining a thermonuclear plasma may be regarded as solved. They make possible the definition of the size and geometry needed to realize a next-step tokamak (ITER, NET projects)

  6. Stability Enhancement of Multi machine AC Systems by Synchronverter HVDC control

    Directory of Open Access Journals (Sweden)

    Raouia Aouini

    2016-06-01

    Full Text Available This paper investigates the impact of the Synchronverter based HVDC control on power system stability. The study considers multi machine power systems, with realistic parameters. A specific tuning method of the parameters of the regulators is used. The proposed control scheme is based on the sensitivity of the poles of the HVDC neighbor zone to the control parameters, and next, on their placement using residues. The transient stability of the HVDC neighbor zone is a priori taken into account at the design stage. The new tuning method is evaluated in comparison with the standard vector control via simulation tests. Extensive tests are performed using Matlab/Simulink implementation of the IEEE 9 bus/3 machines test system. The results prove the superiority of the proposed control to the classic vector control. The synchronverter control allows to improve not only the local performances of the HVDC link, but also the overall transient stability of the AC zone in which the HVDC is inserted. (where

  7. Risk assessment of computer-controlled safety systems for fusion reactors

    International Nuclear Information System (INIS)

    Fryer, M.O.; Bruske, S.Z.

    1983-01-01

    The complexity of fusion reactor systems and the need to display, analyze, and react promptly to large amounts of information during reactor operation will require a number of safety systems in the fusion facilities to be computer controlled. Computer software, therefore, must be included in the reactor safety analyses. Unfortunately, the science of integrating computer software into safety analyses is in its infancy. Combined plant hardware and computer software systems are often treated by making simple assumptions about software performance. This method is not acceptable for assessing risks in the complex fusion systems, and a new technique for risk assessment of combined plant hardware and computer software systems has been developed. This technique is an extension of the traditional fault tree analysis and uses structured flow charts of the software in a manner analogous to wiring or piping diagrams of hardware. The software logic determines the form of much of the fault trees

  8. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  9. Circumferential fusion is dominant over posterolateral fusion in a long-term perspective: cost-utility evaluation of a randomized controlled trial in severe, chronic low back pain

    DEFF Research Database (Denmark)

    Soegaard, Rikke; Bünger, Cody E; Christiansen, Terkel

    2007-01-01

    STUDY DESIGN: Cost-utility evaluation of a randomized, controlled trial with a 4- to 8-year follow-up. OBJECTIVE: To investigate the incremental cost per quality-adjusted-life-year (QALY) when comparing circumferential fusion to posterolateral fusion in a long-term, societal perspective. SUMMARY...... OF BACKGROUND DATA: The cost-effectiveness of circumferential fusion in a long-term perspective is uncertain but nonetheless highly relevant as the ISSLS prize winner 2006 in clinical studies reported the effect of circumferential fusion superior to the effect of posterolateral fusion. A recent trial found...... no significant difference between posterolateral and circumferential fusion reporting cost-effectiveness from a 2-year viewpoint. METHODS: A total of 146 patients were randomized to posterolateral or circumferential fusion and followed 4 to 8 years after surgery. The mean age of the cohort was 46 years (range...

  10. Ground loops detection system in the RFX machine

    International Nuclear Information System (INIS)

    Bellina, F.; Pomaro, N.; Trevisan, F.

    1996-01-01

    RFX is a toroidal machine for the fusion research based on the RFP configuration. During the pulse, in any conductive loop close to the machine very strong currents can be induced, which may damage the diagnostics and the other instrumentation. To avoid loops, the earthing system of the machine is tree-shaped. However, an accidental contact between metallic earthed masses of the machine may give rise to an unwanted loop as well. An automatic system for the detection of ground loops in the earthing system has therefore been developed, which works continuously during shutdown intervals and between pulses. In the paper the design of the detection system is presented, together with the experimental results on prototypes. 4 refs., 3 figs., 1 tab

  11. Face-iris multimodal biometric scheme based on feature level fusion

    Science.gov (United States)

    Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei

    2015-11-01

    Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.

  12. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    CERN Document Server

    Cazzaniga, R; D’Urzo, C

    2005-01-01

    The successfull construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this fiel...

  13. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  14. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  15. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  16. Ontology-aided Data Fusion (Invited)

    Science.gov (United States)

    Raskin, R.

    2009-12-01

    An ontology provides semantic descriptions that are analogous to those in a dictionary, but are readable by both computers and humans. A data or service is semantically annotated when it is formally associated with elements of an ontology. The ESIP Federation Semantic Web Cluster has developed a set of ontologies to describe datatypes and data services that can be used to support automated data fusion. The service ontology includes descriptors of the service function, its inputs/outputs, and its invocation method. The datatype descriptors resemble typical metadata fields (data format, data model, data structure, originator, etc.) augmented with descriptions of the meaning of the data. These ontologies, in combination with the SWEET science ontology, enable a registered data fusion service to be chained together and implemented that is scientifically meaningful based on machine understanding of the associated data and services. This presentation describes initial results and experiences in automated data fusion.

  17. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  18. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  19. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Flood, Amar H.; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks' surroundings' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  20. Nonlinear chaos control in a permanent magnet reluctance machine

    International Nuclear Information System (INIS)

    Harb, Ahmad M.

    2004-01-01

    The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control

  1. Magnetic Fusion Advisory Committee report on recommended fusion program priorities and strategy

    International Nuclear Information System (INIS)

    1983-09-01

    The Magnetic Fusion Advisory Committee recommends a new program strategy with the following principal features: (1) Initiation in FY86 of the Tokamak Fusion Core Experiment (TFCX), a moderate-cost tokamak reactor device (less than $1 B PACE) designed to achieve ignition and long-pulse equilibrium burn. Careful trade-off studies are needed before making key design choices in interrelated technology areas. Cost reductions relative to earlier plans can be realized by exploiting new plasma technology, by locating the TFCX at the TFTR site, and by assigning responsibility for complementary reactor engineering tasks to other sectors of the fusion program. (2) Potential utilization of the MFTF Upgrade to provide a cost-effective means for quasi-steady-state testing of blanket and power-system components, complementary to TFCX. This will depend on future assessments of the data base for tandem mirrors. (3) Vigorous pursuit of the broad US base program in magnetic confinement, including new machine starts, where appropriate, at approximately the present total level of support. (4) Utilization of Development and Technology programs in plasma and magnet technology in support of specific hardware requirements of the TFCX and of other major fusion facilities, so as to minimize overall program cost

  2. Stat-of-the art of nuclear fusion and its future outlook in

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.; Elnadi, A.M.; Masoud, M.; Elshaer, M.A.; Khalil, S.M.

    1993-01-01

    The study in this project is carried out with the objective of being able to present a clear view for the state-of-the art of nuclear fusion as one of the most promising coming energy source and its future outlook in Egypt. The study introduce a summary of the world energy problem and the advantages of thermonuclear fusion energy compared to other energy sources. A description of the two main techniques of confining plasma in the fusion experiments, namely the magnetic and the inertial confinement. These techniques are discussed and investigated through linear pinches and tokamaks. Tokamaks showed to be a promising machines for achieving the controlled thermonuclear fusion power reactor. Recent development of the research on laser fusion together with fast progress in pellet and laser technology suggest that it may be possible to achieve laser fusion power reactor. The story of the strange phenomena of cold fusion, muon-catalyzed fusion, and cold fusion in condensed matter are also studied and showed to be non promising. The project study in details the future fusion reactor, its nuclear engineering and its safety and environmental aspects. The study is based on the magnetic fusion using the tokamak configuration. The positive safety and environmental aspects of fusion reactors, if exist, is also investigated. Status of plasma physics and nuclear fusion activities and strategies in the developing countries (including egypt and the arab countries) are reviewed, besides, some national programmes are proposed. In addition, the status of international activities in plasma technology and its application are represented. Future outlook for egyptian programmes on different plasma technologies are studied. Finally, conclusions and recommendations are presented which summarized the principle achiements and future research opportunities in nuclear fusion activities. In fact, it must be emphasized that fusion is an exciting and challenging field of research -the most

  3. Influence of export control policy on the competitiveness of machine tool producing organizations

    Science.gov (United States)

    Ahrstrom, Jeffrey D.

    The possible influence of export control policies on producers of export controlled machine tools is examined in this quantitative study. International market competitiveness theories hold that market controlling policies such as export control regulations may influence an organization's ability to compete (Burris, 2010). Differences in domestic application of export control policy on machine tool exports may impose throttling effects on the competitiveness of participating firms (Freedenberg, 2010). Commodity shipments from Japan, Germany, and the United States to the Russian market will be examined using descriptive statistics; gravity modeling of these specific markets provides a foundation for comparison to actual shipment data; and industry participant responses to a user developed survey will provide additional data for analysis using a Kruskal-Wallis one-way analysis of variance. There is scarce academic research data on the topic of export control effects within the machine tool industry. Research results may be of interest to industry leadership in market participation decisions, advocacy arguments, and strategic planning. Industry advocates and export policy decision makers could find data of interest in supporting positions for or against modifications of export control policies.

  4. Direct numerical control of machine tools in a nuclear research center by the CAMAC system

    International Nuclear Information System (INIS)

    Zwoll, K.; Mueller, K.D.; Becks, B.; Erven, W.; Sauer, M.

    1977-01-01

    The production of mechanical parts in research centers can be improved by connecting several numerically controlled machine tools to a central process computer via a data link. The CAMAC Serial Highway with its expandable structure yields an economic and flexible system for this purpose. The CAMAC System also facilitates the development of modular components controlling the machine tools itself. A CAMAC installation controlling three different machine tools connected to a central computer (PDP11) via the CAMAC Serial Highway is described. Besides this application, part of the CAMAC hardware and software can also be used for a great variety of scientific experiments

  5. Decentralized real-time simulation of forest machines

    Science.gov (United States)

    Freund, Eckhard; Adam, Frank; Hoffmann, Katharina; Rossmann, Juergen; Kraemer, Michael; Schluse, Michael

    2000-10-01

    To develop realistic forest machine simulators is a demanding task. A useful simulator has to provide a close- to-reality simulation of the forest environment as well as the simulation of the physics of the vehicle. Customers demand a highly realistic three dimensional forestry landscape and the realistic simulation of the complex motion of the vehicle even in rough terrain in order to be able to use the simulator for operator training under close-to- reality conditions. The realistic simulation of the vehicle, especially with the driver's seat mounted on a motion platform, greatly improves the effect of immersion into the virtual reality of a simulated forest and the achievable level of education of the driver. Thus, the connection of the real control devices of forest machines to the simulation system has to be supported, i.e. the real control devices like the joysticks or the board computer system to control the crane, the aggregate etc. Beyond, the fusion of the board computer system and the simulation system is realized by means of sensors, i.e. digital and analog signals. The decentralized system structure allows several virtual reality systems to evaluate and visualize the information of the control devices and the sensors. So, while the driver is practicing, the instructor can immerse into the same virtual forest to monitor the session from his own viewpoint. In this paper, we are describing the realized structure as well as the necessary software and hardware components and application experiences.

