WorldWideScience

Sample records for controlled fusion machines

  1. Sensor fusion method for machine performance enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C.; Hillaire, R. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center; Jones, S.; Furness, R. [Ford Motor Co., Dearborn, MI (United States)

    1998-03-01

    A sensor fusion methodology was developed to uniquely integrate pre-process, process-intermittent, and post-process measurement and analysis technology to cost-effectively enhance the accuracy and capability of computer-controlled manufacturing equipment. Empirical models and computational algorithms were also developed to model, assess, and then enhance the machine performance.

  2. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  3. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  4. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  5. Quantum controlled fusion

    Science.gov (United States)

    Berrios, Eduardo; Gruebele, Martin; Wolynes, Peter G.

    2017-09-01

    Quantum-controlled motion of nuclei, starting from the nanometer-size ground state of a molecule, can potentially overcome some of the difficulties of thermonuclear fusion by compression of a fuel pellet or in a bulk plasma. Coherent laser control can manipulate nuclear motion precisely, achieving large phase space densities for the colliding nuclei. We combine quantum wavepacket propagation of D and T nuclei in a field-bound molecule with coherent control by a shaped laser pulse to demonstrate enhancement of nuclear collision rates. Atom-smashers powered by coherent control may become laboratory sources of particle bursts, and even assist muonic fusion.

  6. Remote leak localization approach for fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, Au., E-mail: aurelien.durocher@cea.fr [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Bruno, V.; Chantant, M.; Gargiulo, L. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Gherman, T. [Floralis UJF Filiale, F-38610 Gières (France); Hatchressian, J.-C.; Houry, M.; Le, R.; Mouyon, D. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► Description of leaks issue. ► Selection of leak localization concepts. ► Qualification of leak localization concepts. -- Abstract: Fusion machine operation requires high-vacuum conditions and does not tolerate water or gas leak in the vacuum vessels, even if they are micrometric. Tore Supra, as a fully actively cooled tokamak, has got a large leak management experience; 34 water leaks occurred since the beginning of its operation in 1988. To handle this issue, after preliminary machine protection phases, the current process for leak localization is based on water or helium pressurization network by network. It generally allows the identification of a set of components where the leakage element is located. However, the unique background of CEA-IRFM laboratory points needs of accuracy and promptness out in the leak localization process. Moreover, in-vessel interventions have to be performed trying to minimize time and risks for the persons. They are linked to access conditions, radioactivity, tracer gas high pressure and vessel conditioning. Remote operation will be one of the ways to improve these points on future fusion machines. In this case, leak sensors would have to be light weight devices in order to be integrated on a carrier or to be located outside with a sniffing process set up. A leak localization program is on-going at CEA-IRFM Laboratory with the first goal of identifying and characterizing relevant concepts to localize helium or water leaks on ITER. In the same time, CEA has developed robotic carrier for effective in-vessel intervention in a hostile environment. Three major tests campaigns with the goal to identify leak sensors have been achieved on several CEA test-beds since 2010. Very promising results have been obtained: relevant scenario of leak localization performed, concepts tested in a high volume test-bed called TITAN, and, in several conditions of pressure and temperature (ultrahigh vacuum to atmospheric pressure and 20

  7. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  8. FUSION OF MULTI FOCUSED IMAGES USING HDWT FOR MACHINE VISION

    Directory of Open Access Journals (Sweden)

    S. Arumuga Perumal

    2011-10-01

    Full Text Available During image acquisition in machine vision, due to limited depth of field of lens, it is possible to take clear image of the objects in the scene which are in focus only. The remaining objects in the scene will be out of focus. A possible solution to bring clear images of all objects in the scene is image fusion. Image fusion is a process of combining multiple images to form the composite image with extended information content. This paper uses three band expansive higher density discrete wavelet transform to fuse two numbers of images focusing different objects in the same scene and also proposes three methods for image fusion. Experimental results on multi focused image fusion are presented in terms of root mean square, peak signal to noise ratio and quality index to illustrate the proposed fusion methods.

  9. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  10. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  11. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  12. Control of Fusion and Solubility in Fusion Systems

    CERN Document Server

    Craven, David A

    2009-01-01

    In this article, we consider the control of fusion in fusion systems, proving three previously known, non-trivial results in a new, largely elementary way. We then reprove a result of Aschbacher, that the product of two strongly closed subgroups is strongly closed; to do this, we consolidate the theory of quotients of fusion systems into a consistent theory. We move on considering p-soluble fusion systems, and prove that they are constrained, allowing us to effectively characterize fusion systems of p-soluble groups. This leads us to recast Thompson Factorization for Qd(p)-free fusion systems, and consider Thompson Factorization for more general fusion systems.

  13. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  14. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  15. Attractor Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R; Cordier, Laurent; Segond, Marc; Abel, Markus

    2013-01-01

    We propose a general strategy for feedback control design of complex dynamical systems exploiting the nonlinear mechanisms in a systematic unsupervised manner. These dynamical systems can have a state space of arbitrary dimension with finite number of actuators (multiple inputs) and sensors (multiple outputs). The control law maps outputs into inputs and is optimized with respect to a cost function, containing physics via the dynamical or statistical properties of the attractor to be controlled. Thus, we are capable of exploiting nonlinear mechanisms, e.g. chaos or frequency cross-talk, serving the control objective. This optimization is based on genetic programming, a branch of machine learning. This machine learning control is successfully applied to the stabilization of nonlinearly coupled oscillators and maximization of Lyapunov exponent of a forced Lorenz system. We foresee potential applications to most nonlinear multiple inputs/multiple outputs control problems, particulary in experiments.

  16. Cybernics fusion of human, machine and information systems

    CERN Document Server

    Suzuki, Kenji; Hasegawa, Yasuhisa

    2014-01-01

    Cybernics plays a significant role in coping with an aging society using state-of-the-art technologies from engineering, clinical medicine and humanities. This new interdisciplinary field studies technologies that enhance, strengthen, and support physical and cognitive functions of human beings, based on the fusion of human, machine, and information systems. The design of a seamless interface for interaction between the interior and exterior of the human body is described in this book from diverse aspects such as the physical, neurophysiological, and cognitive levels. It is the first book to cover the many aspects of cybernics, allowing readers to understand the life support robotics technology for the elderly, including remote, in-home, hospital, institutional, community medical welfare, and vital-sensing systems. Serving as a valuable resource, this volume will interest not only graduate students, scientists, and engineers but also newcomers to the field of cybernics.

  17. Walking Machine Control Programming

    Science.gov (United States)

    1983-08-31

    20000 ___ -123 Drive Pump ....Rec avery Pump 1CO 2gO 3C00 4C Q 5C00 6O0 7C0 8C00 $C0 10000__ _ _ _ _ w830728.data Pump settings Figure 8...I’rogrammitg SSA #2051 IFitia ’l’ciiiral RIeport 50000. 40000 30000 20000 10000.. w830728.data 123 progress estimate ..... w830728.data 456 progress...these controls. We usually opvrattc \\% itil the ,tick conrtrolling forward speed arid turning rate, with the right foot pedal controlling the speed of the

  18. Coordination Control Of Complex Machines

    NARCIS (Netherlands)

    J.C.M. Baeten; B. van Beek; J. Markovski; L.J.A.M. Somers

    2015-01-01

    Control and coordination are important aspects of the development of complex machines due to an ever-increasing demand for better functionality, quality, and performance. In WP6 of the C4C project, we developed a synthesis-centric systems engineering framework suitable for supervisory coordination o

  19. Controls and Machine Protection Systems

    CERN Document Server

    Carrone, E

    2016-01-01

    Machine protection, as part of accelerator control systems, can be managed with a 'functional safety' approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS).

  20. Plasma Physics and Controlled Nuclear Fusion

    Science.gov (United States)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  1. 49 CFR 236.771 - Machine, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a...

  2. Study On Machining Processing Technology Risk Control

    Institute of Scientific and Technical Information of China (English)

    Li Xiqing

    2015-01-01

    In the industrial production process,only to ful y guarantee the machining production safety, it can been ensured that the smooth completion of machining process.Under this back ground,in the machining production process,the machinery processing safety would been ful y concerned,several factors, which may lead to the problem of mechanical processing and production process,were analyzed,and the relevant control strategies were researched.In view of this situation,this paper wil specifical y combined with the machining process characteristics to study the machining process manufacturability risk control.

  3. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, E. C. [National Security Technologies, LLC; Lowe, D. R. [National Security Technologies, LLC; O' Brien, R. [University of Nevada, Las Vegas; Meehan, B. T. [National Security Technologies, LLC

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  4. Controlled Nuclear Fusion: Status and Outlook

    Science.gov (United States)

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  5. MODAL CONTROL OF PILOTLESS FLYING MACHINE

    Directory of Open Access Journals (Sweden)

    V. A. Antanevich

    2010-01-01

    Full Text Available The paper considers a problem on synthesis of lateral movement control algorithms in a pilotless flying machine which is made on the basis of a modal control method providing a required root arrangement of a characteristic closed control system polynom. Results of the modeling at stabilization of a lateral pilotless flying machine co-ordinate are presented in the paper.

  6. An efficient fusion approach for combining human and machine decisions

    Science.gov (United States)

    Lee, Hyungtae; Kwon, Heesung; Robinson, Ryan M.; Nothwang, William D.; Marathe, Amar R.

    2016-05-01

    A novel approach for the fusion of heterogeneous object classification methods is proposed. In order to effectively integrate the outputs of multiple classifiers, the level of ambiguity in each individual classification score is estimated using the precision/recall relationship of the corresponding classifier. The main contribution of the proposed work is a novel fusion method, referred to as Dynamic Belief Fusion (DBF), which dynamically assigns probabilities to hypotheses (target, non-target, intermediate state (target or non-target) based on confidence levels in the classification results conditioned on the prior performance of individual classifiers. In DBF, a joint basic probability assignment, which is obtained from optimally fusing information from all classifiers, is determined by the Dempster's combination rule, and is easily reduced to a single fused classification score. Experiments on RSVP dataset demonstrates that the recognition accuracy of DBF is considerably greater than that of the conventional naive Bayesian fusion as well as individual classifiers used for the fusion.

  7. Laser-error-correction control unit for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Burleson, R.R.

    1978-05-23

    An ultraprecision machining capability is needed for the laser fusion program. For this work, a precision air-bearing spindle has been mounted horizontally on a modified vertical column of a Moore Number 3 measuring machine base located in a development laboratory at the Oak Ridge Y-12 Plant. An open-loop control system previously installed on this machine was inadequate to meet the upcoming requirements since accuracy is limited to 0.5 ..mu..m by the errors in the machine's gears and leadscrew. A new controller was needed that could monitor the actual position of the machine and perform real-time error correction on the programmed tool path. It was necessary that this project: (1) attain an optimum tradeoff between hardware and software; (2) use a modular design for easy maintenance; (3) use a standard NC tape service; (4) drive the x and y axes with a positioning resolution of 5.08 nm and a feedback resolution of 10 nm; (5) drive the x and y axis motors at a velocity of 0.05 cm/sec in the contouring mode and 0.18 cm/sec in the positioning mode; (6) eliminate the possibility of tape-reader errors; and (7) allow editing of the part description data. The work that was done to develop and install the new machine controller is described.

  8. Data fusion for fault diagnosis using multi-class Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space.Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are processed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.

  9. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  10. Plasma Physics and Controlled Nuclear Fusion

    CERN Document Server

    Miyamoto, Kenro

    2005-01-01

    The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.

  11. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    to appear. Sensorless control implies control of the machine without using a direct measurement of the rotor position. Instead, more information is extracted from the existing controller feedback signals - often the machine currents - and this information is used together with accurate system knowledge...... machine is also used for servo applications where higher dynamics is required, e.g. in industrial automation. The energy efficiency is essential for battery powered electric vehicles where the electric storage capacity is limited by cost, mass and volume. The control system necessary to operate...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...

  12. Thermal Error Modeling of the CNC Machine Tool Based on Data Fusion Method of Kalman Filter

    Directory of Open Access Journals (Sweden)

    Haitong Wang

    2017-01-01

    Full Text Available This paper presents a modeling methodology for the thermal error of machine tool. The temperatures predicted by modified lumped-mass method and the temperatures measured by sensors are fused by the data fusion method of Kalman filter. The fused temperatures, instead of the measured temperatures used in traditional methods, are applied to predict the thermal error. The genetic algorithm is implemented to optimize the parameters in modified lumped-mass method and the covariances in Kalman filter. The simulations indicate that the proposed method performs much better compared with the traditional method of MRA, in terms of prediction accuracy and robustness under a variety of operating conditions. A compensation system is developed based on the controlling system of Siemens 840D. Validated by the compensation experiment, the thermal error after compensation has been reduced dramatically.

  13. Numerically Controlled Machine Tools and Worker Skills.

    Science.gov (United States)

    Keefe, Jeffrey H.

    1991-01-01

    Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…

  14. Numerically Controlled Machine Tools and Worker Skills.

    Science.gov (United States)

    Keefe, Jeffrey H.

    1991-01-01

    Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…

  15. Languages for computer-controlled machines

    OpenAIRE

    MUCHKA, Martin

    2012-01-01

    The work deals with the options and describing the languages of computer-controlled machine tools. In the introductory part is the history and development of numerical control and the description of certain control systems with an emphasis on learning the concept with the possibility of use as a study of the text. The next section describes the school's CNC milling machine, both hardware and software, and example theses on the CNC machine in practice. In the context of the work of a well-orga...

  16. MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine (SVM), using highspatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4. Firstly, the new method is established bybuilding a model of remote sensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classification fusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1 ) From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4. And it is clearly that the texture of thefused image is distinctive. 2) From quantitative analysis, the effect of classification fusion is better. As a whole, the result shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for application in remote sensing image fusion processes.

  17. MULTI—SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    ZHAOShu-he; FENGXue-zhi; 等

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine(SVM),using high spatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4.Firstly,the new method is established by building a model of remote sensing image fusion based on SVM.Then by using SPIN-2 data and SPOT-4 data ,image classify-cation fusion in tested.Finally,and evaluation of the fusion result is made in two ways.1)From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4.And it is clearly that the texture of the fused image is distinctive.2)From quantitative analysis,the effect of classification fusion is better.As a whole ,the re-sult shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for applica-tion in remote sensing image fusion processes.

  18. Machine Learning and Sensor Fusion for Estimating Continuous Energy Expenditure

    OpenAIRE

    Vyas, Nisarg; BodyMedia, Inc.; Farringdon, Jonathan; BodyMedia Inc.; Andre, David; Cerebellum Capital, Inc.; Stivoric, John Ivo; BodyMedia

    2012-01-01

    In this article we provide insight into the BodyMedia FIT armband system — a wearable multi-sensor technology that continuously monitors physiological events related to energy expenditure for weight management using machine learning and data modeling methods. Since becoming commercially available in 2001, more than half a million users have used the system to track their physiological parameters and to achieve their individual health goals including weight-loss. We describe several challenges...

  19. 基于最小二乘支持向量机的测控数据融合%Research on Fusion of Measurement and Control Data Based on Least Square-Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    苏思; 姜礼平; 邹明

    2011-01-01

    提出利用最小二乘支持向量机方法研究GPS和雷达系统对机动目标联合测量中的数据融合问题,GPS数据经过时间配准处理与雷达数据达到时间同步,经过空间配准和坐标系变换,进行卡尔曼滤波,以滤波估计坐标值作为支持向量机的输入,以最小二乘支持向量机为同步融合中心,输出为目标轨迹的融合估计值,仿真结果表明这种方案可以达到比融合前数据更贴近真实值的效果.%A least square-support vector machine data fusion approach for GPS and radar system's joint observation of maneuvering target tracking was presented. After time registration, the measurements from GPS would keep synchronous with the radar measurements, then the steps of sensor registration,coordinate conversion and Kalman filtering were taken. The processed data were then transmitted to the synchronous LS-SVM fusion center as the input data, the output data were considered as the estimated coordinates of the target. Simulation results showed that this algorithm is effective to improve the processed data's precision and stability on the whole, with less amount of training samples than neural network algorithm.

  20. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...... and establish the suitability of the machine for sensorless control using inductance saliency tracking methods. The same electromagnetic behaviour is used in the implementation of a dynamical simulation model of the machine useful for evaluation of sensorless control methods at the control design stage. Further...

  1. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  2. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  3. Machine structure oriented control code logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2009-01-01

    Control code is a concept that is closely related to a frequently occurring practitioner’s view on what is a program: code that is capable of controlling the behaviour of some machine. We present a logical approach to explain issues concerning control codes that are independent of the details of the

  4. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  5. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  6. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  7. Step Characterization using Sensor Information Fusion and Machine Learning

    Directory of Open Access Journals (Sweden)

    Ricardo Anacleto

    2015-12-01

    Full Text Available A pedestrian inertial navigation system is typically used to suppress the Global Navigation Satellite System limitation to track persons in indoor or in dense environments. However, low- cost inertial systems provide huge location estimation errors due to sensors and pedestrian dead reckoning inherent characteristics. To suppress some of these errors we propose a system that uses two inertial measurement units spread in person’s body, which measurements are aggregated using learning algorithms that learn the gait behaviors. In this work we present our results on using different machine learning algorithms which are used to characterize the step according to its direction and length. This characterization is then used to adapt the navigation algorithm according to the performed classifications.

  8. Controlled English to facilitate human/machine analytical processing

    Science.gov (United States)

    Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien

    2013-06-01

    Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.

  9. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  10. Linear optimal control of tokamak fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  11. PC controlled toothbrush/dentifrice abrasion machine.

    Science.gov (United States)

    Bal, G; Uçtaşli, S; Bekiroğlu, E

    1999-02-01

    A toothbrush/dentifrice abrasion machine was developed to use in dental research laboratory. The mechanism was designed as a hexagonal block driven by two stepping motors which move the mechanism in four directions. In order to control the stepping motors speed, position and direction commands or signals were generated by a software written in C Programming Language and then these commands were applied the stepping motor drives through parallel port of a personal computer. The toothbrush/dentifrice abrasion machine was finally used to measure different longevity of tooth brush. It was experimentally shown that the mechanism can be used for highly accurate position and speed applications.

  12. HYBRID CONTROL OF HYDRAULIC PRESS MACHINE BASED ON ROBUST CONTROL

    Institute of Scientific and Technical Information of China (English)

    FANG Yu; YANG Jian; CHAI Xiaodong

    2008-01-01

    A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional valve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.

  13. Polarized fuel for controlled thermonuclear fusion

    Science.gov (United States)

    Bartalucci, Sergio

    2017-07-01

    The use of polarized nuclei as a fuel for thermonuclear fusion reactors was suggested more than 30 years ago, providing evidence for a significant increase of the total cross section. In particular, an enhancement factor close to 1.5 is expected in the energy range below 100 keV for the dominant nuclear fusion reactions 2H + 3H → 4He + n + 17.58 MeV and 2H + 3He → 4He + p + 18.34 MeV. Furthermore, the use of polarized fuel allows one to control the ejectile trajectories, via an enhancement in the forward-backward cross section asymmetry due to polarization. This allows some control on the energy transfer from the plasma to the reactor wall or helps concentrate the neutron flux to defined wall areas. Nevertheless, this idea was received with skepticism by the relevant scientific community, due to some uncertainty in the physics of the process, the low efficiency in the production of polarized beams for injection into plasma and the apparent difficulty of preserving the ion polarization for a time long compared with nuclear burning time. But more recently, as a consequence of significant progress in the field of atomic beam sources and polarized targets, the interest in this matter has been refreshed for both inertially and magnetically confined plasmas. The possibility of implementing nuclear polarization in present and future fusion reactors is discussed in this paper. In particular, the interaction between polarized ions and magnetic fields, both static and RF, which are typically used in a Tokamak for plasma heating via ion cyclotron resonance (ICRH), is considered. Also, experimental issues for practically performing a feasibility test on a real fusion reactors are illustrated.

  14. Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less effective. More specifically, they cannot cope with various types of Android malware and have limitation in detection by utilizing a single classification algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this approach, we first extract eight types of features from static analysis on Android apps and build two kinds of feature sets after feature selection. Then, a parallel machine learning detection model is developed for speeding up the process of classification. Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can effectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison with real-world Android apps. The experimental results demonstrate that Mlifdect is capable of achieving higher detection accuracy as well as a remarkable run-time efficiency compared to the existing malware detection solutions.

  15. Virtual Machine Language Controls Remote Devices

    Science.gov (United States)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  16. Sensor fusion for intelligent process control.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Harmar Township, PA); Hill, Kevin (PPG Industries, Inc., Harmar Township, PA); Hanekamp, David (PPG Industries, Inc., Harmar Township, PA); Haley, William F. (PPG Industries, Inc., Wichita Falls, TX); Gallagher, Robert J.; Gowin, Craig (PPG Industries, Inc., Batavia, IL); Farrar, Arthur R. (PPG Industries, Inc., Wichita Falls, TX); Sheaffer, Donald A.; DeYoung, Mark A. (PPG Industries, Inc., Mt. Zion, IL); Bertram, Lee A.; Dodge, Craig (PPG Industries, Inc., Mt. Zion, IL); Binion, Bruce (PPG Industries, Inc., Mt. Zion, IL); Walsh, Peter M.; Houf, William G.; Desam, Padmabhushana R. (University of Utah, Salt Lake City, UT); Tiwary, Rajiv (PPG Industries, Inc., Harmar Township, PA); Stokes, Michael R. (PPG Industries, Inc.); Miller, Alan J. (PPG Industries, Inc., Mt. Zion, IL); Michael, Richard W. (PPG Industries, Inc., Lincoln, AL); Mayer, Raymond M. (PPG Industries, Inc., Harmar Township, PA); Jiao, Yu (PPG Industries, Inc., Harmar Township, PA); Smith, Philip J. (University of Utah, Salt Lake City, UT); Arbab, Mehran (PPG Industries, Inc., Harmar Township, PA); Hillaire, Robert G.

    2004-08-01

    An integrated system for the fusion of product and process sensors and controls for production of flat glass was envisioned, having as its objective the maximization of throughput and product quality subject to emission limits, furnace refractory wear, and other constraints. Although the project was prematurely terminated, stopping the work short of its goal, the tasks that were completed show the value of the approach and objectives. Though the demonstration was to have been done on a flat glass production line, the approach is applicable to control of production in the other sectors of the glass industry. Furthermore, the system architecture is also applicable in other industries utilizing processes in which product uniformity is determined by ability to control feed composition, mixing, heating and cooling, chemical reactions, and physical processes such as distillation, crystallization, drying, etc. The first phase of the project, with Visteon Automotive Systems as industrial partner, was focused on simulation and control of the glass annealing lehr. That work produced the analysis and computer code that provide the foundation for model-based control of annealing lehrs during steady state operation and through color and thickness changes. In the second phase of the work, with PPG Industries as the industrial partner, the emphasis was on control of temperature and combustion stoichiometry in the melting furnace, to provide a wider operating window, improve product yield, and increase energy efficiency. A program of experiments with the furnace, CFD modeling and simulation, flow measurements, and sensor fusion was undertaken to provide the experimental and theoretical basis for an integrated, model-based control system utilizing the new infrastructure installed at the demonstration site for the purpose. In spite of the fact that the project was terminated during the first year of the second phase of the work, the results of these first steps toward implementation

  17. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  18. A Simple Application of Lightweight Fusion to Proving the Equivalence of Abstract Machines

    DEFF Research Database (Denmark)

    Danvy, Olivier; Millikin, Kevin

    2007-01-01

    We show how Ohori and Sasano's recent lightweight fusion by fixed-point promotion provides a simple way to prove the equivalence of the two standard styles of specification of abstract machines: (1) as a transition function together with a `driver loop' implementing the iteration of this transition...... function; and (2) as a function directly iterating upon a configuration until reaching a final state, if ever. The equivalence hinges on the fact that the latter style of specification is a fused version of the former one. The need for such a simple proof is motivated by our recent work on syntactic...

  19. Approach towards sensor placement, selection and fusion for real-time condition monitoring of precision machines

    Science.gov (United States)

    Er, Poi Voon; Teo, Chek Sing; Tan, Kok Kiong

    2016-02-01

    Moving mechanical parts in a machine will inevitably generate vibration profiles reflecting its operating conditions. Vibration profile analysis is a useful tool for real-time condition monitoring to avoid loss of performance and unwanted machine downtime. In this paper, we propose and validate an approach for sensor placement, selection and fusion for continuous machine condition monitoring. The main idea is to use a minimal series of sensors mounted at key locations of a machine to measure and infer the actual vibration spectrum at a critical point where it is not suitable to mount a sensor. The locations for sensors' mountings which are subsequently used for vibration inference are identified based on sensitivity calibration at these locations moderated with normalized Fisher Information (NFI) associated with the measurement quality of the sensor at that location. Each of the identified sensor placement location is associated with one or more sensitive frequencies for which it ranks top in terms of the moderated sensitivities calibrated. A set of Radial Basis Function (RBF), each of them associated with a range of sensitive frequencies, is used to infer the vibration at the critical point for that frequency. The overall vibration spectrum of the critical point is then fused from these components. A comprehensive set of experimental results for validation of the proposed approach is provided in the paper.

  20. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  1. Model-driven Migration of Supervisory Machine Control Architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Van Deursen, A.

    2006-01-01

    Supervisory machine control is the high-level control in advanced manufacturing machines that is responsible for the coordination of manufacturing activities. Traditionally, the design of such control systems is based on finite state machines. An alternative, more flexible approach is based on

  2. Primary exploration of nonlinear information fusion control theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By introducing information fusion techniques into a control field, a new theory of information fusion control (IFC) is proposed. Based on the theory of information fusion estimation, optimal control of nonlinear discrete control system is investigated. All information on control strategy, including ideal control strategy, expected object trajectory and dynamics of system, are regarded as measuring information of control strategy. Therefore, the problem of optimal control is transferred into the one of information fusion estimation. Firstly, the nonlinear information fusion estimation theorems are described. Secondly, an algorithm of nonlinear IFC theory is detailedly deduced. Finally, the simulation results of manipulator shift control are given, which show the feasibility and effectiveness of the presented algorithm.

  3. Machine function based control code algebras

    NARCIS (Netherlands)

    Bergstra, J.A.

    2008-01-01

    Machine functions have been introduced by Earley and Sturgis in [6] in order to provide a mathematical foundation of the use of the T-diagrams proposed by Bratman in [5]. Machine functions describe the operation of a machine at a very abstract level. A theory of hardware and software based on machin

  4. Initiation and propagation of damage in actively cooled CFC armoured high heat flux components in fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France); Escourbiac, F. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2009-06-15

    Plasma facing components (PFCs) in magnetic confinement controlled fusion machines are armoured with carbon fibre composite (CFC) bonded to a copper alloy heat sink. The manufacturing process induces high level of residual stresses due to the thermal expansion mismatch between CFC and copper and PFCs have to withstand strong stress ranges during operation. To study the initiation and propagation of damage in the CFC part, the ONERA damage model is used to describe the behaviour of the N11 material. The finite element simulations show that the damage is located near the interface and develops during the manufacturing of the PFCs as a consequence of the high amplitude of shear stresses. Under high heat flux, stresses decrease and the damage does not evolve. Further studies will take into account the damageable behaviour of the composite/copper interface, which will lead to geometrical optimisations and better knowledge of the link between damage and conductivity.

  5. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  6. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, M.R. de

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  7. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, M.R. de

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  8. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  9. Experimental investigation of active machine tool vibration control

    Science.gov (United States)

    Rojas, J.; Liang, Chen; Geng, Zheng J.

    1996-05-01

    The successful vibration reduction of machine tools during machining process can improve productivity, increase quality, and reduce tool wear. This paper will present our initial investigation in the application of smart material technologies in machine tool vibration control using magnetostrictive actuators and electrorheological elastomer dampers on an industrial Sheldon horizontal lathe. The dynamics of the machining process are first studied, which reveals the complexity in the machine tool vibration response and the challenge to the active control techniques. The active control experiment shows encouraging results. The use of electrorheological elastomer damping device for active/passive vibration control provides significant vibration reduction in the high frequency range and great improvement in the workpiece surface finishing. The research presented in this paper demonstrates that the combination of active and active/passive vibration control techniques is very promising for successful machine tool vibration control.

  10. Fusion Control of Flexible Logic Control and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2014-01-01

    Full Text Available Based on the basic physical meaning of error E and error variety EC, this paper analyzes the logical relationship between them and uses Universal Combinatorial Operation Model in Universal Logic to describe it. Accordingly, a flexible logic control method is put forward to realize effective control on multivariable nonlinear system. In order to implement fusion control with artificial neural network, this paper proposes a new neuron model of Zero-level Universal Combinatorial Operation in Universal Logic. And the artificial neural network of flexible logic control model is implemented based on the proposed neuron model. Finally, stability control, anti-interference control of double inverted-pendulum system, and free walking of cart pendulum system on a level track are realized, showing experimentally the feasibility and validity of this method.

  11. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  12. DRIVE AND CONTROL OF VIRTUAL-AXIS NC MACHINE TOOLS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The structure features and driving modes of virtual-axis NC machine tools are studied.Accor- ding to different application requirements,the three-axis control method,the five-axis control method and the six-freedom control method are put forward.These results lay a foundation for the product development of the virtual-axis NC machine tools.

  13. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  14. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  15. Active Control of Machine Tool Chatter

    OpenAIRE

    Håkansson, Lars; Claesson, Ingvar; Lagö, Thomas L.

    1999-01-01

    In the turning operation chatter or vibration is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynamic motion between cutting tool and workpiece may be part...

  16. Active chatter control in a milling machine

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P. [and others

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  17. Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

    Institute of Scientific and Technical Information of China (English)

    Yong-Woo KIM; Soo-Chang CHOI; Jeung-Woo PARK; Deug-Woo LEE

    2009-01-01

    One of the ultra-precision machining methods was adapted for brittle material as well as soft material by using multi-arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because the particles of grinding tools are irregular size and material can be fragile. Therefore, we were able to design tool paths and machine controlled pattern on surface by multi-arrayed diamond tips with uniform size made in MEMS fabrication and high speed spindle, and the maximum speed was about 3×105 r/min. We defined several parameters that can affect the machining surface. Those were multi-array of diamond tips (n×n), speed of air spindle and feeding rate. The surface roughness and surface texture can be controlled by those parameters for micro machining.

  18. Controlled cellular fusion using optically trapped plasmonic nano-heaters

    Science.gov (United States)

    Bahadori, Azra; Lund, Andreas R.; Semsey, Szabolcs; Oddershede, Lene B.; Bendix, Poul M.

    2016-09-01

    Optically trapped plasmonic nano-heaters are used to mediate efficient and controlled fusion of biological membranes. The fusion method is demonstrated by optically trapping plasmonic nanoparticles located in between vesicle membranes leading to rapid lipid and content mixing. As an interesting application we show how direct control over fusion can be used for studying diffusion of peripheral membrane proteins and their interactions with membranes and for studying protein reactions. Membrane proteins encapsulated in an inert vesicle can be transferred to a vesicle composed of negative lipids by optically induced fusion. Mixing of the two membranes results in a fused vesicle with a high affinity for the protein and we observe immediate membrane tubulation due to the activity of the protein. Fusion of distinct membrane compartments also has applications in small scale chemistry for realizing pico-liter reactions and offers many exciting applications within biology which are discussed here.

  19. Mobility Control for Machine-to-Machine LTE Systems

    CERN Document Server

    Lee, Beom Hee

    2011-01-01

    In this paper, we propose an efficient mobility control algorithm for the downlink multi-cell orthogonal frequency division multiplexing access (OFDMA) system for co-channel interference reduction. It divides each cell into several areas. The mobile nodes in each area find their own optimal position according to their present location. Both the signal to interference plus noise ratio (SINR) and the capacity for each node are increased by the proposed mobility control algorithm. Simulation results say that, even the frequency reuse factor (FRF) is equal to 1, the average capacity is improved after applying the mobility control algorithm, compared to existing partial frequency reuse (PFR) scheme.

  20. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  1. On the equivalence between small-step and big-step abstract machines: a simple application of lightweight fusion

    DEFF Research Database (Denmark)

    Danvy, Olivier; Millikin, Kevin

    2008-01-01

    We show how Ohori and Sasano’s recent lightweight fusion by fixed-point promotion provides a simple way to prove the equivalence of the two standard styles of specification of abstract machines: (1) in small-step form, as a state-transition function together with a ‘driver loop’, i.e., a function......-step specification. We illustrate this observation here with a recognizer for Dyck words, the CEK machine, and Krivine’s machine with call/cc. The need for such a simple proof is motivated by our current work on small-step abstract machines as obtained by refocusing a function implementing a reduction semantics (a...