  6. Bio-Inspired Interaction Control of Robotic Machines for Motor Therapy

    OpenAIRE

    Zollo, Loredana; Formica, Domenico; Guglielmelli, Eugenio

    2007-01-01

    In this chapter basic criteria for the design and implementation of interaction control of robotic machines for motor therapy have been briefly introduced and two bio-inspired compliance control laws developed by the authors to address requirements coming from this specific application field have been presented. The two control laws are named the coactivation-based compliance control in the joint space and the torque-dependent compliance control in the joint space, respectively. They try to o...

  7. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  8. Research program. Controlled thermonuclear fusion. Synthesis report 2014

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Fiocco, D.

    2015-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world; its energy yield Q reached 0.65. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject electricity into the grid for long term. In 2014, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which are necessary to optimise the core geometry of future reactors. Moreover, the plasma heating by mm radio waves allows guiding the injected power according to specific

  9. Human-Machine Systems concepts applied to Control Engineering Education

    OpenAIRE

    Marangé , Pascale; Gellot , François; Riera , Bernard

    2008-01-01

    International audience; In this paper, we interest us to Human-Machine Systems (HMS) concepts applied to Education. It is shown how the HMS framework enables to propose original solution in matter of education in the field of control engineering. We focus on practical courses on control of manufacturing systems. The proposed solution is based on an original use of real and large-scale systems instead of simulation. The main idea is to enable the student, whatever his/her level to control the ...

  10. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  11. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  12. Splendidly blended: a machine learning set up for CDU control

    Science.gov (United States)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  13. Control of plasma layer in a fusion reactor correlated to DC motor control using PSO-ANFIS

    International Nuclear Information System (INIS)

    Mahapatra, Sakuntala; Daniel, Raju; Dey, Deep Narayan

    2013-01-01

    Plasma position and shape control is very crucial for the overall performance of the fusion reactor such as Tokamak. The quality of the discharge in the Saskatchewan TORus-Modified (STOR-M) tokamak is strongly related to the position of the plasma column within the discharge vessel. If the plasma column approaches too near the wall, then either minor or complete disruption occurs. Consequently it is necessary to be able to control dynamically the position of the plasma column throughout the entire discharge. Now a day's most fusion reactor employs the traditional PID controller for the confinement of plasma layer. Fuzzy logic is used for the control of Plasma layer. In this paper we have used the hybrid of PSO-ANFIS technique to control the speed of a DC motor. We have used two input parameters like speed, torque and output is firing angle. In our work first order Sugeno fuzzy model is taken with three rules and the parameters of Gaussian membership function is controlled by the PSO technique. PSO-ANFIS speed controller obtains better dynamic behavior and superior performance of the DC motor speed control. Similar approach can be correlated to the control of plasma layer. For the plasma control two inputs can be taken as plasma position ΔH and the plasma current and the single output, the control decision u(t). (author)

  14. Overview of fusion nuclear technology in the US

    International Nuclear Information System (INIS)

    Morley, N.B.; Abdou, M.A.; Anderson, M.; Calderoni, P.; Kurtz, R.J.; Nygren, R.; Raffray, R.; Sawan, M.; Sharpe, P.; Smolentsev, S.; Willms, S.; Ying, A.Y.

    2006-01-01

    Fusion nuclear technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of magnet fusion energy (MFE) fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities

  15. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  16. Computerised weld strength testing machine for PHWR fuel elements with a versatile control system

    International Nuclear Information System (INIS)

    Gupta, U.C.; Sastry, V.S.; Rasheed, Jawad; Bibawe, S.R.

    1994-01-01

    Spacer pads and bearing pads are resistance spot welded on PHWR fuel elements to ensure inter-element gap for coolant flow. These welds are subjected to destructive tests as per SQC specifications while qualifying a machine and during production. The testing machine used earlier over the years was tedious involving manual operations of clamping, tool actuation, increasing and decreasing the pressure, referring to charts and statistical calculations. To carry out the destructive testing of the welds conveniently and reliably, an automatic machine is developed in-house in which are incorporated a quartz force transducer and a computerized data-acquisition and processing system together with a very versatile electronic control system based on a single-chip microcomputer. This paper describes the salient features of the machine and the control system. (author). 4 figs

  17. Conceptual design of centralized control system for LHD

    International Nuclear Information System (INIS)

    Kaneko, H.; Yamazaki, K.; Taniguchi, Y.

    1992-01-01

    A centralized control system for a fusion experimental machine is discussed. A configuration whereby a number of complete and uniform local systems are controlled by a central computer, a timer and an interlock system is appropriate for the control system of the Large Helical Device (LHD). A connection among local systems can be made by Ethernet, because a faster transmission of control data is processed by a specific system. (author)

  18. Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests.

    Science.gov (United States)

    Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid

    2018-03-19

    Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.

  19. Local control station for development, testing and maintenance of mirror fusion facility subsystem controls

    International Nuclear Information System (INIS)

    Ables, E.; Kelly, M.F.

    1985-01-01

    A Local Control Station (LCS) was designed and built to provide a simplified ad easily configurable means of controlling any Mirror Fusion Test Facility (MFTF-B) subsystem for the purpose of development, testing and maintenance of the subsystem. All MFTF-B Subsystems incorporate at least one Local Control Computer (LCC) that is connected to and accepts high level commands from one of the Supervisory Control and Diagnostic System (SCDS) computers. The LCS connects directly to the LCC in place of SCDS. The LCS communicates with the subsystem hardware using the same SCDS commands that the local control computer recognizes and as such requires no special configuration of the LCC

  20. The plant efficiency of fusion power stations

    International Nuclear Information System (INIS)

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  1. Virtual C Machine and Integrated Development Environment for ATMS Controllers.

    Science.gov (United States)

    2000-04-01

    The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...

  2. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  3. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  4. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    Science.gov (United States)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  5. 23. Symposium On Fusion Technology (SOFT), Venice - A personal view

    International Nuclear Information System (INIS)

    Spears, W.R.

    2004-01-01

    This conference, examining the advances in our leading-edge technology, took place on 22-24 September 2004 against the wonderful and historic backdrop of Venice, at a monastery of the Cini Foundation, on the Island of St. Giorgio, directly opposite St. Marks. The strong connection between the ancient and modern was brought home to us in the very first talk, from the Mayor of Venice and MEP Prof. P. Costa, who reminded us of Venice's particular problem with global warming, and urged us to do our part to develop an energy source that should help to avoid it drowning. Prof. Sir C. Llewellyn-Smith, head of the UK Fusion Programme and Chairman of Euratom CCE-FU, took up this theme and elaborated how we should reach our goal, showing in particular the urgency of pursuing a fast track, proceeding with ITER and the International Fusion Materials Irradiation Facility (IFMIF) without further delay, and envisaging that the subsequent machine would be prototypical of future commercial fusion power plants. The conference proceeded through plenary and oral sessions, and through poster sessions, covering plasma heating, fuelling, control and diagnostics, magnets and power supplies, plasma-facing components, blanket and vessel, remote handling, materials technology, the experiences gained on existing experiments, and projections for future experiments and fusion power plants. There were 570 participants, from 25 countries, of whom a third came from outside Europe

  6. Heterogeneous Multi-Metric Learning for Multi-Sensor Fusion

    Science.gov (United States)

    2011-07-01

    Neural Information Processing Systems, 2010. [18] C.-C. Shen and W.-H. Tsai. Multisensor fusion in smartphones for lifestyle monitoring. In Int. Conf. on...Ministry of Education (708085) of China. REFERENCES [1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. [2] S. Boughhorbel, J

  7. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  8. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  9. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  10. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  11. Micromachining of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-01-01

    Many experiments conducted on today's largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron

  12. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  13. Current control by a homopolar machine with moving brushes

    International Nuclear Information System (INIS)

    Vogel, H.

    1978-01-01

    The equation for TNS Doublet's E-coil circuit with moving brush homopolar machine is integrated in the flux of the homopolar for a monotonically increasing current function extending beyond the current reversal into the burn period. The results show that the moving brush feature is not useful for controlling the burn

  14. Study of intelligent system for control of the tokamak-ETE plasma positioning

    International Nuclear Information System (INIS)

    Barbosa, Luis Filipe de Faria Pereira Wiltgen

    2003-01-01

    The development of an intelligent neural control system of the neural type, capable to perform real time control of the plasma displacement in the experiment tokamak spheric - ETE (spherical tokamak experiment ) is presented. The ETE machine is in operation since Nov 2000, in the LAP - Plasma Associated Laboratory of the Brazilian Institute on Spatial Research (INPE) in Sao Jose dos Campos, S P, Brazil. The experiment is dedicated to study the magnetic confinement of a fusion plasma in a configuration favorable for the construction of future reactors. Nuclear fusion constitutes a renewable energy source with low environmental impact, which uses atomic energy in pacific applications for the sustainable development of humanity. One of the important questions for the attainment of fusion relates to the stability of the plasma and control of its position during the reactor operation. Therefore, the development of systems to control the plasma in tokamaks constitutes a necessary technological advance for the feasibility of nuclear fusion. In particular, the research carried out in this thesis concerns the proposal of a system to control the vertical displacement of the plasma in the ETE tokamak, aiming to obtain steady pulses in this machine. A Magnetic Levitation system (Mag Lev) was developed as part of this work, allowing to study the nonlinear behavior of a device that, from the aspect of position control, is similar (analogous) to the plasma in the ETE tokamak, This magnetic levitation system was designed, mathematically modeled and built in order to test both classical and intelligent type controllers. The results of this comparison are very promising for the use of intelligent controllers in the ETE tokamak as well as other control applications. (author)

  15. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  16. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  17. Information fusion under consideration of conflicting input signals

    CERN Document Server

    Mönks, Uwe

    2017-01-01

    This work proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) and the µBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. In addition, a sensor defect detection method, which is based on the continuous monitoring of sensor reliabilities, is presented. The performances of the contributions are shown by their evaluation in the scope of both a publicly available data set and a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The author Dr.-Ing. Uwe Mönks studied Electrical Engineering and Information Technology at the OWL University of Applied Sciences (Lemgo), Halmstad University (Sweden), and Aalborg University (Denmark). Since 2009 he is employed at the Institute Industrial IT (inIT) as research associate with project leading responsibilities. During th...