  2. MODEL STUDY OF THE DOUBLE FED MACHINE WITH CURRENT CONTROL

    Directory of Open Access Journals (Sweden)

    A. S. Lyapin

    2016-07-01

    Full Text Available The paper deals with modeling results of the double fed induction machine with current control in the rotor circuit. We show the most promising applications of electric drives on the basis of the double fed induction machine and their advantages. We present and consider functional scheme of the electric drive on the basis of the double fed induction machine with current control. Equations are obtained for creation of such machine mathematical model. Expressions for vector projections of rotor current are given. According to the obtained results, the change of the vector projections of rotor current ensures operation of the double fed induction machine with the specified values of active and reactive stator power throughout the variation range of sliding motion. We consider static characteristics of double fed machine with current control. Energy processes proceeding in the machine are analyzed. We confirm the operationpossibility of double fed induction machine with current controlin the rotor circuit with given values of active and reactive stator power. The presented results can be used for creation of mathematical models and static characteristics of double fed machines with current control of various capacities.

  3. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine

    Science.gov (United States)

    Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish

    2012-06-01

    Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.

  4. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  5. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  6. Technical Developments for Harnessing Controlled Fusion

    Science.gov (United States)

    Veres, G.; Zoletnik, S.; Jacob, W.

    This chapter gives the conditions for achieving power production using nuclear fusion reactions. The two basic schemes for plasma confinement, inertial and magnetic, are briefly considered and the present technical solutions are outlined. The physical and chemical processes taking place between the hot plasma and the containing vessel wall are discussed in more detail. At the end of the chapter, the present status of research and the planned future development plans are summarized.

  7. An industrial sewing machine variable speed controller

    Science.gov (United States)

    Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank

    The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.

  8. Sensor Fusion of Force and Acceleration for Robot Force Control

    OpenAIRE

    Gámez García, Javier; Robertsson, Anders; Gómez Ortega, Juan; Johansson, Rolf

    2004-01-01

    In this paper, robotic sensor fusion of acceleration and force measurement is considered. We discuss the problem of using accelerometers close to the end-effectors of robotic manipulators and how it may improve the force control performance. We introduce a new model-based observer approach to sensor fusion of information from various different sensors. During contact transition, accelerometers and force sensors play a very important role and it can overcome many of the difficulties of uncerta...

  9. Digital controlling for GMA welding machine based on DSP

    Institute of Scientific and Technical Information of China (English)

    华学明; 吴毅雄; 张勇; 焦馥杰; 于乾波

    2003-01-01

    This paper introduced a welding machine for GMAW using digital controlling method based on DSP (Digital Signal Process). By means of flexible programming according to welding technologies and experiences the suitable characteristics of welding machine, such as line compensation, welding voltage and current feedback, wire-feed driving, SCR trigging and so on, can be controlled and self-adjusted using digital signals. Through the designing based on DSP it is put out that the traditional hardware of control circuit is decreased greatly which can enhance the stability and reliability of welding machine. Finally, the welding experiment using CO2 shielding gas proves that the welding process is stable.

  10. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  11. Two computational approaches for Monte Carlo based shutdown dose rate calculation with applications to the JET fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Batistoni, P.; Migliori, S. [Associazione EURATOM ENEA sulla Fusione, Frascati (Roma) (Italy); Chen, Y.; Fischer, U.; Pereslavtsev, P. [Association FZK-EURATOM Forschungszentrum Karlsruhe (Germany); Loughlin, M. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX (United Kingdom); Secco, A. [Nice Srl Via Serra 33 Camerano Casasco AT (Italy)

    2003-07-01

    In deuterium-deuterium (D-D) and deuterium-tritium (D-T) fusion plasmas neutrons are produced causing activation of JET machine components. For safe operation and maintenance it is important to be able to predict the induced activation and the resulting shut down dose rates. This requires a suitable system of codes which is capable of simulating both the neutron induced material activation during operation and the decay gamma radiation transport after shut-down in the proper 3-D geometry. Two methodologies to calculate the dose rate in fusion devices have been developed recently and applied to fusion machines, both using the MCNP Monte Carlo code. FZK has developed a more classical approach, the rigorous 2-step (R2S) system in which MCNP is coupled to the FISPACT inventory code with an automated routing. ENEA, in collaboration with the ITER Team, has developed an alternative approach, the direct 1 step method (D1S). Neutron and decay gamma transport are handled in one single MCNP run, using an ad hoc cross section library. The intention was to tightly couple the neutron induced production of a radio-isotope and the emission of its decay gammas for an accurate spatial distribution and a reliable calculated statistical error. The two methods have been used by the two Associations to calculate the dose rate in five positions of JET machine, two inside the vacuum chamber and three outside, at cooling times between 1 second and 1 year after shutdown. The same MCNP model and irradiation conditions have been assumed. The exercise has been proposed and financed in the frame of the Fusion Technological Program of the JET machine. The scope is to supply the designers with the most reliable tool and data to calculate the dose rate on fusion machines. Results showed that there is a good agreement: the differences range between 5-35%. The next step to be considered in 2003 will be an exercise in which the comparison will be done with dose-rate data from JET taken during and

  12. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    Closed-Loop Tension Control System for Injection Moulding Machine. ... Open Access DOWNLOAD FULL TEXT ... it demonstrated a new technological advancement and the theory of moulding which prevents possible spillage occurrences.

  13. Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Natalie K. Garcia

    2016-01-01

    Full Text Available The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system.

  14. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  15. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  16. Information fusion based optimal control for large civil aircraft system.

    Science.gov (United States)

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Robust Control of Machine-Tool Vibration in a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars; Lagö, Thomas L.

    1999-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced substantially by active control of the machine-tool vibration. Adaptive fe...

  18. Design of Sugarcane Peeling Machine Based on Motion Controller

    Directory of Open Access Journals (Sweden)

    Zhang Dehui

    2015-04-01

    Full Text Available Sugarcane is a common raw material for sugar, but in the process of machining, there will be suspended solids in the cane juice, in order to process better, the sugarcane should be peeled. Traditional way of peeling is by man, production efficiency is low. In this study, a kind of sugarcane peeling machine was designed based on motion controller, it can realize the automation of input, peeling and output. It can make certain contribution for sugarcane processing.

  19. CD process control through machine learning

    Science.gov (United States)

    Utzny, Clemens

    2016-10-01

    For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.

  20. Force and Acceleration Sensor Fusion for Compliant Robot Motion Control

    OpenAIRE

    Gámez García, Javier; Robertsson, Anders; Gómez Ortega, Juan; Johansson, Rolf

    2005-01-01

    In this work, we present implementation and experiment of the theory of dynamic force sensing for robotic manipulators, which uses a sensor fusion technique in order to extract the contact force exerted by the end-effector of the manipulator from those measured by a wrist force sensor, which are corrupted by the inertial forces on the end-effector. We propose a new control strategy based on multisensor fusion with three different sensors that is, encoders mounted at each joint of the robot wi...

  1. Integration of multiple sensor fusion in controller design.

    Science.gov (United States)

    Abdelrahman, Mohamed; Kandasamy, Parameshwaran

    2003-04-01

    The main focus of this research is to reduce the risk of a catastrophic response of a feedback control system when some of the feedback data from the system sensors are not reliable, while maintaining a reasonable performance of the control system. In this paper a methodology for integrating multiple sensor fusion into the controller design is presented. The multiple sensor fusion algorithm produces, in addition to the estimate of the measurand, a parameter that measures the confidence in the estimated value. This confidence is integrated as a parameter into the controller to produce fast system response when the confidence in the estimate is high, and a slow response when the confidence in the estimate is low. Conditions for the stability of the system with the developed controller are discussed. This methodology is demonstrated on a cupola furnace model. The simulations illustrate the advantages of the new methodology.

  2. Digital controller for a Baum folding machine. [providing automatic counting and machine shutoff

    Science.gov (United States)

    Bryant, W. H. (Inventor)

    1974-01-01

    A digital controller for controlling the operation of a folding machine enables automatic folding of a desired number of sheets responsive to entry of that number into a selector. The controller includes three decade counter stages for corresponding rows of units, tens and hundreds push buttons. Each stage including a decimal-to-BCD encoder, a buffer register, and a digital or binary counter. The BCD representation of the selected count for each digit is loaded into the respective decade down counters. Pulses generated by a sensor and associated circuitry are used to decrease the count in the decade counters. When the content of the decade counter reaches either 0 or 1, a solenoid control valve is actuated which interrupts operation of the machine. A repeat switch, when actuated, prevents clearing of the buffer registers so that multiple groups of the same number of sheets can be folded without reentering the number into the selector.

  3. Forbidden Zones for Numerically-Controlled Machine Tools

    Science.gov (United States)

    Philpot, D.

    1986-01-01

    Computer-controlled machine tool prevented from striking and damaging protruding members on workpiece by creating forbidden zone in control program. With aid of computer graphics, tool profile and coordinates of forbidden zone digitized and stored in computer memory as part of tool path.

  4. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  5. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  6. Interpretation of machine-learning-based disruption models for plasma control

    Science.gov (United States)

    Parsons, Matthew S.

    2017-08-01

    While machine learning techniques have been applied within the context of fusion for predicting plasma disruptions in tokamaks, they are typically interpreted with a simple ‘yes/no’ prediction or perhaps a probability forecast. These techniques take input signals, which could be real-time signals from machine diagnostics, to make a prediction of whether a transient event will occur. A major criticism of these methods is that, due to the nature of machine learning, there is no clear correlation between the input signals and the output prediction result. Here is proposed a simple method that could be applied to any existing prediction model to determine how sensitive the state of a plasma is at any given time with respect to the input signals. This is accomplished by computing the gradient of the decision function, which effectively identifies the quickest path away from a disruption as a function of the input signals and therefore could be used in a plasma control setting to avoid them. A numerical example is provided for illustration based on a support vector machine model, and the application to real data is left as an open opportunity.

  7. Development of Control System for Keropok Keping Drying Machine

    Directory of Open Access Journals (Sweden)

    Leman Muhammad Naim

    2017-01-01

    Full Text Available This research is focused on the development of a control system for the keropok keping drying machine by using programmable logic controller (PLC as the controller. The control panel and human machine interface (HMI were developed for the machine. Experimental study was conducted to validate the HMI speed data by the control panel speed display. The evaluation of the duty cycle (% and current flow (amp effect to the motor and fan speed were also conducted. The results showed that around 1 - 30 % and 1 - 3 % differences of the speed readings were recorded by the HMI for the motor and fan respectively. The percentage difference needs to be controlled as small as possible to ensure the HMI speed readings are more accurate. The linearity of the current flow curve to all duty cycle can be observed. The flow (amp increases when the speed of dryer motor and fan increases. The development of the control system is expected to improve the operation of the keropok keping drying machine.

  8. Semiactive Vibration Control for Horizontal Axis Washing Machine

    Directory of Open Access Journals (Sweden)

    Barış Can Yalçın

    2015-01-01

    Full Text Available A semiactive vibration control method is developed to cope with the dynamic stability problem of a horizontal axis washing machine. This method is based on adjusting the maximum force values produced by the semiactive suspension elements considering a washing machine’s vibration data (three axis angular position and three axis angular acceleration values in time. Before actuation signals are received by the step motors of the friction dampers, vibration data are evaluated, and then, the step motors start to narrow or expand the radius of bracelets located on the dampers. This changes the damping properties of the damper in the suspension system, and thus, the semiactive suspension system absorbs unwanted vibrations and contributes to the dynamic stability of the washing machine. To evaluate the vibration data, the angular position and angular acceleration values in three axes are defined in a function, and the maximum forces produced by semiactive suspension elements are calculated according to the gradient of this function. The relation between the dynamic stability and the walking stability is also investigated. A motion (gyroscope and accelerometer sensor is installed on the top-front panel of the washing machine because a mathematical model of a horizontal axis washing machine suggests that the walking behavior starts around this location under some assumptions, and therefore, calculating the vibrations occurring there is crucial. Semiactive damping elements are located under the left and right sides of the tub. The proposed method is tested during the spinning cycle of washing machine operation, increasing gradually from 200 rpm to 900 rpm, which produces the most challenging vibration patterns for dynamic stability. Moreover, the sound power levels produced by the washing machine are measured to evaluate the noise performance of the washing machine while the semiactive suspension system is controlled. The effectiveness of the

  9. Atomic data for controlled fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.

    1977-02-01

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy.

  10. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  11. A cloud platform for remote diagnosis of breast cancer in mammography by fusion of machine and human intelligence

    Science.gov (United States)

    Jiang, Guodong; Fan, Ming; Li, Lihua

    2016-03-01

    Mammography is the gold standard for breast cancer screening, reducing mortality by about 30%. The application of a computer-aided detection (CAD) system to assist a single radiologist is important to further improve mammographic sensitivity for breast cancer detection. In this study, a design and realization of the prototype for remote diagnosis system in mammography based on cloud platform were proposed. To build this system, technologies were utilized including medical image information construction, cloud infrastructure and human-machine diagnosis model. Specifically, on one hand, web platform for remote diagnosis was established by J2EE web technology. Moreover, background design was realized through Hadoop open-source framework. On the other hand, storage system was built up with Hadoop distributed file system (HDFS) technology which enables users to easily develop and run on massive data application, and give full play to the advantages of cloud computing which is characterized by high efficiency, scalability and low cost. In addition, the CAD system was realized through MapReduce frame. The diagnosis module in this system implemented the algorithms of fusion of machine and human intelligence. Specifically, we combined results of diagnoses from doctors' experience and traditional CAD by using the man-machine intelligent fusion model based on Alpha-Integration and multi-agent algorithm. Finally, the applications on different levels of this system in the platform were also discussed. This diagnosis system will have great importance for the balanced health resource, lower medical expense and improvement of accuracy of diagnosis in basic medical institutes.

  12. Inverse Learning Control of Nonlinear Systems Using Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    HU Zhong-hui; LI Yuan-gui; CAI Yun-ze; XU Xiao-ming

    2005-01-01

    An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverselearning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory.

  13. Explaining finite state machine characteristics using variable structure control

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.

    1997-10-01

    This paper describes how variable structure control can be used to describe the overall behavior of multiple autonomous robotic vehicles with simple finite state machine rules. The importance of this result is that it allows for the design of provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with variable structure control. The ability to prove convergence to a goal is especially important for applications such as locating military targets or land mines.

  14. Refining fuzzy logic controllers with machine learning

    Science.gov (United States)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  15. Improved Controls for Fusion RF Systems. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Jeffrey A. [Rockfield Research Inc., Las Vegas, NV (United States)

    2011-11-08

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.

  16. Multi-Sensor Data Fusion Using a Relevance Vector Machine Based on an Ant Colony for Gearbox Fault Detection

    Directory of Open Access Journals (Sweden)

    Zhiwen Liu

    2015-08-01

    Full Text Available Sensors play an important role in the modern manufacturing and industrial processes. Their reliability is vital to ensure reliable and accurate information for condition based maintenance. For the gearbox, the critical machine component in the rotating machinery, the vibration signals collected by sensors are usually noisy. At the same time, the fault detection results based on the vibration signals from a single sensor may be unreliable and unstable. To solve this problem, this paper proposes an intelligent multi-sensor data fusion method using the relevance vector machine (RVM based on an ant colony optimization algorithm (ACO-RVM for gearboxes’ fault detection. RVM is a sparse probability model based on support vector machine (SVM. RVM not only has higher detection accuracy, but also better real-time accuracy compared with SVM. The ACO algorithm is used to determine kernel parameters of RVM. Moreover, the ensemble empirical mode decomposition (EEMD is applied to preprocess the raw vibration signals to eliminate the influence caused by noise and other unrelated signals. The distance evaluation technique (DET is employed to select dominant features as input of the ACO-RVM, so that the redundancy and inference in a large amount of features can be removed. Two gearboxes are used to demonstrate the performance of the proposed method. The experimental results show that the ACO-RVM has higher fault detection accuracy than the RVM with normal the cross-validation (CV.

  17. New functional units for coke machine automatic control system

    Energy Technology Data Exchange (ETDEWEB)

    Parfenov, G.I.; Bannikov, L.S.; Vakarenko, I.M.; Grishin, S.P.

    1983-01-01

    A new device used in the control systems of coking plants is discussed. The system is capable of operating in fully automatic, semi-automatic, or manual modes. Examples of the usage of the unit include the stopping of coke machines within limits of +/- 200 mm. It is concluded that the use of the units reduce manufacture, adjustment, and service costs.

  18. Support Vector Machine-Based Nonlinear System Modeling and Control

    Institute of Scientific and Technical Information of China (English)

    张浩然; 韩正之; 冯瑞; 于志强

    2003-01-01

    This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM.At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.

  19. Linear Parameter Varying Control of Doubly Fed Induction Machines

    NARCIS (Netherlands)

    Tien, H. Nguyen; Scherer, Carsten W.; Scherpen, Jacquelien M.A.; Müller, Volkmar

    2016-01-01

    This paper is concerned with the design of a self-scheduled current controller for doubly fed induction machines. The design is based on the framework of linear parameter-varying systems where the mechanical angular speed is considered to be a measurable time-varying parameter. The objective is to o

  20. An Access Control Model of Virtual Machine Security

    Directory of Open Access Journals (Sweden)

    QIN Zhong-yuan

    2013-07-01

    Full Text Available Virtualization technology becomes a hot IT technolo gy with the popu-larity of Cloud Computing. However, new security issues arise with it. Specifically, the resources sharing and data communication in virtual machines are most con cerned. In this paper an access control model is proposed which combines the Chinese Wall a nd BLP model. BLP multi-level security model is introduced with corresponding improvement based on PCW (Prioritized Chinese Wall security model. This model can be used to safely co ntrol the resources and event behaviors in virtual machines. Experimental results show its eff ectiveness and safety.

  1. Distributed Information Fusion through Advanced Multi-Agent Control

    Science.gov (United States)

    2016-09-09

    AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      17-10-2016 2. REPORT... Control 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4042 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Adrian Bishop 5d.  PROJECT NUMBER 5e

  2. Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. U.S. Employment Service.

    At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…

  3. Simulink Implementation of Indirect Vector Control of Induction Machine Model

    Directory of Open Access Journals (Sweden)

    V. Dhanunjayanaidu

    2014-04-01

    Full Text Available In this paper, a modular Simulink implementation of an induction machine model is described in a step-by-step approach. With the modular system, each block solves one of the model equations; therefore, unlike in black box models, all of the machine parameters are accessible for control and verification purposes.After the implementation, examples are given with the model used in different drive applications, such as open-loop constant V/Hz control and indirect vector control. To implement the induction machine model, the dynamic equivalent circuit of induction motor is taken and the model equations in flux linkage form are derived.Then the model is implemented in Simulink by transforming three phase voltages to d-q frame and the d-q currents back to three phase, also it includes unit vector calculation and induction machine d-q model.The inputs here are three phase voltages, load torque, speed of stator and the outputs are flux linkages and currents, electrical torque and speed of rotor.

  4. Modeling of autoresonant control of a parametrically excited screen machine

    Science.gov (United States)

    Abolfazl Zahedi, S.; Babitsky, Vladimir

    2016-10-01

    Modelling of nonlinear dynamic response of a screen machine described by the nonlinear coupled differential equations and excited by the system of autoresonant control is presented. The displacement signal of the screen is fed to the screen excitation directly by means of positive feedback. Negative feedback is used to fix the level of screen amplitude response within the expected range. The screen is anticipated to vibrate with a parametric resonance and the excitation, stabilization and control response of the system are studied in the stable mode. Autoresonant control is thoroughly investigated and output tracking is reported. The control developed provides the possibility of self-tuning and self-adaptation mechanisms that allow the screen machine to maintain a parametric resonant mode of oscillation under a wide range of uncertainty of mass and viscosity.

  5. Latex Dipping Machine PLC Control and Its Programming

    Directory of Open Access Journals (Sweden)

    Yimin Zhang

    2012-10-01

    Full Text Available Latex dipping machine is based on a latex patent products new-production condom and the development of the machine. The latex dipping agencies combined with production condom mechanism. First it realized a 3-dimensional accurate localization system using stepping motors. SIMATIC S7-200 series programmable controller, motion module EM253 and stepping motor are tied in wedlock to realize allocation of 3-dimension of X axis and Y axis and Z axis. Through the PTO pulse of Siemens S7-200 PLC controller and combined with the use of EM253 module, through the mould precise control programming soak glue and roll edge to achieve the control mold of rotation and swinging the uniform distributed latex. And the system has applied successfully in foreign-funded enterprise of Singapore.

  6. Support vector machine-based multi-model predictive control

    Institute of Scientific and Technical Information of China (English)

    Zhejing BA; Youxian SUN

    2008-01-01

    In this paper,a support vector machine-based multi-model predictive control is proposed,in which SVM classification combines well with SVM regression.At first,each working environment is modeled by SVM regression and the support vector machine network-based model predictive control(SVMN-MPC)algorithm corresponding to each environment is developed,and then a multi-class SVM model is established to recognize multiple operating conditions.As for control,the current environment is identified by the multi-class SVM model and then the corresponding SVMN.MPCcontroller is activated at each sampling instant.The proposed modeling,switching and controller design is demonstrated in simulation results.

  7. Switched reluctance machines control with a minimized sampling frequency

    OpenAIRE

    Rain, Xavier; Hilairet, Mickaël; Arias Pujol, Antoni

    2014-01-01

    This paper is focused on reducing the Switched Reluctance Machines (SRMs) control sampling frequency in order to save processor real time resources, while keeping the stability and also the performance, in terms of average torque and torque ripple. Reducing the CPU cost either by implementing the control algorithm in a less performing CPU or more importantly reducing the percentage of the CPU demand is an attractive goal, especially for the electrical vehicle industry from where the SRM used ...

  8. Modular reconfigurable machine tools: design, control and evaluation

    CSIR Research Space (South Africa)

    Padayachee, J

    2009-11-01

    Full Text Available -process capacity scaling. Scalable production capacity and adjustable system functionality are the key objectives of reconfigurable manufacturing. Index terms: Reconfigurable Manufacturing Systems, Modular Reconfigurable Machines, Open Architecture Control...] identify the fixed mechanical architectures and proprietary control systems found in CNC and DMT equipment as the specific drawback in effectively implementing these classes of equipment in RMS. Koren et al.[3] proposed the development of reconfigurable...

  9. Control aspects of the brushless doubly-fed machine

    Science.gov (United States)

    Lauw, H. K.; Krishnan, S.

    1990-09-01

    This report covers the investigations into the control aspects of a variable-speed generation (VSG) system using a brushless double-fed generator excited by a series-resonant converter. The brushless double-fed machine comprises two sets of stator 3-phase systems which are designed with common windings. The rotor is a cage rotor resembling the low-cost and robust squirrel cage of a conventional induction machine. The system was actually designed and set up in the Energy Laboratory of the Department of Electrical and Computer Engineering at Oregon State University. The series-resonant converter designed to achieve effective control for variable-speed generation with the brushless doubly-fed generator was adequate in terms of required time response and regulation as well as in providing for adequate power quality. The three elements of the VSG controller, i.e., voltage or reactive power controller, the efficiency maximizer and the stabilizer, could be designed using conventional microprocessor elements with a processing time well within the time period required for sampling the variables involved with executing the control tasks. The report treats in detail the stability problem encountered in running the machine at certain speed regions, even if requirements for steady-state stability are satisfied. In this unstable region, shut down of the VSG system is necessary unless proper stabilization controls are provided for. The associated measures to be taken are presented.

  10. Optimum Production Control and Workforce Scheduling of Machining Project

    Science.gov (United States)

    Lan, Tian-Syung; Lo, Chih-Yao; Hou, Cheng-I.

    Through the proposed model in this study, the production control with the consideration of workforce scheduling for advanced manufacturing systems becomes realistically and concretely solvable. This study not only meditates the concept of balancing machine productivity and human ability into the objective, but also implements Calculus of Variations to optimize the profit for a deterministic production quantity. In addition, the optimum solutions of dynamic productivity control and workforce scheduling are comprehensively provided. Moreover, the decision criteria for selecting the optimum solution and the sensitivity analysis of the critical variables are fully discussed. This study definitely contributes the applicable strategy to control the productivity and workforce in manufacturing and provides the valuable tool to conclusively optimize the profit of a machining project for operations research in today`s manufacturing industry with profound insight.

  11. Open architecture controller solution for custom machine systems

    Science.gov (United States)

    Anderson, Ronald L.; Reagin, J. M.; Garner, T. D.; Sweeny, T. E.

    1997-01-01

    In today's marketplace, product quality and price have become requirements for entry and are no longer sufficient to differentiate one's product and gain a competitive advantage. A key to competition in the future will be a company's ability to respond quickly to a rapidly-changing global marketplace. Developers of manufacturing equipment must play a role in the reduction of the product development cycle time by increasing the flexibility of their equipment and decreasing its cost and time to market. This paper will discuss the implementation of an open-architecture machine controller on a flip-chip placement machine and how this implementation supports the goals of reduced development time and increased equipment flexibility. The following subjects are discussed: 1) Issues related to the selection of a standard operating system, including real-time performance, preemptive multi-tasking, multi-threaded applications, and development tools. 2) The use of a common API for motion, and I/O. 3) Use of a rapid application development and object-oriented programming techniques on the machine controller to shorten development time and support code reuse. 4) Specific hardware and software issues related to the implementation of the flip chip controller. This includes hardware and software implementation details, controller performance, and human interface issues.

  12. Machining Error Control by Integrating Multivariate Statistical Process Control and Stream of Variations Methodology

    Institute of Scientific and Technical Information of China (English)

    WANG Pei; ZHANG Dinghua; LI Shan; CHEN Bing

    2012-01-01

    For aircraft manufacturing industries,the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality.In order to effectively control machining error,the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed.Firstly,machining error is modeled by multi-operation approaches for part machining process.SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations.Here error sources not only include the influence of upstream operations but also include many of other error sources.The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process.Secondly,the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model,and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model,which can judge whether the operation is out of control or not.If it is,then feedback is sent to the operations.The error model is modified by adjusting the operation out of control,and continually it is used to monitor operations.Finally,a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.

  13. Finite State Machine based Vending Machine Controller with Auto-Billing Features

    OpenAIRE

    2012-01-01

    Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM) modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper th...

  14. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    Science.gov (United States)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  15. Editing of EIA coded, numerically controlled, machine tool tapes

    Science.gov (United States)

    Weiner, J. M.

    1975-01-01

    Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.

  16. Machine-tool control system for turning nonaxisymmetric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, S.S.; Green, W.L.

    1979-09-01

    A development program has been initiated to allow on-axis turning of nonaxisymmetric surfaces. A short-travel high-speed slide is mounted on a precision, numerically controlled, two-axis turning machine. The motion of the auxiliary slide is synchronized with the spindle and the two remaining slides. The report defines the workpiece geometry and requirements, calculations for the slide motion, techniques for real-time command generation, and planned equipment set.

  17. Statistical process control (SPC) for coordinate measurement machines

    Energy Technology Data Exchange (ETDEWEB)

    Escher, R.N.

    2000-01-04

    The application of process capability analysis, using designed experiments, and gage capability studies as they apply to coordinate measurement machine (CMM) uncertainty analysis and control will be demonstrated. The use of control standards in designed experiments, and the use of range charts and moving range charts to separate measurement error into it's discrete components will be discussed. The method used to monitor and analyze the components of repeatability and reproducibility will be presented with specific emphasis on how to use control charts to determine and monitor CMM performance and capability, and stay within your uncertainty assumptions.

  18. Simulation and experimental results of hybrid electric machine with a novel flux control strategy

    Directory of Open Access Journals (Sweden)

    Paplicki Piotr

    2015-03-01

    Full Text Available The paper presents selected simulation and experimental results of a hybrid ECPMS-machine (Electric Controlled Permanent Magnet Synchronous Machine. This permanent magnets (PMs excited machine offers an extended magnetic field control capability which makes it suitable for battery electric vehicle (BEV drives. Rotor, stator and the additional direct current control coil of the machine are analyzed in detail. The control system and strategy, the diagram of power supply system and an equivalent circuit model of the ECPMS-machine are presented. Influence of the additional excitation on the performance parameters of the machine, such as: torque, efficiency, speed limits and back-EMF have also been discussed.

  19. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  20. FEEDFORWARD CONTROL STRATEGIES FOR TRACKING PERFORMANCE IN MACHINE AXES

    Institute of Scientific and Technical Information of China (English)

    Wei Zhouhong; Schinstock Dale E

    2005-01-01

    Three feedforward (FFD) control techniques for position-servo machine axes are compared. All three FFD controllers are used with two different PID feedback (FBK) controllers. The two different FBK controllers have two different closed-loop bandwidths. They are demonstrated using experimental data from a linear motor test system and from simulations. Laboratory results using the linear motor hardware demonstrate that the velocity & acceleration (V&A) FFD controller improves tracking in all case considered, while the other two FFD controllers actually degrade performance in many cases. Through simulation this degradation is attributed to extreme sensitivity to round off errors. This sensitivity is the result of a complex controller that is implemented outside of the feedback loop.

  1. Integrated quality control architecture for multistage machining processes

    Science.gov (United States)

    Yang, Jie; Liu, Guixiong

    2010-12-01

    To solve problems concerning the process quality prediction control for the multistage machining processes, a integrated quality control architecture is proposed in this paper. First, a hierarchical multiple criteria decision model is established for the key process and the weight matrix method stratified is discussed. Predictive control of the manufacturing quality is not just for on-site monitoring and control layer, control layer in the enterprise, remote monitoring level of quality exists a variety of target predictive control demand, therefore, based on XML to achieve a unified description of manufacturing quality information, and in different source of quality information between agencies to achieve the transfer and sharing. This will predict complex global quality control, analysis and diagnosis data to lay a good foundation to achieve a more practical, open and standardized manufacturing quality with higher levels of information integration system.

  2. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  3. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    Science.gov (United States)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  4. Temperature prediction control based on least squares support vector machines

    Institute of Scientific and Technical Information of China (English)

    Bin LIU; Hongye SU; Weihua HUANG; Jian CHU

    2004-01-01

    A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity.The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel.In the process of system running,the off-line model is linearized at each sampling instant,and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant.The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay.The results of the experiment verify the effectiveness and merit of the algorithm.

  5. Development of remote controlled forest machine. Final report; Kauko-ohjattavan harvennuskoneen kehittaeminen. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Kerva, J.; Lippo, J. [VTT Automation, Oulu (Finland); Nousiainen, I.; Oijala, T.; Vesisenaho, T. [VTT Energy, Jyvaeskylae (Finland)

    1999-07-01

    The aim of the project was to develop the prototype for the forest machine for the first state thinning. The machine is light and it will reduce the damages of the ground compared to damages caused by normal forest machines. The prototype is operated by wireless remote controller and there is no cabinet. To improve driving in the forest, anti-slip wheel control system is used. To make working with the machine more efficient and easy, automatic and semiautomatic operations in workboom control are included. Compared to normal size forest machines the machine developed in the project can give more economic solution for first state thinning. (orig.)

  6. Machine learning for the identification of scaling laws and dynamical systems directly from data in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A., E-mail: andrea.murari@igi.cnr.i [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova (Italy); Vega, J. [Asociacion EURATOM-CIEMAT para Fusion, CIEMAT, Madrid (Spain); Mazon, D. [Association EURATOM-CEA, CEA Cadarache, 13108 Saint-Paul-lez-Durance (France); Patane, D.; Vagliasindi, G.; Arena, P. [Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Universita degli Studi di Catania, 95125 Catania (Italy); Martin, N.; Martin, N.F. [Arts et Metiers Paris Tech Engineering College (ENSAM) 13100 Aix-en-Provence (France); Ratta, G. [Asociacion EURATOM-CIEMAT para Fusion, CIEMAT, Madrid (Spain); Caloone, V. [Arts et Metiers Paris Tech Engineering College (ENSAM) 13100 Aix-en-Provence (France)

    2010-11-11

    Original methods to extract equations directly from experimental signals are presented. These techniques have been applied first to the determination of scaling laws for the threshold between the L and H mode of confinement in Tokamaks. The required equations can be extracted from the weights of neural networks and the separating hyperplane of Support Vector Machines. More powerful tools are required for the identification of differential equations directly from the time series of the signals. To this end, recurrent neural networks have proved to be very effective to properly identify ordinary differential equations and have been applied to the coupling between sawteeth and ELMs.

  7. Adaptive Fuzzy Control System of Servomechanism for Electro-Discharge Machining Combined with Ultrasonic Vibration

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM co...

  8. Parameters optimization in a fission-fusion system with a mirror machine based neutron source

    Science.gov (United States)

    Yurov, D. V.; Anikeev, A. V.; Bagryansky, P. A.; Brednikhin, S. A.; Frolov, S. A.; Lezhnin, S. I.; Prikhodko, V. V.

    2012-06-01

    Long-lived fission products utilization is a problem of high importance for the modern nuclear reactor technology. BINP jointly with NSI RAS develops a conceptual design of a hybrid sub-critical minor actinides burner with a neutron source based on the gas dynamic mirror machine (GDT) to resolve the stated task. A number of modelling tools was created to calculate the main parameters of the device. First of the codes, GENESYS, is a zero-dimensional code, designed for plasma dynamics numerical investigation in a GDT-based neutron source. The code contains a Monte-Carlo module for the determination of linear neutron emission intensity along the machine axis. Fuel blanket characteristics calculation was implemented by means of a static Monte-Carlo code NMC. Subcritical core, which has been previously analyzed by OECD-NEA, was used as a template for the fuel blanket of the modelled device. This article represents the codes used and recent results of the described system parameters optimization. Particularly, optimum emission zone length of the source and core multiplicity dependence on buffer zone thickness were defined.

  9. Methodological Aspects of Controlling Multilevel Man-Machine Organization Systems

    Directory of Open Access Journals (Sweden)

    Dimitri GOLENKO-GINZBURG

    2013-01-01

    Full Text Available Hierarchical on-line control models for multilevel man-machine organization systems (production and project management systems are outlined. The models are based on the conception of emergency situations and risk averse on-line control. By using the idea that hierarchical levels can interact only in special situations, the so-called emergency points, one can decompose general and complex multi-level problems of optimal control into sequences of one-level control problems. A hierarchical on-line control model under chance constraint is presented. The model comprises a chance constraint at the upper level and enables at the lower level optimizing both the units' starting time and the resources to be hired. The objective is the average total expenses within the planning horizon while the chance constraint is the minimal permissible probability of meeting the due date on time.

  10. Closed-Loop Turbulence Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus

    2014-01-01

    We propose a general model-free strategy for feedback control design of turbulent flows. This strategy called 'machine learning control' (MLC) is capable of exploiting nonlinear mechanisms in a systematic unsupervised manner. It relies on an evolutionary algorithm that is used to evolve an ensemble of feedback control laws until minimization of a targeted cost function. This methodology can be applied to any non-linear multiple-input multiple-output (MIMO) system to derive an optimal closed-loop control law. MLC is successfully applied to the stabilization of nonlinearly coupled oscillators exhibiting frequency cross-talk, to the maximization of the largest Lyapunov exponent of a forced Lorenz system, and to the mixing enhancement in an experimental mixing layer flow. We foresee numerous potential applications to most nonlinear MIMO control problems, particularly in experiments.

  11. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  12. An attempt to control a manmade nuclear fusion

    CERN Document Server

    Kornyushin, Yuri

    2007-01-01

    A detailed simple model is applied to study a high temperature hydrogen plasma ball. It is assumed that the ions and delocalized electrons are distributed randomly throughout the charged plasma ball (extra/missing charge is assumed to be found in a thin layer on the surface of a ball). The energy of the microscopic electrostatic field around the ions is taken into account and calculated. It is shown in the framework of the model that charged hydrogen plasma ball can be stable as a metastable state, when subjected to external (atmospheric) pressure. Equilibrium radius of a ball, the barrier and the enthalpy of the equilibrium ball are calculated. It looks like the charged plasma ball in a metastable equilibrium should be used to conduct controllable nuclear fusion. Changes in the electric charge can be used to control the volume of a plasma ball.

  13. Intelligent forecasting compensatory control system for profile machining

    Science.gov (United States)

    Fung, Eric H. K.; Chuen, C. W.; Lee, L. M.

    2000-10-01

    Precision machining is becoming increasingly important in modern industry because many modern products require high form accuracy. An affordable approach to improve the accuracy of the surface profile of a workpiece is to adopt the on-line error forecasting and compensation control (FCC) techniques. In the present study, the consideration of variation of cutting force as a result of piezoactuator movement requires the formulation of ARMAX models. The time-series analysis based on ARMAX technique has an advantage over the traditional spectral method in that the latter can lead to the over-parameterization of the accompanying model. The roundness measurement results obtained from the practical experiments and the derived improvement percentages are grouped under one or more of the system parameters which include the ARMAX orders, feed rate, depth of cut, material, and forgetting factor. An expert system has been successfully developed to implement the rules using the Prolog language for helping the users to select suitable parameters for the FCC system of the lathe machine. Based on the measurement data, it can be shown that the lathe machine, when equipped with the ARMAX-based FCC system, can yield a minimum value of average improvement of 26% under the testing conditions.

  14. Finite State Machine based Vending Machine Controller with Auto-Billing Features

    Directory of Open Access Journals (Sweden)

    Ana Monga

    2012-04-01

    Full Text Available Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper the process of four state (user Selection, Waiting for money insertion, product delivery and servicing has been modelled using MEALY Machine Model. The proposed model is tested using Spartan 3 development board and its performance is compared with CMOS based machine.

  15. Finite State Machine based Vending Machine Controller with Auto-Billing Features

    Directory of Open Access Journals (Sweden)

    Balwinder Singh

    2012-05-01

    Full Text Available Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper the process of four state (user Selection, Waiting for money insertion, product delivery and servicing has been modelled using MEALY Machine Model. The proposed model is tested using Spartan 3 development board and its performance is compared with CMOS based machine.

  16. Finite State Machine based Vending Machine Controller with Auto-Billing Features

    CERN Document Server

    Monga, Ana; 10.5121/vlsic.2012.3202

    2012-01-01

    Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM) modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper the process of four state (user Selection, Waiting for money insertion, product delivery and servicing) has been modelled using MEALY Machine Model. The proposed model is tested using Spartan 3 development board and its performance is compared with CMOS based machine.

  17. Development of precision numerical controlled high vacuum electron beam welding machine

    CERN Document Server

    Li Shao Lin

    2002-01-01

    The structure, main technical parameters and characteristics of the precision numerical controlled high vacuum electron beam welding machine are introduced. The design principle, some features and solutions to some key technique problems of this new type machine are described

  18. Research on assembly reliability control technology for computer numerical control machine tools

    Directory of Open Access Journals (Sweden)

    Yan Ran

    2017-01-01

    Full Text Available Nowadays, although more and more companies focus on improving the quality of computer numerical control machine tools, its reliability control still remains as an unsolved problem. Since assembly reliability control is very important in product reliability assurance in China, a new key assembly processes extraction method based on the integration of quality function deployment; failure mode, effects, and criticality analysis; and fuzzy theory for computer numerical control machine tools is proposed. Firstly, assembly faults and assembly reliability control flow of computer numerical control machine tools are studied. Secondly, quality function deployment; failure mode, effects, and criticality analysis; and fuzzy theory are integrated to build a scientific extraction model, by which the key assembly processes meeting both customer functional demands and failure data distribution can be extracted, also an example is given to illustrate the correctness and effectiveness of the method. Finally, the assembly reliability monitoring system is established based on key assembly processes to realize and simplify this method.

  19. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  20. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  1. Machine Vision For Industrial Control:The Unsung Opportunity

    Science.gov (United States)

    Falkman, Gerald A.; Murray, Lawrence A.; Cooper, James E.

    1984-05-01

    Vision modules have primarily been developed to relieve those pressures newly brought into existence by Inspection (QUALITY) and Robotic (PRODUCTIVITY) mandates. Industrial Control pressure stems on the other hand from the older first industrial revolution mandate of throughput. Satisfying such pressure calls for speed in both imaging and decision making. Vision companies have, however, put speed on a backburner or ignore it entirely because most modules are computer/software based which limits their speed potential. Increasingly, the keynote being struck at machine vision seminars is that "Visual and Computational Speed Must Be Increased and Dramatically!" There are modular hardwired-logic systems that are fast but, all too often, they are not very bright. Such units: Measure the fill factor of bottles as they spin by, Read labels on cans, Count stacked plastic cups or Monitor the width of parts streaming past the camera. Many are only a bit more complex than a photodetector. Once in place, most of these units are incapable of simple upgrading to a new task and are Vision's analog to the robot industry's pick and place (RIA TYPE E) robot. Vision thus finds itself amidst the same quandries that once beset the Robot Industry of America when it tried to define a robot, excluded dumb ones, and was left with only slow machines whose unit volume potential is shatteringly low. This paper develops an approach to meeting the need of a vision system that cuts a swath into the terra incognita of intelligent, high-speed vision processing. Main attention is directed to vision for industrial control. Some presently untapped vision application areas that will be serviced include: Electronics, Food, Sports, Pharmaceuticals, Machine Tools and Arc Welding.

  2. Data fusion and machine learning to identify threat vectors for the Zika virus and classify vulnerability

    Science.gov (United States)

    Gentle, J. N., Jr.; Kahn, A.; Pierce, S. A.; Wang, S.; Wade, C.; Moran, S.

    2016-12-01

    With the continued spread of the zika virus in the United States in both Florida and Virginia, increased public awareness, prevention and targeted prediction is necessary to effectively mitigate further infection and propagation of the virus throughout the human population. The goal of this project is to utilize publicly accessible data and HPC resources coupled with machine learning algorithms to identify potential threat vectors for the spread of the zika virus in Texas, the United States and globally by correlating available zika case data collected from incident reports in medical databases (e.g., CDC, Florida Department of Health) with known bodies of water in various earth science databases (e.g., USGS NAQWA Data, NASA ASTER Data, TWDB Data) and by using known mosquito population centers as a proxy for trends in population distribution (e.g., WHO, European CDC, Texas Data) while correlating historical trends in the spread of other mosquito borne diseases (e.g., chikungunya, malaria, dengue, yellow fever, west nile, etc.). The resulting analysis should refine the identification of the specific threat vectors for the spread of the virus which will correspondingly increase the effectiveness of the limited resources allocated towards combating the disease through better strategic implementation of defense measures. The minimal outcome of this research is a better understanding of the factors involved in the spread of the zika virus, with the greater potential to save additional lives through more effective resource utilization and public outreach.

  3. Development of remote-controlled forest machine; Kauko-ohjattavan harvennuskoneen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Kerva, J. [VTT Automation, Oulu (Finland); Vesisenaho, T. [Vapo Oy, Jyvaeskylae (Finland)

    1998-12-01

    The aim of the project is to develop a forest machine for the first thinnings. The machine will be light and it will reduce damages of the ground compared to damages caused by normal forest machines. The machine will be operated by wireless remote controller and the machine will not have any cabin. Anti-slip wheel control system will be used in order to improve driving in forest. Automatic and semi-automatic operations of workboom control will be included in order to make the working with the machine more efficient and easy. Compared to normal size forest machines, the machine developed in the project will offer more economic solution for the first thinnings. (orig.)

  4. Burn Control of Magnetically Confined Fusion Plasma 2. Burn Control in Tokamak Fusion Reactors 2.3 Burn Control in ITER

    Science.gov (United States)

    Fujisawa, Noboru

    The issue of burn control in FDR-ITER, the design of which was completed in 1998, is introduced, Controllability was studied based on the ID transport code, PRETOR, during the burn phase with self-ignition, as well as during start-up and shut-down. The results of the present study have helped us to identify the importance of controlling the fuel supply, impurity injection, and heating power to maintain fusion power and power to the divertor.

  5. From computer-aided to intelligent machining:\\ud Recent advances in computer numerical control machining research

    OpenAIRE

    Gao, James; Lee, Chen-Han; Li, Yingguagan

    2015-01-01

    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and know...

  6. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).

    Science.gov (United States)

    Witkowski, Matthias; Cortese, Mario; Cempini, Marco; Mellinger, Jürgen; Vitiello, Nicola; Soekadar, Surjo R

    2014-12-16

    Brain-machine interfaces (BMIs) allow direct translation of electric, magnetic or metabolic brain signals into control commands of external devices such as robots, prostheses or exoskeletons. However, non-stationarity of brain signals and susceptibility to biological or environmental artifacts impede reliable control and safety of BMIs, particularly in daily life environments. Here we introduce and tested a novel hybrid brain-neural computer interaction (BNCI) system fusing electroencephalography (EEG) and electrooculography (EOG) to enhance reliability and safety of continuous hand exoskeleton-driven grasping motions. 12 healthy volunteers (8 male, mean age 28.1 ± 3.63y) used EEG (condition #1) and hybrid EEG/EOG (condition #2) signals to control a hand exoskeleton. Motor imagery-related brain activity was translated into exoskeleton-driven hand closing motions. Unintended motions could be interrupted by eye movement-related EOG signals. In order to evaluate BNCI control and safety, participants were instructed to follow a visual cue indicating either to move or not to move the hand exoskeleton in a random order. Movements exceeding 25% of a full grasping motion when the device was not supposed to be moved were defined as safety violation. While participants reached comparable control under both conditions, safety was frequently violated under condition #1 (EEG), but not under condition #2 (EEG/EOG). EEG/EOG biosignal fusion can substantially enhance safety of assistive BNCI systems improving their applicability in daily life environments.

  7. SOFTWARE-CONTROLLED SYSTEM OF ULTRA-PRECISION MACHINING AXISYMMETRIC ASPHERIC MIRROR

    Institute of Scientific and Technical Information of China (English)

    GUO Yinbiao; WEI Lizhen

    2006-01-01

    In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation,remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.

  8. Finite-state machines as elements in control systems.

    Science.gov (United States)

    Burgin, G. H.; Walsh, M. J.

    1971-01-01

    Demonstration that approximate solutions to certain classes of differential and difference equations can be expressed in form of finite state machines. Based on this result, a finite-state machine model of an adaptive gain changer in an aircraft stability augmentation system is developed. Results of simulated flights using the finite-state machine gain changer are presented.

  9. A system framework of inter-enterprise machining quality control based on fractal theory

    Science.gov (United States)

    Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng

    2014-03-01

    In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.

  10. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.

  11. Collaborative human-machine analysis using a controlled natural language

    Science.gov (United States)

    Mott, David H.; Shemanski, Donald R.; Giammanco, Cheryl; Braines, Dave

    2015-05-01

    A key aspect of an analyst's task in providing relevant information from data is the reasoning about the implications of that data, in order to build a picture of the real world situation. This requires human cognition, based upon domain knowledge about individuals, events and environmental conditions. For a computer system to collaborate with an analyst, it must be capable of following a similar reasoning process to that of the analyst. We describe ITA Controlled English (CE), a subset of English to represent analyst's domain knowledge and reasoning, in a form that it is understandable by both analyst and machine. CE can be used to express domain rules, background data, assumptions and inferred conclusions, thus supporting human-machine interaction. A CE reasoning and modeling system can perform inferences from the data and provide the user with conclusions together with their rationale. We present a logical problem called the "Analysis Game", used for training analysts, which presents "analytic pitfalls" inherent in many problems. We explore an iterative approach to its representation in CE, where a person can develop an understanding of the problem solution by incremental construction of relevant concepts and rules. We discuss how such interactions might occur, and propose that such techniques could lead to better collaborative tools to assist the analyst and avoid the "pitfalls".

  12. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  13. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  14. Biomimetic Brain Machine Interfaces for the Control of Movement

    Science.gov (United States)

    Fagg, Andrew H.; Hatsopoulos, Nicholas G.; de Lafuente, Victor; Moxon, Karen A.; Nemati, Shamim; Rebesco, James M.; Romo, Ranulfo; Solla, Sara A.; Reimer, Jake; Tkach, Dennis; Pohlmeyer, Eric A.; Miller, Lee E.

    2008-01-01

    Quite recently, it has become possible to use signals recorded simultaneously from large numbers of cortical neurons for real-time control. Such brain machine interfaces (BMIs) have allowed animal subjects and human patients to control the position of a computer cursor or robotic limb under the guidance of visual feedback. Although impressive, such approaches essentially ignore the dynamics of the musculoskeletal system, and they lack potentially critical somatosensory feedback. In this mini-symposium, we will initiate a discussion of systems that more nearly mimic the control of natural limb movement. The work that we will describe is based on fundamental observations of sensorimotor physiology that have inspired novel BMI approaches. We will focus on what we consider to be three of the most important new directions for BMI development related to the control of movement. (1) We will present alternative methods for building decoders, including structured, nonlinear models, the explicit incorporation of limb state information, and novel approaches to the development of decoders for paralyzed subjects unable to generate an output signal. (2) We will describe the real-time prediction of dynamical signals, including joint torque, force, and EMG, and the real-time control of physical plants with dynamics like that of the real limb. (3) We will discuss critical factors that must be considered to incorporate somatosensory feedback to the BMI user, including its potential benefits, the differing representations of sensation and perception across cortical areas, and the changes in the cortical representation of tactile events after spinal injury. PMID:17978021

  15. Feasibility of Applying Controllable Lubrication Techniques to Reciprocating Machines

    DEFF Research Database (Denmark)

    Pulido, Edgar Estupinan

    modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable pressures, through orifices circumferentially located around the bearing surface. In order to study the performance of journal bearings of reciprocating machines, operating under...... conventional lubrication conditions, a mathematical model of a reciprocating mechanism connected to a rigid / flexible rotor via thin fluid films was developed. The mathematical model involves the use of multibody dynamics theory for the modelling of the reciprocating mechanism (rigid bodies), finite elements...... of the reciprocating engine, obtained with the help of multibody dynamics (rigid components) and finite elements method (flexible components), and the global system of equations is numerically solved. The analysis of the results was carried out with focus on the behaviour of the journal orbits, maximum fluid film...

  16. Pressure regulation for earth pressure balance control on shield tunneling machine by using adaptive robust control

    Science.gov (United States)

    Xie, Haibo; Liu, Zhibin; Yang, Huayong

    2016-05-01

    Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.

  17. Vector control of three-phase AC machines system development in the practice

    CERN Document Server

    Quang, Nguyen Phung

    2008-01-01

    Covers the area of vector control of 3-phase AC machines, in particular induction motors with squirrel-cage rotor, permanent excited synchronous motors and doubly-fed induction machines. This title summarizes the basic structure of a field-oriented controlled 3-phase AC drive and grid voltage orientated controlled wind power plant.

  18. A Genetic System Controlling Mitochondrial Fusion in the Slime Mould, Physarum Polycephalum

    Science.gov (United States)

    Kawano, S.; Takano, H.; Imai, J.; Mori, K.; Kuroiwa, T.

    1993-01-01

    We have identified two distinct mitochondrial phenotypes, namely, Mif(+) (mitochondrial fusion) and Mif(-) (mitochondrial fusion-deficient), and have studied the genetic system that controls mitochondrial fusion in the slime mould, Physarum polycephalum. A mitochondrial plasmid of approximately 16 kbp was identified in all Mif(+) plasmodial strains. This plasmid is apparently responsible for promoting mitochondrial fusion, and it is inserted into the mitochondrial DNA (mtDNA) in successive sexual crossing with Mif(-) strains. This recombinant mtDNA and the unchanged free plasmid spread through the mitochondrial population via the promotion of mitochondrial fusion. The Mif(+) strains with the plasmid were further classified as being two types: high frequency and low frequency mitochondrial fusion. Restriction analysis of the mtDNA suggested that the high frequency mitochondrial fusion type was more often heteroplasmic; within each plasmodium, mtDNAs of both parental types were usually present, in addition to the presence of the plasmid. Genetic analysis with the progeny obtained from crossing myxamoebae derived from three different isolates suggested that these progeny carried different alleles at a nuclear locus that controlled the frequency of mitochondrial fusion. These alleles (mitochondrial mating-type alleles, mitA1, 2 and 3) appear to function like the mating type of the myxamoebae; mitochondrial fusion occurs at high frequency with the combination of unlike alleles, but at low frequency with the combination of like alleles. PMID:8436271

  19. Closed-loop control of an experimental mixing layer using machine learning control

    CERN Document Server

    Parezanović, Vladimir; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus; Brunton, Steven L

    2014-01-01

    A novel framework for closed-loop control of turbulent flows is tested in an experimental mixing layer flow. This framework, called Machine Learning Control (MLC), provides a model-free method of searching for the best function, to be used as a control law in closed-loop flow control. MLC is based on genetic programming, a function optimization method of machine learning. In this article, MLC is benchmarked against classical open-loop actuation of the mixing layer. Results show that this method is capable of producing sensor-based control laws which can rival or surpass the best open-loop forcing, and be robust to changing flow conditions. Additionally, MLC can detect non-linear mechanisms present in the controlled plant, and exploit them to find a better type of actuation than the best periodic forcing.

  20. Fuzzy Gain Scheduling of PI Controller for Dual Star Induction Machine fed by a Matrix Converter

    OpenAIRE

    B. Meliani; A. Meroufel; H. Khouidmi

    2012-01-01

    The aim of this paper is to present a full digital implementation of a field orientation controlled Double Star induction Machine, and a PI controller is designed to control the speed, the machine is fed by a matrix converter. The advent of vector control technique has partially solved DSIM control problems because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Fuzzy logic and neural network Based controllers are consider...

  1. Active Control of Machine-Tool Vibration in a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars

    1997-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration is a frequent problem, which affects the result of the machining, in particular the surface finish. The tool life is also influenced by the vibrations. When the working environment is considered, noise is frequently introduced by dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynami...

  2. Controlled Nuclear Fusion by Magnetic Confinement and ITER

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Alvarez-Gaumé, Luís

    2005-01-01

    For may years harnessing fusion energy was considered the final solution to the world's energy crisis. ITER is the last step in the elusive quest. This presentation will provide in its various acientific, technological and political aspects.

  3. Trajectory control strategy of cathodes in blisk electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    Zhu Dong; Zhu Di; Xu Zhengyang; Zhou Laishui

    2013-01-01

    A turbine blisk,which combines blades and a disk together,is one of the most important components of an aero engine.In the process of blisk electrochemical machining (ECM),the sheet cathode,which is usually used as a tool electrode,has a complicated structure.In addition to that,the channel between the adjacent blades is narrow and twisted,so interference is apt to happen when the sheet cathode feeds into the channel.Therefore,it is important to choose suitable trajectory control strategy.In this paper,a new trajectory control strategy of the sheet cathode is presented and corresponding simulation analysis is conducted on the basis of an actual blisk model.The simulation results demonstrate that the sheet cathode can feed into the channel by a spatial line trajectory without interference.Moreover,the verification experiments are carried out according to the simulation.The experimental results show that the cathode can move into the channel without interference.It is verified that the new trajectory control strategy is correct and can be used in the blisk ECM process successfully.

  4. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  5. PENGEMBANGAN PROGRAM APLIKASI ENHANCED MACHINE CONTROL DENGAN PYTHON UNTUK METODE INTERPOLASI NEWTON

    Directory of Open Access Journals (Sweden)

    Alexander Agung Santoso Gunawan

    2012-05-01

    machine is EMC (Enhanced Machine Control and GUI (Graphical User Interface AXIS on the operating system Linux Ubuntu. The Newton interpolation is used to create a curve based on several point determined by user. By converting this curve into G-Code, which could be read by CNC machine, the machine can move according to curve designed by user. This research is an initial study to customize the CNC machine and will continue to fulfill the user needs. This research obtained a program that is able to run well up to 4 input pairs. The higher number inputs will cause the oscillation in the interpolation curve.

  6. 机床的数字控制(下)%The numerical control of Machine tool

    Institute of Scientific and Technical Information of China (English)

    樊留群; 朱志浩; 张曙; 黄云鹰

    2016-01-01

    论述了机床数控系统的现状和发展趋势,分析了开放式数控系统的体系结构,指出了STEP-NC是下一代数控系统发展方向之一。数控系统通过不断提高插补精度和采用数字总线伺服来提高加工精度的同时,采用信息物理深度融合(CPS)技术,提高数控系统的人机交互、网络化和智能化水平。现在数控系统不仅是生产加工设备的控制系统,也成了智能工厂不可缺少的信息节点。%It reviews the current situation and development trend of CNC machine tools, analyzes the architecture of open CNC system, presents that the STEP-NC is one of the next generation of numerical control system devel-opment. It introduces the method of constantly improving the interpolation precision and machining accuracy by using the digital servo bus, illustrates the process for improving machine tool performance of human-machine in-teraction, networking and intelligent CNC system based on cyber physical depth fusion (CPS) technology. Now CNC is not only a controller of machine, but also an indispensable information node of smart factory.

  7. Alpha Channeling in Mirror Machines

    Energy Technology Data Exchange (ETDEWEB)

    Fisch N.J.

    2005-10-19

    Because of their engineering simplicity, high-β, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  8. SENSOR FUSION CONTROL SYSTEM FOR COMPUTER INTEGRATED MANUFACTURING

    Directory of Open Access Journals (Sweden)

    C.M. Kumile

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Manufacturing companies of today face unpredictable, high frequency market changes driven by global competition. To stay competitive, these companies must have the characteristics of cost-effective rapid response to the market needs. As an engineering discipline, mechatronics strives to integrate mechanical, electronic, and computer systems optimally in order to create high precision products and manufacturing processes. This paper presents a methodology of increasing flexibility and reusability of a generic computer integrated manufacturing (CIM cell-control system using simulation and modelling of mechatronic sensory system (MSS concepts. The utilisation of sensors within the CIM cell is highlighted specifically for data acquisition, analysis, and multi-sensor data fusion. Thus the designed reference architecture provides comprehensive insight for the functions and methodologies of a generic shop-floor control system (SFCS, which consequently enables the rapid deployment of a flexible system.

    AFRIKAANSE OPSOMMING: Hedendaagse vervaardigingsondernemings ervaar gereeld onvoorspelbare markveranderinge wat aangedryf word deur wêreldwye mededinging. Om kompeterend te bly moet hierdie ondernemings die eienskappe van kosteeffektiwiteit en snelle-respons op markfluktuasies toon. Megatronika streef daarna om meganiese, elektroniese en rekenaarstelsels optimaal te integreer om hoëpresisieprodukte en produksieprosesse daar te stel. Hierdie artikel suggereer 'n metodologie vir toenemende aanpasbaarheid en herbruikbaarheid van 'n generiese rekenaargeïntegreerde vervaardigingsel-beheersisteem deur die gebruik van simulasie en die modellering van megatroniese sensorsisteemkonsepte. Die aanwending van sensors binne die sel fasiliteer datavaslegging, ontleding en multisensordatafusie. Sodoende verskaf die ontwerpte argitektuur insig in die funksie en metodologie van 'n generiese stukwerkwinkelbeheersisteem wat die vinnige

  9. Software Development for Digital Control of WDW Series Testing Machine and Measurement of KIC

    Institute of Scientific and Technical Information of China (English)

    黄兴; 马杭; 程昌钧

    2005-01-01

    Software has been developed for digital control of WDW series testing machine and the measurement of fracture toughness by modularized design. Development of the software makes use of multi-thread and serial communication techniques, which can accurately control the testing machine and measure the fracture toughness in real-time. Three-point bending specimens were used in the measurement. The software operates stably and reliably, expanding the function of WDW series testing machine.

  10. Improved Torque Control Performance of Direct Torque Control for 5-Phase Induction Machine

    Directory of Open Access Journals (Sweden)

    Logan Raj Lourdes Victor Raj

    2013-12-01

    Full Text Available In this paper, the control of five-phase induction machine using Direct Torque Control (DTC is presented. The general D-Q model of five-phase induction machine is discussed. The de-coupled control of stator flux and electromagnetic torque based on hysteresis controller similar to conventional DTC is applied to maintain the simplicity of the system. Three sets of look-up tables consist of voltage vectors with different amplitude that selects the  most optimal voltage vectors according motor operation condition is proposed. This provides excellent torque dynamic control, reduces torque ripple, lower switching frequency (high efficiency and extension of constant torque. Simulation results validate the improvement achieved.

  11. Direct digital simulation of power semiconductor-controlled electrical machines

    Science.gov (United States)

    Bahnassy, H. M.

    1981-06-01

    Generalized computer programming techniques for simulating power semiconductor-controlled electric machines in coil-variable representation are presented. These techniques are developed primarily for implementation in large scale general purpose computer-aided design and analysis (CADA) circuit programs. To demonstrate the validity of the developed techniques, a coil-variable model of a brushless synchronous generator with an ac exciter and rotating rectifiers was constructed. The performance of the control system (thyristor voltage regulator) is represented by a transfer function block diagram model. The CADA circuit program used is the recently developed SUPER SCEPTRE program. The model is validated using the design data and test results of a 60 kVA brushless generator. Numerous computer simulation cases are presented including the steady state and transient conditions. Brushless generator performance under diode failure faults (opened-diode, shorted-diode) is simulated. The effects of the external faults, at the main generator terminals, on the main generator, as well as its excitation system currents, are simulated.

  12. Prospects for chaos control of machine tool chatter

    Energy Technology Data Exchange (ETDEWEB)

    Hively, L.M.; Protopopescu, V.A.; Clapp, N.E.; Daw, C.S.

    1998-06-01

    The authors analyze the nonlinear tool-part dynamics during turning of stainless steel in the nonchatter and chatter regimes, toward the ultimate objective of chatter control. Their previous work analyzed tool acceleration in three dimensions at four spindle speeds. In the present work, the authors analyze the machining power and obtain nonlinear measures of this power. They also calculate the cycle-to-cycle energy for the turning process. Return maps for power cycle times do not reveal fixed points or (un)stable manifolds. Energy return maps do display stable and unstable directions (manifolds) to and from an unstable period-1 orbit, which is the dominant periodicity. Both nonchatter and chatter dynamics have the unusual feature of arriving at the unstable period-1 fixed point and departing from that fixed point of the energy return map in a single step. This unusual feature makes chaos maintenance, based on the well-known Ott-Grebogi-Yorke scheme, a very difficult option for chatter suppression. Alternative control schemes, such as synchronization of the tool-part motion to prerecorded nonchatter dynamics or dynamically damping the period-1 motion, are briefly discussed.

  13. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  14. Visual Servoing of a Conventional CNC Machine Using an External Axis Controller

    Directory of Open Access Journals (Sweden)

    Daniel Hanafi

    2003-04-01

    Full Text Available This paper presents the implementation of an external axis control system on a conventional CNC machine so that the machine can be actively controlled in response to sensors such as vision and force. The controller that runs on an external computer has direct access to the CNC controller for machine position sensing. The control signals to the machine are sent through purpose built circuitry via the machine's manual pulse generator (MPG inputs. To demonstrate the accuracy and performance of the control system, it was used to visually track the profile of a mandrel used for shear spinning. The implemented system eliminates the parallax error and the need to use an accurate pixel resolution. The raw tracking data is processed by a curvature detection algorithm that detects linear and circular segments and segment transitions. The results show that the visual tracking system provides accurate tracking results that are well within the tolerances used in the industry.

  15. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Khaled N. Faris

    2015-12-01

    Full Text Available According to various advantages of linear induction motor (LIM, such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC machine tools, linear induction motors with a direct thrust control technique are introduced for driving these machines. An industry standard motion control system is applied for reducing the tracking error and improving the desired accuracy. Different loading conditions are simulated to validate the reliability and robustness of the introduced system to match the application field. The proposed system is simulated using the MATLAB/SIMULINK Package; simulation results validated both tracking accuracy and robustness of the proposed motion control system for contouring control for a CNC (Computer Numerical Control milling machine.

  16. Improvement of machining quality of copper-plated roll mold by controlling temperature variation

    Institute of Scientific and Technical Information of China (English)

    Tae-Jin JE; Eun-Chae JEON; Sang-Cheon PARK; Doo-Sun CHOI; Kyung-Hyun WHANG; Myung-Chang KANG

    2011-01-01

    Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the quality of micro prism film. The main cause of the pitch error was investigated during machining large roll mold whose machined length was 1 200 mm. The temperature of machining system was elevated during machining roll mold, and this elevation induced thermal expansion of the system. The temperature variation around the roll mold also made thermal expansion of the roll mold. The amount of thermal expansion had strong relationship to the amount of pitch error. Therefore, the roll mold was machined after warming-up of machining system and precise temperature controller around copper-plated roll mold was installed, which minimized the temperature variation. Finally,precise micro prism patterns without pitch error were machined on the large roll mold.

  17. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  18. Controlling motion prediction errors in radiotherapy with relevance vector machines.

    Science.gov (United States)

    Dürichen, Robert; Wissel, Tobias; Schweikard, Achim

    2015-04-01

    Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.

  19. Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine

    Directory of Open Access Journals (Sweden)

    Chunhua Liu

    2014-03-01

    Full Text Available This paper proposes a new electrically controlled magnetic variable-speed gearing (EC-MVSG machine, which is capable of providing controllable gear ratios for hybrid electric vehicle (HEV applications. The key design feature involves the adoption of a magnetic gearing structure and acceptance of the memory machine flux-mnemonic concept. Hence, the proposed machine can not only offer a gear-shifting mechanism for torque and speed transmission, but also provide variable gear ratios for torque and speed variation. The electromagnetic design is studied and discussed. The finite-element method is developed with the hysteresis model to verify the validity of the machine design.

  20. The Electrical and Mechanical Alignment and Accuracy Detection of Numerial Control Machine Tool

    Institute of Scientific and Technical Information of China (English)

    XU Liang-xiong; ZHOU Xiang

    2012-01-01

    In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.

  1. A Control System Retrofit for a Plastic Bag Making Machine

    Directory of Open Access Journals (Sweden)

    DR S S ADAMU

    2011-07-01

    Full Text Available This work presents the development of a microcontroller system to replace a problematic mechanical system of a plastic bag making machine. After detailed study of the existing system the theory of finite state machines is used to model the proposed retrofit, using simulink and stateflow toolboxes of MATLAB. Using the model, theretrofit system is partitioned into hardware and software components. The retrofit is implemented using Microchip’s PIC16F84A 8-bit microcontroller. The developed retrofit performance is the same as the original machine. Due to the flexibility of microcontrollers, other operation and diagnostic features can easily be added.