  18. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available Machining forces can nowadays be measured by using 3D dynamometers, which are usually very expensive devices and hardly available for most of the CNC machine-tools users. On the other hand, modern CNC controllers have nowadays the ability to display and save many outputs within the machining process, such as the currents or even the torques at the shaft's level for the feed motors on each axis. These outputs can be used for estimating the machining forces, but it is to be noticed that the above-mentioned currents and torques are proportional with the overall resistant forces, which includes not only technological forces, but also friction, inertial and pre-tensioning forces. This paper presents an approach for estimating the machining forces during a milling process, by using the outputs stored in the CNC controller and separating the effects of technological forces from the other forces involved in the process. The separation was made by running two sets of experiments, one set for dry-run regime and the other one for machining regime.

  19. Low-Resolution Tactile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-01-01

    Full Text Available In this paper, we propose a robust tactile sensing image recognition scheme for automatic robotic assembly. First, an image reprocessing procedure is designed to enhance the contrast of the tactile image. In the second layer, geometric features and Fourier descriptors are extracted from the image. Then, kernel principal component analysis (kernel PCA is applied to transform the features into ones with better discriminating ability, which is the kernel PCA-based feature fusion. The transformed features are fed into the third layer for classification. In this paper, we design a classifier by combining the multiple kernel learning (MKL algorithm and support vector machine (SVM. We also design and implement a tactile sensing array consisting of 10-by-10 sensing elements. Experimental results, carried out on real tactile images acquired by the designed tactile sensing array, show that the kernel PCA-based feature fusion can significantly improve the discriminating performance of the geometric features and Fourier descriptors. Also, the designed MKL-SVM outperforms the regular SVM in terms of recognition accuracy. The proposed recognition scheme is able to achieve a high recognition rate of over 85% for the classification of 12 commonly used metal parts in industrial applications.

  20. Multi-agent control system with information fusion based comfort model for smart buildings

    International Nuclear Information System (INIS)

    Wang, Zhu; Wang, Lingfeng; Dounis, Anastasios I.; Yang, Rui

    2012-01-01

    Highlights: ► Proposed a model to manage indoor energy and comfort for smart buildings. ► Developed a control system to maximize comfort with minimum energy consumption. ► Information fusion with ordered weighted averaging aggregation is used. ► Multi-agent technology and heuristic intelligent optimization are deployed in developing the control system. -- Abstract: From the perspective of system control, a smart and green building is a large-scale dynamic system with high complexity and a huge amount of information. Proper combination of the available information and effective control of the overall building system turns out to be a big challenge. In this study, we proposed a building indoor energy and comfort management model based on information fusion using ordered weighted averaging (OWA) aggregation. A multi-agent control system with heuristic intelligent optimization is developed to achieve a high level of comfort with the minimum power consumption. Case studies and simulation results are presented and discussed in this paper.

  1. Contemporary machine learning: techniques for practitioners in the physical sciences

    Science.gov (United States)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. National Ignition Facility Control and Information System Operational Tools

    International Nuclear Information System (INIS)

    Marshall, C.D.; Beeler, R.G.; Bowers, G.A.; Carey, R.W.; Fisher, J.M.; Foxworthy, C.B.; Frazier, T.M.; Mathisen, D.G.; Lagin, L.J.; Rhodes, J.J.; Shaw, M.J.

    2009-01-01

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a ∼2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint the size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.

  3. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  4. Group program procedure for machining seal rings of steam turbines on digital computer controlled machines

    International Nuclear Information System (INIS)

    Glukhikh, V.K.; Skvortsov, S.B.; Sidorov, V.A.

    1982-01-01

    Developed is a group program procedure for turning machining of seal rings, including the use of new progressive high-accuracy equipment, universal device for securing of all nomenclature of treated seal rings, necessary cutting tools and program control of the process of treatment. Introduction of a new technological process permitted to improve the quality of treated seal rings; to reduce the labour consumption in 30...40% [ru

  5. Fusion Performance of High Magnetic Field Expe-riments

    Science.gov (United States)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    1997-11-01

    High magnetic field machines have the characteristic of operating well within the usual limitations known as density and beta limits. This feature is highlighted in the Ignitor concept thanks to its reference field of up to 13 T on the magnetic axis and its high current densities. The two reference scenarios with plasma currents of 12 MA and 11 MA respectively, are discussed. The ramp time is 4 sec for both scenarios, whereas the following programmed time dependence of the current is different. The results of an extensive series of numerical simulations using an appropriate version of the 1+1/2D JETTO transport code show that in any case optimal fusion performances are reacheable without needing enhancement over the values of the energy replacement time predicted by the most pessimistic scalings (for the so-called L-mode regime). The density is the crucial parameter involved on the path to ignition that can be achieved provided the density rise is carefully programmed. The density profiles can be controlled by the proper use of the pellet injector that is included in the machine design.

  6. Synthetic report 2012. Research programme on controlled thermonuclear fusion; Rapport de synthèse 2012. Programme de recherche Fusion thermonucléaire contrôlée

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secrétariat à l’éducation et à la recherche (SER), Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology EPFL, Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2013-07-01

    Since 1961, Switzerland participates in the research on thermonuclear fusion thanks to the creation of the Research Centre in Plasma Physics. In 1979 it entered into partnership with the European programme on fusion through its adhesion to EURATOM. The thermonuclear fusion is an interesting energy source because the basic fuel is practically inexhaustible and its use does not release any significant CO{sub 2} quantity and very little radioactive residues. But its working up faces enormous physical and technological difficulties. The International Thermonuclear Reactor (ITER), presently in construction, has to demonstrate the technological feasibility of the controlled fusion. Il will be followed by DEMO, foreseen for 2040-2050, which must guarantee the economical rentability. At CRPP the research projects are partitioned onto several sites: at the Swiss Federal Institute of Technology (EPFL) in Lausanne, they concern the physics of the magnetic confinement with the Variable Geometry Tokamak (TCV), the development of theoretical models and the numerical simulation, the plasma heating and the generation of hyper frequency waves; the Paul Scherrer Institute (PSI) studies the superconductivity and the materials; the interactions between the plasma and the Tokamak walls are studied at the Basel University for the structures of ITER. Thanks to its large flexibility, TCV allows the creation and the control of plasmas of very different forms. The injection system of millimetric waves allows orienting the injected power according to specific profiles. By using the asymmetry of the flow in the toroidal sense, the plasma rotation could be measured with a much better accuracy than before. In TCV, by playing on the form of the plasma, it was possible to strongly reduce the energy quantity which is expelled by the Edge Localized Modes (ELM) onto the wall of the vacuum chamber. The ‘snowflake’ configuration created in TCV allows distributing the ELM energy onto several impact

  7. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  8. A Multiple Data Fusion Approach to Wheel Slip Control for Decentralized Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dejun Yin

    2017-04-01

    Full Text Available Currently, active safety control methods for cars, i.e., the antilock braking system (ABS, the traction control system (TCS, and electronic stability control (ESC, govern the wheel slip control based on the wheel slip ratio, which relies on the information from non-driven wheels. However, these methods are not applicable in the cases without non-driven wheels, e.g., a four-wheel decentralized electric vehicle. Therefore, this paper proposes a new wheel slip control approach based on a novel data fusion method to ensure good traction performance in any driving condition. Firstly, with the proposed data fusion algorithm, the acceleration estimator makes use of the data measured by the sensor installed near the vehicle center of mass (CM to calculate the reference acceleration of each wheel center. Then, the wheel slip is constrained by controlling the acceleration deviation between the actual wheel and the reference wheel center. By comparison with non-control and model following control (MFC cases in double lane change tests, the simulation results demonstrate that the proposed control method has significant anti-slip effectiveness and stabilizing control performance.

  9. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  10. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Villone, F.; Mastrostefano, S. [Euratom-ENEA-CREATE Ass., DIEI, Univ. di Cassino e Lazio Merid., Cassino (Italy); Calabrò, G.; Vlad, G.; Crisanti, F.; Fusco, V. [C. R. Frascati, Euratom-ENEA Ass., Via E. Fermi 45, 00044 Frascati (Italy); Marchiori, G.; Bolzonella, T.; Marrelli, L.; Martin, P. [Cons. RFX, Euratom-ENEA-RFX Ass., Corso Stati Uniti 4, 35127 Padova (Italy); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mantica, P. [IFP-CNR, Euratom-ENEA-CNR Ass. Via Cozzi 53, 20125 Milano (Italy)

    2014-08-15

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FAST could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.

  11. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  12. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Masson, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability for the next generation engineering oriented reactors; and long range, in developing full maintainability for the more complicated commercial concepts with their required high level of on-line time. The near-term challenge will include development of unique design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full maintainability required by commercial fusion. In addition to the purely technical challenges, the fusion community is also faced with the problem of developing programmatic means to assure that reactor maintenance issues are given proper and timely emphasis as the nuclear phase of fusion is approached

  13. Single-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications

    DEFF Research Database (Denmark)

    Han, Peng; Cheng, Ming; Chen, Zhe

    2017-01-01

    A single-electrical-port control scheme, for four-quadrant operation of cascaded doubly-fed induction machine (CDFIM), which has long been conceived as a motor or generator only suitable for limited two-quadrant operation, is proposed and theoretically demonstrated. The drive system is configured...... as slave inverter. With this configuration, the control emphasis is placed on the slave inverter, yielding reduced control complexity and cost, and the inaccuracy of flux estimation in conventional FOC for singly-fed induction machines is avoided at very low or even zero speed. It is found that the doubly...

  14. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  15. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  16. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  17. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  18. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  19. New directions in fusion machines: report on the MFAC Panel X on high power density options

    International Nuclear Information System (INIS)

    Linford, R.K.

    1985-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, high-power-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce substantially the cost of development steps in physics and technology.''

  20. New directions in fusion machines: Report on the MFAC panel X on high power density options

    International Nuclear Information System (INIS)

    Linford, R.K.

    1986-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, highpower-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce4 substantially the cost of development steps in physics and technology.''