  2. The Acceleration/Deceleration Control Algorithm Based on Trapezoid-Curve Jerk in CNC Machining

    Directory of Open Access Journals (Sweden)

    Guoyong Zhao

    2013-02-01

    Full Text Available In this study, we propose the acceleration/deceleration control algorithm based on trapezoid-curve jerk in CNC machining. In aviation and mould and die industry, it is much significant to achieve high accuracy CNC machining on complex profile parts. The unsmooth Acceleration/Deceleration (ab. Acc/Dec control in feed movement is one of the main reasons to bring about machine tools impact and vibration in practical machining. After analyzing the CNC machine tools dynamic model, an Acc/Dec control algorithm based on trapezoid-curve jerk is put forward in order to avoid step change in jerk curve in the study; Moreover, the motion profile smooth control approach based on continuous jerk is developed in details to decrease machine tools impact according to various kinematics constraint conditions, such as the maximum acceleration, the maximum jerk, the machining program segment displacement, the instruction feedrate and so on; Finally, the developed Acc/Dec approach and the traditional linear Acc/Dec approach are compared in the CNC experimental table. The results reveal that the developed approach can achieve more smooth and flexible motion profile, which is helpful to minish machine tools impact and enhance parts machining surface quality.

  3. A control strategy for stand-alone wound rotor induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Forchetti, D.G.; Garcia, G.O. [Grupo de Electronica Aplicada (GEA), Universidad Nacional de Rio Cuarto, X5804 BYA Rio Cuarto (Argentina); Solsona, J.A. [Instituto de Investigaciones en Ingenieria Electrica?Alfredo Desages?, Departamento de Ingenieria Electrica y de Computadoras, Universidad Nacional del Sur, Bahia Blanca (Argentina); Valla, M.I. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, 1900 La Plata (Argentina)

    2007-02-15

    A control strategy to regulate the frequency and voltage of a stand-alone wound rotor induction machine is presented. This strategy allows the machine to work as a generator in stand-alone systems (without grid connection) with variable rotor speed. A stator flux-oriented control is proposed using the rotor voltages as actuation variables. Two cascade control loops are used to regulate the stator flux and the rotor currents. A closed loop observer is designed to estimate the machine flux which is necessary to implement these control loops. The proposed control strategy is validated through simulations with satisfactory results. (author)

  4. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant.

    Science.gov (United States)

    Boboc, A; Bieg, B; Felton, R; Dalley, S; Kravtsov, Yu

    2015-09-01

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  5. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Boboc, A., E-mail: Alexandru.Boboc@ccfe.ac.uk; Felton, R.; Dalley, S. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bieg, B.; Kravtsov, Yu. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institute of Physics, Maritime University of Szczecin, Szczecin (Poland)

    2015-09-15

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  6. Machine Vision Automation for Ground Control Tele-Robotics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to advance ground based tele-robotic capabilities with the development of natural feature target tracking technology with the use of machine...

  7. Brain Machine Interfaces for Robotic Control in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  8. EXPERIMENTAL APPROBATION OF INTELLECTUAL SYSTEM FOR MACHINING ACCURACY CONTROL

    National Research Council Canada - National Science Library

    M. N. Mironova

    2017-01-01

    ... for technological process while using methods of artificial intelligence. To ensure the machining accuracy by point tools, an intellectual system has been developed and it is based on technologies of functional semantic networks...

  9. Adaptive control of mechatronic machine-tool equipment

    Directory of Open Access Journals (Sweden)

    R.G. Kudoyarov

    2015-09-01

    Full Text Available In this paper the method for designing a functional structure of mechatronic modules based on the developed classification of functional subsystems and the proposed turning machine modular structure is presented.

  10. Implementation of Direct Torque Control Scheme for Induction Machines with Variable Structure Controllers

    Institute of Scientific and Technical Information of China (English)

    LI Jian; YANG Geng; WANG Huan'gang; XU Wenli

    2005-01-01

    A torque control scheme for high-performance induction machine drives was developed to over- come some disadvantages of direct torque control (DTC). In the improved DTC method, the stator flux and the torque controllers use variable-structure control theory which does not require information about the rotor speed. Space vector modulation is applied to the voltage source inverter to reduce the torque, stator flux, and current ripples. The digital signal processor-based implementation is described in detail. The experimental results show that the system has good torque and stator flux response with small ripples.

  11. A Control System Retrofit for a Plastic Bag Making Machine

    OpenAIRE

    DR S S ADAMU

    2011-01-01

    This work presents the development of a microcontroller system to replace a problematic mechanical system of a plastic bag making machine. After detailed study of the existing system the theory of finite state machines is used to model the proposed retrofit, using simulink and stateflow toolboxes of MATLAB. Using the model, theretrofit system is partitioned into hardware and software components. The retrofit is implemented using Microchip’s PIC16F84A 8-bit microcontroller. The developed retro...

  12. COMPARISON OF STATISTICALLY CONTROLLED MACHINING SOLUTIONS OF TITANIUM ALLOYS USING USM

    Directory of Open Access Journals (Sweden)

    R. Singh

    2010-06-01

    Full Text Available The purpose of the present investigation is to compare the statistically controlled machining solution of titanium alloys using ultrasonic machining (USM. In this study, the previously developed Taguchi model for USM of titanium and its alloys has been investigated and compared. Relationships between the material removal rate, tool wear rate, surface roughness and other controllable machining parameters (power rating, tool type, slurry concentration, slurry type, slurry temperature and slurry size have been deduced. The results of this study suggest that at the best settings of controllable machining parameters for titanium alloys (based upon the Taguchi design, the machining solution with USM is statistically controlled, which is not observed for other settings of input parameters on USM.

  13. Circumferential fusion is dominant over posterolateral fusion in a long-term perspective: cost-utility evaluation of a randomized controlled trial in severe, chronic low back pain

    DEFF Research Database (Denmark)

    Soegaard, Rikke; Bünger, Cody E; Christiansen, Terkel

    2007-01-01

    STUDY DESIGN: Cost-utility evaluation of a randomized, controlled trial with a 4- to 8-year follow-up. OBJECTIVE: To investigate the incremental cost per quality-adjusted-life-year (QALY) when comparing circumferential fusion to posterolateral fusion in a long-term, societal perspective. SUMMARY ...

  14. Initial experimental results of a machine learning-based temperature control system for an RF gun

    CERN Document Server

    Edelen, A L; Milton, S V; Chase, B E; Crawford, D J; Eddy, N; Edstrom, D; Harms, E R; Ruan, J; Santucci, J K; Stabile, P

    2015-01-01

    Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present initial test results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm. This is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems.

  15. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  16. Technique of performing construction works by machines with hybrid: manual and remote control

    Directory of Open Access Journals (Sweden)

    Sevryugina Nadezhda

    2017-01-01

    Full Text Available The article discusses issues dealing with efficiency of construction work mechanization. It offers a mathematical model for assessment of mutual influence between the members of the ‘construction site-machine-operator’ system triad, that can give a quantitative assessment of how the efficiency of a technological task varies with more comprehensive use of operational capacities of the machine, while lower effect that limiting parameters of production environment and technical condition of the machine have on the operator. The article contains a constructive remote control solution for upgrade of the base machine. It describes the conditions for using the machines with hybrid: manual and remote control at construction sites. There is also an imitation model of operator’s scanning pattern and data experimental research that prove the efficiency of remotely controlled technological operations. The article proves that lower psychological load on the operator and better comfort contribute to positive economic effect and higher quality of the construction process.

  17. The characteristics of machined surface controlled by multi tip arrayed tool and high speed spindle.

    Science.gov (United States)

    Kim, Yong Woo; Choi, Soo Chang; Park, Jeong Woo; Lee, Deug Woo

    2010-07-01

    In this study, we propose one of the ultra-precision machining methods that can be adapted brittle material as well as soft material by using multi arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because particles of grinding tools are irregular size and material can be fragile. Therefore we were able to design tool paths and machine controlled pattern on surface by multi arrayed diamond tips which has uniform size made in MEMS fabrication and high speed spindle of which maximum speed is about 300,000 rpm. We defined several parameters that can have effect on machining surface. Those are multi array of diamond tips (n * n), speed of the air spindle, and feeding rate. Surface roughness and surface texture can be controlled by those parameters for micro machining.

  18. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  19. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    Science.gov (United States)

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  20. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    Energy Technology Data Exchange (ETDEWEB)

    S. Son and N.J. Fisch

    2005-12-01

    n a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion.

  1. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... one superconductive winding (102; 103) with power or receiving during use power from the at least one superconductive winding (102; 103), wherein the control system (100) is further adapted to, for at least one superconductive winding (102; 103), dynamically receive one or more representations of one...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  2. Scalable Machine Learning Framework for Behavior-Based Access Control

    Science.gov (United States)

    2013-08-01

    Mahout [10] is an open-source project for scalable machine learning. It provide ready implementations for K-Means clustering following a MapReduce ...paradigm, but does not provide MapReduce implementations for SVMs, which are the most expensive models to train in BBAC. Massive Online Analysis

  3. Doubly Fed Induction Machine Control For Wind Energy Conversion System

    Science.gov (United States)

    2009-06-01

    this_block) % Revision History: % % 18-Dec-2008 (15:15 hours): % Original code was machine generated by Xilinx’s System Generator % after...this_block.setTopLevelLanguage(’VHDL’); this_block.setEntityName(’code’); % System Generator has to assume that your entity has a combinational % feed through

  4. Critical Technology Assessment of Five Axis Simultaneous Control Machine Tools

    Science.gov (United States)

    2009-07-01

    some of the less traditional end-uses cited in export license applications for these particular machine tools include the manufacture of artificial ... insemination equipment for cattle and the manufacture of moulds for the soles of shoes. C. Military Applications According to DOD’s Military

  5. Research programme on controlled thermonuclear fusion. Synthesis report 2011; Programme de recherche Fusion thermonucleaire controlee. Rapport de synthese 2011

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secretariat d' Etat a l' education et a la recherche, Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2012-07-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET), which started operation again in 2011. The International Thermonuclear Experimental Reactor (ITER) is the last step before DEMO, a prototype fusion reactor able to deliver electricity and demonstrate the economic viability of fusion energy. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL went on with its participation to the scientific and technological programme of EURATOM. Researches are carried out essentially on 2 sites: (i) at EPFL, where topics dealt with include the physics of magnetic confinement studied using the Variable Configuration Tokamak (TCV), the basic experiment TORPEX, theory and numerical modelling, and the technology of plasma heating and current generation by hyper-frequency waves; (ii) at the Paul Scherrer Institute (PSI), where activities are devoted to superconductivity and structure materials. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. In the TCV it could be demonstrated for the first time that the injection of Electronic Cyclotronic Heating (ECH) waves is able to double the frequency of so-called 'Edge Localized Modes' (ELM), reducing by a factor of 2 the energy expelled by each ELM. In particular, it was possible to considerably reduce the statistical dispersion of the repetition frequency of ELM, and to avoid the appearance of gigantic ELM that are particularly harmful for reactor operation. The effect of plasma

  6. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    Science.gov (United States)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  7. Fuzzy Gain Scheduling of PI Controller for Dual Star Induction Machine fed by a Matrix Converter

    Directory of Open Access Journals (Sweden)

    B. Meliani

    2012-06-01

    Full Text Available The aim of this paper is to present a full digital implementation of a field orientation controlled Double Star induction Machine, and a PI controller is designed to control the speed, the machine is fed by a matrix converter. The advent of vector control technique has partially solved DSIM control problems because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Fuzzy logic and neural network Based controllers are considered as potential candidates for such an application. In this paper the fuzzy logic system is used on-line to generate the PI controller parameters. Simulink results for a 4.5 kW six-phase induction machine are presented and analyzed using a matlab environment. Obtained results demonstrated that the proposed control scheme is able to obtain high performances.

  8. Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

    Directory of Open Access Journals (Sweden)

    A. MILOUDI

    2005-01-01

    Full Text Available The use of PI controllers for speed control of induction machine drives is characterized by an overshoot during tracking mode and a poor load disturbance rejection. This is mainly caused by the fact that the complexity of the system does not allow the gains of the PI controller to exceed a certain low value. At starting mode the high value of the error is amplified across the PI controller provoking high variations in the command torque. If the gains of the controller exceed a certain value, the variations in the command torque become too high and will destabilize the system.To overcome this problem we propose the use of a limiter ahead of the PI controller. This limiter causes the speed error to be maintained within the saturation limits provoking, when appropriately chosen, smooth variations in the command torque even when the PI controller gains are very high.In this paper, a new approach to control the speed of an indirect field oriented induction machine drive using a classical PI controller is proposed. Its simulated input – output non linear relationship is then learned off – line using a feed – forward linear network with one hidden layer.The simulation of the system using either the modified PI controller or the learned neural network controller shows promising results. The motor reaches the reference speed rapidly and without overshoot, step commands are tracked with almost zero steady state error and no overshoot, load disturbances are rapidly rejected and variations of some of the motor parameters are fairly well dealt with.

  9. A Comparative Study of Control Strategies for Performance Optimisation of Brushless Doubly- Fed Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Milutin G. Jovanović

    2006-12-01

    Full Text Available The brushless doubly-fed machine (BDFM allows the use of a partially rated inverter and represents an attractive cost-effective candidate for variable speed applications with limited speed ranges. In its induction machine form (BDFIM, the BDFM has significant rotor losses and poor efficiency due to the cage rotor design which makes the machine dynamic models heavily parameter dependent and the resulting controller configuration complicated and difficult to implement. A reluctance version of the BDFM, the brushless doubly-fed reluctance machine (BDFRM, ideally has no rotor losses, and therefore offers the prospect for higher efficiency and simpler control compared to the BDFIM. A detailed study of this interesting and emerging machine is very important to gain a thorough understanding of its unusual operation, control aspects and compromises between optimal performance and the size of the inverter and the machine. This paper will attempt to address these issues specifically concentrating on developing conditions for various control properties of the machine such as maximum power factor, maximum torque per inverter ampere and minimum copper losses, as well as analysing the associated trade-offs.

  10. Application of Artificial Intelligence Techniques for the Control of the Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    F. Khammar

    2016-01-01

    Full Text Available The induction machine is experiencing a growing success for two decades by gradually replacing the DC machines and synchronous in many industrial applications. This paper is devoted to the study of advanced methods applied to the command of the asynchronous machine in order to obtain a system of control of high performance. While the criteria for response time, overtaking, and static error can be assured by the techniques of conventional control, the criterion of robustness remains a challenge for researchers. This criterion can be satisfied only by applying advanced techniques of command. After mathematical modeling of the asynchronous machine, it defines the control strategies based on the orientation of the rotor flux. The results of the different simulation tests highlight the properties of robustness of algorithms proposed and suggested to compare the different control strategies.

  11. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    Science.gov (United States)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  12. SPOT WELDING QUALITY FUZZY CONTROL SYSTEM BASED ON MULTISENSOR INFORMATION FUSION

    Institute of Scientific and Technical Information of China (English)

    CHANG Yunlong; SU Hang; LIN Bin; YANG Xu

    2007-01-01

    The multisensor information fusion technology is adopted for real time measuring the four Parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy Controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multisensor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.

  13. Research on Control System of Spindle Drive for High Speed Spinning Machine

    Institute of Scientific and Technical Information of China (English)

    魏建

    2001-01-01

    Through analyzing the principle of spindle drive of winding mechanism for high speed spinning machine,the article not only describes a kind of mode of spindle drive for take-up motion on the basis of control method of constant velocity winding, but also introduces the design technique of software and hardware for the control system of mechatronics of spindle drive mode for take- up motion on the basis of constant velocity winding for high speed spinning machine with single-chip microcomputer. The mathematical model to describe the spindle rotating speed is established. It is an important technology for high speed spinning machine and provides a feasible application way.

  14. Automatic sleep staging using state machine-controlled decision trees.

    Science.gov (United States)

    Imtiaz, Syed Anas; Rodriguez-Villegas, Esther

    2015-01-01

    Automatic sleep staging from a reduced number of channels is desirable to save time, reduce costs and make sleep monitoring more accessible by providing home-based polysomnography. This paper introduces a novel algorithm for automatic scoring of sleep stages using a combination of small decision trees driven by a state machine. The algorithm uses two channels of EEG for feature extraction and has a state machine that selects a suitable decision tree for classification based on the prevailing sleep stage. Its performance has been evaluated using the complete dataset of 61 recordings from PhysioNet Sleep EDF Expanded database achieving an overall accuracy of 82% and 79% on training and test sets respectively. The algorithm has been developed with a very small number of decision tree nodes that are active at any given time making it suitable for use in resource-constrained wearable systems.

  15. Modelling and Control of Inverse Dynamics for a 5-DOF Parallel Kinematic Polishing Machine

    Directory of Open Access Journals (Sweden)

    Weiyang Lin

    2013-08-01

     /  control method is presented and investigated 2∞ in order to track the error control of the inverse dynamic model; the simulation results from different conditions show that the mixed  /  control method could 2∞ achieve an optimal and robust control performance. This work shows that the presented PKPM has a higher dynamic performance than conventional machine tools.

  16. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  17. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  18. Control of fuel target implosion non-uniformity in heavy ion inertial fusion

    CERN Document Server

    Iinuma, T; Kondo, S; Kubo, T; Kato, H; Suzuki, T; Kawata, S; Ogoyski, A I

    2016-01-01

    In inertial fusion, one of scientific issues is to reduce an implosion non-uniformity of a spherical fuel target. The implosion non-uniformity is caused by several factors, including the driver beam illumination non-uniformity, the Rayleigh-Taylor instability (RTI) growth, etc. In this paper we propose a new control method to reduce the implosion non-uniformity; the oscillating implosion acceleration dg(t) is created by pulsating and dephasing heavy ion beams (HIBs) in heavy ion inertial fusion (HIF). The dg(t) would reduce the RTI growth effectively. The original concept of the non- uniformity control in inertial fusion was proposed in (Kawata, et al., 1993). In this paper it was found that the pulsating and dephasing HIBs illumination provide successfully the controlled dg(t) and that dg(t) induced by the pulsating HIBs reduces well the implosion non-uniformity. Consequently the pulsating HIBs improve a pellet gain remarkably in HIF.

  19. Research on cubic polynomial acceleration and deceleration control model for high speed NC machining

    Institute of Scientific and Technical Information of China (English)

    Hong-bin LENG; Yi-jie WU; Xiao-hong PAN

    2008-01-01

    To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (aec/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.

  20. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    Science.gov (United States)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  1. Intellectual Control System of Processing on CNC Machines

    Science.gov (United States)

    Nekrasov, R. Y.; Lasukov, A. A.; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-04-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of creation of mathematical models of processes behavior in an automated technological system operations (OATS). Based on the research, authors have proposed a generalized diagram of diagnosis and input operative correction and approximate mathematical models of individual processes of diagnosis.

  2. Passivity-based control of a class of Blondel-Park transformable electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, Per J.; Ortega, Romeo; Espinosa-Perez, Gerardo

    1997-12-31

    The publication presents a study of the viability of extending, to the general rotating electric machine`s model, the passivity-based controller method developed for induction motors. In this approach, the passivity (energy dissipation) properties of the motor are taken advantage of at two different levels. First, there is proved that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, a torque tracking controller is designed that preserves passivity for the electrical subsystem, and leave the mechanical part as a ``passive disturbance``. In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key future of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. The objective in this publication is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly, the class consists of machines whose non-actuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blonded-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical machines. The controller mentioned reduces to the well known

  3. Development research of pitching machine controlling variable ball using neural network

    OpenAIRE

    Oda, Juhachi; Sakai, Shinobu; Yonemura, Shigeru; Kawata, Kengo; Horikawa, Saburo; Yamamoto, Hiroyuki

    2003-01-01

    It is vey difficult to change simultaneously the pitching speeds and the course in the usual used pitching machines of the arm type and the two rollers type. In this study, the pitching machines which is able to pitch exactly a base ball into various courses and speeds using the three rollers controlled independently the number of rotations, is developed. In the pitching machine, the layered neural network system in which the learning data use each course and speeds as input data and number o...

  4. Inverse kinematics analysis and numerical control experiment for PRS-XY style hybrid machining tool

    Institute of Scientific and Technical Information of China (English)

    JIA Dongyong; ZHANG Jianmin; NIU Zhigang; SUN Hongchang

    2007-01-01

    This paper analyzed the inverse kinematics for the new Parallel rotate slider-X Y axes(PRS-XY)style hybrid machining tool and educed the five axes linkage inverse kinematics transform formula on the basis of the coordinates of the X,Y,Z,A and B virtual axes.The program for the PRS-XY style hybrid machining tool in accordance with the program manner for the common numerical control(NC)machine tool was made.The results of the experiments prove that the inverse kinematics transform formula is correct.

  5. Low-Resolution Tactile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-01-01

    Full Text Available In this paper, we propose a robust tactile sensing image recognition scheme for automatic robotic assembly. First, an image reprocessing procedure is designed to enhance the contrast of the tactile image. In the second layer, geometric features and Fourier descriptors are extracted from the image. Then, kernel principal component analysis (kernel PCA is applied to transform the features into ones with better discriminating ability, which is the kernel PCA-based feature fusion. The transformed features are fed into the third layer for classification. In this paper, we design a classifier by combining the multiple kernel learning (MKL algorithm and support vector machine (SVM. We also design and implement a tactile sensing array consisting of 10-by-10 sensing elements. Experimental results, carried out on real tactile images acquired by the designed tactile sensing array, show that the kernel PCA-based feature fusion can significantly improve the discriminating performance of the geometric features and Fourier descriptors. Also, the designed MKL-SVM outperforms the regular SVM in terms of recognition accuracy. The proposed recognition scheme is able to achieve a high recognition rate of over 85% for the classification of 12 commonly used metal parts in industrial applications.

  6. Adaptive Excitation Control with L2 Disturbance Attenuation for Multi-Machine Power Systems

    Institute of Scientific and Technical Information of China (English)

    梅生伟; 金敏杰; 申铁龙

    2004-01-01

    Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-machine power systems. Based on a recursive design method, an adaptive excitation control law with L2 disturbance attenuation is constructed. Furthermore, it is verified that the proposed control scheme possesses the property of decentralization and the robustness in the sense of L2-gain. As a consequence, transient stability of a multi-machine power system is guaranteed, regardless of system parameters variation and faults.

  7. Flux observer algorithms for direct torque control of brushless doubly-fed reluctance machines

    OpenAIRE

    Chaal, Hamza; Jovanovic, Milutin

    2009-01-01

    Direct Torque Control (DTC) has been extensively researched and applied to most AC machines during the last two decades. Its first application to the Brushless Doubly-Fed Reluctance Machine (BDFRM), a promising cost-effective candidate for drive and generator systems with limited variable speed ranges (such as large pumps or wind turbines), has only been reported a few years ago. However, the original DTC scheme has experienced flux estimation problems and compromised performance under the ma...

  8. Script Controlled Modeling of Low Noise Permanent Magnet Synchronous Machines by using JMAG Designer

    OpenAIRE

    RUSU Tiberiu; BÎRTE Ovidiu; SZABÓ Loránd; MARŢIŞ Claudia Steluţa

    2013-01-01

    This paper deals with the parameterizedmodeling of permanent magnet synchronous machines(PMSM) by means of JMAG Designer, an advancedsimulation software for electromechanical design. Thismethod enables the designer to simulate diverse topologies ofthe machines by only changing some basic parameters of thescript controlling the preprocessing phase of the simulations.For this purpose a graphical user interface for modeling themachine was built up in Visual Basic. Thru it the users canenter the ...

  9. Research on key control technologies of all-position automatic welding machine

    Institute of Scientific and Technical Information of China (English)

    Zeng Huilin; Du Zeyu; Ma Jing; Huang Fuxiang

    2009-01-01

    The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline construction projects due to the advantages of automatic control for welding parameters at all-position, moving speed of bugs and operating. In this paper, the key control technologies of PAWM all-position automatic welding machine (developed by Pipeline Research Institute of CNPC) such as the automatic control system, control software, personal digital assistant (PDA) software and complex programmable logic device(CPLD) program as well as the control method of welding parameter have been described detailedly. With the higher welding quality, higher welding efficiency and lower labor intensity, PAWM all-position automatic welding machine has been successfully applied in many famous pipeline construction projects.

  10. Research programme on controlled thermonuclear fusion - Synthesis report 2010; Programme de recherche Fusion thermonucleaire controlee. Rapport de synthese 2010

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secretariat d' Etat a l' education et a la recherche, Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2011-07-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET). The International Thermonuclear Experimental Reactor (ITER) is being built; the first plasma is expected in 2019. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL participates to EURATOM scientific and technological projects in magnetic confinement physics, through an experimental contribution (the Variable Configuration Tokamak, TCV) and theoretical studies. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. A configuration of type 'snowflakes' could be created, reducing the power deposition at the edge of the plasma. Theoretical studies on turbulence have improved the plasma stability in the TCV. For the first time in the world, TCV could reach a stable plasma, the plasma current being generated using the so-called 'bootstrap' phenomenon. Besides turbulence, studies were focused on heat and particle transport in tokamaks, on an analysis of the equilibrium and magneto-hydrodynamic stability of tokamaks and stellarators, on the application of radiofrequency waves and on the optimization of new confinement configurations. Experiments in the JET facility confirmed the numerical results of theoretical simulations. The TORPEX facility, which is simpler than TCV, allows high space-temporal resolution measurements for the study of turbulences and plasma threads ('blobs'). At the Paul Scherrer Institute (PSI), research topics include

  11. Machine Control and Multimedia Communication with Mini-PC

    Directory of Open Access Journals (Sweden)

    Hartmut Prof.Dr.-Ing. Haehnel

    2006-02-01

    Full Text Available The communication need in companies machines - and equipment construction constantly rises. Also small and medium-size enterprises act today more than ever on a global market. On the other hand the enterprises are at a substantial costing and time pressure by the globalization of the markets. Experts act in this connection increasingly in different locations. In the result of the current research in the context by the Federal Ministry for economics promoted of a co-operation of research project between the FH Duesseldorf, Labor for computer technology and the company Frölich & Klüpfel Druckluftechnik GmbH & CO. KG was determined that the industrielle use of Multimedia Communication for companies in the context of examined cases of application with a large use which can be expected is possible.

  12. Contributed papers presented at the 24. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    In the report thirteen papers are compiled which were presented by members of the Centre de Recherches en Physique des Plasma, Lausanne, at the 24th EPS conference on controlled fusion and plasma physics. They mainly deal with problems of the confinement and are based on studies performed in the TCV tokamak. figs., tabs., refs.

  13. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  14. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  15. The Ways of Fuzzy Control Algorithms Using for Harvesting Machines Tracking

    Directory of Open Access Journals (Sweden)

    L. Tóth

    2013-09-01

    Full Text Available This contribution is oriented to ways of a fuzzy regulation using for machine tracking of the harvest machines. The main aim of this work was to practice verify and evaluate of functionality of control fuzzy algorithms for an Ackerman’s chassis which are generally used in agriculture machines for the crops harvesting. Design of the fuzzy control algorithm was focused to the wall following algorithm and obstacle avoidance. To achieve of the reliable results was made the real model of vehicle with Ackerman’s chassis type, which was controlled by PC with using development board Stellaris LM3S8962 based on ARM processor. Fuzzy control algorithms were developed in LabView application. Deviations were up to 0.2 m, which can be reduced to 0.1 m by hardware changing.

  16. Multiple Property Cross Direction Control of Paper Machines

    Directory of Open Access Journals (Sweden)

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  17. Variable-Structure Direct Torque Control – A Class of Fast and Robust Controllers for Induction Machine Drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2004-01-01

    A family of variable-structure controllers for induction machine drives is presented, in which the principles of direct torque control (DTC), variable-structure control (VSC) and space-vector pulsewidth modulation are combined to ensure high-performance operation, both in the steady state and under...

  18. Large distributed control system using Ada in fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Van Arsdall, P J; Woodruff, J P

    1998-08-11

    Construction of the National Ignition Facility laser at Lawrence Livermore National Laboratory features a distributed control system that uses object-oriented software engineering techniques. Control of 60,000 devices is effected using a network of some 500 computers. The software is being written in Ada and communicates through CORBA. Software controls are implemented in two layers: individual device controllers and a supervisory layer. The software architecture provides services in the form of frameworks that address issues common to event-driven control systems. Those services are allocated to levels that strictly prescribe their interdependency so the levels are separately reusable. The project has completed its final design review. The delivery of the first increment takes place in October 1998. Keywords Distributed control system, object-oriented development, CORBA, application frameworks, levels of abstraction

  19. Vector control of three-phase AC machines system development in the practice

    CERN Document Server

    Quang, Nguyen Phung; Dittrich, J

    2015-01-01

    This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based  nonlinear

  20. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E.; Winograd, Terry A.; Hutchins, Gregory M.

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  1. Expert system to control a fusion energy experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques by encoding the behavior of several experts as a set of if-then rules in an expert system. One of the functions of the expert system is to control an adaptive controller that, in turn, controls the neutral beam source. The architecture of the system is presented followed by a description of its performance.

  2. Research on the Development of Baseball Pitching Machine Controlling Pitch Type using Neural Network

    Science.gov (United States)

    Sakai, Shinobu; Oda, Juhachi; Yonemura, Shigeru; Kawata, Kengo; Horikawa, Saburo; Yamamoto, Hiroyuki

    The most common commercial pitching machines for baseball are the "arm" type and the "two rollers" type. These machines tend to have certain limitations. In particular, it is very difficult to simultaneously change both ball speed and direction. In addition, some types of pitches, such as the curveball or screwball, are not easily achieved. In this study, we will explain the hardware and software design of a new "intelligent" pitching machine which can pitch repeatedly with selectable speed, direction and ball rotation. The machine has three rollers and the motion of each is independently controlled by a hierarchical neural network. If the ball speed, direction and rotation are given as input data to this network, signals for controlling the three rollers are produced as output data. The results of a throw experiment with the machine that we developed are shown, which has the ability to pitch assorted breaking balls with a wide range of speeds, from 19.4 to 44.4 m/s. The machine has a speed error of less than about 3%, and a distance error of about 0.15m (twice the length of a ball's diameter).

  3. When Machines Design Machines!

    DEFF Research Database (Denmark)

    2011-01-01

    Until recently we were the sole designers, alone in the driving seat making all the decisions. But, we have created a world of complexity way beyond human ability to understand, control, and govern. Machines now do more trades than humans on stock markets, they control our power, water, gas...... and food supplies, manage our elevators, microclimates, automobiles and transport systems, and manufacture almost everything. It should come as no surprise that machines are now designing machines. The chips that power our computers and mobile phones, the robots and commercial processing plants on which we...... depend, all are now largely designed by machines. So what of us - will be totally usurped, or are we looking at a new symbiosis with human and artificial intelligences combined to realise the best outcomes possible. In most respects we have no choice! Human abilities alone cannot solve any of the major...

  4. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  5. Theoretical Consideration of The Controllability Indicator of Machine-Tractor Unit Movement

    Directory of Open Access Journals (Sweden)

    Bulgakov Volodymyr

    2017-03-01

    Full Text Available The paper is focused on the issues of controllability of machine-tractor units based on wheel-type tractors during their non-straight driving on the soil surface, which is positioned at an angle to the horizon. There were obtained analytical expressions for the determination of the actual indicator of control λd, including both the power and the design parameters of the machine-tractor unit, which affect the abovementioned indicator in the longitudinal vertical plane. These expressions are obtained for the tractor driving on both road and also driving during field operation. In addition, the paper discusses the conditions under which there may occur the cross-slip of the tractor steering wheels in the transversal horizontal plane. As a result of this review, there were obtained the analytical expressions for determining the required indicator of the controllability λd of machine-tractor unit in the horizontal plane, excluding the possibility of lateral sliding of the unit by turning its steering wheels at a certain angle. These expressions are obtained for the two modes of the machine-tractor unit: for driving during transport on the road and during the operation in the field. The machine-tractor unit based on the wheel-type tractor with rear mounted 3-mouldboard plough was analytically investigated. By means of computer calculations, there was observed the fact that when moving in non-straight direction on the soil surface, inclined to the horizon at an angle of 12°, the machine-tractor unit is controllable only when the angles of the steering wheel of the given tractor do not exceed 9°. During the working movement (ploughing of the given machine-tractor unit on an inclined field surface, its controllability will be preserved on condition that the angle of the tractor steering wheels does not exceed 11°. According to obtained results, it can be stated that the controllability of the machine-tractor unit is determined by the indicator of

  6. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    Highlights: • Test procedures for the qualification of the tightness of actively cooled plasma facing components were defined. • The test is performed after the component manufacturing and before its set-up in the vacuum vessel. • It allows improving the fusion machine availability. • The lessons of tests over 20 years at Tore Supra are presented. - Abstract: The fusion machines under development or construction (ITER, W7X) use several hundreds of actively cooled plasma facing components (ACPFC). They are submitted to leak tightness requirements in order to get an appropriate vacuum level in the vessel to create the plasma. During the ACPFC manufacturing and before their installation in the machine, their leak tightness performance must be measured to check that they fulfill the vacuum requirements. A relevant procedure is needed which allows to segregate potential defects. It must also be optimized in terms of test duration and costs. Tore Supra, as an actively cooled Tokamak, experienced several leaks on ACPFCs during the commissioning and during the operation of the machine. A test procedure was then defined and several test facilities were set-up. Since 1990 the tightness of all the new ACPFCs is systematically tested before their installation in Tore Supra. During the qualification test, the component is set up in a vacuum test tank, and its cooling circuits are pressurized with helium. It is submitted to 3 temperature cycles from room temperature up to the baking temperature level in Tore Supra (200 °C) and two pressurization tests are performed (6 MPa at room temperature and 4 MPa at 200 °C) at each stage. At the end of the last cycle when the ACPFC is at room temperature and pressurized with helium at 6 MPa, the measured leak rate must be lower than 5 × 10{sup −11} Pa m{sup 3} s{sup −1}, the pressure in the test tank being <5 × 10{sup −5} Pa. A large experience has been gained on ACPFCs with carbon parts on stainless steel and Cu

  7. Advanced Dynamics and Model-Based Control of Structures and Machines

    CERN Document Server

    Krommer, Michael; Belyaev, Alexander

    2012-01-01

    The book contains 26 scientific contributions by leading experts from Russia, Austria, Italy, Japan and Taiwan. It presents an overview on recent developments in Advanced Dynamics and Model Based Control of Structures and Machines. Main topics are nonlinear control of structures and systems, sensing and actuation, active and passive damping, nano- and micromechanics, vibrations and waves.

  8. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  9. Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Wörgötter, Florentin

    2007-01-01

    —This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts...

  10. Design of a real-time open architecture controller for reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-06-01

    Full Text Available modular structure in form of modular machines and open architecture controllers that can quickly change the physical structure and appropriately adjust the control system to adapt to the new production requirements. The paper aims to present the design...

  11. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  12. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.

    Directory of Open Access Journals (Sweden)

    Marc Thilo Figge

    Full Text Available Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.

  13. Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals

    Directory of Open Access Journals (Sweden)

    Paulo Rogério de Almeida Ribeiro

    2013-01-01

    Full Text Available The extent to which humans can interact with machines significantly enhanced through inclusion of speech, gestures, and eye movements. However, these communication channels depend on a functional motor system. As many people suffer from severe damage of the motor system resulting in paralysis and inability to communicate, the development of brain-machine interfaces (BMI that translate electric or metabolic brain activity into control signals of external devices promises to overcome this dependence. People with complete paralysis can learn to use their brain waves to control prosthetic devices or exoskeletons. However, information transfer rates of currently available noninvasive BMI systems are still very limited and do not allow versatile control and interaction with assistive machines. Thus, using brain waves in combination with other biosignals might significantly enhance the ability of people with a compromised motor system to interact with assistive machines. Here, we give an overview of the current state of assistive, noninvasive BMI research and propose to integrate brain waves and other biosignals for improved control and applicability of assistive machines in paralysis. Beside introducing an example of such a system, potential future developments are being discussed.

  14. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    Science.gov (United States)

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  15. Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer

    Directory of Open Access Journals (Sweden)

    Thang Diep

    2010-06-01

    Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.

  16. Aurora inertial confinement fusion laser control and data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, P.S.; Burczyk, L.; Dingler, R.D.; Shurter, R.B. (Los Alamos National Lab., P.O. Box 1663, AT-8 MS H811, Los Alamos, NM 87545)

    1987-05-01

    Aurora is a complex krypton fluoride excimer research laser supported by a computerized control and data acquisition system. Aurora's requirements for control, data aquisition, and data analysis are met with specific application of minicomputer and microcomputer capabilities coupled with internally developed custom hardware and software. A control system that provides an operator with the ability to charge and fire the integrated laser system safely and remotely is described. A data aquisition system that acquires, stores, and processes laser system data is also described. This data acquisition system provides the experimentalists with support tools for better understanding the laser system.

  17. Large distributed control system using ADA in fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J. P., LLNL

    1998-04-21

    Construction of the National Ignition Facility laser at Lawrence Livermore National Laboratory features a large distributed control system constructed using object-oriented software engineering techniques. Control of 60,000 devices is effected using a network of some 500 computers that run software written in Ada and communicating through CORBA. The project has completed its final design review; implementation of the first of five planned increments will be delivered at the end of fiscal year 1998. Preliminary measures of the distributed controls performance confirm the design decisions reported in this paper, and the measurement and supporting simulation of full system performance continue.

  18. The Tore Supra LHCD control system: new improvements using PLCs and state machines

    Energy Technology Data Exchange (ETDEWEB)

    Journeaux, J.Y. E-mail: jyjour@pegase.cad.cea.fr; Froissard, P.; Kazarian, F.; Baudet, J.; Pastor, P.; Simoncini, J

    2001-10-01

    The Tore Supra lower hybrid (LH) control system has been in operation for 10 years. Although its control system has given excellent service, it is an ageing system, and incompatible with many modern components and techniques. Hence, in order to improve the LH system's reliability, efficiency, compatibility and visibility, a new design of its control system was undertaken. A solution based on modern programmable logic controller coupled with a fast logic hardware 'state machine' has been selected as a replacement. This can handle the 'state diagram' and associated safety interlock functions for each klystron with the required time response. This paper presents the association of this state machine for fast control with the PLC for slow control, a PC based human interface, and all the control and process diagnostic functions which complete this Tore Supra LH control and security system.

  19. Research on Remote Video Monitoring System Used for Numerical Control Machine Tools Based on Embedded Technology

    Institute of Scientific and Technical Information of China (English)

    LIU Quan; QU Xuehong; ZHOU Henglin; LONG Yihong

    2006-01-01

    This paper designed an embedded video monitoring system using DSP(Digital Signal Processing) and ARM(Advanced RISC Machine). This system is an important part of self-service operation of numerical control machine tools. At first the analog input signals from the CCD(Charge Coupled Device) camera are transformed into digital signals, and then output to the DSP system, where the video sequence is encoded according to the new generation image compressing standard called H.264. The code will be transmitted to the ARM system through xBus, and then be packed in the ARM system and transmitted to the client port through the gateway. Web technology, embedded technology and image compressing as well as coding technology are integrated in the system, which can be widely used in self-service operation of numerical control machine tools and intelligent robot control areas.

  20. Information fusion control with time delay for smooth pursuit eye movement.

    Science.gov (United States)

    Zhang, Menghua; Ma, Xin; Qin, Bin; Wang, Guangmao; Guo, Yanan; Xu, Zhigang; Wang, Yafang; Li, Yibin

    2016-05-01

    Smooth pursuit eye movement depends on prediction and learning, and is subject to time delays in the visual pathways. In this paper, an information fusion control method with time delay is presented, implementing smooth pursuit eye movement with prediction and learning as well as solving the problem of time delays in the visual pathways. By fusing the soft constraint information of the target trajectory of eyes and the ideal control strategy, and the hard constraint information of the eye system state equation and the output equation, optimal estimations of the co-state sequence and the control variable are obtained. The proposed control method can track not only constant velocity, sinusoidal target motion, but also arbitrary moving targets. Moreover, the absolute value of the retinal slip reaches steady state after 0.1 sec. Information fusion control method elegantly describes in a function manner how the brain may deal with arbitrary target velocities, how it implements the smooth pursuit eye movement with prediction, learning, and time delays. These two principles allowed us to accurately describe visually guided, predictive and learning smooth pursuit dynamics observed in a wide variety of tasks within a single theoretical framework. The tracking control performance of the proposed information fusion control with time delays is verified by numerical simulation results.

  1. Design of power control system using SMES and SVC for fusion power plant

    Science.gov (United States)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-02-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant.

  2. Closed-loop separation control using machine learning

    CERN Document Server

    Gautier, Nicolas; Aider, Jean-Luc; Noack, Bernd; Segond, Marc; Abel, Markus

    2014-01-01

    A novel, model free, approach to experimental closed-loop flow control is implemented on a separated flow. Feedback control laws are generated using genetic programming where they are optimized using replication, mutation and cross-over of best performing laws to produce a new generation of candidate control laws. This optimization process is applied automatically to a backward-facing step flow at Re=1350, controlled by a slotted jet, yielding an effective control law. Convergence criterion are suggested. The law is able to produce effective action even with major changes in the flow state, demonstrating its robustness. The underlying physical mechanisms leveraged by the law are analyzed and discussed. Contrary to traditional periodic forcing of the shear layer, this new control law plays on the physics of the recirculation area downstream the step. While both control actions are fundamentally different they still achieve the same level of effectiveness. Furthermore the new law is also potentially easier and ...

  3. IDENTIFICATION AND CONTROL OF AN ASYNCHRONOUS MACHINE USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    A ZERGAOUI

    2000-06-01

    Full Text Available In this work, we present the application of artificial neural networks to the identification and control of the asynchronous motor, which is a complex nonlinear system with variable internal dynamics.  We show that neural networks can be applied to control the stator currents of the induction motor.  The results of the different simulations are presented to evaluate the performance of the neural controller proposed.

  4. Sensorless speed control of a five-phase induction machine under open-phase condition

    Directory of Open Access Journals (Sweden)

    Ahmed S. Morsy

    2014-05-01

    Full Text Available Recently, multiphase machines have been promoted as competitors to their three-phase counterparts in high-power safety-critical drive applications. Among numerous advantages of multiphase induction machine (IM drives, self-starting and operation under open phase(s stand as the most salient features. With open phase(s, optimal current control provides disturbance- free operation given a set of objective functions. Although hysteresis current control was merely employed in the literature as it offers a simple controller structure to control the remaining healthy phases, it is not suitable for high-power applications. In the literature, multiple synchronous reference frame (dq control can be an alternative; however, it requires back and forth transformations with several calculations and additional sophistication. In this paper, a simple technique employing adaptive proportional resonant (PR current controllers is presented to control a five-phase IM under open-phase conditions. Results for both volt/hertz (V/f and field oriented control (FOC systems are presented. Moreover, sensorless operation under fault condition is also demonstrated by estimating the machine speed using a rotor flux-based model reference adaptive system (MRAS speed estimator. The proposed controllers are experimentally verified and compared. Although FOC provides better dynamic performance, V/f control offers a simpler control structure and a lower number of PR controllers.

  5. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  6. Position control of active magnetic levitation using sphere-shaped HTS bulk for inertial nuclear fusion

    Science.gov (United States)

    Suga, K.; Riku, K.; Agatsuma, K.; Ueda, H.; Ishiyama, A.

    2008-02-01

    We have developed an active magnetic levitation system that comprises a field-cooled disk-shaped or sphere-shaped HTS bulk and multiple ring-shaped electromagnets. In this system, the levitation height of HTS bulk can be controlled by adjusting the operating current of each electromagnet individually. Further, the application of the vertical noncontact levitation system is expected due to its levitation stability without mechanical supports. We assume that this system is applied to inertial nuclear fusion. However, one of the important issues is to achieve position control with high accuracy of the fusion fuel in order to illuminate the target evenly over the entire surface. Therefore, this system is applied to the levitation and position control of a sphere-shaped superconducting capsule containing nuclear fusion fuel. In this study, we designed and constructed a position control system for the sphere-shaped HTS bulk with a diameter of 5 mm by using numerical simulation based on hybrid finite element and boundary element analysis. We then carried out the experiment of levitation height and position control characteristics of the HTS bulk in this system. With regard to position control, accuracies within 59 ?m are obtained.

  7. Modeling and Control of a Double-effect Absorption Refrigerating Machine

    Science.gov (United States)

    Hihara, Eiji; Yamamoto, Yuuji; Saito, Takamoto; Nagaoka, Yoshikazu; Nishiyama, Noriyuki

    Because the heat capacity of absorption refrigerating machines is large compared with vapor compression refrigerating machines, the dynamic characteristics at the change in cooling load conditions are problems to be improved. The control method of energy input and of weak solution flow rate following cooling load variations was investigated. As the changes in cooling load and cooling capacity are moderate, the optimal operation conditions corresponding to the cooling load can be estimated with steady state characteristics. If the relation between the cooling load and the optimal operation conditions is well known, a feed forward control can be employed. In this report a new control algorithm, which is called MOL (Multi-variable Open Loop) control, is proposed. Comparing the MOL control with the conventional chilled water outlet temperature proportional control, the MOL control enables the smooth changes in cooling capacity and the reduction in fuel consumption.

  8. TRAP1 controls mitochondrial fusion/fission balance through Drp1 and Mff expression.

    Directory of Open Access Journals (Sweden)

    Hironori Takamura

    Full Text Available Mitochondria are dynamic organelles that change in response to extracellular stimuli. These changes are essential for normal mitochondrial/cellular function and are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Although some molecules have been identified to mediate the mitochondrial fusion and fission process, the underlying mechanisms remain unclear. Tumor necrosis factor receptor-associated protein 1 (TRAP1 is a mitochondrial molecule that regulates a variety of mitochondrial functions. Here, we examined the role of TRAP1 in the regulation of morphology. Stable TRAP1 knockdown cells showed abnormal mitochondrial morphology, and we observed significant decreases in dynamin-related protein 1 (Drp1 and mitochondrial fission factor (Mff, mitochondrial fission proteins. Similar results were obtained by transient knockdown of TRAP1 in two different cell lines, SH-SY5Y neuroblastoma cells and KNS-42 glioma cells. However, TRAP1 knockdown did not affect expression levels of fusion proteins. The reduction in Drp1 and Mff protein levels was rescued following treatment with the proteasome inhibitor MG132. These results suggest that TRAP1 regulates the expression of fission proteins and controls mitochondrial fusion/fission, which affects mitochondrial/cellular function.

  9. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Heeter, R F

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...

  10. Digital Control of Bonding Force for Gold Wire Bonding Machine

    Directory of Open Access Journals (Sweden)

    Xiaochu Wang

    2013-01-01

    Full Text Available In order to digitally control the bonding force of a wire bonder precisely, this paper uses a DC solenoid as a force source, and by controlling the solenoid’s current, which causes the electromagnetic force, we can control the bonding force that capillary applies. The bonding force control system in this paper is composed of PC (Personal Computer and hypogyny MCU (Micro Controller Unit, which communicate using a RS485 interface. The digital value of a given bonding force is given by the PC to the MCU. By comparing the sampling current of the solenoid, and through PID regulation, D/A converter of the digital potentiometer and the solenoid driver circuit, the half-closed loop control system of bonding force is accomplished. Tuning of the PID parameters is accomplished with fuzzy adaptive control theory and simulated by Matlab simulink. The control system is tested by comparing the desired bonding force and the force actually applied and examming the relationship between bonding quality and bonding force.

  11. Level 5: user refinement to aid the fusion process

    Science.gov (United States)

    Blasch, Erik P.; Plano, Susan

    2003-04-01

    The revised JDL Fusion model Level 4 process refinement covers a broad spectrum of actions such as sensor management and control. A limitation of Level 4 is the purpose of control - whether it be for user needs or system operation. Level 5, User Refinement, is a modification to the Revised JDL model that distinguishes between machine process refinement and user refinement. User refinement can either be human control actions or refinement of the user's cognitive model. In many cases, fusion research concentrates on the machine and does not take full advantage of the human as not only a qualified expert to refine the fusion process, but also as customer for whom the fusion system is designed. Without user refinement, sensor fusion is incomplete, inadequate, and the user neglects its worthiness. To capture user capabilities, we explore the concept of user refinement through decision and action based on situational leadership models. We develop a Fuse-Act Situational User Refinement (FASUR) model that details four refinement behaviors: Neglect, Consult, Rely, and Interact and five refinement functions: Planning, Organizing, Coordinating, Directing, and Controlling. Process refinement varies for different systems and different user information needs. By designing a fusion system with a specific user in mind, vis Level 5, a fusion architecture can meet user's information needs for varying situations, extend user sensing capabilities for action, and increase the human-machine interaction.

  12. Reseach of Control System of Packaging Machine on PLC

    Directory of Open Access Journals (Sweden)

    Xiao SUN

    2013-06-01

    Full Text Available An automatic control system of sampling package for sample coal is designed according to the realities of sample coal powdery materials which are based on controller (PLC. The system can realize the functions of random sampling, auto-weighting, auto-packaging, and auto-sealing off. It also can adjust waste less, control convenient, zero point self-tuning and dynamics weighing measurement. It can be used in sampling weighing package of sample coal. Various performance indicators can be stably and reliably used in field.

  13. Fusion of HJ1B and ALOS PALSAR data for land cover classification using machine learning methods

    Science.gov (United States)

    Wang, X. Y.; Guo, Y. G.; He, J.; Du, L. T.

    2016-10-01

    Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.

  14. microcontroller based automatic control for water pumping machine ...

    African Journals Online (AJOL)

    user

    efforts to store and retrieve it when needed by the development of ... the challenges of achieving high energy efficiency and extended ... complexity, hence reduced high cost and energy .... Frequency Control", Jordan Journal of Mechanical.

  15. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  16. Coordinated nonlinear robust control of TCSC and excitation for multi-machine systems

    Institute of Scientific and Technical Information of China (English)

    Shengwei MEI; Juming CHEN; Qiang LU; Akihiko YOKOYAMA; Masuo GOTO

    2004-01-01

    An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on the feedback linearization and H∞ theory is introduced to eliminate the nonlinearities and interconnections of the studied system, and to attenuate the exogenous disturbances that enter the system. Then, a system model uilt up, which has considered all the generators' and TCSC's dynamics, and the effects of uncertainties such as disturbances. Next, a decentralized nonlinear robust coordinated control law is developed based on this model. Simulation results on a six-machine power system show that the transient stability of the power system is obviously improved and the power transfer capacity of long distance transmission lines is enhanced regardless of fault locahons and system operation points. In addition, the control law has engineering practicality since all the variables in the expression of he control strategy can be measured locally.

  17. Implementation of a Microcode-controlled State Machine and Simulator in AVR Microcontrollers (MICoSS

    Directory of Open Access Journals (Sweden)

    S. Korbel

    2005-01-01

    Full Text Available This paper describes the design of a microcode-controlled state machine and its software implementation in Atmel AVR microcontrollers. In particular, ATmega103 and ATmega128 microcontrollers are used. This design is closely related to the software implementation of a simulator in AVR microcontrollers. This simulator communicates with the designed state machine and presents a complete design environment for microcode development and debugging. These two devices can be interconnected by a flat cable and linked to a computer through a serial or USB interface.Both devices share the control software that allows us to create and edit microprograms and to control the whole state machine. It is possible to start, cancel or step through the execution of the microprograms. The operator can also observe the current state of the state machine. The second part of the control software enables the operator to create and compile simulating programs. The control software communicates with both devices using commands. All the results of this communication are well arranged in dialog boxes and windows. 

  18. Information and diagnostic tools of objective control as means to improve performance of mining machines

    Science.gov (United States)

    Zvonarev, I. E.; Shishlyannikov, D. I.

    2017-02-01

    The paper justifies the relevance of developing and implementing automated onboard systems for operation data and maintenance recording in heading-and-winning machines. The analysis of advantages and disadvantages of existing automated onboard systems for operation data and maintenance recording in heading-and-winning machines for potassium mines are presented. The basic technical requirements for the design, operating algorithms and functions of recording systems of mining machines for potassium mines are formulated. A method of controlling operating parameters is presented; the concept of the onboard automated recording system for the Ural heading-and-winning machine is outlined. The results of experimental studies of variations in loading of the Ural-20R miner’s operating member drives, using the VATUR portable measuring complex, are given. It is proved that existing means of objective control of operating parameters of the URAL-20R heading-and-winning machine do not assure its optimal operation. The authors present a technique of analyzing the data provided by parameter recorders that allow increasing efficiency of mechanical complexes by determining numerical values characterizing the technical and technological level of potassium ore production organization. The efficiency assessment criteria for engineering and maintenance departments of mining enterprises are advanced. A technology of continuous automated monitoring of potassium mine’s outburst hazard is described.

  19. EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award

    Science.gov (United States)

    Kikuchi, M.

    2011-01-01

    Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S888-97 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 781-7 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 541-7 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 133-41 Watanabe T.-H. et al 2006 Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 24-32 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618-24 Lipschultz B. et al 2007 Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189-205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 1112-20 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 667-76 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 1588-97 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 535-51 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 856-63 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 228-32 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 961-8 Urano H. et

  20. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner‐loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion‐based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD‐UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion‐based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD‐UAV is carried out, the results of which show the superiority of the information fusion‐based control strategy when compared to the single‐loop design method. We also show that the ATD technique improves the anti‐disturbance capacity of the UAV.

  1. Electrical Discharge Machining Flyback Converter using UC3842 Current Mode PWM Controller

    Directory of Open Access Journals (Sweden)

    Nazriah Mahmud

    2014-10-01

    Full Text Available This paper presents a current mode Pulse Width Modulation (PWM controlled Flyback converter using UC3842 for Electrical Discharge Machining current generator control circuit. Circuit simplicity and high efficiency can be achieved by a Flyback converter with current mode PWM controller. The behaviors of the system's operation is analyzed and discussed by varying the load resistance. Matlab sofware is used to simulate the Flyback converter where a prototype has been built and tested to verify it's performance.

  2. Electric Machine with Boosted Inductance to Stabilize Current Control

    Science.gov (United States)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  3. Patient Machine Interface for the Control of Mechanical Ventilation Devices

    Directory of Open Access Journals (Sweden)

    Rolando Grave de Peralta

    2013-11-01

    Full Text Available The potential of Brain Computer Interfaces (BCIs to translate brain activity into commands to control external devices during mechanical ventilation (MV remains largely unexplored. This is surprising since the amount of patients that might benefit from such assistance is considerably larger than the number of patients requiring BCI for motor control. Given the transient nature of MV (i.e., used mainly over night or during acute clinical conditions, precluding the use of invasive methods, and inspired by current research on BCIs, we argue that scalp recorded EEG (electroencephalography signals can provide a non-invasive direct communication pathway between the brain and the ventilator. In this paper we propose a Patient Ventilator Interface (PVI to control a ventilator during variable conscious states (i.e., wake, sleep, etc.. After a brief introduction on the neural control of breathing and the clinical conditions requiring the use of MV we discuss the conventional techniques used during MV. The schema of the PVI is presented followed by a description of the neural signals that can be used for the on-line control. To illustrate the full approach, we present data from a healthy subject, where the inspiration and expiration periods during voluntary breathing were discriminated with a 92% accuracy (10-fold cross-validation from the scalp EEG data. The paper ends with a discussion on the advantages and obstacles that can be forecasted in this novel application of the concept of BCI.

  4. Clinical outcomes after posterolateral lumbar fusion in workers' compensation patients: a case-control study.

    Science.gov (United States)

    Carreon, Leah Y; Glassman, Steven D; Kantamneni, Neha R; Mugavin, Mark O; Djurasovic, Mladen

    2010-09-01

    Case-control propensity matched. To compare clinical outcomes after lumbar fusion in patients receiving workers' compensation with a case-matched control group who are not on workers' compensation. Previous studies have demonstrated poor outcomes in patients receiving workers' compensation after lumbar fusion. However, a case-control study where patients are matched for covariates known to affect outcomes after lumbar fusion, including baseline clinical outcome measures, has not been done. From 783 patients who underwent posterolateral fusion with complete preoperative and 2-year postoperative outcome measures, 60 patients who were receiving workers' compensation were identified. Outcome measures included the Oswestry Disability Index (ODI), Short Form-36 (SF-36), and back and leg pain numerical rating scales. Propensity scoring technique was used to match these patients with a control group not receiving workers' compensation using sex, age, smoking status, body mass index, diagnosis, number of levels fused, preoperative ODI, SF-36 Physical Component Summary (PCS), SF-36 Mental Component Summary, and back and leg pain scores, producing 58 matched pairs. There were no significant differences between the demographics, job classification, and preoperative outcome scores in the two groups. At 2 years after operation, patients not receiving workers' compensation had a significantly greater improvement in ODI (P=0.009) and SF-36 PCS (P=0.007) compared with those receiving workers' compensation. Although patients not receiving workers' compensation had greater improvements in back and leg pain compared with those receiving workers' compensation, this did not reach statistical significance (P=0.079). The mean 2-year ODI, SF-36 PCS, and back pain raw scores of patients receiving workers' compensation were significantly lower than those not receiving workers' compensation. Only 19% of workers' compensation patients achieved minimum clinically important difference in terms

  5. Machine modification for active MHD control in RFX

    Energy Technology Data Exchange (ETDEWEB)

    Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G

    2003-09-01

    Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.

  6. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction......, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  7. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    Science.gov (United States)

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  8. Adaptive Control of Machine-Tool Vibration Based on an Active Tool Holder Shank with an Embedded Piezo Ceramic Actuator

    OpenAIRE

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a common problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lathe...

  9. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    This work was extended to overactuated systems by Snell et al. [15]. More recently, the same concept has been employed to design longitudinal...for Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 1, 1987, pp. 67–72. doi:10.2514/3.20182 [15] Snell , S. A., Enns, D. F., and

  10. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  11. Control strategies for brushless doubly fed reluctance machines

    OpenAIRE

    Jovanovic, Milutin; Betz, Robert

    2001-01-01

    Paper presents the development and results of comprehensive comparative analysis of different vector control strategies for performance optimisation of the BDFRM being considered as a viable cost-effective brushless alternative to traditional brush and less reliable solutions in applications with limited variable speed ranges (such as wind turbines). Australian Research Council and EPSRC projects.

  12. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    are often mirrored by changes in other layers, implying that independent layers of control coevolve. By taking a bird's eye view of the cell cycle, we demonstrate how the modular organization of cellular systems possesses a built-in flexibility, which allows evolution to find many different solutions...

  13. A Multiple Data Fusion Approach to Wheel Slip Control for Decentralized Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dejun Yin

    2017-04-01

    Full Text Available Currently, active safety control methods for cars, i.e., the antilock braking system (ABS, the traction control system (TCS, and electronic stability control (ESC, govern the wheel slip control based on the wheel slip ratio, which relies on the information from non-driven wheels. However, these methods are not applicable in the cases without non-driven wheels, e.g., a four-wheel decentralized electric vehicle. Therefore, this paper proposes a new wheel slip control approach based on a novel data fusion method to ensure good traction performance in any driving condition. Firstly, with the proposed data fusion algorithm, the acceleration estimator makes use of the data measured by the sensor installed near the vehicle center of mass (CM to calculate the reference acceleration of each wheel center. Then, the wheel slip is constrained by controlling the acceleration deviation between the actual wheel and the reference wheel center. By comparison with non-control and model following control (MFC cases in double lane change tests, the simulation results demonstrate that the proposed control method has significant anti-slip effectiveness and stabilizing control performance.

  14. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  15. Learning Control: Sense-Making, CNC Machines, and Changes in Vocational Training for Industrial Work

    Science.gov (United States)

    Berner, Boel

    2009-01-01

    The paper explores how novices in school-based vocational training make sense of computerized numerical control (CNC) machines. Based on two ethnographic studies in Swedish schools, one from the early 1980s and one from 2006, it analyses change and continuity in the cognitive, social, and emotional processes of learning how to become a machine…

  16. Numerical Control Machining and the Issue of Deskilling. An Empirical View.

    Science.gov (United States)

    Zicklin, Gilbert

    1987-01-01

    Research on the effects of numerical control (NC) machining on the skills of machinists presents mixed results. Interviews with a small group of machinists experienced in both conventional and NC matching suggest seven major factors that affect whether NC automation changes the overall skill level. The deskilling hypothesis is not supported by…

  17. Fully digital controlled A.C. servo engraving machine based on DEC4DA

    Science.gov (United States)

    Shu, Zhibing; Chen, Xianfeng; Zhang, Hairong; Huang, Yiqun; Yan, Caizhong

    2005-12-01

    A novel engraving machine (NUT-1A) is presented, in which fully digital controlled AC system based on DEC4DA was used to improve the machining precision and sensitivity. This engraving machine was constructed around AC servo motor with encoder, controlled by a servo motor control card - DEC4DA. As the upper unit of AC servo motor, DEC4DA was a numerical control generator, which received pulses form CPU by ISA bus, and these pulses were amplified and converted to drive AC servo actuator. This novel engraving machine can achieve a higher positioning accuracy of +/-0.01mm and positioning repetition of +/-0.005mm, and its resolution is 0.001mm/0.0001mm. Moreover, because of multi-closed loops were used in the system, the steady and transient performances are more excellent. This system ensures a much quicker current regulation in closed-loop operation, of acceleration and braking in both directions, as well as stable speed characteristics. Amplifier boards are protected against excessive current, excessive temperature and short circuiting of the motor supply cables.

  18. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    Science.gov (United States)

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  19. Learning Control: Sense-Making, CNC Machines, and Changes in Vocational Training for Industrial Work

    Science.gov (United States)

    Berner, Boel

    2009-01-01

    The paper explores how novices in school-based vocational training make sense of computerized numerical control (CNC) machines. Based on two ethnographic studies in Swedish schools, one from the early 1980s and one from 2006, it analyses change and continuity in the cognitive, social, and emotional processes of learning how to become a machine…

  20. Convex quadratic programming relaxations for parallel machine scheduling with controllable processing times subject to release times

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; CHEN Feng; TANG Guochun

    2004-01-01

    Scheduling unrelated parallel machines with controllable processing times subject to release times is investigated. Based on the convex quadratic programming relaxation and the randomized rounding strategy, a 2-approximation algorithm is obtained for a special case with the all-or-none property and then a 3-approximation algorithm is presented for general problem.

  1. Data fusion of several support-vector-machine breast-cancer diagnostic paradigms using a GRNN oracle

    Science.gov (United States)

    Land, Walker H., Jr.; Wong, Lut; McKee, Dan; Masters, Timothy; Anderson, Frances; Sarvaiya, Sapan

    2004-04-01

    Breast cancer is second to lung cancer as a tumor-related cause of death in women. For 2003, it was reported that 211,300 new cases and 39,800 deaths would occur in the US. It has been proposed that breast cancer mortality could be decreased by 25% if women in appropriate age groups were screened regularly. Currently, the preferred method for breast cancer screening is mammography, due to its widespread availability, low cost, speed, and non-invasiveness. At the same time, while mammography is sensitive to the detection of breast cancer, its positive predictive value (PPV) is low, resulting in costly, invasive biopsies that are only 15-34% likely to reveal malignancy at histologic examination. This paper explores the use of a newly designed Support Vector Machine (SVM)/Generalized Regression Neural Network (GRNN) Oracle hybrid and evaluates the hybrid"s performance as an interpretive aid to radiologists. The authors demonstrate that this hybrid has the potential to (1) improve both specificity and PPV of screen film mammography at 95-100% sensitivity, and (2) consistently produce partial AZ values (defined as average specificity over the top 10% of the ROC curve) of greater than 30%, using a data set of ~2500 lesions from five different hospitals and/or institutions.

  2. Active Perturbation Rejection in Motion Control of Milling Machine Tools

    Directory of Open Access Journals (Sweden)

    Francisco Beltrán Carbajal

    2013-01-01

    Full Text Available En este artículo se aborda el problema de control robusto de los ejes de movimiento de máquinas- herramienta fresadoras sujetos a fuerzas de perturbación que se inducen durante el proceso de maquinado del metal. Se propone un esquema de control por retroalimentación de la salida de posición para el rechazo robusto de fuerzas de perturbación de fricción y de corte desconocidas, y para tareas de seguimiento robusto de trayectorias de movimiento planificadas para una máquina-herramienta fresadora de tres ejes. Se considera la fricción de Coulomb, el amortiguamiento viscoso y las fuerzas de corte como términos de una señal de entrada de perturbación variable en el tiempo desconocida, la cual afecta la dinámica de los ejes de movimiento de la máquina fresadora. En el diseño del control de movimiento, se modela la señal de perturbación mediante una familia de polinomios en el tiempo de Taylor de cuarto grado. Entonces, se diseña un observador de estado para estimar las señales de velocidad y perturbación que se requieren para la implementación del controlador de movimiento propuesto. Se incluye resultados en simulación para mostrar el desempeño robusto del esquema de control de movimiento propuesto y la estimación efectiva y rápida de las señales de perturbación y velocidad.

  3. Man-Machine Control of Space Robots under Uncertainty

    OpenAIRE

    Kanata, S.

    2008-01-01

    Control problem of space robots is characterized by several challenges. The first one is that the area is full of uncertainties due to lack of information. Another difficulty is tasksharing between an operator and a partly autonomous robot. Moreover, there are several constrains on the robot operations, including communication delay and an appropriate temperature at which robot can work. Design of the robots navigation should be based on consideration of trade-offs between several conf...