  1. Controlled thermonuclear fusion power apparatus and method

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    This invention provides a modular fusion reactor system containing several fusion power cores, each of relatively small size and low cost. Energy from the cores is absorbed in the core structure and within a surrounding blanket, and the cores themselves may be individually removed from the blanket and replaced as they deteriorate from high radiation flux damage

  2. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    Chowdhury, A.K.

    1981-01-01

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  3. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  4. Promoting the Purchase of Low-Calorie Foods from School Vending Machines: A Cluster-Randomized Controlled Study

    Science.gov (United States)

    Kocken, Paul L.; Eeuwijk, Jennifer; van Kesteren, Nicole M.C.; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje

    2012-01-01

    Background: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. Methods: A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies…

  5. Strategy and progress in the US magnetic fusion program

    International Nuclear Information System (INIS)

    Kintner, E.E.

    1982-01-01

    The US implements the world's most extensive fusion research program. Most of this activity is concentrated on the Tokamak system (one third of the total budget, not including heating and technology). A large machine, TFTR, is to be started up in 1982. This is to be followed by tritium operation. A machine of the JET follow-on generation, FED, is in the definition phase. In the sector of magnetic confinement, the tandem mirror machine is the most important alternative. Twenty percent of the whole budget is spent on this item. Major programs are under way in the fields of heating and technology, which total some 12% of the whole budget. (orig.) [de

  6. Research and Application of Autodesk Fusion360 in Industrial Design

    Science.gov (United States)

    Song, P. P.; Qi, Y. M.; Cai, D. C.

    2018-05-01

    In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.

  7. Physics-based and human-derived information fusion for analysts

    Science.gov (United States)

    Blasch, Erik; Nagy, James; Scott, Steve; Okoth, Joshua; Hinman, Michael

    2017-05-01

    Recent trends in physics-based and human-derived information fusion (PHIF) have amplified the capabilities of analysts; however with the big data opportunities there is a need for open architecture designs, methods of distributed team collaboration, and visualizations. In this paper, we explore recent trends in the information fusion to support user interaction and machine analytics. Challenging scenarios requiring PHIF include combing physics-based video data with human-derived text data for enhanced simultaneous tracking and identification. A driving effort would be to provide analysts with applications, tools, and interfaces that afford effective and affordable solutions for timely decision making. Fusion at scale should be developed to allow analysts to access data, call analytics routines, enter solutions, update models, and store results for distributed decision making.

  8. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  9. New directions in fusion machines: report on the MFAC Panel X on high power density options

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1985-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, high-power-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce substantially the cost of development steps in physics and technology.''

  10. Tritium inventory in fusion reactors. Summary report of the final research coordination meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2007-11-01

    Detailed discussions were held during the final Research Coordination Meeting (RCM) at IAEA Headquarters on 25-27 September 2006, with the aim of reviewing the work accomplished by the Coordinated Research Project (CRP) on 'Tritium Inventory in Fusion Reactors'. Participants summarized the specific results obtained during the final phase of the CRP, and considered the impact of the data generated on the design of fusion devices. Conclusions were formulated and several specific recommendations for future fusion machines were agreed. The discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  11. Japanese perspective of fusion nuclear technology from ITER to DEMO

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Takatsu, Hideyuki

    2007-01-01

    The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are to be initiated in this year by EU and Japan, mainly at Rokkasho BA site in Japan, as complementary activities to ITER toward DEMO. The BA activities include IFMIFEVEDA (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities) and DEMO design activities with generic technology R and Ds, both of which are critical to the rapid development of DEMO and commercial fusion power plants. The Atomic Energy Commission of Japan reviewed on-going third phase fusion program and issued the results of the review, 'On the policy of Nuclear Fusion Research and Development' in November 2005. In this report, it is anticipated that the ITER will be made operational in a decade and the programmatic objective can be met in the succeeding seven or eight years. Under this condition, the report presents a roadmap toward the DEMO and beyond and R and D items on fusion nuclear technology, indispensable for fusion energy utilization, are re-aligned. In the present paper, Japanese view and policy on ITER and beyond is summarized mainly from the viewpoints of nuclear fusion technology, and a minimum set of R and D elements on fusion nuclear technology, essential for fusion energy utilization, is presented. (orig.)

  12. Atomic physics issues in fusion

    International Nuclear Information System (INIS)

    Post, D.E.

    1982-01-01

    Atomic physics issues have played a large role in controlled fusion research. A general introduction to the present role of atomic processes in both inertial and magnetic controlled fusion work is presented. (Auth.)

  13. Bringing fusion electric power closer

    International Nuclear Information System (INIS)

    Kintner, E.

    1977-01-01

    A review of the controlled fusion research program is given. The tokamak research program is described. Beam injection heating, control systems, and the safety of fusion reactors are topics that are also discussed

  14. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  15. Machine utilisation and operation experience with Jet from 1983

    International Nuclear Information System (INIS)

    Green, B.J.; Chuilon, P.; Noble, B.; Saunders, R.; Webberley, D.

    1989-01-01

    The operation of JET commenced in June 1983 and is scheduled until the end of 1992. This seemingly long period is actually quite limited when compared with the time needed to implement and commission the planned machine enhancements, and pursue research and developments which result from the experiments. There is an ever-present urgency to make the best use of the machine. 1983-84 was a learning period and only in 1985 was it felt worthwhile to adopt double-shift day working. Data has been compiled and analysed for utilisation of the machine, delays in terms of time lost and systems involved, and number and frequency of machine pulses. This paper presents an overall picture of machine availability and utilisation. It describes the JET operational arrangements and the experience of system faults. Finally, it draws conclusions and identifies lessons learned which may be relevant to the next stage of fusion power development

  16. Machine utilisation and operation experience with JET from 1983

    International Nuclear Information System (INIS)

    Green, B.J.; Chuilon, P.; Noble, B.; Saunders, R.; Webberley, D.

    1989-01-01

    The operation of JET commenced in June 1983 and is scheduled until the end of 1992. This seemingly long period is actually quite limited when compared with the time needed to implement and commission the planned machine enhancements, and pursue research and developments which result from the experiments. There is an ever-present urgency to make the use of the machine. 1983-84 was a learning period and only in 1985 was it felt worthwhile to adopt double-shift day working. Data has been compiled and analysed for utilisation of the machine, delays in terms of time lost and system involved, and number and frequency of machine pulses. This paper presents an overall picture of machine availability and utilisation. It describes the JET operational arrangements and the experience of system faults. Finally, it draws conclusions and identifies lessons learned which may be relevant to the next stage of fusion power development. (author). 9 figs

  17. Connection of control circuits of machine for automatic measurement of radioactive samples

    International Nuclear Information System (INIS)

    Vorlicek, J.

    1984-01-01

    A windowless through-flow gas detector is used for measurement. The automatic machine is controlled by four flip-flops defining the following states: the dish replacement in the measuring space, washing, measurement, measured value print-out, and resetting. The first and second outputs of the first, second and third flip-flops are connected to six inputs of a block whose four outputs provide counter reset and stop-watch reset, washing, measurement, and print-out. Such machine control eliminates measurement errors by disabling sample measurement until air is removed from the measurement space, introduced on an unwashed dish or on several dishes passed under the detector. The elimination of this error is also guaranteed in manual operation. (M.D.)

  18. Modeling and simulation of control system for electron beam machine (EBM) using programmable automation controller (PAC)

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Mhd Ghazali; Muhamad Zahidee Taat; Ayub Mohamed; Chong Foh Yoong

    2006-01-01

    An EBM electronic model is designed to simulate the control system of the Nissin EBM, which is located at Block 43, MINT complex of Jalan Dengkil with maximum output of 3 MeV, 30 mA using a Programmable Automation Controllers (PAC). This model operates likes a real EBM system where all the start-up, interlocking and stopping procedures are fully followed. It also involves formulating the mathematical models to relate certain output with the input parameters using data from actual operation on EB machine. The simulation involves a set of PAC system consisting of the digital and analogue input/output modules. The program code is written using Labview software (real-time version) on a PC and then downloaded into the PAC stand-alone memory. All the 23 interlocking signals required by the EB machine are manually controlled by mechanical switches and represented by LEDs. The EB parameters are manually controlled by potentiometers and displayed on analogue and digital meters. All these signals are then interfaced to the PC via a wifi wireless communication built-in at the PAC controller. The program is developed in accordance to the specifications and requirement of the original real EB system and displays them on the panel of the model and also on the PC monitor. All possible chances from human errors, hardware and software malfunctions, including the worst-case conditions will be tested, evaluated and modified. We hope that the performance of our model complies the requirements of operating the EB machine. It also hopes that this electronic model can replace the original PC interfacing being utilized in the Nissin EBM in the near future. The system can also be used to study the fault tolerance analysis and automatic re-configuration for advanced control of the EB system. (Author)

  19. Stator for a rotating electrical machine having multiple control windings

    Science.gov (United States)

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  20. v-SNAREs control exocytosis of vesicles from priming to fusion.

    Science.gov (United States)

    Borisovska, Maria; Zhao, Ying; Tsytsyura, Yaroslav; Glyvuk, Nataliya; Takamori, Shigeo; Matti, Ulf; Rettig, Jens; Südhof, Thomas; Bruns, Dieter

    2005-06-15

    SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.

  1. Design And Construction Of Controller System And Data Acquisition Of Creep Test Machine

    International Nuclear Information System (INIS)

    Farokhi; Arhatari, B.D.; DT. SonyTj.. Histori; Sudarno; Haryanto, Mudi; Triyadi, Ari

    2001-01-01

    Design and construction of creep test machine have been done to get a higher performance of controller system and data acquisition of that machine. The Design and construction were made by adding an automatic power control circuit, an interface and computer program on PC. The interface circuit is made in a form of a card which applicable on the compatible ISA-IBM PC. The computer program is written in turbo C++. With that modification, the test results show reduction in measurement error from 80μm to 90μm. The modification gives also benefit semi-automatic of the creep test machine. It means decreasing on the operator dependence. Another advantages are to make easier on the result data reading, to show the result data on the real time or on file, to make easier on appearing of a test result curve and on the result data analysis

  2. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    . The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter......The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances....... For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine...

  3. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  4. Promoting the purchase of low-calorie foods from school vending machines: a cluster-randomized controlled study.

    Science.gov (United States)

    Kocken, Paul L; Eeuwijk, Jennifer; Van Kesteren, Nicole M C; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje

    2012-03-01

    Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies were tested within each experimental school: increasing the availability of lower-calorie products in vending machines, labeling products, and reducing the price of lower-calorie products. The experimental schools introduced the strategies in 3 consecutive phases, with phase 3 incorporating all 3 strategies. The control schools remained the same. The sales volumes from the vending machines were registered. Products were grouped into (1) extra foods containing empty calories, for example, candies and potato chips, (2) nutrient-rich basic foods, and (3) beverages. They were also divided into favorable, moderately unfavorable, and unfavorable products. Total sales volumes for experimental and control schools did not differ significantly for the extra and beverage products. Proportionally, the higher availability of lower-calorie extra products in the experimental schools led to higher sales of moderately unfavorable extra products than in the control schools, and to higher sales of favorable extra products in experimental schools where students have to stay during breaks. Together, availability, labeling, and price reduction raised the proportional sales of favorable beverages. Results indicate that when the availability of lower-calorie foods is increased and is also combined with labeling and reduced prices, students make healthier choices without buying more or fewer products from school vending machines. Changes to school vending machines help to create a healthy school environment. © 2012, American School Health Association.

  5. Visualization of multi-INT fusion data using Java Viewer (JVIEW)

    Science.gov (United States)

    Blasch, Erik; Aved, Alex; Nagy, James; Scott, Stephen

    2014-05-01

    Visualization is important for multi-intelligence fusion and we demonstrate issues for presenting physics-derived (i.e., hard) and human-derived (i.e., soft) fusion results. Physics-derived solutions (e.g., imagery) typically involve sensor measurements that are objective, while human-derived (e.g., text) typically involve language processing. Both results can be geographically displayed for user-machine fusion. Attributes of an effective and efficient display are not well understood, so we demonstrate issues and results for filtering, correlation, and association of data for users - be they operators or analysts. Operators require near-real time solutions while analysts have the opportunities of non-real time solutions for forensic analysis. In a use case, we demonstrate examples using the JVIEW concept that has been applied to piloting, space situation awareness, and cyber analysis. Using the open-source JVIEW software, we showcase a big data solution for multi-intelligence fusion application for context-enhanced information fusion.

  6. Design and adjustment on test bed of replacing subassembly machine control system for China experimental fast reactor

    International Nuclear Information System (INIS)

    Dong Shengguo; Ma Hongsheng; Zhao Lixia

    2008-01-01

    The present research concerns in the design and adjustment of replacing sub- assembly machine control system of China Experimental Fast Reactor. The design of replacing subassembly machine control system adopts some electric equipments, such as programmable controllers, digital DC drivers. The designed control system was adjusted on the test bed. The results indicate that the operation of the control system is steady and reliable, and designed control system can meet the needs of the design specification. (authors)

  7. Application of internally cooled superconductors to tokamak fusion reactors

    International Nuclear Information System (INIS)

    Materna, P.A.

    1986-01-01

    Recent proposals for ignition tokamaks containing superconductors are reviewed. As the funding prospects for the U.S. fusion program have worsened, the proposed designs have been shrinking to smaller machines with less ambitious goals. The most recent proposal, the Tokamak Fusion Core Experiment (TFCX), was based on internally cooled cabled Nb 3 Sn conductors for the options which used superconductors. Internally cooled conductors are particularly advantageous in their electrical insulating properties and in the similarity of their winding procedures to those of conventional copper coils. Epoxy impregnation is possible and is advantageous both structurally and electrically. The allowable current density for this type of conductor was shown to be larger than the current density for more conventional superconducting technology. The TFCX effort identified research and development needed in advance of TFCX or any other large ignition machine. These topics include the metal used for the conduit; nuclear effects on materials; properties of electrical and thermal insulators; extension of superconducting technology to the sizes of coils envisioned and to the field level envisioned; pulsed coil superconducting technology; joints and insulating breaks in conductors; heat removal or flow path length limitations; mechanical behavior of potted conductor bundles; instrumentation; and fault modes and various questions integrated with overall machine design

  8. Research programme on controlled thermonuclear fusion. Synthesis report 2011

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2012-01-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET), which started operation again in 2011. The International Thermonuclear Experimental Reactor (ITER) is the last step before DEMO, a prototype fusion reactor able to deliver electricity and demonstrate the economic viability of fusion energy. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL went on with its participation to the scientific and technological programme of EURATOM. Researches are carried out essentially on 2 sites: (i) at EPFL, where topics dealt with include the physics of magnetic confinement studied using the Variable Configuration Tokamak (TCV), the basic experiment TORPEX, theory and numerical modelling, and the technology of plasma heating and current generation by hyper-frequency waves; (ii) at the Paul Scherrer Institute (PSI), where activities are devoted to superconductivity and structure materials. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. In the TCV it could be demonstrated for the first time that the injection of Electronic Cyclotronic Heating (ECH) waves is able to double the frequency of so-called 'Edge Localized Modes' (ELM), reducing by a factor of 2 the energy expelled by each ELM. In particular, it was possible to considerably reduce the statistical dispersion of the repetition frequency of ELM, and to avoid the appearance of gigantic ELM that are particularly harmful for reactor operation. The effect of plasma internal relaxation

  9. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine

    Science.gov (United States)

    Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish

    2012-06-01

    Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.

  10. Preliminary Test of Upgraded Conventional Milling Machine into PC Based CNC Milling Machine

    International Nuclear Information System (INIS)

    Abdul Hafid

    2008-01-01

    CNC (Computerized Numerical Control) milling machine yields a challenge to make an innovation in the field of machining. With an action job is machining quality equivalent to CNC milling machine, the conventional milling machine ability was improved to be based on PC CNC milling machine. Mechanically and instrumentally change. As a control replacing was conducted by servo drive and proximity were used. Computer programme was constructed to give instruction into milling machine. The program structure of consists GUI model and ladder diagram. Program was put on programming systems called RTX software. The result of up-grade is computer programming and CNC instruction job. The result was beginning step and it will be continued in next time. With upgrading ability milling machine becomes user can be done safe and optimal from accident risk. By improving performance of milling machine, the user will be more working optimal and safely against accident risk. (author)

  11. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  12. Prediction of Quadcopter State through Multi-Microphone Side-Channel Fusion

    NARCIS (Netherlands)

    Koops, Hendrik Vincent; Garg, Kashish; Kim, Munsung; Li, Jonathan; Volk, Anja; Franchetti, Franz

    Improving trust in the state of Cyber-Physical Systems becomes increasingly important as more tasks become autonomous. We present a multi-microphone machine learning fusion approach to accurately predict complex states of a quadcopter drone in flight from the sound it makes using audio content

  13. Research program. Controlled thermonuclear fusion. Synthesis report 2015

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Soom, P.

    2016-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. In 2015 its name was changed to Swiss Plasma Centre (SPC). The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world, in which an energy yield Q of 0.65 could be obtained. In 2015, the stellarator Wendelstein 7-X (W7X), the largest in the world, was set into operation. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject permanently electricity into the grid. In 2015, SPC participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity; at the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which

  14. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  15. Conceptual requirements for large fusion experiment control, data, robotics, and management systems

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Sullivan, J.D.

    1987-05-01

    The conceptual system requirements for the control, data, robotics, and project management (CDRM) system for the next generation of fusion experiments are developed by drawing on the success of the Tara control and data system. The requirements are described in terms of an integrated but separable matrix of well-defined interfaces among the various systems and subsystems. The study stresses modularity, performance, cost effectiveness, and exportability

  16. Neuron network application for speed control and fault detection of asynchronous machine

    Directory of Open Access Journals (Sweden)

    Kheira MENDAZ

    2017-12-01

    Full Text Available The induction machine will play a role very important in the industry, but the existence of a certain defect returns their use limited as the defects rotor (broken bar. This article presents a study of Controller neuronal with the existence of a rotor defect on the one hand and another hand of a defect of switch of the five levels inverter to see the influence of these two defects on the physical parameters of the machine. The application of neural control with the existence of a broken bar in the motor allows us to see the effect of this fault on the motor parameters (speed, electromagnetic torque and current, to control itself is also used in existence of five-level inverter fault (delay of blocking the switch to give the results shown the swelling of this fault on the engine. With this controller, each fault influenced the parameters of Engine and can notice it from the simulation results. The results, simulations are done using Matlab/Simulink. Simulation results show clearly and robustness of neural controller.

  17. Modeling and Designing of A Nonlineartemperature-Humidity Controller Using Inmushroom-Drying Machine

    Science.gov (United States)

    Wu, Xiuhua; Luo, Haiyan; Shi, Minhui

    Drying-process of many kinds of farm produce in a close room, such as mushroom-drying machine, is generally a complicated nonlinear and timedelay cause, in which the temperature and the humidity are the main controlled elements. The accurate controlling of the temperature and humidity is always an interesting problem. It's difficult and very important to make a more accurate mathematical model about the varying of the two. A math model was put forward after considering many aspects and analyzing the actual working circumstance in this paper. Form the model it can be seen that the changes of temperature and humidity in drying machine are not simple linear but an affine nonlinear process. Controlling the process exactly is the key that influences the quality of the dried mushroom. In this paper, the differential geometry theories and methods are used to analyze and solve the model of these smallenvironment elements. And at last a kind of nonlinear controller which satisfied the optimal quadratic performance index is designed. It can be proved more feasible and practical than the conventional controlling.

  18. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion

  19. Design Methodology of a Brushless IPM Machine for a Zero Speed Injection Based Sensorless Control

    OpenAIRE

    Godbehere, Jonathan; Wrobel, Rafal; Drury, David; Mellor, Phil

    2015-01-01

    In this paper a design approach for a sensorless controlled, brushless, interior permanent magnet machine is attained. An initial study based on established electrical machine formulas provides the machine’s basic geometrical sizing. The next design stage combines a particle swarm optimisation (PSO) search routine with a magneto-static finite element (FE) solver to provide a more in depth optimisation. The optimisation system has been formulated to derive alternative machine design variants, ...

  20. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  1. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  2. Reduced optical transmission of SiO2 fibers used in controlled fusion diagnostics

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Adler, H.G.; Hill, K.W.