  4. The Structure of a BamA-BamD Fusion Illuminates the Architecture of the β-Barrel Assembly Machine Core.

    Science.gov (United States)

    Bergal, Hans Thor; Hopkins, Alex Hunt; Metzner, Sandra Ines; Sousa, Marcelo Carlos

    2016-02-01

    The β-barrel assembly machine (BAM) mediates folding and insertion of integral β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Of the five BAM subunits, only BamA and BamD are essential for cell viability. Here we present the crystal structure of a fusion between BamA POTRA4-5 and BamD from Rhodothermus marinus. The POTRA5 domain binds BamD between its tetratricopeptide repeats 3 and 4. The interface structural elements are conserved in the Escherichia coli proteins, which allowed structure validation by mutagenesis and disulfide crosslinking in E. coli. Furthermore, the interface is consistent with previously reported mutations that impair BamA-BamD binding. The structure serves as a linchpin to generate a BAM model where POTRA domains and BamD form an elongated periplasmic ring adjacent to the membrane with a central cavity approximately 30 × 60 Å wide. We propose that nascent OMPs bind this periplasmic ring prior to insertion and folding by BAM.

  5. A universal support vector machines based method for automatic event location in waveforms and video-movies: applications to massive nuclear fusion databases.

    Science.gov (United States)

    Vega, J; Murari, A; González, S

    2010-02-01

    Big physics experiments can collect terabytes (even petabytes) of data under continuous or long pulse basis. The measurement systems that follow the temporal evolution of physical quantities translate their observations into very large time-series data and video-movies. This article describes a universal and automatic technique to recognize and locate inside waveforms and video-films both signal segments with data of potential interest for specific investigations and singular events. The method is based on regression estimations of the signals using support vector machines. A reduced number of the samples is shown as outliers in the regression process and these samples allow the identification of both special signatures and singular points. Results are given with the database of the JET fusion device: location of sawteeth in soft x-ray signals to automate the plasma incremental diffusivity computation, identification of plasma disruptive behaviors with its automatic time instant determination, and, finally, recognition of potential interesting plasma events from infrared video-movies.

  6. Implementation of Human Machine Interface Control for Filling and Capping System

    OpenAIRE

    Su Yadanar; Theingi; Nu Nu Win

    2014-01-01

    This research is mainly aimed to perform the bottle filling and capping process simultaneously in the pharmaceutical factory by using the PC based human machine interface system. Filling and capping is carried out by the machine that packages the medical powder into the bottle and then filled bottle is capped. So, PC based HMI system is created for operator control on the work cell. By designing the programming of Visual Basic.Net and Mikro C, the monitoring and running conditions in the pac...

  7. Research and Development on Control System of Novel Winding Machine for High-pressure FRP Pipeline

    Institute of Scientific and Technical Information of China (English)

    YOU Bo; XU Jiazhong; HU Haiyan; CHENG Ningbo; ZHANG Qingli

    2006-01-01

    The novel winding machine adopted steam inside solidification technics, can wind, solidify and extract high-pressure fiber reinforced plastic (FRP) pipelines in one single machine. Its control system consisted of the winding and extraction subsystem and the steam inside solidification subsystem. In order to improve the control precision and stability, a real-time control method was adopted in the winding and extraction subsystem. In this method, high-precision TRIO motion controller combined with industrial personal computer (IPC) forms an open-type CNC system which supports multitask. The Modbus protocol was adopted for the communication between the IPC and TRIO motion controller. The human-machine interface (HMI) was developed with VC++ 6.0 and the control software of the motion controller was developed with TRIO BASIC language. In the steam inside solidification subsystem, embedded IPC and PLC were used to realize the closed-loop control of the steam temperature and the HMI was developed with MCGS 5.1 under WinCE. Practices show that this system has the good performances of high precision, good stability and high efficiency.

  8. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  9. Development of Fractal Pattern Making Application using L-System for Enhanced Machine Controller

    Directory of Open Access Journals (Sweden)

    Gunawan Alexander A S

    2014-03-01

    Full Text Available One big issue facing the industry today is an automated machine lack of flexibility for customization because it is designed by the manufacturers based on certain standards. In this research, it is developed customized application software for CNC (Computer Numerically Controlled machines using open source platform. The application is enable us to create designs by means of fractal patterns using L-System, developed by turtle geometry interpretation and Python programming languages. The result of the application is the G-Code of fractal pattern formed by the method of L-System. In the experiment on the CNC machine, the G-Code of fractal pattern which involving the branching structure has been able to run well.

  10. Machine vision algorithms applied to dynamic traffic light control

    Directory of Open Access Journals (Sweden)

    Fabio Andrés Espinosa Valcárcel

    2013-01-01

    número de autos presentes en imágenes capturadas por un conjunto de cámaras estratégicamente ubicadas en cada intersección. Usando esta información, el sistema selecciona la secuencia de acciones que optimicen el flujo vehicular dentro de la zona de control, en un escenario simulado. Los resultados obtenidos muestran que el sistema disminuye en un 20% los tiempos de retraso para cada vehículo y que además es capaz de adaptarse rápida y eficientemente a los cambios de flujo.

  11. New Technique of High-Performance Torque Control Developed for Induction Machines

    Science.gov (United States)

    Kenny, Barbara H.

    2003-01-01

    Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a

  12. Online learning control using adaptive critic designs with sparse kernel machines.

    Science.gov (United States)

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  13. Influence of export control policy on the competitiveness of machine tool producing organizations

    Science.gov (United States)

    Ahrstrom, Jeffrey D.

    The possible influence of export control policies on producers of export controlled machine tools is examined in this quantitative study. International market competitiveness theories hold that market controlling policies such as export control regulations may influence an organization's ability to compete (Burris, 2010). Differences in domestic application of export control policy on machine tool exports may impose throttling effects on the competitiveness of participating firms (Freedenberg, 2010). Commodity shipments from Japan, Germany, and the United States to the Russian market will be examined using descriptive statistics; gravity modeling of these specific markets provides a foundation for comparison to actual shipment data; and industry participant responses to a user developed survey will provide additional data for analysis using a Kruskal-Wallis one-way analysis of variance. There is scarce academic research data on the topic of export control effects within the machine tool industry. Research results may be of interest to industry leadership in market participation decisions, advocacy arguments, and strategic planning. Industry advocates and export policy decision makers could find data of interest in supporting positions for or against modifications of export control policies.

  14. Promoting the Purchase of Low-Calorie Foods from School Vending Machines: A Cluster-Randomized Controlled Study

    Science.gov (United States)

    Kocken, Paul L.; Eeuwijk, Jennifer; van Kesteren, Nicole M.C.; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje

    2012-01-01

    Background: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. Methods: A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies…

  15. Sliding Mode Controller with Multisensor Data Fusion for Piezo Actuated Structure

    Directory of Open Access Journals (Sweden)

    J. Arunshankar

    2011-07-01

    Full Text Available The benefits of multisensor data fusion (MSDF in controlling the piezo actuated beam structure using sliding mode controller (SMC has been brought out. The first two vibrating modes of the smart cantilever beamare measured by two sensors namely, piezoelectric sensor and laser displacement sensor. The states are estimated from the sensors outputs using information filter, which were then fused and applied as input to the controller. The controller has been designed from the linear dynamic model of a piezo actuated beam, identified using linear recursive least square (RLS method based on ARX model. A digital control system consisting of virtual instrumentation software LabVIEW, and USB data acquisition module NI 6008, was used for simulation and real-time control. Improved closed-loop performance was obtained when the controller designed used fused data, as compared to the closed-loop performance obtained with a single sensor. The beam structure considered in this work was a pilot model of the structures used in aerospace applications. Simulation and experimental results presented demonstrate the benefits of data fusion in controlling the vibration modes.Defence Science Journal, 2011, 61(4, pp.346-353, DOI:http://dx.doi.org/10.14429/dsj.61.1114

  16. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...... or deactivated at specific stages during the cell cycle through a wide variety of mechanisms including transcriptional regulation, phosphorylation, subcellular translocation and targeted degradation. In a series of integrative analyses of different genome-scale data sets, we have studied how these different......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...

  17. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2005-01-01

    , the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed......A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller...

  18. Adaptive Feedback Linearization Control for Asynchronous Machine with Nonlinear for Natural Dynamic Complete Observer

    Science.gov (United States)

    Bentaallah, Abderrahim; Massoum, Ahmed; Benhamida, Farid; Meroufel, Abdelkader

    2012-03-01

    This paper studies the nonlinear adaptive control of an induction motor with natural dynamic complete nonlinear observer. The aim of this work is to develop a nonlinear control law and adaptive performance for an asynchronous motor with two main objectives: to improve the continuation of trajectories and the stability, robustness to parametric variations and disturbances rejection. This control law will independently control the speed and flux into the machine by restricting supply. A complete nonlinear observer for dynamic nature ensuring closed loop stability of the entire control and observer has been developed. Several simulations have also been carried out to demonstrate system performance.

  19. High Performance Control of Induction Motor for Wire Drawing Machine Based on DSP

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, H.G.; Park, S.G.; Jin, S.O. [Changwon National University (Korea, Republic of); Kwon, Y.J. [IMI Engineering Co. (Korea, Republic of)

    1997-04-01

    This paper describes a high performance fully digital implementation of 15 Kw Induction Motor servo system for WDM(Wire Drawing Machine). On the basis of vector control principle, the system is controlled by a DSP(TMS320C31) and 18254 timer. Space vector modulation is used as the inverter switching strategy. The system is capable to improve the performance on the four quadrant operation for back-pull tension control. The proposed control scheme is verified by laboratory experiment in terms of control action, dynamic response and robustness. (author). 4 refs., 8 figs.

  20. A novel excitation controller using support vector machines and approximate models

    Institute of Scientific and Technical Information of China (English)

    Xiaofang YUAN; Yaonan WANG; Shutao LI

    2008-01-01

    This paper proposes a novel excitation controller using suppon vector machines(SVM)and approximate models.The nonlinear control law is derived directly based on an input-output approximation method via Taylor expansion,which not only avoids complex control development and intensive computation,but also avoids online learning or adjust.ment.Only a general SVM modelling technique is involved in both model identification and controller implementation.The robustness of the stability is rigorously established using the Lyapunov method.Several simulations demonstrate the effectiveness of the proposed excitation controller.

  1. Designing stable finite state machine behaviors using phase plane analysis and variable structure control

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.

    1998-03-10

    This paper discusses how phase plane analysis can be used to describe the overall behavior of single and multiple autonomous robotic vehicles with finite state machine rules. The importance of this result is that one can begin to design provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure control. The ability to prove asymptotically stable group behavior is especially important for applications such as locating military targets or land mines.

  2. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  3. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  4. Commercial machine vision system for traffic monitoring and control

    Science.gov (United States)

    D Agostino, Salvatore A.

    1992-03-01

    Traffic imaging covers a range of current and potential applications. These include traffic control and analysis, license plate finding, reading and storage, violation detection and archiving, vehicle sensors, and toll collection/enforcement. Experience from commercial installations and knowledge of the system requirements have been gained over the past 10 years. Recent improvements in system component cost and performance now allow products to be applied that provide cost effective solutions to the requirements for truly intelligent vehicle/highway systems (IVHS). The United States is a country that loves to drive. The infrastructure built in the 1950s and 1960s along with the low price of gasoline created an environment where the automobiles became an accessible and intricate part of American life. The United States has spent $DLR103 billion to build 40,000 highway miles since 1956, the start of the interstate program which is nearly complete. Unfortunately, a situation has arisen where the options for dramatically improving the ability of our roadways to absorb the increasing amount of traffic is limited. This is true in other countries as well as in the United States. The number of vehicles in the world increases by over 10,000,000 each year. In the United States there are about 180 million cars, trucks, and buses and this is estimated to double in the next 30 years. Urban development, and development in general, pushes from the edge of our roadways out. This leaves little room to increase the physical amount of roadway. Americans now spend more than 1.6 billion hours a year waiting in traffic jams. It is estimated that this congestion wasted 3 billion gallons of oil or 4% of the nation's annual gas consumption. The way out of the dilemma is to increase road use efficiency as well as improve mass transportation alternatives.

  5. Mortality studies of machining fluid exposure in the automobile industry. IV: A case-control study of lung cancer.

    Science.gov (United States)

    Schroeder, J C; Tolbert, P E; Eisen, E A; Monson, R R; Hallock, M F; Smith, T J; Woskie, S R; Hammond, S K; Milton, D K

    1997-05-01

    Machining fluids are diverse products that contain numerous additives and contaminants, including polycyclic aromatic hydrocarbons. Studies treating machining fluids as an aggregate exposure have found both positive and negative associations with lung cancer. In this nested case-control study of automotive workers (667 cases and 3,041 matched controls), individual estimates of exposure quantity and duration for specific classes of machining fluids were derived. An inverse dose-response relationship was found between synthetic machining fluids and lung cancer mortality, with an odds ratio of 0.6 (95% CI = 0.4, 0.8) for the highest level of lifetime exposure. The relationship was strongest for recent exposures. There was little evidence of an association with soluble or straight oil machining fluids. Risks were inconsistently elevated in workers exposed to aluminum. Results from this study provide strong evidence that exposure to machining fluids is not associated with an increased risk of lung cancer mortality in automotive workers.

  6. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  7. Ion beam machining error control and correction for small scale optics.

    Science.gov (United States)

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  8. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A. [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y. [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  9. Passivity-based control of a Class of Blondel-Park transformable electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, Per Johan; Ortega, Romeo; Espinosa-Perez, Gerardo

    1997-07-01

    The publication relates to a study of the viability of extending, to the general rotating electric machine model, the passivity-based controller method being developed for induction motors. In this approach the passivity (energy dissipation) properties of the motor are taken advantage of at two different levels. First, there is proved that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which essentially be identified with the electrical and mechanical dynamics. Secondly, there is designed a torque-tracking controller that preserves passivity for the electrical subsystem and leaves the mechanical part as a ``passive disturbance``. The objective of this publication is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque-tracking problem. 75 refs., 7 figs., 1 tab.

  10. NUMERICAL MODELING OF MULTICYLINDER ELECTRO-HYDRAULIC SYSTEM AND CONTROLLER DESIGN FOR SHOCK TEST MACHINE

    Institute of Scientific and Technical Information of China (English)

    CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing

    2007-01-01

    A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.

  11. Implementation of Human Machine Interface Control for Filling and Capping System

    Directory of Open Access Journals (Sweden)

    Su Yadanar

    2014-12-01

    Full Text Available This research is mainly aimed to perform the bottle filling and capping process simultaneously in the pharmaceutical factory by using the PC based human machine interface system. Filling and capping is carried out by the machine that packages the medical powder into the bottle and then filled bottle is capped. So, PC based HMI system is created for operator control on the work cell. By designing the programming of Visual Basic.Net and Mikro C, the monitoring and running conditions in the packaging system are shown on the screen of the computer. The entire system is more flexible and time saving. In this project, a prototype is implemented by using the DC motors, sensing devices, limit switches, peripheral interface controller and serial port communication. This PC based HMI control system is very flexible, cost effective, space efficient and reduce complexity and is used to monitor the process.

  12. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies

    Science.gov (United States)

    Zheng, Shuai; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A

    2017-01-01

    Background Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Objective Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. Methods A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Results Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports—each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. Conclusions IDEAL-X adopts a unique online machine learning–based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. PMID:28487265

  13. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies.

    Science.gov (United States)

    Zheng, Shuai; Lu, James J; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A; Wang, Fusheng

    2017-05-09

    Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports-each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. IDEAL-X adopts a unique online machine learning-based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable.

  14. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  15. Using machine learning to blend human and robot controls for assisted wheelchair navigation.

    Science.gov (United States)

    Goil, Aditya; Derry, Matthew; Argall, Brenna D

    2013-06-01

    This work presents an algorithm for collaborative control of an assistive semi-autonomous wheelchair. Our approach is based on a statistical machine learning technique to learn task variability from demonstration examples. The algorithm has been developed in the context of shared-control powered wheelchairs that provide assistance to individuals with impairments that affect their control in challenging driving scenarios, like doorway navigation. We validate our algorithm within a simulation environment, and find that with relatively few demonstrations, our approach allows for safe traversal of the doorway while maintaining a high level of user control.

  16. Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay

    Energy Technology Data Exchange (ETDEWEB)

    Ge Zhengming [Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)]. E-mail: zmg@cc.nctu.edu.tw; Lee, Ching-I [Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2005-03-01

    Chaos, control, anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor and spring for which time-delay effect is considered are studied in the paper. By applying numerical results, phase diagram and power spectrum are presented to observe periodic and chaotic motions. Linear feedback control and adaptive control algorithm are used to control chaos effectively. Linear and nonlinear feedback synchronization and phase synchronization for the coupled systems are presented. Finally, anticontrol of chaos for this system is also studied.

  17. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    Science.gov (United States)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  18. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    Science.gov (United States)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  19. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications.

    Science.gov (United States)

    Babitsky, V I; Astashev, V K; Kalashnikov, A N

    2004-04-01

    Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The

  20. Adaptive control of machining process based on extended entropy square error and wavelet neural network

    Institute of Scientific and Technical Information of China (English)

    LAI Xing-yu; YE Bang-yan; LI Wei-guang; YAN Chun-yan

    2007-01-01

    Combining information entropy and wavelet analysis with neural network, an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error (EESE) and wavelet neural network (WNN). Extended entropy square error function is defined and its availability is proved theoretically. Replacing the mean square error criterion of BP algorithm with the EESE criterion, the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter, translating parameter of the wavelet and neural network weights. Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network. The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions, thus improving the machining efficiency and protecting the tool.

  1. Kinematic Modelling and Control Simulation for 1PS+3TPS Type Hybrid Machine Tool

    Institute of Scientific and Technical Information of China (English)

    FAN Shouwen; WANG Xiaobing; HUANG Hongzhong

    2006-01-01

    A structure scheme for a novel hybrid machine tool (HMT) is proposed in this paper. In the scheme, a 4-DOFs 1PS+3TPS type spatial hybrid mechanism is utilized as main feed mechanism, with assistance of a two direction movable worktable, multi-coordinates NC machining can be realized. In the main feed mechanism, fixed platform is connected with moving platform by three TPS driving links and one PS driving link, one translation DOF and three rotation DOFs can be achieved by it. This type HMT enjoys some advantages over its conventional counterparts:large workspace,good dexterity,etc. Closed form inverse displacement analysis model and inverse kinematic model for main feed mechanism are established. A fuzzy PID control scheme for machining control of HMTs with high tracking precision is proposed aiming at highly nonlinear, tightly coupled and uncertain characteristic of HMTs. Simulation researches for fuzzy PID control of HMTs are carried out. Simulation Results demonstrate the effectiveness and the Robostness of the fuzzy PID controller.

  2. Research on control method for machining non-cylinder pin hole of piston

    Institute of Scientific and Technical Information of China (English)

    WU Yi-jie; LENG Hong-bin; ZHAO Zhang-rong; CHEN Jun-hua

    2006-01-01

    The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model is established to characterize the relation between control current of coil and deformation of tool rod. A series of tests on deformation of giant magnetostrictive tool bar were done and the results validated the feasibility of the principle. The methods of measuring magnetostrictive coefficient of rare earth GMM were analyzed. The measuring device with the bias field and prestress was designed. A series of experiments were done to test magnetostrictive coefficient. Experimental results supplied accurate characteristic parameter for designing application device of GMM. The constitution of the developed control system made up of displacement detection and temperature detection for thermal deformation compensation was also introduced. The developed machine tool for boring the non-cylinder pin hole of piston has the micron order accuracy. This control method can be applied to other areas for machining precision or complex parts.

  3. Construction of a linker library with widely controllable flexibility for fusion protein design.

    Science.gov (United States)

    Li, Gang; Huang, Ziliang; Zhang, Chong; Dong, Bo-Jun; Guo, Ruo-Hai; Yue, Hong-Wei; Yan, Li-Tang; Xing, Xin-Hui

    2016-01-01

    Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions.

  4. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    2017-03-14

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  5. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    Science.gov (United States)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  6. Infrared thermography for process control and predictive maintenance purposes in a steel wire drawing machine

    Science.gov (United States)

    Rozlosnik, Andres E.; Lardone, Victor M.

    1999-03-01

    The industrial drawing process reduces the section of the wire rod by pulling the material through a hard die. This process generates heat by deformation and friction. The heat generated must be immediately removed after every reduction diameter step, otherwise the final quality of wire and the drawing performance will be poor. That is the reason why the improvement of the cooling efficiency in the drawing machine is of great importance. The better the cooling efficiency, the greater the wire quality and the productivity of the process will be. Nowadays, the infrared thermography control offer the possibility to analyze how the drawing aspect is affecting the cooling efficiency and how this technique allows the drawing process improvements. As you look at the capstans in the wire process control, you are doing at the same time, predictive maintenance in the machine.

  7. Novel Sensorless Vector Control System of Induction Machine Based on Flux Observer in Field Weakening

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A speed-sensorless vector control system for induction machines (IMs) is presented. According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator. A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification. The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region (1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.

  8. Neural Processing of Auditory Signals and Modular Neural Control for Sound Tropism of Walking Machines

    Directory of Open Access Journals (Sweden)

    Hubert Roth

    2008-11-01

    Full Text Available The specialized hairs and slit sensillae of spiders (Cupiennius salei can sense the airflow and auditory signals in a low-frequency range. They provide the sensor information for reactive behavior, like e.g. capturing a prey. In analogy, in this paper a setup is described where two microphones and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right. The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it.

  9. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  10. Improvement of Quality of a Modern Commercial Silk Mill through effective Process and Machine Control Parameters

    Directory of Open Access Journals (Sweden)

    Dr. Swapan Kumar Ghosh

    2016-08-01

    Full Text Available This paper deals with international and national scenario of commercial production and market share of silk fabrics with particular reference to process along with machine control parameters followed by adoption of good practices in the preparatory stages during production of the silk fabric in a commercial Silk Mill. An observatory report has been presented here for starting from yarn to the fabric stage, which indicates the major technical reasons for deterioration in the quality of the silk products affecting the cost factor and environment to some extent. This paper delineates an effective monitoring and controlling process variables along with machine parameters at every step of production of silk fabric from its filament yarn stage, particularly during the modern high speed silk twisting process, enhancing the quality of the finished product on one hand and minimizing wastage along with the cost of production and adverse environmental impact on the other

  11. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    The specialized hairs and slit sensillae of spiders (Cupiennius salei) can sense the airflow and auditory signals in a low-frequency range. They provide the sensor information for reactive behavior, like e.g. capturing a prey. In analogy, in this paper a setup is described where two microphones...... and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  12. Modeling and Control of Hybrid Machine Systems——a Five-bar Mechanism Case

    Institute of Scientific and Technical Information of China (English)

    Hongnian Yu

    2006-01-01

    A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model,two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.

  13. Iterative Learning Control with Desired Gravity Compensation under Saturation for a Robotic Machining Manipulator

    Directory of Open Access Journals (Sweden)

    Horacio Ernesto

    2015-01-01

    Full Text Available This paper proposes the design of a hybrid iterative learning controller for a four-degree-of-freedom (DOF robotic machining manipulator (RMM. It combines a nonlinear saturated (sat proportional + integral + derivative (PID control with desired gravity compensation (dgc and proportional + derivative- (PD- based iterative learning control (ILC. The sat(PID control is the primary component that maintains the local stability of the entire RMM system and the PDILC component provides robustness to parameter variations and uncertainties in the robot dynamics. Global asymptotic stability of the proposed control algorithm is conducted using Lyapunov direct method and LaSalles invariance principle. Simulation results show the effectiveness and robustness of the proposed hybrid iterative learning controller. It is also shown that the proposed controller achieved better tracking performances compared to conventional sat(PDdgc feedback controller.

  14. Data fusion: a new concept in non-destructive testing; Fusion de donnees: un nouveau concept en controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, B.; Lavayssiere, B.

    1995-12-31

    Non-destructive testing of some components (made of austenitic steel, or of a complex shape for example) requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. Then, a skilled operator is able to perform the expertise of the specimen. The main goal of this paper is to show that 3D diagnosis may be improved in term of reliability and precision by fusion of several NDT techniques. A data fusion algorithm is more that trying to improve the visualisation or the rendering of NDT data sets. It consists for each volume element, in computing a new value representing the combined information and in formulating a diagnosis on this basis. To achieve such a goal, know-how in modeling of physical phenomena and in applied mathematics is crucial. (authors). 4 refs., 2 figs.

  15. SEMI-DEFINITE RELAXATION ALGORITHM FOR SINGLE MACHINE SCHEDULING WITH CONTROLLABLE PROCESSING TIMES

    Institute of Scientific and Technical Information of China (English)

    CHEN FENG; ZHANG LIANSHENG

    2005-01-01

    The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.

  16. Theoretical analysis of control properties for the brushless doubly fed reluctance machine

    OpenAIRE

    Betz, Robert; Jovanovic, Milutin

    2002-01-01

    Presents the fundamental theory, modelling aspects and operating/control principles of the BDFRM. This emerging machine technology is being regarded by academic and industrial communities as a prospective brushless candidate for wind turbine generators (especially off-shore installations) and large pump drives where it can offer reliable, maintenance-free, operation and competitive performance at low cost due to the use of a smaller inverter. The results in the paper are the outcomes of a joi...

  17. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  18. Non-certainty Equivalent Adaptive Exciting Control of Multi-machine Power Systems

    OpenAIRE

    2013-01-01

    Transient stability problem for multi-machine infinite bus system with the generator excitation was addressed via the non-certainty equivalent nonlinear re-parameterization method. The system need not to be linearized. The damping coefficient uncertainty was considered. A non-certainty equivalent excitation controller and a novel parameter updating law were obtained simultaneously via adaptive backstepping and Lyapunov methods to achieve stability of the error systems. Simulation results show...

  19. Promoting the purchase of low-calorie foods from school vending machines: A cluster-randomized controlled study

    NARCIS (Netherlands)

    Kocken, P.L.; Eeuwijk, J.; Kesten, N.M.C. van; Dusseldorp, E.; Buijs, G.; Bassa-Dafesh, Z.; Snel, J.

    2012-01-01

    BACKGROUND: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. METHODS: A school-based randomized controlled trial was conducted in 13 experimental

  20. Provision of Controlled Motion Accuracy of Industrial Robots and Multiaxis Machines by the Method of Integrated Deviations Correction

    Science.gov (United States)

    Krakhmalev, O. N.; Petreshin, D. I.; Fedonin, O. N.

    2016-04-01

    There is a developed method of correction of the integrated motion deviations of industrial robots and multiaxis machines, which are caused by the primary geometrical deviations of their segments. This method can be used to develop a control system providing the motion correction for industrial robots and multiaxis machines.

  1. Development of an FPGA-Based Motion Control IC for Caving Machine

    Directory of Open Access Journals (Sweden)

    Chiu-Keng Lai

    2014-03-01

    Full Text Available Since the Field Programmable Gate Arrays (FPGAs with high density are available nowadays, systems with complex functions can thus be realized by FPGA in a single chip while they are traditionally implemented by several individual chips. In this research, the control of stepping motor drives as well as motion controller is integrated and implemented on Altera Cyclone III FPGA; the resulting system is evaluated by applying it to a 3-axis caving machine which is driven by stepping motors. Finally, the experimental results of current regulation and motion control integrated in FPGA IC are shown to prove the validness.

  2. Multi-Machine Controller Design of Permanent Magnet Wind Generators using Hamiltonian Energy Method

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2013-07-01

    Full Text Available In this paper, the nonlinear control problem of permanent magnet wind generators is investigated based on Hamiltonian energy method. A nonlinear design method is proposed for the multi-machine system, such that the closed-loop system is stable simultaneously. Moreover, in the presence of disturbances, the closed-loop is finite–gain L2 stable under the action of the Hamiltonian controller. In order to illustrate the effectiveness of the proposed method, the simulations are performed which show that the gotten controller can improve the transient property and robustness of the system.  

  3. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot ¿Thor¿, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP...

  4. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  5. Error compensation on precision machine tool servo control system based on digital concave filter

    Institute of Scientific and Technical Information of China (English)

    王立松; 苏宝库; 张晶; 董申

    2001-01-01

    It is concluded from the results of testing the frequency characteristics of the sub-micron precision machine tool servo control system, that the existence of several oscillating modalities is the main factor that affects the performance of the control system. To compensate for this effect, several concave filters are utilized in the system to improve the control accuracy. The feasibility of compensating for several oscillating modalities with a single concave filter is also studied. By applying a modified Butterworth concave filter to the practical system, the maximum stable state output error remains under + 10 nm in the closed-loop positioning system.

  6. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Energy Technology Data Exchange (ETDEWEB)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  7. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Luís Costa

    2016-01-01

    Full Text Available The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s disease (AD. In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs, Multiple Layer Perceptrons (MLPs, Radial Basis Function Neural Networks (RBNs, and Deep Belief Networks (DBNs on 72 participants (36 AD patients and 36 healthy subjects exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA score, top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%, test (40%, and validation (10%. Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  8. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer's Disease

    Science.gov (United States)

    Yelshyna, Darya; Bicho, Estela

    2016-01-01

    The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090

  9. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    Directory of Open Access Journals (Sweden)

    Stephen Jackson

    2011-06-01

    Full Text Available Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control system for use in the abrasive machining of wood and wood-based products. A control system was created on LabView® to integrate the monitoring process and the actions required, depending on the abrasive machining process conditions. The system acquires information from the optical sensor to detect loading and activate the cleaning system. The system continuously monitors the condition of the abrasive belt (tool wear by using an acoustic emission sensor and alerts the operator of the status of the belt (green, yellow, and red lights indicating satisfactory, medium, and poor belt condition. The system also incorporates an additional safety device, which helps prevent permanent damage to the belt, equipment, or workpiece by alerting the operator when an excessive temperature has been reached. The process control system proved that automation permits enhancement in the consistency of the belt cleaning technique by the elimination of the human errors. Furthermore, this improvement also affects the cost by extending the life of the belt, which reduces setup time, belt cost, operation cost, as well as others.

  10. DESIGNING A FINITE STATE MACHINE SIMULATOR TO DETECT LOOPS FOR ALICE DETECTOR CONTROL SYSTEM

    CERN Document Server

    Yogatama, Bobbi Winema

    2017-01-01

    This paper present the design and implementation of a Finite State Machine simulator to provoke loops in ALICE Detector Control System (DCS). Loops in a Finite State Machine can be very harmful for the control system and need to be prevented. One way to prevent loops is to simulate the designed Finite State Machine using a simulator that can detect all of the possible conditions that can provoke loops. Further correction can then be made after the loops are detected in the control system. The proposed simulator is able to get the structure of any unknown FSM, get every datapoint elements that are associated with the FSM, and find every possible datapoint combinations that can provoke loops in the FSM. At the end of the project, we tested the simulator on a sample FSM with loops and a real FSM that belongs to the ALICE PHOton Spectrometer (PHOS). The testing results indicate that the simulator is able to detect every possible condition that can cause loops in the FSM.

  11. The Designed Operation of the Machine Control System on HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Ethernet and field-bus communications are used in the machine control system (MCS) of HL-2A. The control net, with a programmable logic controller (PLC) as its logic control master, an engineering control management station as its net server, and a timing control PC connected to a number of terminals, flexibly and freely transfers information among the nodes on it with the Ethernet transmission techniques. The PLC masters the field bus, which carries small pieces of information between PLC and the field sites reliably and quickly. The control net is connected into the data net, where Internet access and sharing of more experimental data are enabled. The communication in the MCS guarantees the digitalization, automation and centralization. Also provided are a satisfactory degree of safety, reliability, stability, expandability and flexibility for maintenance.

  12. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    magnetic modeling, winding design, control, and power-electronic drive implementation. While these contributions are oriented towards facilitating more optimal flywheel designs, they will also be useful in applying the bearingless ac homopolar machine in other applications. Example designs are considered through finite element analysis and experimental validation is provided from a proof-of-concept prototype that has been designed and constructed as a part of this dissertation.

  13. Multiple DSP system for real time parallel processing and feedback control on fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A.P.; Correia, C.M.B.; Varandas, C.A.F. [Associacao EURATOM, Lisboa (Portugal). Nucl. Inst. Superior Tecnico; Schneider, F. [Association EURATOM/IPP, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany)

    1999-01-01

    This paper describes a specially designed system for real time parallel processing and feedback control on fusion experiments. The system is being implemented in PCI and VME modules, based on an array of four synchronizable DSPs, with 1 Mbyte of global RAM, 12 bits resolution, four analog inputs with sampling frequency up to 40 MSPS, two analog or waveform generator outputs with an update rate up to 100 MSPS, eight digital opto-coupled inputs/outputs and one external global trigger optical input. The user interface appears as a virtual instrument from LabView for Windows. (orig.) 7 refs.

  14. Tracking Control of a Leg Rehabilitation Machine Driven by Pneumatic Artificial Muscles Using Composite Fuzzy Theory

    Directory of Open Access Journals (Sweden)

    Ming-Kun Chang

    2014-01-01

    Full Text Available It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  15. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  16. Synthetic report 2012. Research programme on controlled thermonuclear fusion; Rapport de synthèse 2012. Programme de recherche Fusion thermonucléaire contrôlée

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secrétariat à l’éducation et à la recherche (SER), Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology EPFL, Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2013-07-01

    Since 1961, Switzerland participates in the research on thermonuclear fusion thanks to the creation of the Research Centre in Plasma Physics. In 1979 it entered into partnership with the European programme on fusion through its adhesion to EURATOM. The thermonuclear fusion is an interesting energy source because the basic fuel is practically inexhaustible and its use does not release any significant CO{sub 2} quantity and very little radioactive residues. But its working up faces enormous physical and technological difficulties. The International Thermonuclear Reactor (ITER), presently in construction, has to demonstrate the technological feasibility of the controlled fusion. Il will be followed by DEMO, foreseen for 2040-2050, which must guarantee the economical rentability. At CRPP the research projects are partitioned onto several sites: at the Swiss Federal Institute of Technology (EPFL) in Lausanne, they concern the physics of the magnetic confinement with the Variable Geometry Tokamak (TCV), the development of theoretical models and the numerical simulation, the plasma heating and the generation of hyper frequency waves; the Paul Scherrer Institute (PSI) studies the superconductivity and the materials; the interactions between the plasma and the Tokamak walls are studied at the Basel University for the structures of ITER. Thanks to its large flexibility, TCV allows the creation and the control of plasmas of very different forms. The injection system of millimetric waves allows orienting the injected power according to specific profiles. By using the asymmetry of the flow in the toroidal sense, the plasma rotation could be measured with a much better accuracy than before. In TCV, by playing on the form of the plasma, it was possible to strongly reduce the energy quantity which is expelled by the Edge Localized Modes (ELM) onto the wall of the vacuum chamber. The ‘snowflake’ configuration created in TCV allows distributing the ELM energy onto several impact

  17. An integrated multidisciplinary design optimization method for computer numerical control machine tool development

    Directory of Open Access Journals (Sweden)

    Zaifang Zhang

    2015-02-01

    Full Text Available Computer numerical control machine tool is a typical complex product related with multidisciplinary fields, complex structure, and high-performance requirements. It is difficult to identify the overall optimal solution of the machine tool structure for their multiple objectives. A new integrated multidisciplinary design optimization method is then proposed by using a Latin hypercube sampling, a Kriging approximate model, and a multi-objective genetic algorithm. Design space and parametric model are built by choosing appropriate design variables and their value ranges. Samples in design space are generated by optimal Latin hypercube method, and design variable contributions for design performance are discussed for aiding the designer’s judgments. The Kriging model is built by using polynomial approximation according to the response outputs of these samples. The multidisciplinary design model is established based on three optimization objectives, that is, setting mass, optimum deformation, and first-order natural frequency, and two constraints, that is, second-order natural frequency and third-order natural frequency. The optimal solution is identified by using a multi-objective genetic algorithm. The proposed method is applied in a multidisciplinary optimization case study for a typical computer numerical control machine tool. In the optimal solution, the mass decreases by 3.35% and the first-order natural frequency increases by 4.34% in contrast to the original solution.

  18. 3D printing device for numerical control machine and wood deposition

    Directory of Open Access Journals (Sweden)

    Julien Gardan

    2014-12-01

    Full Text Available The paper presents the development of a new sustainable approach in additive manufacturing adapted on a Numerical Control (NC machining. Wood has several advantages that are transferable to various derivatives allowing the introduction of sustainable material into the product lifecycle. The application involves the integration of wood pulp into rapid prototyping solutions. Wood is the main material studied for its ecological aspect. The primary goal was to create reconstituted wood objects through a rapid manufacturing. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. An overall review and an analysis of technologies show that the additive manufacturing presents some little independent solutions [9] [12]. The problem studied especially the additive manufacturing limits to produce an ecological product with materials from biomass. The study developed a 3d printing head as solution for shaping wood pulp or powder materials. Some technological problematic require enslavement to the NC controller, the programming building of model, and the realization of wood pulp. This work also presents a wood pulping process characterized by adding wood flour and starch. A machine implementation and some application examples used for its development are presented.

  19. Electronic Components and Systems for the Control of the LHC Machine

    CERN Document Server

    Rausch, R

    2000-01-01

    The present estimation of the LHC underground control electronics gives a total of 10.400 crates of which some 4.400 will be connected to the machine control network. Electronic equipment will be housed under the cryostats, along the tunnel, in the alcoves and in the galleries parallel to the machine tunnel. In the regular arcs and in the dispersion suppressers areas the radiation level is expected to be relatively low. But, despite this low radiation level, radiation tests results obtained in previous years demonstrate that all electronic equipment needs to be qualified in a test facility providing an LHC like radiation environment. The radiation qualification of all tunnel electronics is essential in order to guaranty a reliable operation over the lifetime of the machine. The object of this paper is to give a review of the various electronic systems as they are planned today and to provide simulation results concerning the radiation environment of the CERN on-line test facility used for qualification of ele...

  20. Imperfect preventive maintenance for numerical control machine tools with log-linear virtual age process

    Institute of Scientific and Technical Information of China (English)

    郭俊锋; 芮执元; 冯瑞成; 魏兴春

    2014-01-01

    Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control (NC) machine tools with random maintenance quality is proposed. The proposed model is a combination of the Kijima type virtual age model and the failure intensity adjustment model. Maintenance intervals of the proposed hybrid model are derived when the failure intensity increase factor and the restoration factor are both random variables with uniform distribution. The optimal maintenance policy in infinite time horizon is presented. A numerical example is given when the failures of NC machine tools are described by the log-linear process. Finally, a discussion is presented to show how the optimal results depend on the different cost parameters.

  1. Innovative Control of Noise and Vibration of Industrial Equipments and Machines

    Directory of Open Access Journals (Sweden)

    Owhor, Sampson Chisa,

    2015-05-01

    Full Text Available Noise and Vibration of industrial equipment is the grave factor influencing its production state, working conditions of staff and job safety. In course of technology development the more potent machines are used, it is quite often accompanied by an increase of vibration and noise level. This is experienced by equipment as it is transmitted to building structures, environment and through staffs. The system of equation advocated in this research work has been permitted to evaluate reduction of machine vibrations caused by unbalance movement of its members, thereby transmitting it onto the floor and the environment. A noise problem generally consists of three inter-related elements- the source, the receiver and the transmission path. This transmission path is usually the atmosphere through which the sound is propagated, but can include structural materials of any building containing the receiver. The development of innovative noise control treatments provides opportunities for applying basic physics and engineering procedures.

  2. Theory and realization of supervision and control system for tunneling machine

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Song, D.; Chen, N. [Zhejiang University, Hangzhou (China). State Key Laboratory of Fluid Power Transmission and Control

    2004-07-01

    A visualized supervision and control system for a shield tunnel boring machine was developed, following a request of the upper workstation. The hardware design and software structure are described. Specially, logical judgment of working state and static and dynamic prediction model of earth surface level variation were given and analyzed. The solutions to avoid land surface sedimentation accruing are presented: ensuring the working state of the programs precisely at any time according to running state of the tunneling machine using logical judgement formula; forecasting the quantities of the surface sedimentation comparatively exactly by evaluating on line and visualized supervision means. It is testified that the system can supervise multi-subjects can forecast exactly and can realize visualized evaluation and prediction on-line. 8 refs., 9 figs.

  3. An Artificial Neural Network Modeling for Force Control System of a Robotic Pruning Machine

    Directory of Open Access Journals (Sweden)

    Ali Hashemi

    2014-06-01

    Full Text Available Nowadays, there has been an increasing application of pruning robots for planted forests due to the growing concern on the efficiency and safety issues. Power consumption and working time of agricultural machines have become important issues due to the high value of energy in modern world. In this study, different multi-layer back-propagation networks were utilized for mapping the complex and highly interactive of pruning process parameters and to predict power consumption and cutting time of a force control equipped robotic pruning machine by knowing input parameters such as: rotation speed, stalk diameter, and sensitivity coefficient. Results showed significant effects of all input parameters on output parameters except rotational speed on cutting time. Therefore, for reducing the wear of cutting system, a less rotational speed in every sensitivity coefficient should be selected.

  4. Motor imaginary-based brain-machine interface design using programmable logic controllers for the disabled.

    Science.gov (United States)

    Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong

    2010-10-01

    Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.

  5. Digital motion control for Ontario Power Generation's universal delivery machine

    Energy Technology Data Exchange (ETDEWEB)

    Murray, D.W. [GE Canada Nuclear Products, Peterborough, Ontario (Canada)]. E-mail: David.Murray@cdnnuc.ge.com; Roberts, A. [Ontario Power Generation, Inc., Inspection Services Div., Tiverton, Ontario (Canada)]. E-mail: anthony.roberts@ontariopowergeneration.com

    2003-07-01

    The Universal Delivery Machine (UDM) has thirteen axes of motion with a variety of precision positioning requirements designed to deliver reactor channel maintenance tooling into the CANDU fuel channels. These axes of motion provide the UDM with the capability to home and lock to the fuel channels, remove and replace the closure and shield plugs, advance, retract and rotate rams for fuel removal and for the deployment of the inspection and maintenance tooling. This paper describes the digital motion control system used on UDM. It will review the benefits of a digital motion control system while looking at the drive components used on the UDM. (author)

  6. Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Tresna Dewi

    2014-01-01

    Full Text Available A current trend in robotics is fusing different types of sensors having different characteristics to improve the performance of a robot system and also benefit from the reduced cost of sensors. One type of robot that requires sensor fusion for its application is the service robot. To achieve better performance, several service robots are preferred to work together, and, hence, this paper concentrates on swarm service robots. Swarm service mobile robots operating within a fixed area need to cope with dynamic changes in the environment, and they must also be capable of avoiding dynamic and static obstacles. This study applies sensor fusion and swarm concept for service mobile robots in human services and rehabilitation environment. The swarm robots follow the human moving trajectory to provide support to human moving and perform several tasks required in their living environment. This study applies a reference control and proportional-integral (PI control for the obstacle avoidance function. Various computer simulations are performed to verify the effectiveness of the proposed method.

  7. The development of a two-component force dynamometer and tool control system for dynamic machine tool research

    Science.gov (United States)

    Sutherland, I. A.

    1973-01-01

    The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.

  8. Gas Transport and Control in Thick-Liquid Inertial Fusion PowerPlants

    Energy Technology Data Exchange (ETDEWEB)

    Debonnel, Christophe Sylvain [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Among the numerous potential routes to a commercial fusion power plant, the inertial path with thick-liquid protection is explored in this doctoral dissertation. Gas dynamics phenomena in such fusion target chambers have been investigated since the early 1990s with the help of a series of simulation codes known as TSUNAMI. For this doctoral work, the code was redesigned and rewritten entirely to enable the use of modern programming techniques, languages and software; improve its user-friendliness; and refine its ability to model thick-liquid protected chambers. The new ablation and gas dynamics code is named “Visual Tsunami” to emphasize its graphics-based pre- and post-processors. It is aimed at providing a versatile and user-friendly design tool for complex systems for which transient gas dynamics phenomena play a key role. Simultaneously, some of these improvements were implemented in a previous version of the code; the resulting code constitutes the version 2.8 of the TSUNAMI series. Visual Tsunami was used to design and model the novel Condensation Debris Experiment (CDE), which presents many aspects of a typical Inertial Fusion Energy (IFE) system and has therefore been used to exercise the code. Numerical and experimental results are in good agreement. In a heavy-ion IFE target chamber, proper beam and target propagation set stringent requirements for the control of ablation debris transport in the target chamber and beam tubes. When the neutralized ballistic transport mode is employed, the background gas density should be adequately low and the beam tube metallic surfaces upstream of the neutralizing region should be free of contaminants. TSUNAMI 2.8 was used for the first simulation of gas transport through the complex geometry of the liquid blanket of a hybrid target chamber and beam lines. Concurrently, the feasibility of controlling the gas density was addressed with a novel beam tube design, which introduces magnetic shutters and a long low

  9. PC-based Human Machine Interface Control for Packaging System in Pharmaceutical Factory

    Directory of Open Access Journals (Sweden)

    Zin Mar Tun

    2014-12-01

    Full Text Available Moving from trend to tradition, more and more manufacturers are adding human machine interface (HMI to their manufacturing process. A good HMI will increase the productivity of the operator and machine, increase uptime and assist in providing consistent product quality. In this system, HMI is developed to monitor the whole process and control the functions of process. The system is designed and constructed to control and monitor drug bottle packaging operation in the pharmaceutical factory. PC is interfaced with hardware module using serial interfacing circuit. The monitoring and running conditions are shown by motors and sensors on the screen of computer using a group of program as Visual Basic.Net and Mikro C. The robotic arm used as packager is constructed using aluminum and the gripper is made by plastic. The control circuit is consisted of PIC, DC motors, motor drivers, LDR and limit switches. It is also used own programs using VB.NET instead of off-the-shelf software. . The software is designed of the real time monitoring for packaging process and included signal sensing, supervisory control using PIC, data acquisition and visualization programs. This research is studied to develop automation manufacturing technology in Myanmar industries and implement the software package to control the operations.

  10. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    Science.gov (United States)

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.

  11. Brain-Machine Interfacing Control of Whole-Body Humanoid Motion

    Directory of Open Access Journals (Sweden)

    Karim eBouyarmane

    2014-08-01

    Full Text Available We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI, motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  12. Analysis and Design of PLC-based Control System for Automatic Beverage Filling Machine

    Directory of Open Access Journals (Sweden)

    Yundan Lu

    2015-01-01

    Full Text Available Automatic filling system is the main equipment in the food machinery industry. With the development of beverage industry and increasing demand of the filling system. The relay control method in traditional Filling machine has low automation and integration level and cannot satisfy the rapid development of automatic production. PLC control method has advantages of simple programming, strong anti-interference and high working reliability, has gradually replace the relay control method. In this study, hardware and software for the automatic filling system based on PLC control is designed, especially the injection section servo control system which adopts the servo motor driver metering pump is carefully analyzed and the filling precision is highly improved.

  13. Control of a laser inertial confinement fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  14. Heat regulating strategy in numerical control end milling for hard metal machining

    Institute of Scientific and Technical Information of China (English)

    Ying Tang; Yoshiaki Kakino

    2005-01-01

    The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron discharge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and corner rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion.

  15. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2016-06-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed (N), feed rate (f) and depth of cut (d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3-5-1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  16. 开放式智能控制器的设计与加工实现%Design and machining for open intelligent controller

    Institute of Scientific and Technical Information of China (English)

    李茂月; 富宏亚; 韩振宇

    2011-01-01

    针对传统数控系统的封闭式结构及无法实现自主实时获得最佳切削参数的问题,设计并开发了一个模块化的、能实现基于约束控制的、加工参数可在线调整的自适应开放式智能控制器.构建了该控制器中自适应控制技术的实现体系,通过建立自适应约束控制与插补控制之间的有限状态机任务模型,解决了两者之间指令的有效融合及同步问题.基于切削力为约束的模糊自适应控制器进行的实际切削试验表明了所建集成式智能自适应控制体系的可行性和有效性.%Aiming at the problems of traditional closed structure of Computer Numberical Control (CNC) and the real-time optimal cutting parameters couldn't be obtained automatically, a self-adaptive open intelligent controller was designed and developed, which was modularity and could realize online adjustment based on constrained goals and machining parameters. Architecture of the open intelligent controller was established. Through setting up finite state machine model between adaptive constrained control and interpolation control, problems of effective fusion and synchronization between them were solved. Practical milling experiments of fuzzy adaptive controller based on cutting force as the constrained verified the integrate intelligent adaptive control system's feasibility and validity.

  17. Human Factors and Data Fusion as Part of Control Systems Resilience

    Energy Technology Data Exchange (ETDEWEB)

    David I. Gertman

    2009-05-01

    Human performance and human decision making is counted upon as a crucial aspect of overall system resilience. Advanced control systems have the potential to provide operators and asset owners a wide range of data, deployed at different levels that can be used to support operator situation awareness. However, the sheer amount of data available can make it challenging for operators to assimilate information and respond appropriately. This paper reviews some of the challenges and issues associated with providing operators with actionable state awareness and argues for the over arching importance of integrating human factors as part of intelligent control systems design and implementation. It is argued that system resilience is improved by implementing human factors in operations and maintenance. This paper also introduces issues associated with resilience and data fusion and highlights areas in which human factors including field studies hold promise.

  18. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  19. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm

    Directory of Open Access Journals (Sweden)

    Soria Carlos M

    2009-02-01

    Full Text Available Abstract Background Myoelectric control of a robotic manipulator may be disturbed by failures due to disconnected electrodes, interface impedance changes caused by movements, problems in the recording channel and other various noise sources. To correct these problems, this paper presents two fusing techniques, Variance Weighted Average (VWA and Decentralized Kalman Filter (DKF, both based on the myoelectric signal variance as selecting criterion. Methods Tested in five volunteers, a redundant arrangement was obtained with two pairs of electrodes for each recording channel. The myoelectric signals were electronically amplified, filtered and digitalized, while the processing, fusion algorithms and control were implemented in a personal computer under MATLAB® environment and in a Digital Signal Processor (DSP. The experiments used an industrial robotic manipulator BOSCH SR-800, type SCARA, with four degrees of freedom; however, only the first joint was used to move the end effector to a desired position, the latter obtained as proportional to the EMG amplitude. Results Several trials, including disconnecting and reconnecting one electrode and disturbing the signal with synthetic noise, were performed to test the fusion techniques. The results given by VWA and DKF were transformed into joint coordinates and used as command signals to the robotic arm. Even though the resultant signal was not exact, the failure was ignored and the joint reference signal never exceeded the workspace limits. Conclusion The fault robustness and safety characteristics of a myoelectric controlled manipulator system were substantially improved. The proposed scheme prevents potential risks for the operator, the equipment and the environment. Both algorithms showed efficient behavior. This outline could be applied to myoelectric control of prosthesis, or assistive manipulators to better assure the system functionality when electrode faults or noisy environment are present.

  20. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm.

    Science.gov (United States)

    López, Natalia M; di Sciascio, Fernando; Soria, Carlos M; Valentinuzzi, Max E

    2009-02-25

    Myoelectric control of a robotic manipulator may be disturbed by failures due to disconnected electrodes, interface impedance changes caused by movements, problems in the recording channel and other various noise sources. To correct these problems, this paper presents two fusing techniques, Variance Weighted Average (VWA) and Decentralized Kalman Filter (DKF), both based on the myoelectric signal variance as selecting criterion. Tested in five volunteers, a redundant arrangement was obtained with two pairs of electrodes for each recording channel. The myoelectric signals were electronically amplified, filtered and digitalized, while the processing, fusion algorithms and control were implemented in a personal computer under MATLAB environment and in a Digital Signal Processor (DSP). The experiments used an industrial robotic manipulator BOSCH SR-800, type SCARA, with four degrees of freedom; however, only the first joint was used to move the end effector to a desired position, the latter obtained as proportional to the EMG amplitude. Several trials, including disconnecting and reconnecting one electrode and disturbing the signal with synthetic noise, were performed to test the fusion techniques. The results given by VWA and DKF were transformed into joint coordinates and used as command signals to the robotic arm. Even though the resultant signal was not exact, the failure was ignored and the joint reference signal never exceeded the workspace limits. The fault robustness and safety characteristics of a myoelectric controlled manipulator system were substantially improved. The proposed scheme prevents potential risks for the operator, the equipment and the environment. Both algorithms showed efficient behavior. This outline could be applied to myoelectric control of prosthesis, or assistive manipulators to better assure the system functionality when electrode faults or noisy environment are present.

  1. Fuzzy-PI Torque and Flux Controllers for DTC with Multilevel Inverter of Induction Machines

    Directory of Open Access Journals (Sweden)

    Norjulia Mohamad Nordin

    2014-10-01

    Full Text Available In this paper the performance of flux and torque controller for a Direct Torque Control of Cascaded H-bridge Multilevel Inverter (DTC-CMLI fed induction machines are investigated. A Fuzzy-PI with fixed switching frequency is proposed for both torque and flux controller to enhance the DTC-CMLI performance.  The operational concepts of the Fuzzy-PI with the fixed switching frequency controller of a DTC-MLI system followed by the simulation results and analysis are presented. The performance of the proposed system is verified via MATLAB/Simulink©. The proposed system significantly improves the DTC drive in terms of dynamic performance, smaller torque and flux ripple, and lower total harmonic distortion (THD.

  2. Multi-Machine Stability of a Wind Farm Embedded Power System using FACTS Controllers

    Directory of Open Access Journals (Sweden)

    S.N. Deepa

    2013-10-01

    Full Text Available Wind Energy is one of the cheapest available renewable sources of energy. Now-a-days the demand for electricity increases drastically. A number of wind farms are already in operation and more are planned or under construction due to the increasing demand of the bulk amount of the electricity. It is must to identify the interactions between the Wind Turbines and the Power System. Here the Power System consists of many generating stations which forms the Multi-Machine System. The objective of this paper is to improve the Power Quality in a Wind Farm embedded Multi-Machine Power System and to maintain stability in the system by using FACTS controllers. Generally when a fault occurs in Wind Farm embedded Multi-Machine Power System the wind farm induction generator is isolated from the power system. After removal of the fault from the power system the wind farm induction generator is connected back to the power system. The wind farm induction generator absorbs more reactive power from the grid while re-connecting back to the power system. As a result, there will be more demand for reactive power in the system. This in turn will lead to voltage dip and other undesirable effects. In this paper FACTS controllers are used to supply reactive power to the wind farm embedded power system during fault and while re-connecting the wind farm induction generator back to the power system. These FACTS controllers supply reactive power during the re-connection of the wind farm induction generator to the power system, thereby improving the voltage profile which in turn leads to the power system stability.

  3. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  4. Machine takeover the growing threat to human freedom in a computer-controlled society

    CERN Document Server

    George, Frank Honywill

    1977-01-01

    Machine Takeover: The Growing Threat to Human Freedom in a Computer-Controlled Society discusses the implications of technological advancement. The title identifies the changes in society that no one is aware of, along with what this changes entails. The text first covers the information science, particularly the aspect of an automated system for information processing. Next, the selection deals with social implications of information science, such as information pollution. The text also tackles the concerns in the utilization of technology in order to manipulate the lives of people without th

  5. Cold nuclear fusion

    National Research Council Canada - National Science Library

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    ...... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion...

  6. Control of a 2 DoF robot using a brain-machine interface.

    Science.gov (United States)

    Hortal, Enrique; Ubeda, Andrés; Iáñez, Eduardo; Azorín, José M

    2014-09-01

    In this paper, a non-invasive spontaneous Brain-Machine Interface (BMI) is used to control the movement of a planar robot. To that end, two mental tasks are used to manage the visual interface that controls the robot. The robot used is a PupArm, a force-controlled planar robot designed by the nBio research group at the Miguel Hernández University of Elche (Spain). Two control strategies are compared: hierarchical and directional control. The experimental test (performed by four users) consists of reaching four targets. The errors and time used during the performance of the tests are compared in both control strategies (hierarchical and directional control). The advantages and disadvantages of each method are shown after the analysis of the results. The hierarchical control allows an accurate approaching to the goals but it is slower than using the directional control which, on the contrary, is less precise. The results show both strategies are useful to control this planar robot. In the future, by adding an extra device like a gripper, this BMI could be used in assistive applications such as grasping daily objects in a realistic environment. In order to compare the behavior of the system taking into account the opinion of the users, a NASA Tasks Load Index (TLX) questionnaire is filled out after two sessions are completed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Control of soft machines using actuators operated by a Braille display.

    Science.gov (United States)

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  8. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  9. ON THE APPLICATION OF PARTIAL BARRIERS FOR SPINNING MACHINE NOISE CONTROL: A THEORETICAL AND EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam, A. Nezafat

    2007-04-01

    Full Text Available Noise is one of the most serious challenges in modern community. In some specific industries, according to the nature of process, this challenge is more threatening. This paper describes a means of noise control for spinning machine based on experimental measurements. Also advantages and disadvantages of the control procedure are added. Different factors which may affect the performance of the barrier in this situation are also mentioned. To provide a good estimation of the control measure, a theoretical formula is also described and it is compared with the field data. Good agreement between the results of filed measurements and theoretical presented model was achieved. No obvious noise reduction was seen by partial indoor barriers in low absorbent enclosed spaces, since the reflection from multiple hard surfaces is the main dominated factor in the tested environment. At the end, the situation of the environment and standards, which are necessary in attaining the ideal results, are explained.

  10. Statistical quality control for volumetric modulated arc therapy (VMAT) delivery by using the machine's log data

    Science.gov (United States)

    Cheong, Kwang-Ho; Lee, Me-Yeon; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Kim, Haeyoung; Kim, Kyoung Ju; Han, Tae Jin; Bae, Hoonsik

    2015-07-01

    The aim of this study is to set up statistical quality control for monitoring the volumetric modulated arc therapy (VMAT) delivery error by using the machine's log data. Eclipse and a Clinac iX linac with the RapidArc system (Varian Medical Systems, Palo Alto, USA) are used for delivery of the VMAT plan. During the delivery of the RapidArc fields, the machine determines the delivered monitor units (MUs) and the gantry angle's position accuracy and the standard deviations of the MU ( σMU: dosimetric error) and the gantry angle ( σGA: geometric error) are displayed on the console monitor after completion of the RapidArc delivery. In the present study, first, the log data were analyzed to confirm its validity and usability; then, statistical process control (SPC) was applied to monitor the σMU and the σGA in a timely manner for all RapidArc fields: a total of 195 arc fields for 99 patients. The MU and the GA were determined twice for all fields, that is, first during the patient-specific plan QA and then again during the first treatment. The sMU and the σGA time series were quite stable irrespective of the treatment site; however, the sGA strongly depended on the gantry's rotation speed. The σGA of the RapidArc delivery for stereotactic body radiation therapy (SBRT) was smaller than that for the typical VMAT. Therefore, SPC was applied for SBRT cases and general cases respectively. Moreover, the accuracy of the potential meter of the gantry rotation is important because the σGA can change dramatically due to its condition. By applying SPC to the σMU and σGA, we could monitor the delivery error efficiently. However, the upper and the lower limits of SPC need to be determined carefully with full knowledge of the machine and log data.

  11. Intelligent Control of UPFC for Enhancing Transient Stability on Multi-Machine Power Systems

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2010-01-01

    Full Text Available One of the benefit of FACTS devices is increase of stability in power systems with control active and reactive power at during the fault in power system. Although, the power system stabilizers (PSSs have been one of the most common controls used to damp out oscillations, this device may not produce enough damping especially to inter-area mode and therefore, there is an increasing interest in using FACTS devices to aid in damping of these oscillations. In This paper, UPFC is used for damping oscillations and to enhance the transient stability performance of power systems. The controller parameters are designed using an efficient version of the Takagi-Sugeno fuzzy control scheme. The function based Takagi-Sugeno-Kang (TSK fuzzy controller uses. For optimization parameters of fuzzy PI controller, the GA, PSO and HGAPSO algorithms are used. The computer simulation results, the effect of UPFC with conventional PI controller, fuzzy PI controller and intelligent controllers (GA, PSO and HGAPSO for damping the local-mode and inter-area mode of under large and small disturbances in the four-machine two-area power system evaluated and compared.

  12. Control of Two Permanent Magnet Machines Using a Five-Leg Inverter for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL; Huang, Xianghui [GE Global Research

    2006-01-01

    This paper presents digital control schemes for control of two permanent magnet (PM) machines in an integrated traction and air-conditioning compressor drive system for automotive applications. The integrated drive system employs a five-leg inverter to power a three-phase traction PM motor and a two-phase compressor PM motor by tying the common terminal of the two-phase motor to the neutral point of the three-phase motor. Compared to a three-phase or a standalone two-phase inverter, it eliminates one phase leg and shares the control electronics between the two drives, thus significantly reducing the component count of the compressor drive. To demonstrate that the speed and torque of the two PM motors can be controlled independently, a control strategy was implemented in a digital signal processor, which includes a rotor flux field orientation based control (RFOC) for the three-phase motor, a similar RFOC and a position sensorless control in the brushless dc (BLDC) mode for the two-phase motor. Control implementation issues unique to a two-phase PM motor are also discussed. Test results with the three-phase motor running in the ac synchronous (ACS) mode while the two-phase motor either in the ACS or the BLDC mode are included to verify the independent speed and torque control capability of the integrated drive.

  13. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    Science.gov (United States)

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one.

  14. Control of oscillations in vibration machines: Start up and passage through resonance

    Science.gov (United States)

    Fradkov, A.; Gorlatov, D.; Tomchina, O.; Tomchin, D.

    2016-11-01

    Control of oscillations in mechanical systems in the start-up and passage through resonance modes is studied. In both cases, the control algorithm is based on the speed-gradient method with energy-based goal functions. It is shown that for Hamiltonian 1-degree of freedom (DOF) systems, it is generically possible to move the system from any initial state to any final state by means of a controlling force of arbitrarily small intensity. Controlled passage through resonance is studied for a 5-DOF vibration machine taking friction into account. It is shown by simulation that applying feedback control makes passage through lower resonance feasible with smaller control intensity compared with passage through resonance under constant control torque. The specific feature of this paper is consideration of the case when constant control torques do not allow the rotors even to start rotation. Applying feedback control allows rotors to overcome gravity and to start rotation. Another key novelty of this paper is comparison of the results obtained from the simulation with the experimental results obtained from the two-rotor laboratory mechatronic stand. It appears that most results are qualitatively the same, which confirms the adequacy of the model.

  15. Design, Development and Control of a Hopping Machine – an Exercise in Biomechatronics

    Directory of Open Access Journals (Sweden)

    Kuldip Naik

    2010-01-01

    Full Text Available Hopping is a complicated dynamic behaviour in the animal kingdom. Development of a hopping machine that can mimic the biomechanics of jumping in Homo sapiens is envisioned. In this context, the design, development and control of a cost-effective, pneumatically actuated, one-legged hopping machine were initiated at the University ofRegina in 2005. The pneumatic actuator has a simple design that employs an off-the-shelf on/off control valve which regulates the air pressure supplied to the hopper's body using a pulse width modulated (PWM signal. The objective is to maintain a constant jumping height in the hopper after going through a finite number of hopping cycles. The mechanistic model of the system was investigated in full detail. This model facilitates: (1 the design of the actuating system, and (2 the synthesis and verification of different control strategies in a simulation environment prior to implementation in the real world. The movement of the hopper is supported by a vertical slide; therefore, the hopper can only jump in place. However, the proposed control strategy and the propulsion unit can be further utilised for stable hopping in a 3-D environment. A model-free Neuro-PD controller was then designed, trained and implemented on a real system. Simulation and experimentation showed promising results. This system can be used as an educational tool for teaching real-time control of hybrid and non-linear systems. It can be also used as a biomechatronics test bed to simulate the effect of different timings in firing action potentials in jump-causing leg muscles on achieving a desired jumping height in the animal kingdom.

  16. Burn control of an ITER-like fusion reactor using fuzzy logic

    Science.gov (United States)

    Garcia-Amador, A. Sair; Martinell, Julio J.

    2016-10-01

    The fuel burn in a fusion reactor has to be kept at a nearly constant rate in order to have a steady power exhaust. Here, we develop a control system based on a fuzzy logic controller in order that adjusts external parameters to keep the plasma temperature and density at the design values of a reactor of the characteristics of ITER. The control parameters chosen are the D-T refueling rate, the auxiliary heating power and a neutral helium beam. We use a fuzzy controller of the Mamdani type that uses a number of membership functions appropriate to produce a response to parameter deviations that minimizes the response time. The inference rules are determined in a way to provide stabilization to all perturbations of the temperature, density and alpha particle fraction. The dynamical response of the reactor is simulated with a 0D model that uses confinement times provided by the ITER scaling. We show that the system is feedback stabilized for a large range of parameters around the nominal values. The recovery time after a departure from the steady values is of the order of one second. We compare the results with another control system based on neural networks that was developed previously. Funded by projects PAPIIT IN109115 and Conacyt 152905.

  17. Data fusion control and guidance of surface-to-air missile under the complex circumstance based on neural-net technology

    Institute of Scientific and Technical Information of China (English)

    Zhou Deyun; Zhou Feng

    2008-01-01

    Under the complicated electromagnetism circumstance,the model of data fusion control and guidance of surface-to-air missile weapon systems is established.Such ways and theories as Elman-NN,radar tracking and niter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion.The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained.The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems.

  18. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  19. Statistical quality control for volumetric modulated arc therapy (VMAT) delivery using machine log data

    CERN Document Server

    Cheong, Kwang-Ho; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Kim, Haeyoung; Kim, Kyoung Ju; Han, Tae Jin; Bae, Hoonsik

    2015-01-01

    The aim of this study is to set up statistical quality control for monitoring of volumetric modulated arc therapy (VMAT) delivery error using machine log data. Eclipse and Clinac iX linac with the RapidArc system (Varian Medical Systems, Palo Alto, USA) is used for delivery of the VMAT plan. During the delivery of the RapidArc fields, the machine determines the delivered motor units (MUs) and gantry angle position accuracy and the standard deviations of MU (sigma_MU; dosimetric error) and gantry angle (sigma_GA; geometric error) are displayed on the console monitor after completion of the RapidArc delivery. In the present study, first, the log data was analyzed to confirm its validity and usability; then, statistical process control (SPC) was applied to monitor the sigma_MU and sigma_GA in a timely manner for all RapidArc fields: a total of 195 arc fields for 99 patients. The sigma_MU and sigma_GA were determined twice for all fields, that is, first during the patient-specific plan QA and then again during th...

  20. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-05

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  1. Magnetic Field Analysis of Interior Composite-Rotor Controllable-Flux Permanent Magnet Synchronous Machine

    Institute of Scientific and Technical Information of China (English)

    CHEN Yiguang; PAN Wei; SHEN Yonghuan; TANG Renyuan

    2006-01-01

    Conventional permanent magnet synchronous machine(PMSM)has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets(PMs)are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current id, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.

  2. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    Science.gov (United States)

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  3. ATCA/AXIe compatible board for fast control and data acquisition in nuclear fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Batista, A.J.N., E-mail: toquim@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisboa (Portugal); Leong, C.; Bexiga, V. [INESC-ID, Lisboa (Portugal); Rodrigues, A.P.; Combo, A.; Carvalho, B.B.; Fortunato, J.; Correia, M. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisboa (Portugal); Teixeira, J.P.; Teixeira, I.C. [INESC-ID, Lisboa (Portugal); Sousa, J.; Goncalves, B.; Varandas, C.A.F. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisboa (Portugal)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer High performance board for fast control and data acquisition. Black-Right-Pointing-Pointer Large IO channel number per board with galvanic isolation. Black-Right-Pointing-Pointer Optimized for high reliability and availability. Black-Right-Pointing-Pointer Targeted for nuclear fusion experiments with long duration discharges. Black-Right-Pointing-Pointer To be used on the ITER Fast Plant System Controller prototype. - Abstract: An in-house development of an Advanced Telecommunications Computing Architecture (ATCA) board for fast control and data acquisition, with Input/Output (IO) processing capability, is presented. The architecture, compatible with the ATCA (PICMG 3.4) and ATCA eXtensions for Instrumentation (AXIe) specifications, comprises a passive Rear Transition Module (RTM) for IO connectivity to ease hot-swap maintenance and simultaneously to increase cabling life cycle. The board complies with ITER Fast Plant System Controller (FPSC) guidelines for rear IO connectivity and redundancy, in order to provide high levels of reliability and availability to the control and data acquisition systems of nuclear fusion devices with long duration plasma discharges. Simultaneously digitized data from all Analog to Digital Converters (ADC) of the board can be filtered/decimated in a Field Programmable Gate Array (FPGA), decreasing data throughput, increasing resolution, and sent through Peripheral Component Interconnect (PCI) Express to multi-core processors in the ATCA shelf hub slots. Concurrently the multi-core processors can update the board Digital to Analog Converters (DAC) in real-time. Full-duplex point-to-point communication links between all FPGAs, of peer boards inside the shelf, allow the implementation of distributed algorithms and Multi-Input Multi-Output (MIMO) systems. Support for several timing and synchronization solutions is also provided. Some key features are onboard ADC or DAC modules with galvanic isolation

  4. Evaluation of a New Thermal Fog Machine for Control of Adult Aedes albopictus in a Large Enclosed Space.

    Science.gov (United States)

    Gibson, Jennifer; Smith, Michael L; Xue, Rui-De; Ren, Dong-Sheng

    2016-06-01

    Testing of the PSO BASDKA-AC1200 multifunction ultrafine particle atomization machine, a thermal fog machine, with Aqualuer 20-20(®) (permethrin 20.6%, piperonyl butoxide 20.6%) was conducted against Aedes albopictus. The machine was set at a 40 sec maximum burst interval dispersing 36 ml of chemical with an average droplet volume of 50%. Female adult Ae. albopictus were placed into cylindrical paper cages and adhered to poles at 5, 8, 10, 15, and 25 m from the center point of the machine. Control cages consisted of 1 cage placed at 5, 10, and 25 m. Control and treatment groups were left in the experiment area for 15 min. Initial knockdown after 15 min and 24 h mortality were documented. At 15 min post-treatment, Ae. albopictus displayed less than 50% knockdown. After 24 h, all treatment cages displayed greater than 90% mortality. Further bottle bioassays were conducted to determine the lowest chemical dose possible to achieve a lethal dose of 90%. A 1% dilution (10 ml Aqualuer 20-20 to 1,000 ml of polyether) of Aqualuer showed high mortality in the laboratory. However, after running 3 repetitions of a 1% dilution, there was no significant difference between the mortality of the mosquitoes at any of the distances 24 h post-treatment. This study indicates that the test machine would be an applicable and suitable machine for control of Ae. albopictus in enclosed spaces.

  5. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  6. A High Performance Space Vector Modulation - Direct Torque Controlled Induction Machine Drive based on Stator Flux Orientation Technique

    Directory of Open Access Journals (Sweden)

    BELMADANI, B.

    2009-06-01

    Full Text Available This paper proposes the design and implementation of a novel direct torque controlled induction machine drive system. The control system enjoys the advantages of stator vector control and conventional direct torque control and avoids some of the implementation difficulties of either of the two control methods. The stator vector control principal is used to keep constant the amplitude of stator flux vector at rated value, and to develop the relationship between the machine torque and the rotating speed of the stator flux vector. Thus, the machine torque can be regulated to generate the stator angular speed, which becomes a command signal and permits to overcome the problem of its estimation. Furthermore, with the combined control methods, the reference stator voltage vector can be generated and proportional-integral controllers and space vector modulation technique can be used to obtain fixed switching frequency and low torque ripple. Simulation experiments results indicate that, with the proposed scheme, a precise control of the stator flux and machine torque can be achieved. Compared to conventional direct torque control, presented method is easily implemented, and the steady performances of ripples of both torque and flux are considerably improved.

  7. WAMS-based monitoring and control of Hopf bifurcations in multi-machine power systems

    Institute of Scientific and Technical Information of China (English)

    Shao-bu WANG; Quan-yuan JIANG; Yi-jia CAO

    2008-01-01

    A method is proposed to monitor and control Hopf bifurcations in multi-machine power systems using the information from wide area measurement systems (WAMSs). The power method (PM) is adopted to compute the pair of conjugate eigenvalues with the algebraically largest real part and the corresponding eigenvectors of the Jacobian matrix of a power system. The distance between the current equilibrium point and the Hopf bifurcation set can be monitored dynamically by computing the pair of conjugate eigenvalues. When the current equilibrium point is close to the Hopf bifurcation set, the approximate normal vector to the Hopf bifurcation set is computed and used as a direction to regulate control parameters to avoid a Hopf bifurcation in the power system described by differential algebraic equations (DAEs). The validity of the proposed method is demonstrated by regulating the reactive power loads in a 14-bus power system.

  8. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    Science.gov (United States)

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001).

  9. Coherent LQG Control, Free-Carrier Oscillations, Optical Ising Machines and Pulsed OPO Dynamics

    CERN Document Server

    Hamerly, Ryan

    2016-01-01

    Broadly speaking, this thesis is about nonlinear optics, quantum mechanics, and computing. More specifically, it covers four main topics: Coherent LQG Control, Free-Carrier Oscillations, Optical Ising Machines and Pulsed OPO Dynamics. Tying them all together is a theory of open quantum systems called the SLH model, which I introduce in Chapters 1-2. The SLH model is a general framework for open quantum systems that interact through bosonic fields, and is the basis for the quantum circuit theory developed in the text. Coherent LQG control is discussed in Chapters 3-4, where I demonstrate that coherent feedback outperforms measurement-based feedback for certain linear quadratic-Gaussian (LQG) problems, and explain the discrepancy by the former's simultaneous utilization of both light quadratures. Semiclassical truncated-Wigner techniques for quantum-optical networks are discussed in Chapter 5, leading to a thorough discussion of quantum noise in systems with free-carrier nonlinearities (Chapter 6), comparison t...

  10. IMPROVE THE KINETIC PERFORMANCE OF THE PUMP CONTROLLED CLAMPING UNIT IN PLASTIC INJECTION MOLDING MACHINE WITH ADAPTIVE CONTROL STRATEGY

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The kinetic characteristics of the clamping unit of plastic injection molding machine that is controlled by close loop with newly developed double speed variable pump unit are investigated.Considering the wide variation of the cylinder equivalent mass caused by the transmission ratio of clamping unit and the severe instantaneous impact force acted on the cylinder during the mold closing and opening process, an adaptive control principle of parameter and structure is proposed to improve its kinetic performance. The adaptive correlation between the acceleration feedback gain and the variable mass is derived. The pressure differential feedback is introduced to improve the dynamic performance in the case of small inertia and heavy impact load. The adaptation of sum pressure to load is used to reduce the energy loss of the system. The research results are verified by the simulation and experiment. The investigation method and the conclusions are also suitable for the differential cylinder system controlled by the traditional servo pump unit.

  11. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  12. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  13. WIDE-AREA BASED ON COORDINATED TUNING OF FUZZY PSS AND FACTS CONTROLLER IN MULTI-MACHINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper coordination of fuzzy power system stabilizer (FPSS and flexible ac transmission systems (FACTS have been considered in a multi-machine power system. The proposed model, has been applied for a wide-area power system. The proposed FPSS presented with local, nonlinear feedbacks, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs. For this model, in fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Also, the parameters of FACTS controller have been evaluated by improved honey bee mating optimization (IHBMO. The effectiveness of the proposed method has been applied over two case studies of single-machine infinite-bus (SMIB and two areas four machine (TAFM Kundur’s power system. The obtained results demonstrate the superiority of proposed strategy.

  14. ADS-B and multilateration sensor fusion algorithm for air traffic control

    Science.gov (United States)

    Liang, Mengchen

    Air traffic is expected to increase rapidly in the next decade. But, the current Air Traffic Control (ATC) system does not meet the demand of the future safety and efficiency. The Next Generation Air Transportation System (NextGen) is a transformation program for the ATC system in the United States. The latest estimates by Federal Aviation Administration (FAA) show that by 2018 NextGen will reduce total delays in flight by 35 percent and provide 23 billion dollars in cumulative benefits. A satellite-based technology called the Automatic Dependent Surveillance-Broadcast (ADS-B) system is one of the most important elements in NextGen. FAA expects that ADS-B systems will be available in the National Airspace System (NAS) by 2020. However, an alternative surveillance system is needed due to vulnerabilities that exist in ADS-B systems. Multilateration has a high accuracy performance and is believed to be an ideal back-up strategy for ADS-B systems. Thus, in this study, we develop the ADS-B and multilateration sensor fusion algorithm for aircraft tracking applications in ATC. The algorithm contains a fault detection function for ADS-B information monitoring by using Trajectory Change Points reports from ADS-B and numerical vectors from a hybrid estimation algorithm. We consider two types of faults in the ADS-B measurement model to show that the algorithm is able to deal with the bad data from ADS-B systems and automatically select good data from multilateration systems. We apply fuzzy logic concepts and generate time variant parameters during the fusion process. The parameters play a role of weights for combining data from different sensors. The algorithm performance is validated through two aircraft tracking examples.

  15. Sensor guided control and navigation with intelligent machines. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bijoy K.

    2001-03-26

    This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.

  16. New predictive control algorithms based on Least Squares Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; SU Hong-ye; CHU Jian

    2005-01-01

    Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.

  17. Direct Surge Margin Control for Aeroengines Based on Improved SVR Machine and LQR Method

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2013-01-01

    Full Text Available A novel scheme of high stability engine control (HISTEC on the basis of an improved linear quadratic regulator (ILQR, called direct surge margin control, is derived for super-maneuver flights. Direct surge margin control, which is different from conventional control scheme, puts surge margin into the engine closed-loop system and takes surge margin as controlled variable directly. In this way, direct surge margin control can exploit potential performance of engine more effectively with a decrease of engine stability margin which usually happened in super-maneuver flights. For conquering the difficulty that aeroengine surge margin is undetectable, an approach based on improved support vector regression (SVR machine is proposed to construct a surge margin prediction model. The surge margin modeling contains two parts: a baseline model under no inlet distortion states and the calculation for surge margin loss under supermaneuvering flight conditions. The previous one is developed using neural network method, the inputs of which are selected by a weighted feature selection algorithm. Considering the hysteresis between pilot input and angle of attack output, an online scrolling window least square support vector regression (LSSVR method is employed to firstly estimate inlet distortion index and further compute surge margin loss via some empirical look-up tables.

  18. Research on Remote Monitoring and Fault Diagnosis Technology of Numerical Control Machine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianyu; GAO Lixin; CUI Lingli; LI Xianghui; WANG Yingwang

    2006-01-01

    Based on the internet technology, it has become possible to complete remote monitoring and fault diagnosis for the numerical control machine. In order to capture the micro-shock signal induced by the incipient fault on the rotating parts, the resonance demodulation technology is utilized in the system. As a subsystem of the remote monitoring system, the embedded data acquisition instrument not only integrates the demodulation board but also complete the collection and preprocess of monitoring data from different machines. Furthermore, through connecting to the internet, the data can be transferred to the remote diagnosis center and data reading and writing function can be finished in the database. At the same time, the problem of the IP address floating in the dial-up of web server is solved by the dynamic DNS technology. Finally, the remote diagnosis software developed on the LabVIEW platform can analyze the monitoring data from manufacturing field. The research results have indicated that the equipment status can be monitored by the system effectively.

  19. Targeting at the Nanoscale: A Novel S-Layer Fusion Protein Enabling Controlled Immobilization of Biotinylated Molecules.

    Science.gov (United States)

    Varga, Melinda

    2016-11-04

    With the aim of constructing an S-layer fusion protein that combines both excellent self-assembly and specific ligand i.e., biotin binding ability, streptavidin (aa 16-133) was fused to the S-layer protein of Sporosarcina ureae ATCC 13881 (SslA) devoid of its N-terminal 341 and C-terminal 172 amino acids. The genetically engineered chimeric protein could be successfully produced in E. coli, isolated, and purified via Ni affinity chromatography. In vitro recrystallisation experiments performed with the purified chimeric protein in solution and on a silicon wafer have demonstrated that fusion of the streptavidin domain does not interfere with the self-assembling properties of the S-layer part. The chimeric protein self-assembled into multilayers. More importantly, the streptavidin domain retained its full biotin-binding ability, a fact evidenced by experiments in which biotinylated quantum dots were coupled to the fusion protein monomers and adsorbed onto the in vitro recrystallised fusion protein template. In this way, this S-layer fusion protein can serve as a functional template for the controlled immobilization of biotinylated and biologically active molecules.

  20. Conventional control and fuzzy control of a dc-dc converter for machine drive

    Energy Technology Data Exchange (ETDEWEB)

    Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)

    1997-12-31

    Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.

  1. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input spac...

  2. Integrated digital control and man-machine interface for complex remote handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments.

  3. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  4. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: ming.li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Wang, Yongbo [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland)

    2015-10-15

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  5. Sensor fusion: lane marking detection and autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel

    1995-12-01

    In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.

  6. Sleep–Wake Transition in Narcolepsy and Healthy Controls Using a Support Vector Machine

    DEFF Research Database (Denmark)

    Jensen, Julie B; Sorensen, Helge B D; Kempfner, Jacob

    2014-01-01

    transformation and were given as input to a support vector machine classifier. The classification algorithm was assessed by hold-out validation and 10-fold cross-validation. The data used to validate the classifier were derived from polysomnographic recordings of 47 narcoleptic patients (33 with cataplexy and 14...... without cataplexy) and 15 healthy controls. Compared with manual scorings, an accuracy of 90% was achieved in the hold-out validation, and the area under the receiver operating characteristic curve was 95%. Sensitivity and specificity were 90% and 88%, respectively. The 10-fold cross-validation procedure...... yielded an accuracy of 88%, an area under the receiver operating characteristic curve of 92%, a sensitivity of 87%, and a specificity of 87%. Narcolepsy with cataplexy patients experienced significantly more sleep-wake transitions during night than did narcolepsy without cataplexy patients (P = 0...

  7. Electrical Drive Radiated Emissions Estimation in Terms of Input Control Using Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    A. Wefky

    2012-01-01

    Full Text Available With the increase of electrical/electronic equipment integration complexity, the electromagnetic compatibility (EMC becomes one of the key points to be respected in order to meet the constructor standard conformity. Electrical drives are known sources of electromagnetic interferences due to the motor as well as the related power electronics. They are the principal radiated emissions source in automotive applications. This paper shows that there is a direct relationship between the input control voltage and the corresponding level of radiated emissions. It also introduces a novel model using artificial intelligence techniques for estimating the radiated emissions of a DC-motor-based electrical drive in terms of its input voltage. Details of the training and testing of the developed extreme learning machine (ELM are described. Good agreement between the electrical drive behavior and the developed model is observed.

  8. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    parameters such as resistance and inductance are involved in many existing sensorless control algorithms. Therefore, varying machine parameters due to different operation conditions may affect the accuracy of the position estimation and the drive performance consequently. For power converter manufactures...... of the typical sensorless algorithm – the INFORM method is implemented and tested. It is demonstrated that the voltage error may seriously affect the performance of the position estimator. To overcome this difficulty, a new implementation scheme of the INFORM method with easy inverter voltage error compensation......) PWM periods. In the injection period, the voltage output from the inverter is forced to be zero. The rotor position and the speed are then estimated simply from the current changes during this zero voltage injection period. This method provides a good performance for the rotor position estimation...

  9. STUDY ON ELECTRORHEOLOGICAL FLUID DAMPER FOR APPLICATION IN MACHINING CHATTER CONTROL

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrorheological fluid(ERF)is a kind of intelligent material with bright prospects for industry applications, which has viscoelastic characteristic under the applied electric field. The dynamic model of a milling system with an ERF damper is established, and the chatter suppression mechanism of the ER effect is discussed theoretically. Both the theoretical study and the experimental investigation show that the additional damping and additional stiffness produced by the ERF increase with the rise in the strength of electric field E, but their influence on the cutting stability is different. Only when both additional damping and additional stiffness cooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERF damper used on the arbor of horizontal spindle milling machine is developed, and a series of milling chatter control experiments are performed. The experimental results show that the milling chatter can be suppressed effectively by using the ER damper.

  10. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  11. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  12. Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach

    Directory of Open Access Journals (Sweden)

    Jinliang Zhang

    2015-01-01

    Full Text Available Extended Kalman filter (EKF has been widely applied for sensorless direct torque control (DTC in induction machines (IMs. One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.

  13. Man-machine interface in a submarine command and weapon control system: features and design experience

    Directory of Open Access Journals (Sweden)

    Johan H. Aas

    1989-01-01

    Full Text Available Important man-machine interface (MMI issues concerning a submarine command and weapon control system (CWCS such as crew organization, automation level and decision support are discussed in this paper. Generic submarine CWCS functions and operating conditions are outlined. Detailed, dynamic and real-time prototypes were used to support the MMI design. The prototypes are described and experience with detailed prototyping is discussed. Some of the main interaction principles are summarized and a restricted example of the resulting design is given. Our design experience and current work have been used to outline future perspectives of MMI design in naval CWCSs. The need for both formal and experimental approaches is emphasized.

  14. Direct selective laser sintering of high performance metals: Machine design, process development and process control

    Science.gov (United States)

    Das, Suman

    1998-11-01

    development of machine, processing and control technologies during this research effort enabled successful production of a number of integrally canned test specimens in Alloy 625 (InconelRTM 625 superalloy) and Ti-6Al-4V alloy. The overall goal of this research was to develop direct SLS of metals armed with a fundamental understanding of the underlying physics. The knowledge gained from experimental and analytical work is essential for three key objectives: machine design, process development and process control. (Abstract shortened by UMI.)

  15. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  16. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  17. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  18. Transient Stability Enhancement of a Multi-Machine System using Particle Swarm Optimization based Unified Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-07-01

    Full Text Available In this paper an attempt has beenmade to investigate the transient stability enhancement of both SMIB and Multi-machine system using UPFC controller tuned by Particle Swarm Optimization. Power injection modelfor a series voltage source of UPFC has been implemented to replace UPFC by equivalent admittance. The admittance matrix of the power system is then modified according to the power injection model of UPFC. To mitigate the power oscillations in the system, the required amount of series voltage injected by UPFC controller has been computed in order to damp inter area & local mode of oscillations in multi-machine system.

  19. Robust DTC Based on Adaptive Fuzzy Control of Double Star Synchronous Machine Drive with Fixed Switching Frequency

    Science.gov (United States)

    Boudana, Djamel; Nezli, Lazhari; Tlemçani, Abdelhalim; Mahmoudi, Mohand Oulhadj; Tadjine, Mohamed

    2012-05-01

    The double star synchronous machine (DSSM) is widely used for high power traction drives. It possesses several advantages over the conventional three phase machine. To reduce the torque ripple the DSSM are supplied with source voltage inverter (VSI). The model of the system DSSM-VSI is high order, multivariable and nonlinear. Further, big harmonic currents are generated. The aim of this paper is to develop a new direct torque adaptive fuzzy logic control in order to control DSSM and minimize the harmonics currents. Simulations results are given to show the effectiveness of our approach.

  20. Three Phase Motor Centrifugal Machines Speed Control Using Pid Fuzzy Method

    Directory of Open Access Journals (Sweden)

    Trio Yus Peristiaferi

    2015-03-01

    Full Text Available Induction motor speed settings are still done manually by changing the position of the shaft or the size of the puli engine centrifugal. This method resulted in an arrangement with the speed of the motor will be difficult to control as expected. Inappropriate speed settings can also lead  to  less  sugar  production  results.  It  is  therefore  necessary  to maintain the control method of motor speed when load is added while experiencing the process of starting, spinning and breaking. The controller that is used is the PID Fuzzy. In a using simulation and implementation of  using  controller PID Fuzzy  having  the  averages  error  when  processing starting, spinning and breaking a dising about 0.51 % and about 1.06 %. So this final project hoped can help increase the efficiency of the centrifugal on sugar factory machine.

  1. The application of PID parameter self-tuning fuzzy controller in the constant-power speed control system of heading machine

    Science.gov (United States)

    Mao, Jun; Hou, Jian; Shen, Dong

    2013-03-01

    This article describes the control system of PID parameter self-tuning fuzzy controller. For cutting the coal of different hardness, adopt fuzzy techniques, automatically adjust the feed speed of operating mechanism, and maintain the control of operating mechanism of heading machine with constant power.

  2. Low energy cost for optimal speed and control of membrane fusion.

    Science.gov (United States)

    François-Martin, Claire; Rothman, James E; Pincet, Frederic

    2017-02-07

    Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.

  3. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Brain-machine interface (BMI systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings. These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.

  4. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    Science.gov (United States)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  5. Adaptive Active Control of Machine-Tool Vibration In a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars

    1998-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and in particular, the surface finish. Tool life is also influenced by vibration. Noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. With proper machine design, i.e. improved stiffness of the machine structure, the problem of relative dynamic motion betw...

  6. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.

    Science.gov (United States)

    Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng

    2014-03-15

    The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A Novel Direct Torque Control for Induction Machine Drive System with Low Torque And Flux Ripples using XSG

    Directory of Open Access Journals (Sweden)

    Souha Boukadida

    2014-12-01

    Full Text Available The conventional Direct Torque Control (DTC is known to produce a quick and robust response in AC drives. However, during steady state, stator flux and electromagnetic torque which results in incorrect speed estimations and acoustical noise. A modified Direct Torque Control (DTC by using Space Vector Modulation (DTC-SVM for induction machine is proposed in this paper. Using this control strategy, the ripples introduced in torque and flux are reduced. This paper presents a novel approach to design and implementation of a high perfromane torque control (DTC-SVM of induction machine using Field Programmable gate array (FPGA.The performance of the proposed control scheme is evaluated through digital simulation using Matlab\\Simulink and Xilinx System Generator. The simulation results are used to verify the effectiveness of the proposed control strategy.

  8. An e-quality control model for multistage machining processes of workpieces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To track and control the changes of process quality attributes in multistage machining processes(MMPs),an e-quality control(e-QC) model is proposed.The e-QC model is defined as a quality information service node with e-formalizing technology,whose input/output and intermediate process(that is IPO) are known to other nodes,and its implemention in MMPs is provided.In order to establish the e-QC model,a measuring network is constructed to acquire the original quality data,and the changes of process quality attributes are monitored and diagnosed by the integrated quality analysis tools attached to the e-QC,which can be tracked by information template network in real time.Furthermore,a hierarchical control method is adopted to coordinate e-QCs,in which the quality loss and adjusting cost are used to quantify the opportunities for e-QCs to improve process quality.At last,a prototype is developed to verify the proposed methods.

  9. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    Science.gov (United States)

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  10. An e-quality control model for multistage machining processes of workpieces

    Institute of Scientific and Technical Information of China (English)

    LIU DaoYu; JIANG PingYu; ZHANG YingFeng

    2008-01-01

    To track and control the changes of process quality attributes in multistage ma-chining processes (MMPs), an e-quality control (e-QC) model is proposed. The e-QC model is defined as a quality information service node with e-formalizing technology, whose input/output and intermediate process (that is IPO) are known to other nodes, and its implemention in MMPs is provided. In order to establish the e-QC model, a measuring network is constructed to acquire the original quality data, and the changes of process quality attributes are monitored and diagnosed by the integrated quality analysis tools attached to the e-QC, which can be tracked by in-formation template network in real time. Furthermore, a hierarchical control method is adopted to coordinate e-QCs, in which the quality loss and adjusting cost are used to quantify the opportunities for e-QCs to improve process quality. At last, a prototype is developed to verify the proposed methods.

  11. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Jude Adekunle Adeleke

    2017-04-01

    Full Text Available Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  12. Controlling stimulated Raman scattering by two-color light in inertial confinement fusion

    Science.gov (United States)

    Liu, Z. J.; Chen, Y. H.; Zheng, C. Y.; Cao, L. H.; Li, B.; Xiang, J.; Hao, L.; Lan, K.

    2017-08-01

    A method is proposed to control the stimulated Raman scattering in the inertial confinement fusion by using auxiliary 2ω light to suppress the stimulated Raman scattering of the 3ω light. In this scheme, inverse bremsstrahlung absorption and parametric instabilities in the 2ω light increase the electron temperature and the plasma-density fluctuation, thus preventing the development of Raman scattering of the 3ω light. This scheme is successfully demonstrated by both one-dimensional kinetic simulations and two-dimensional radiative hydrodynamic simulations. The one-dimensional Vlasov results show that the time-averaged transmissivity of the 3ω light increases from 0.75 to 0.95 under certain conditions. Results obtained using the particle-in-cell method with Monte Carlo collisions show that the electron temperature is greatly increased with the increasing intensity of the 2ω light. The two-dimensional radiative hydrodynamic simulation results show that the electron temperature increases from 3.2 keV to 3.5 keV, and the time-averaged backscattering level decreases from 0.28 to 0.1 in the presence of the auxiliary 2ω light.

  13. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  14. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  15. Modeling and Control of a Flux-Modulated Compound-Structure Permanent-Magnet Synchronous Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-01-01

    Full Text Available The compound-structure permanent-magnet synchronous machine (CS-PMSM, comprising a double rotor machine (DRM and a permanent-magnet (PM motor, is a promising electronic-continuously variable transmission (e-CVT concept for hybrid electric vehicles (HEVs. By CS-PMSM, independent speed and torque control of the vehicle engine is realized without a planetary gear unit. However, the slip rings and brushes of the conventional CS-PMSM are considered a major drawback for vehicle application. In this paper, a brushless flux-modulated CS-PMSM is investigated. The operating principle and basic working modes of the CS-PMSM are discussed. Mathematical models of the CS-PMSM system are given, and joint control of the two integrated machines is proposed. As one rotor of the DRM is mechanically connected with the rotor of the PM motor, special rotor position detection and torque allocation methods are required. Simulation is carried out by Matlab/Simulink, and the feasibility of the control system is proven. Considering the complexity of the controller, a single digital signal processor (DSP is used to perform the interconnected control of dual machines instead of two separate ones, and a typical hardware implementation is proposed.

  16. A brain-machine interface for control of medically-induced coma.

    Science.gov (United States)

    Shanechi, Maryam M; Chemali, Jessica J; Liberman, Max; Solt, Ken; Brown, Emery N

    2013-10-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95

  17. PREFACE: 30th EPS Conference on Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Koch, R.; Lebedev, S.

    2003-12-01

    The 30th EPS Conference on Controlled Fusion and Plasma Physics took place in St Petersburg, Russian Federation, on 7th--11th July 2003. It was jointly organized by the Ioffe Physico-Technical Institute, the St Petersburg State Polytechnical University and Technical University Applied Physics Ltd, on behalf of the Plasma Physics Division of the European Physical Society (EPS). The members of the local organizing committee were drawn from these institutions: B Kuteev, Chair, Polytechnical University S Lebedev, Vice-Chair, Ioffe Institute A Lebedev, Scientific Secretary, Ioffe Institute V Bakharev, TUAP Ltd V Grigor'yants, Ioffe Institute V Sergeev, Polytechnical University N Zhubr, Ioffe Institute Over the years, the annual conference of the Plasma Physics Division of the European Physical Society has widened its scope. Contributions to the present conference covered widely diversified fields of plasma physics, ranging from magnetic and inertial fusion to low temperature plasmas. Plasma sizes under investigation ranged from tiny to astronomical. The topics covered during the conference were distributed over the following categories: tokamaks, stellarators, high intensity laser produced plasmas and inertial confinement, alternative magnetic confinement, plasma edge physics, plasma heating and current drive, diagnostics, basic plasma physics, astrophysical and geophysical plasmas and low temperature plasmas. The scientific programme and paper selection were the responsibility of the Programme Committee appointed by the Board of the EPS Plasma Physics Division. The committee was composed of: R Koch, Chairman, ERM/KMS Brussels, Belgium E Ascasibar, CIEMAT Madrid, Spain S Atzeni, Università di Roma, Italy G Bonhomme, LPMI Nancy, France C Chiuderi, Università di Firenze, Italy B Kuteev, St Petersburg State Polytechnical,University, Russian Federation M Mauel, Contact person APS-DPP, Columbia University New York, USA R A Pitts, EPFL/CRPP Lausanne, Switzerland R Salomaa

  18. Non-linear control of a doubly fed induction machine; Commande non-lineaire d'une machine asynchrone a double alimentation

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P.E.

    2004-12-15

    This study deals with linear and non-linear control strategies applied to the rotation speed feedback of a doubly fed induction machine (DFIM), whose stator and rotor windings are connected to two Pulse Width Modulation voltage source inverters. We choose to distribute the active powers between the stator and the rotor following a certain proportionality ratio. This leads to guarantee, in steady state operation, a stator and rotor angular frequencies sharing. This distribution is initially assured by two shared angular frequencies controllers, and in a second time by the means of the Park transformation angles directly. Two models are established: the first express the currents, and the second is linked with the fluxes. The simulations results of the linear control (field oriented control), and non-linear control (sliding mode control), show a good independence between the main flux and the torque. An experimental validation is also presented. The results presented show the satisfactory DFIM flux control. Special attention is paid to the active power dispatching. (author)

  19. 支持向量机的全局局部特征融合目标识别%Target Recognition Based on Support Vector Machine(SVM) Features Fusion

    Institute of Scientific and Technical Information of China (English)

    易晓柯

    2011-01-01

    This paper proposes a target recognition method based on support vector machine features fusion. The method uses nonlinear discrimination analysis and local retain mapping to extract the global and local features and then makes features fusion in order to extract more comprehensive samples and obtain more accurate identification results. Then the support vector machine is used for classification. Since its power to deal with nonlinear and small samples, the identification accuracy is further improved. The simulation results of three plane targets show the effectiveness.%提出一种基于支持向量机的全局局部特征融合目标识别方法,并将其运用到雷达一维距离像目标识别.该方法采用非线性辨别方法与局部保留映射方法分别提取样本的非线性全局特征与局部特征,并进行特征融合,以便提取更全面的样本特征,得到更加准确的识别结果,随后采用支持向量机进行分类识别,利用其对于非线性小样本问题的强大处理能力,进一步改善识别结果.对三种飞机目标的实测雷达一维距离像进行了仿真实验,结果表明了方法的有效性.

  20. Active Control of Machine-Tool Vibration in a CNC Lathe Based on an Active Tool Holder Shank with Embedded Piezo Ceramic Actuators

    OpenAIRE

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a frequent problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lat...