    1993-02-01

    We have subjected a silica core fiber optic cable to 4 years of low-level neutron and gamma radiation from Princeton's TFTR controlled fusion experiment The accumulated dose was 200 Gy. As a result of the radiation, we have measured increased attenuations of 100--300 db/km in the visible part of the spectrum, and a decrease of the numerical aperture. An attempt to decrease this damage by photobleaching failed. We argue that this failure is not unexpected, since the rate of damage is so slow and the time scale so long that the self-annealing process keeps the residual damage at the irreducible level seen in other experiments. The implications of these findings for controlled fusion diagnostics during upcoming experiments with highly reactive deuterium-tritium plasmas are discussed

  3. Base for a remote quality control system for magnetic resonance images machines

    International Nuclear Information System (INIS)

    Gonzalez Dalmau, Evelio R; Cabal Mirabal, Carlos; Noda Guerra, Manuel

    2014-01-01

    The medical images systems convert characteristic of the tissues in gray levels or color, using a physical method and a specific mathematical transformation. In Magnetic Resonance Images (MRI) these levels have a multi-parametric dependence, this a reason of their strong presence in the daily clinical practice. This technological complexity, the high costs and the importance that have these study for the patient's life, confer to the Quality Control (QC) human, technological, economic and juridical implications. Several international groups dedicated to the QC in MRI and diversity of approaches to carry out the tests of acceptance and periodic control of the quality exist. The characterization is habitually carried out, with global methods that don't allow a detailed quantitative parametric study. A novel system of quantitative control was developed based on quantitative describers by slices and temporal. This system is formed for: 1) standard methodology of acquisition of the experimental data, 2) subsystem of functions and programs developed in MatLab, 3) subsystem of graphics and reports, and 4) the expert. It is used successfully in the characterization and the periodic control of MRI machines of several magnetic fields in Cuba and in Venezuela. They were defined and established quantitative descriptors for MRI machines. The software flexibility allows carry out the QC to any machine facilitating the standardization and its use in multi-center studies. The retrospective and predictive value of the system was demonstrated. They feel the bases for the remote realization of the test

  4. Nuclear irradiation parameters of beryllium under fusion, fission and IFMIF irradiation conditions

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Leichtle, D.; Simakov, S.; Moeslang, A.; Vladimirov, P.

    2004-01-01

    A computational analysis is presented of the nuclear irradiation parameters for Beryllium under irradiation in typical neutron environments of fission and fusion reactors, and of the presently designed intense fusion neutron source IFMIF. The analysis shows that dpa and Tritium production rates at fusion relevant levels can be achieved with existing high flux fission reactors while the achievable Helium production is too low. The resulting He-Tritium and He/dpa ratios do not meet typical fusion irradiation conditions. Irradiation simulations in the medium flux test modules of the IFMIF neutron source facility were shown to be more suitable to match fusion typical irradiation conditions. To achieve sufficiently high production rates it is suggested to remove the creep-fatigue testing machine together with the W spectra shifter plate and move the tritium release module upstream towards the high flux test module. (author)

  5. Demountable toroidal fusion core facility for physics optimization and fusion engineering

    International Nuclear Information System (INIS)

    Bogart, S.L.; Wagner, C.E.; Krall, N.A.; Dalessandro, J.A.; Weggel, C.F.; Lund, K.O.; Sedehi, S.

    1986-01-01

    Following a successful compact ignition tokamak (CIT) experiment, a fusion facility will be required for physics optimization (POF) and fusion engineering research (FERF). The POF will address issues such as high-beta operation, current drive, impurity control, and will test geometric and configurational variations such as the spherical torus or the reversed-field pinch (RFP). The FERF will be designed to accumulate rapidly a large neutron dose in prototypical fusion subsystems exposed to radiation. Both facilities will require low-cost replacement cores and rapid replacement times. The Demountable Toroidal Fusion Core (DTFC) facility is designed to fulfill these requirements. It would be a cost-effective stepping stone between the CIT and a demonstration fusion reactor

  6. Control oriented modeling and simulation of the sawtooth instability in nuclear fusion tokamak plasmas

    NARCIS (Netherlands)

    Witvoet, G.; Westerhof, E.; Steinbuch, M.; Doelman, N.J.; Baar, de M.R.

    2009-01-01

    Tokamak plasmas in nuclear fusion are subject to various instabilities. A clear example is the sawtooth instability, which has both positive and negative effects on the plasma. To optimize between these effects control of the sawtooth period is necessary. This paper presents a simple control

  7. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    International Nuclear Information System (INIS)

    Cazzaniga, Rodolfo; Valle, N.; D'Urzo, C.

    2005-01-01

    The successful construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this field by ANSALDO Superconduttori and by TPA (as manufacturing tools and equipments supplier) has been acknowledged by CERN with 'The CMS Gold Award' of the Year 2004. The paper describes the main features of the winding lines, the main problems, the technical solutions used for the above mentioned projects and the new ideas for the forthcoming ones

  8. An Articulated Inspection Arm for fusion purposes

    Energy Technology Data Exchange (ETDEWEB)

    Villedieu, E., E-mail: eric.villedieu@cea.fr [CEA-IRFM, 13108 Saint Paul lez Durance (France); Bruno, V.; Pastor, P.; Gargiulo, L. [CEA-IRFM, 13108 Saint Paul lez Durance (France); Song, Y.T.; Cheng, Y.; Feng, H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Liu, C. [CEA-IRFM, 13108 Saint Paul lez Durance (France); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Shi, S.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2016-11-01

    Highlights: • Requirements for in vacuum tokamak inspection are presented. • Development of a prototype of the Articulated Inspection Arm is described. • The upgrade of the prototype to convert it into a fully operational device is detailed. • Future applications of inspection robots in the new fusion reactors is discussed. - Abstract: Fusion Tokamaks are complex machines which require special conditions for their operation, in particular, high vacuum inside the vessel and high temperature of the vessel walls. During plasma phases, the first wall components are highly stressed and a control is necessary in case of doubt about their condition. To be able to make safely such an inspection in a short period of time is a great advantage. The Articulated Inspection Arm (AIA) developed by the CEA provides the capability for fast inspections of the first wall overall surface keeping the vacuum and temperature conditions of the vessel. The robot prototype was validated in Tore Supra in 2008. In the frame of a joint laboratory, CEA/IRFM and ASIPP have decided to upgrade the existing AIA prototype to use it routinely in the EAST and WEST tokamaks. The robot has followed an important upgrade program in 2013 and 2014. The document presents the various upgrades made on the mechanics, the sensors, the electronics, the control station and the integration adaptation for the operation on EAST. From the AIA experience, thoughts for future inspection robots are given.

  9. An Articulated Inspection Arm for fusion purposes

    International Nuclear Information System (INIS)

    Villedieu, E.; Bruno, V.; Pastor, P.; Gargiulo, L.; Song, Y.T.; Cheng, Y.; Feng, H.; Liu, C.; Shi, S.S.

    2016-01-01

    Highlights: • Requirements for in vacuum tokamak inspection are presented. • Development of a prototype of the Articulated Inspection Arm is described. • The upgrade of the prototype to convert it into a fully operational device is detailed. • Future applications of inspection robots in the new fusion reactors is discussed. - Abstract: Fusion Tokamaks are complex machines which require special conditions for their operation, in particular, high vacuum inside the vessel and high temperature of the vessel walls. During plasma phases, the first wall components are highly stressed and a control is necessary in case of doubt about their condition. To be able to make safely such an inspection in a short period of time is a great advantage. The Articulated Inspection Arm (AIA) developed by the CEA provides the capability for fast inspections of the first wall overall surface keeping the vacuum and temperature conditions of the vessel. The robot prototype was validated in Tore Supra in 2008. In the frame of a joint laboratory, CEA/IRFM and ASIPP have decided to upgrade the existing AIA prototype to use it routinely in the EAST and WEST tokamaks. The robot has followed an important upgrade program in 2013 and 2014. The document presents the various upgrades made on the mechanics, the sensors, the electronics, the control station and the integration adaptation for the operation on EAST. From the AIA experience, thoughts for future inspection robots are given.

  10. Exporting Variables in a Hierarchically Distributed Control System

    Energy Technology Data Exchange (ETDEWEB)

    Chamizo Llatas, M

    1995-07-01

    We describe the Remote Variable Access Service (RVAS), a network service developed and used in the distributed control and monitoring system of the TJ-II Heliac, which is under construction at CIEMAT (Madrid, Spain) and devoted to plasma studies in the nuclear fusion field. The architecture of the TJ-II control system consists of one central Sun workstation Sparc 10 and several autonomous subsystems based on VME crates with embedded processors running the OS-9 (V.24) real time operating system. The RVAS service allows state variables in local control processes running in subsystems to be exported to remote processes running in the central control workstation. Thus we extend the concept of exporting of file systems in UNIX machines to variables in processes running in different machines. (Author) 6 refs.

  11. Exporting Variables in a Hierarchically Distributed Control System

    International Nuclear Information System (INIS)

    Diaz Martin; Martinez Laso, L.

    1995-01-01

    We describe the Remote Variable Access Service (RVAS), a network service developed and use in the distributed control and monitoring system of the TJ-II Heliac, which is under construction at CIEMAT (Madrid, Spain) and devoted to plasma studies in the nuclear fusion field. The architecture of the TJ-II control system consists of one central Sun workstation Sparc 10 and several autonomous subsystems based on VME crates with embedded processors running the os-9 (V.24) real time operating system. The RVAS service allows state variables in local control processes running in subsystems to be exported to remote processes running in the central control workstation. Thus we extend the concept of exporting of file systems in UNIX machines to variables in processes running in different machines. (Author)

  12. Exporting Variables in a Hierarchically Distributed Control System

    International Nuclear Information System (INIS)

    Chamizo Llatas, M.

    1995-01-01

    We describe the Remote Variable Access Service (RVAS), a network service developed and used in the distributed control and monitoring system of the TJ-II Heliac, which is under construction at CIEMAT (Madrid, Spain) and devoted to plasma studies in the nuclear fusion field. The architecture of the TJ-II control system consists of one central Sun workstation Sparc 10 and several autonomous subsystems based on VME crates with embedded processors running the OS-9 (V.24) real time operating system. The RVAS service allows state variables in local control processes running in subsystems to be exported to remote processes running in the central control workstation. Thus we extend the concept of exporting of file systems in UNIX machines to variables in processes running in different machines. (Author) 6 refs

  13. Heat transfer phenomena in the first wall of the RFX fusion experiment

    International Nuclear Information System (INIS)

    Oliveira Pauletti, R.M. de

    1988-12-01

    The thermal analysis of the first wall (FW) of the RFX machine is presented. RFX is a large fusion experiment under construction at Padua, Italy. The RFX FW is briefly described, together with the critical thermal conditions. The numerical analyses performed to predict the FW thermal behaviour are presented. 1-D and 2-D finite element models give accurate predictions of the FW temperatures and of the thermal exchanges in the machine environment. (author) [pt

  14. Singer CNC sewing and embroidery machine

    Directory of Open Access Journals (Sweden)

    Lokodi Zsolt

    2011-12-01

    Full Text Available This paper presents the adaptation of a classic foot pedal operated Singer sewing machine to a computerized numerical control (CNC sewing and embroidery machine. This machine is composed of a Singer sewing machine and a two-degrees-of-freedom XY stage designed specifically for this application. The whole system is controlled from a PC using adequate CNC control software.

  15. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  16. Target support for inertial confinement fusion

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  17. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    Science.gov (United States)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  18. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  19. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives.

    Science.gov (United States)

    Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki

    2018-04-01

    In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Possibilities and expectations for improved man-machine interface in power system control

    Energy Technology Data Exchange (ETDEWEB)

    Asal, H; Burrow, R K; Lindstrom, K; Mocenigo, M; Schellstede, G; Schaffer, G; Serrani, A

    1992-05-01

    The paper describes the hardware, equipment and functions provided to operators for supervising and controlling HVAC power systems. It analyzes the main elements of the man-machine interface (MMI) with particular attention to the recent possibilities afforded by computer technology and full graphic screens. Alarm management and remote control operation are briefly described.

  1. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  2. Performance of machine learning methods for ligand-based virtual screening.

    Science.gov (United States)

    Plewczynski, Dariusz; Spieser, Stéphane A H; Koch, Uwe

    2009-05-01

    Computational screening of compound databases has become increasingly popular in pharmaceutical research. This review focuses on the evaluation of ligand-based virtual screening using active compounds as templates in the context of drug discovery. Ligand-based screening techniques are based on comparative molecular similarity analysis of compounds with known and unknown activity. We provide an overview of publications that have evaluated different machine learning methods, such as support vector machines, decision trees, ensemble methods such as boosting, bagging and random forests, clustering methods, neuronal networks, naïve Bayesian, data fusion methods and others.

  3. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  4. STARPOWER: An IMAX reg-sign Film on Fusion

    International Nuclear Information System (INIS)

    Kirsch, J.W.

    1995-01-01

    The Reuben H. Fleet Space Theater and Science Center and Four Square Productions, Inc. are producing STARPOWER, a new IMAX/OMNIMAX reg-sign film about thermonuclear fusion. The film's storyline will link our understanding of fusion as the power source of the stars with our current quest to develop a practical machine that uses fusion to produce electric power. The goal is to reach the world-wide audience of 40,000,000 people who visit IMAX/OMNIMAX reg-sign theaters each year, about half of which are in the United States and Canada. This document is the final report on a project to research and develop the concept. It was supported by grants from the Department of Energy (Museum Science Education Program), the International Space Theater Consortium (ISTC's Film Development Fund), and contributions by the Fleet Center and Four Square Productions. The report describes the development of the film's educational objectives, findings on the current state of fusion research, film treatments and marketing research for the project, preparation of the project prospectus, and planned next steps

  5. Friction-resilient position control for machine tools—Adaptive and sliding-mode methods compared

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios; Blanke, Mogens; Niemann, Hans Henrik

    2018-01-01

    Robust trajectory tracking and increasing demand for high-accuracy tool positioning have motivated research in advanced control design for machine tools. State-of-the-art industry solutions employ cascades of Proportional (P) and Proportional-Integral (PI) controllers for closed-loop servo contro...

  6. Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu; Yusong Sun; Yuanzhang Sun [Tsinghua University, Beijing (China). Dept. of Electrical Engineering; Felix F Wu; Yixin Ni [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering; Yokoyama, Akihiko [University of Tokyo (Japan). Dept. of Electrical Engineering; Goto, Masuo; Konishi, Hiroo [Hitachi Ltd., Tokyo (Japan). Power System Div.

    2004-06-01

    A novel nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems is suggested in this paper. The nonelastic water hammer effect and disturbances are considered in the modeling. The advanced differential geometry theory, nonlinear robust control theory and the dynamic feedback method are combined to solve the problem. The nonlinear decentralized robust control law for the speed governor of hydroturbine-generators has been derived. The input signals to the proposed controller are all local measurements and independent to the system parameters. The derived control law guarantees the integrated system stability with disturbance attenuation, which is significant to the real power system application. Computer tests on an 8-machine, 36-bus power system show clearly the effectiveness of the new control strategy in transient stability enhancement and disturbance attenuation. The computer test results based on the suggested controller are compared favorably with those based on the conventional linear governor control. (author)

  7. WIDE-AREA BASED ON COORDINATED TUNING OF FUZZY PSS AND FACTS CONTROLLER IN MULTI-MACHINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper coordination of fuzzy power system stabilizer (FPSS and flexible ac transmission systems (FACTS have been considered in a multi-machine power system. The proposed model, has been applied for a wide-area power system. The proposed FPSS presented with local, nonlinear feedbacks, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs. For this model, in fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Also, the parameters of FACTS controller have been evaluated by improved honey bee mating optimization (IHBMO. The effectiveness of the proposed method has been applied over two case studies of single-machine infinite-bus (SMIB and two areas four machine (TAFM Kundur’s power system. The obtained results demonstrate the superiority of proposed strategy.

  8. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  9. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  10. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  11. Development of Fractal Pattern Making Application using L-System for Enhanced Machine Controller

    Directory of Open Access Journals (Sweden)

    Gunawan Alexander A S

    2014-03-01

    Full Text Available One big issue facing the industry today is an automated machine lack of flexibility for customization because it is designed by the manufacturers based on certain standards. In this research, it is developed customized application software for CNC (Computer Numerically Controlled machines using open source platform. The application is enable us to create designs by means of fractal patterns using L-System, developed by turtle geometry interpretation and Python programming languages. The result of the application is the G-Code of fractal pattern formed by the method of L-System. In the experiment on the CNC machine, the G-Code of fractal pattern which involving the branching structure has been able to run well.

  12. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  13. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  14. Smart material screening machines using smart materials and controls

    Science.gov (United States)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  15. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Science.gov (United States)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  16. Very-high-level neutral-beam control system

    International Nuclear Information System (INIS)

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning

  17. DEMO diagnostics and burn control

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang, E-mail: w.biel@fz-juelich.de [Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich (Germany); Department of Applied Physics, Ghent University (Belgium); Baar, Marco de [FOM-Institute DIFFER, Nieuwegein (Netherlands); Eindhoven University of Technology (Netherlands); Dinklage, Andreas [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Felici, Federico [Eindhoven University of Technology (Netherlands); König, Ralf [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Meister, Hans; Treutterer, Wolfgang [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [Max-Planck-Institut für Plasmaphysik, Garching (Germany); EFDA Power Plant Physics and Technology, Garching (Germany)

    2015-10-15

    Highlights: • An initial concept for the DEMO diagnostic and control system is presented. • A preliminary list of control functions and candidate diagnostics is developed. • Challenges regarding disruptions, power exhaust and radiation control are highlighted. • The need for introducing realistic control margins is emphasized. • On outline of the future R&D plan is presented. - Abstract: The development of the control system for a tokamak demonstration fusion reactor (DEMO) faces unprecedented challenges. First, the requirements for control reliability and accuracy are more stringent than on existing fusion devices: any loss of plasma control on DEMO may result in a disruption which could damage the inner wall of the machine, while operating the device with larger margins against the operational limits would lead to a reduction of the electrical output power. Second, the performance of DEMO control is limited by space restrictions for the implementation of components (optimization of the tritium breeding rate), by lifetime issues for the front-end parts (neutron and gamma radiation, erosion and deposition acting on all components) and by slow, weak and indirect action of the available actuators (plasma shaping, heating and fuelling). The European DEMO conceptual design studies include the development of a reliable control system, since the details of the achievable plasma scenario and the machine design may depend on the actual performance of the control system. In the first phase of development, an initial understanding of the prime choices of diagnostic methods applicable to DEMO, implementation and performance issues, the interrelation with the plasma scenario definition, and the planning of necessary future R&D have been obtained.

  18. Tritium decontamination of machine components and walls

    International Nuclear Information System (INIS)

    Hircq, B.; Wong, K.Y.; Jalbert, R.A.; Shmayda, W.T.

    1991-01-01

    Tritium decontamination techniques for machine components and their application at tritium handling facilities are reviewed. These include commonly used methods such as vacuuming, purging, thermal desorption and isotopic exchange as well as less common methods such as chemical/electrochemical etching, plasma discharge cleaning, and destructive methods. Problems associated with tritium contamination of walls and use of protective coatings are reviewed. Tritium decontamination considerations at fusion facilities are discussed

  19. Waves for Alpha-Channeling in Mirror Machines

    International Nuclear Information System (INIS)

    Zhmoginov, A.I.; Fisch, N.J.

    2009-01-01

    Alpha-channeling can, in principle, be implemented in mirror machines via exciting weaklydamped modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than the alpha particle gyroradius. Assuming quasi-longitudinal or quasi-transverse wave propagation, we search systematically for suitable modes in mirror plasmas. Considering two device designs, a proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable for alpha-channeling.

  20. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  1. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    Science.gov (United States)

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  2. Inspecting a research reactor's control rod surface for pitting using a machine vision

    International Nuclear Information System (INIS)

    Tokuhiro, Akira T.; Vadakattu, Shreekanth

    2005-01-01

    Inspection for pits on the control rod is performed to study the degradation of the control rod material which helps estimating the service life of the control rod at UMR nuclear reactor (UMRR). This inspection task is visually inspected and recorded subjectively. The conventional visual inspection to identify pits on the control rod surface can be automated using machine vision technique. Since the in-service control rods were not available to capture images and measure number of pits and size of the pits, the applicability of machine vision method was applied on SAE 1018 steel coupons immersed in oxygen saturated de-ionized water at 30deg, 50deg and 70deg. Images were captured after each test cycle at different light intensity to reveal surface topography of the coupon surface and analyzed for number of pits and pit size using EPIX XCAP-Std software. The captured and analyzed images provided quantitative results for the steel coupons and demonstrated that the method can be applied for identifying pits on control rod surface in place of conventional visual inspection. (author)

  3. The Roles and Developments needed for Diagnostics in the ITER Fusion Device

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Michael [ITER Organization, Route de Vinon-sur-Verdon - CS 90046, 13067 St Paul-lez-Durance Cedex (France)

    2015-07-01

    Harnessing the power from Fusion on earth is an important and challenging task. Excellent work has been carried out in this area over the years with several demonstrations of the ability to produce power. Now, a new large device is being constructed in the south of France. This is called ITER. ITER is a large-scale scientific experiment that aims to demonstrate a possibility to produce commercial energy from fusion. This project is now well underway with the many teams working on the construction and completing various aspects of the design. This device will carry up to 15 MA of plasma current and produce about 500 MW of power, 400 MW approximately in high energy neutrons. The typical temperatures of the electrons inside this device are in the region of a few hundred million Kelvin. It is maintained using a magnetic field. This device is pushing several boundaries from those currently existing. As a result of this, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device. A diagnostic set will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include amongst others, measurements of the plasma shape, temperature, density, impurity concentration, and particle and energy confinement times. The system will comprise about 45 individual measuring systems drawn from the full range of modern plasma diagnostic techniques, including magnetics, lasers, X-rays, neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pressure and gas analysis, and optical fibres. These devices will have to be made to work in the new and challenging environment inside the vacuum vessel. These systems will have to cope with a range of phenomena that extend the current knowledge in the Fusion field. One

  4. Fusion reactor handling operations with cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste, E-mail: jeanbaptiste.izard@tecnalia.com; Michelin, Micael; Baradat, Cédric

    2015-10-15

    Highlights: • CDPR allow 6DOF positioning of loads using cable as links without payload swag. • Conceptual design of a CDPR for carrying and positioning tokamak sectors is given. • A CDPR for threading stellarator coils (6D trajectory following) is provided. • Both designs are capable of fullfilling the required precision without tooling. - Abstract: Cable-driven parallel robots (CDPR) are in their concept cranes with inclined cables which allow control of all the degrees of freedom of its payload, and therefore stability of all the degrees of freedom, including rotations. The workspace of a CDPR is only limited by the length of the cables, and the payload capacity related to the mass of the whole robot is very important. Besides, the control being based on kinematic models, the behavior of a CDPR is really that of a robot capable of automated trajectories or remote handling. The present paper gives a presentation of two use case studies based on some of the assembly phases and remote handling actions as designed for the recent fusion machines. Based on the use cases already in place in fusion reactor baselines, the opportunity of using CDPR for assembly of structural elements and coils is discussed. Finally, prospects for remote handling equipment from the reactor in hot cells are envisioned based on current CDPR research.

  5. Autotuning of PID controller by means of human machine interface device

    Directory of Open Access Journals (Sweden)

    Michał Awtoniuk

    2017-06-01

    Full Text Available More and more control systems are based on industry microprocessors like PLC controllers (Programmable Logic Controller. The most commonly used control algorithm is PID (Proportional-Integral-Derivative algorithm. Autotuning procedure is not available in every PLC. These controllers are typically used in cooperation with HMI (Human Machine Interface devices. In the study two procedures of autotuning of the PID controller were implemented in the HMI device: step method and relay method. Six tuning rules for step methods and one for relay method were chosen. The autotuning procedures on simulated controlled object and PLC controller without build-in autotuning were tested. The object of control was first order system plus time delay.

  6. Allocation of functions to man and machine in the automated control room

    International Nuclear Information System (INIS)

    Pulliam, R.; Price, H.E.

    1983-01-01

    A practical framework and set of methodologic tools are discussed which could be used by a design team in allocating nuclear power plant control functions to either man or machine control. It is concluded that allocations of functions must eventually become a formal step in control system design, i.e., it will become increasingly necessary to invest in human factors analysis as an integral part of the design process

  7. Shielding study of a fusion machine. Elaboration of a global shielding calculation scheme for the Tokamak tore Supra

    International Nuclear Information System (INIS)

    Diop, C.M'B.

    1984-01-01

    This thesis presents a global shielding calculation scheme for neutron and gamma rays arising from the Tokamak TORE SUPRA fusion device, in which a deuterium plasma is used. To study the shield parameters we have elabored a important chaining of neutron and gamma transport codes, TRIPOLI, ANISN, MERCURE 4, allowing to evaluate the radial and skyshine components of the dose rate behind the concrete shield. The study of thermonuclear neutron activation is fundamental to define a tokamak exploitation strategy. For this, two formalisme have been developed. They are based on a modelization of the activation reaction rates according to TRIPOLI, ANISN, and MERCURE 4 codes capabilities. The first one calculates, in one dimensional geometry, the desactivation gamma dose rate inside the vacuum chamber. The second one is a tridimensional model which determines the spatial variation of the gamma dose rate in the machine room. The problem of the existence of runaway electrons and associated secondaries radiations, bremsstrahlung gamma rays particularly, is approched. The results which are presented have contributed to define the parameters of the concrete shield and a strategy for TORE SUPRA Tokamak exploitation [fr

  8. Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)

    Science.gov (United States)

    Blasch, Erik

    2015-06-01

    Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.

  9. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  10. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Li, Ming; Wu, Huapeng; Handroos, Heikki; Yang, Guangyou; Wang, Yongbo

    2015-01-01

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  11. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: ming.li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Wang, Yongbo [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland)

    2015-10-15

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  12. Remote maintenance for fusion: Requirements vs technology gap

    International Nuclear Information System (INIS)

    Davis, F.C.; Kuban, D.P.

    1989-01-01

    Today's remote handling technology was developed in response to the remote maintenance (RM) requirements of the fission community's nuclear fuel recycle process. The needs of the fusion community present new challenges to the remote handling experts of the world. New difficulties are superimposed on the difficulties experienced in maintaining fission processes. Today's technology must be enhanced to respond to the RM needs of these future huge investments. This paper first discusses the current RM needs for fusion based on existing facilities and designs of future machines. It then exposes the gap between these requirements and existing RM technology and recommends ways to extend the state of the art to close this gap

  13. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  14. Universal machine ''Shtrek'' and the tractor-lifter with pneumatic-equipment control. [Auxiliary multipurpose materials handling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bal' bert, B M; Borumenskiy, V A; Lishenko, A P; Mitchenko, G A

    1982-01-01

    The machine ''Shtrek'' is described. It makes it possible to mechanize over 20 auxiliary operations: loading-unloading operations: extraction of old and deformed timbering; dissmantling of obstructions; erection of different types of timbering; making and restoring of drainage channels; laying and straightening of a drift and its leveling; assembly and disassembly of pipelines and mine equipment, etc. Depending on the type of operation, the machine has the corresponding suspended equipment. The elementary variant has a limited area of application at mines of the central region of the Dunbass. Currently a pneumatic variant of the machine ''Shtrek'' has been developed. The electric motor and the starter of the pumping equipment of the machine have been replaced by a pneumatic motor and pneumatically controlled valve KTM-50. In this case there was significant reduction in the weight of the pumping equipment and in its overall dimensions; the electric drive of the hydraulic distributors for controlling the mechanisms were replaced by simpler pneumatic ones; the logical circuit of the control system was constructed on the USEPPA elements. A specialized tractor-lifter designed for moving suspended loads is described for auxiliary operations in the near-face zone of the preparatory drifts. The machine also lifts and lowers the boom, rotates the boom by 270/sup 0/ and additionally lifts and lowers the weight-lifting hook.

  15. Systems approach for condition management design: JET neutral beam system-A fusion case study

    Energy Technology Data Exchange (ETDEWEB)

    Khella, M., E-mail: M.Khella@lboro.ac.uk [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Pearson, J. [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Dixon, R. [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Ciric, D.; Day, I.; King, R.; Milnes, J.; Stafford-Allen, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2011-10-15

    The maturation of any new technology can be coarsely divided into three stages of a development lifecycle: (1) fundamental research, (2) experimental rig development and testing through to (3) commercialization. With the enhancement of machines like JET, the building of ITER and the initiation of DEMO design activities, the fusion community is moving from stages 1 and 2 towards stage 3. One of the consequences of this transition will be a shift in emphasis from scientific achievement to maximizing machine reliability and availability. The fusion community should therefore be preparing itself for this shift by examining all methods and tools utilized in established engineering sectors that might help to improve these fundamental performance parameters. To this end, the Culham Centre for Fusion Energy (CCFE) has proactively engaged with UK industry to examine whether the development of condition management (CM) systems could help improve such performance parameters. This paper describes an initial CM design case study on the JET neutral beam system. The primary output of this study was the development of a CM design methodology that captures existing experience in fault detection, and classification as well as new methods for fault diagnosis. A summary of the methods used and the potential benefits of data fusion are presented here.

  16. Integrated Inverter For Driving Multiple Electric Machines

    Science.gov (United States)

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  17. Promoting the purchase of low-calorie foods from school vending machines: A cluster-randomized controlled study

    NARCIS (Netherlands)

    Kocken, P.L.; Eeuwijk, J.; Kesten, N.M.C. van; Dusseldorp, E.; Buijs, G.; Bassa-Dafesh, Z.; Snel, J.

    2012-01-01

    BACKGROUND: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. METHODS: A school-based randomized controlled trial was conducted in 13 experimental

  18. Bridge between control science and technology. Volume 5 Manufacturing man-machine systems, computers, components, traffic control, space applications

    Energy Technology Data Exchange (ETDEWEB)

    Rembold, U; Kempf, K G; Towill, D R; Johannsen, G; Paul, M

    1985-01-01

    Among the topics discussed are: robotics; CAD/CAM applications; and man-machine systems. Consideration is also given to: tools and software for system design and integration; communication systems for real-time computer control; fail-safe design of real-time computer systems; and microcomputer-based control systems. Additional topics discussed include: programmable and intelligent components and instruments in automatic control; transportation systems; and space applications of automatic control systems.

  19. Event-driven control of a speed varying digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    . The controller synthesis is carried out as a discrete optimal deterministic problem with full state feedback. Based on a linear analysis of the feedback control system, stability is proven in a pre-specified operation region. Simulation of a non-linear evaluation model with the controller implemented shows great...... be treated as a Discrete Linear Time Invariant control problem with synchronous sampling rate. To make synchronous linear control theory applicable for a variable speed digital displacement machine, a method based on event-driven control is presented. Using this method, the time domain differential equations...... are converted into the spatial (position) domain to obtain a constant sampling rate and thus allowing for use of classical control theory. The method is applied to a down scaled digital fluid power motor, where the motor speed is controlled at varying references under varying pressure and load torque conditions...

  20. Fusion Simulation Program Execution Plan

    International Nuclear Information System (INIS)

    Brooks, Jeffrey

    2011-01-01

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall