WorldWideScience

Sample records for controlled electron injection

  1. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  2. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  3. Controlling charge injection in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-12-01

    We demonstrate control and improvement of charge injection in organic electronic devices by utilizing self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier between a metal electrode and the organic electronic material. Hole injection from Cu electrodes into the electroluminescent conjugated polymer poly[2-methoxy,5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] was varied by using two conjugated-thiol based SAMs. The chemically modified electrodes were incorporated in organic diode structures and changes in the metal/polymer Schottky energy barriers and current-voltage characteristics were measured. Decreasing (increasing) the Schottky energy barrier improves (degrades) charge injection into the polymer.

  4. Designing a Prototype LPG Injection Electronic Control Unit for a Carburetted Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Barış ERKUŞ

    2015-07-01

    Full Text Available In this study, the originally carburetted gasoline engine was converted to gas-phase liquefied petroleum gas (LPG injection engine by using an after market LPG conversion kit's components except the electronic control unit (ECU. Instead of after market LPG injection ECU, the ECU which was designed considering the effects of  electromagnetic interference (EMI, was used for controlling injection. The designed ECU was tested in terms of EMI while the engine was being run and it was detected that the EMI noises could be suppressed as possible by taken measures. Designed ECU was used in performance tests at different engine conditions and the results obtained with LPG injection were compared with the results obtained with LPG carburetion. According to the performance test results, LPG injection ECU designed in this study could help to achieve low exhaust emissions and high engine performance.  

  5. Injection control development of the JT-60U electron cyclotron heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hiranai, Shinichi; Shinozaki, Shin-ichi; Yokokura, Kenji; Moriyama, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Suzuki, Yasuo [Atomic Energy General Service Co., Ltd., Tokai, Ibaraki (Japan); Ikeda, Yoshitaka [Japan Atomic Energy Research Inst., Kashiwa, Chiba (Japan)

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) System injects a millimeteric wave at 110 GHz into the JT-60 Plasma, and heats the plasma or drives a current locally to enhance the confinement performance of the JT-60 plasma. The system consists of four sets of high power gyrotrons, high voltage power supplies and transmission lines, and two antennas that launch electron cyclotron (EC) beams toward the plasma. The key features of the injection control system are streering of the direction of the EC beam by driving the movable mirror in the antenna, and capability to set any combination of polarization angle and ellipticity by rotating the two grooved mirrors in the polarizers. This report represents the design, fabrication and improvements of the injection control system. (author)

  6. Controlling charge injection in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-12-01

    We demonstrate control and improvement of charge injection in organic electronic devices by utilizing self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier between a metal electrode and the organic electronic material. Hole injection from Cu electrodes into the electroluminescent conjugated polymer poly[2-methoxy,5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] was varied by using two conjugated-thiol based SAMs. The chemically modified electrodes were incorporated in organic diode structures and changes in the metal/polymer Schottky energy barriers and current{endash}voltage characteristics were measured. Decreasing (increasing) the Schottky energy barrier improves (degrades) charge injection into the polymer. {copyright} {ital 1997 American Institute of Physics.}

  7. Syringe injectable electronics

    Science.gov (United States)

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  8. Syringe-injectable electronics.

    Science.gov (United States)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  9. Electron injection in microtron

    International Nuclear Information System (INIS)

    Axinescu, S.

    1977-01-01

    A review of the methods of injecting electrons in the microtron is presented. A special attention is paid to efficient injection systems developed by Wernholm and Kapitza. A comparison of advantages and disadvantages of both systems is made in relation to the purpose of the microtron. (author)

  10. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    Science.gov (United States)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  11. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  12. Control of electron injection and acceleration in laser-wakefield accelerators

    International Nuclear Information System (INIS)

    Guillaume, E.

    2015-01-01

    Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We have also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method - the laser-plasma lens - to strongly reduce the divergence of the electron beam. This laser-plasma lens consists of a second gas jet placed at the exit of the accelerator. The laser pulse drives a wakefield in this second jet whose focusing forces take advantage to reduce the divergence of the trailing electron bunch. A simple analytical model describing the principle is presented, underlining the major importance of the second jet length, density and distance from the first jet. Experimental demonstration of the laser-plasma lens shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with the model predictions

  13. The effects of photovoltaic electricity injection into microgrids: Combination of Geographical Information Systems, multicriteria decision methods and electronic control modeling

    International Nuclear Information System (INIS)

    Roa-Escalante, Gino de Jesús; Sánchez-Lozano, Juan Miguel; Faxas, Juan-Gabriel; García-Cascales, M. Socorro; Urbina, Antonio

    2015-01-01

    Highlights: • Geographical Information Systems can be used as a support to classify the viable locations for photovoltaic facilities. • Multicriteria decision methods are useful tools to choose the optimal locations for photovoltaic systems. • Variations of photovoltaic power injected into the grid have been calculated for the optimum locations. • Grid stabilization can be achieved within 500 ms with electronic control strategies. - Abstract: This article presents a model to calculate the impact on the grid of the injection of electricity generated from photovoltaic systems. The methodology combines the use of Geographical Information System tools to classify the optimal locations for the installation of photovoltaic systems with the calculation of the impact into microgrids of the electricity generated in such locations. The case study is focused on Murcia region, in South-east Spain, and on medium size photovoltaic systems. The locations have been selected from a Geographical Information System database including several parameters, and evaluated and classified using a fuzzy version of the multicriteria decision method called Technique for Order Preference by Similarity to Ideal Solution. In order to obtain the weights for the criteria used in the evaluation, the Analytic Hierarchy Process has been used. Finally, using meteorological data from a small set of possible locations, the impact on the grid arising from the injection of power generated from photovoltaic systems that are connected to the grid via a module implementing different control electronic strategies has been calculated. Different electronic control strategies have been modeled to demonstrate that stabilization of the electrical parameters of a microgrid can be obtained within 500 ms in all cases, even when a relatively large power surge, or slower variations, are injected into the grid from the medium size photovoltaic systems

  14. Molecular-structure control of ultrafast electron injection at cationic porphyrin-CdTe quantum dot interfaces

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-03-05

    Charge transfer (CT) at donor (D)/acceptor (A) interfaces is central to the functioning of photovoltaic and light-emitting devices. Understanding and controlling this process on the molecular level has been proven to be crucial for optimizing the performance of many energy-challenge relevant devices. Here, we report the experimental observations of controlled on/off ultrafast electron transfer (ET) at cationic porphyrin-CdTe quantum dot (QD) interfaces using femto- and nanosecond broad-band transient absorption (TA) spectroscopy. The time-resolved data demonstrate how one can turn on/off the electron injection from porphyrin to the CdTe QDs. With careful control of the molecular structure, we are able to tune the electron injection at the porphyrin-CdTe QD interface from zero to very efficient and ultrafast. In addition, our data demonstrate that the ET process occurs within our temporal resolution of 120 fs, which is one of the fastest times recorded for organic photovoltaics. © 2015 American Chemical Society.

  15. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  16. Advanced diesel electronic fuel injection and turbocharging

    Science.gov (United States)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  17. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  18. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  19. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler, D.; Cary, J.R.

    2007-01-01

    An optical injection scheme for a laser-plasma based accelerator which employs a non-collinear counter-propagating laser beam to push background electrons in the focusing and acceleration phase via ponderomotive beat with the trailing part of the wakefield driver pulse is discussed. Preliminary experiments were performed using a drive beam of a 0 = 2.6 and colliding beam of a 1 = 0.8 both focused on the middle of a 200 mu m slit jet backed with 20 bar, which provided ∼ 260 mu m long gas plume. The enhancement in the total charge by the colliding pulse was observed with sharp dependence on the delay time of the colliding beam. Enhancement of the neutron yield was also measured, which suggests a generation of electrons above 10 MeV

  20. Electron injection in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A.; Vacchi, A.

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs

  1. Dual fuel injection piggyback controller system

    Science.gov (United States)

    Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim

    2017-09-01

    Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.

  2. Electron injection in diodes with field emission

    International Nuclear Information System (INIS)

    Denavit, J.; Strobel, G.L.

    1986-01-01

    This paper presents self-consistent steady-state solutions of the space charge, transmitted current, and return currents in diodes with electron injection from the cathode and unlimited field emission of electrons and ions from both electrodes. Time-dependent particle simulations of the diode operation confirm the analytical results and show how these steady states are reached. The results are applicable to thermionic diodes and to photodiodes

  3. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  4. Molecular-structure control of ultrafast electron injection at cationic porphyrin-CdTe quantum dot interfaces

    KAUST Repository

    Aly, Shawkat Mohammede; Ahmed, Ghada H.; Shaheen, Basamat; Sun, Jingya; Mohammed, Omar F.

    2015-01-01

    Charge transfer (CT) at donor (D)/acceptor (A) interfaces is central to the functioning of photovoltaic and light-emitting devices. Understanding and controlling this process on the molecular level has been proven to be crucial for optimizing

  5. Diffusive scattering of electrons by electron holes around injection fronts

    Science.gov (United States)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Krasnoselskikh, V. V.; Bonnell, J. W.

    2017-03-01

    Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of ≲5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L ˜ 5-8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

  6. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  7. Injection into the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu

    1991-01-01

    To inject the 1.15 GeV electron storage ring - UVX - a beam from a linear accelerator - MAIRA - is used. The electrons are injected and accumulated at low energy (100MeV) until the nominal current of 100 mA is reached and than are ramped to the nominal energy. A study on a conventional injection scheme has been carried out. Two injection modes are investigated: injection with the phase ellipse parameters matched and mismatched to the ring's acceptance. The mismatched mode is optimized to fit the maximum of the injected beam into the acceptance

  8. Energetic Electron Acceleration, Injection, and Transport in Mercury's Magnetosphere

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.

    2018-05-01

    Electrons are accelerated in Mercury’s magnetotail by dipolarization events, flux ropes, and magnetic reconnection directly. Following energization, these electrons are injected close to Mercury where they drift eastward in Shabansky-like orbits.

  9. Electroluminescence from porous silicon due to electron injection from solution

    NARCIS (Netherlands)

    Kooij, Ernst S.; Despo, R.W.; Kelly, J.J.

    1995-01-01

    We report on the electroluminescence from p‐type porous silicon due to minority carrier injection from an electrolyte solution. The MV+• radical cation formed in the reduction of divalent methylviologen is able to inject electrons into the conduction band of crystalline and porous silicon. The

  10. Electron self-injection in the donut bubble wakefield

    Science.gov (United States)

    Firouzjaei, Ali Shekari; Shokri, Babak

    2018-05-01

    We investigate electron self-injection in a donut bubble wakefield driven by a Laguerre-Gauss laser pulse. The present work discusses the electron capture by modeling the analytical donut bubble field. We discuss the self-injection of the electrons from plasma for various initial conditions and then compare the results. We show that the donut bubble can trap plasma electrons forming a hollow beam. We present the phase spaces and longitudinal momentum evolution for the trapped electrons in the bubble and discuss their characteristic behaviors and stability. It will be shown that the electrons self-injected in the front are ideal for applications in which a good stability and low energy spread are essential.

  11. Giant tunnel-electron injection in nitrogen-doped graphene

    DEFF Research Database (Denmark)

    Lagoute, Jerome; Joucken, Frederic; Repain, Vincent

    2015-01-01

    Scanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling...... and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene....

  12. Sensorless Control of IPMSM by Voltage Injection

    DEFF Research Database (Denmark)

    Matzen, Torben N.; Bech, Michael Møller

    2006-01-01

    In this paper a sensorless discrete current control of an Interior Permanent Magnet Synchrouns Motor (IPMSM) by voltage injection is designed and tested. The whole controller is operating in the dq-frame and for this reason the rotor position is essential to know, to transform between the station......In this paper a sensorless discrete current control of an Interior Permanent Magnet Synchrouns Motor (IPMSM) by voltage injection is designed and tested. The whole controller is operating in the dq-frame and for this reason the rotor position is essential to know, to transform between...... the stationary frame and the rotor xed dq-frame. To obtain the position even at standstill a sensorless scheme using voltage injection is added to the current controller....

  13. Pseudorandom binary injection of levitons for electron quantum optics

    Science.gov (United States)

    Glattli, D. C.; Roulleau, P.

    2018-03-01

    The recent realization of single-electron sources lets us envision performing electron quantum optics experiments, where electrons can be viewed as flying qubits propagating in a ballistic conductor. To date, all electron sources operate in a periodic electron injection mode, leading to energy spectrum singularities in various physical observables which sometimes hide the bare nature of physical effects. To go beyond this, we propose a spread-spectrum approach where electron flying qubits are injected in a nonperiodic manner following a pseudorandom binary bit pattern. Extending the Floquet scattering theory approach from periodic to spread-spectrum drive, the shot noise of pseudorandom binary sequences of single-electron injection can be calculated for leviton and nonleviton sources. Our new approach allows us to disentangle the physics of the manipulated excitations from that of the injection protocol. In particular, the spread-spectrum approach is shown to provide better knowledge of electronic Hong-Ou-Mandel correlations and to clarify the nature of the pulse train coherence and the role of the dynamical orthogonality catastrophe for noninteger charge injection.

  14. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Parida, Manas R.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  15. Electron injection by evolution of self-modulated laser wakefields

    International Nuclear Information System (INIS)

    Kim, Changbum; Kim, Guang-Hoon; Kim, Jong-Uk; Lee, Hae June; Suk, Hyyong; Ko, In Soo

    2003-01-01

    Self-injection mechanisms in the self-modulated laser wakefield acceleration (SM-LWFA) are investigated. Two-dimensional (2D) particle-in-cell (PIC) simulations show that a significant amount of plasma electrons can be self-injected into the acceleration phase of a laser wakefield by a dynamic increase in the wake wavelength in the longitudinal direction. In this process, it is found that the wake wavelength increases due to the relativistic effect and this leads to a large amount of electron injection into the wakefields. In this paper, the injection phenomena are studied with 2D simulations and a brief explanation of the new self-injection mechanism is presented. (author)

  16. Improvement of tokamak performance by injection of electrons

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas

  17. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9804-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247...

  18. Efficient Injection of Electron Beams into Magnetic Guide Fields

    International Nuclear Information System (INIS)

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K.

    1999-01-01

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  19. Nonadiabatic dynamics of electron injection into organic molecules

    International Nuclear Information System (INIS)

    Zhu Li-Ping; Qiu Yu; Tong Guo-Ping

    2012-01-01

    We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su—Schrieffer—Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  1. Electronically Controlled Resistor Bank

    Science.gov (United States)

    Ross, Walter L.

    1987-01-01

    Resistance quickly varied in small steps over wide range. Device with no moving parts provides variable electrical resistance. Used with analog or digital circuity to provide electronic selection of large number of resistance values for testing, simulation, control, or other purposes. Nearest electromechanical equivalent of all-electronic device is potentiometer driven by servomotor.

  2. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are

  3. PEP-II injection timing and controls

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M.; Ronan, M.

    1997-07-01

    Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings

  4. Ventajas del uso de la inyección electrónica en Cuba para vehículos diesel ligeros. // Advantages of injection electronic control systems for cars with Diesel engines.

    Directory of Open Access Journals (Sweden)

    J. L. Reyes González

    2002-05-01

    Full Text Available Se presenta un análisis sobre las ventajas que brinda el control electrónico en la inyección Diesel en vehículos ligeros enfunción de las condiciones de clima y explotación en nuestro país. En nuestro trabajo se hace un análisis experimental y sedemuestra la influencia notable que presenta esta novedosa técnica en la contaminación ambiental y el consumo decombustible.Palabras claves: Inyección Diesel, control electrónico, contaminación ambiental, gases de escape.______________________________________________________________________Abstract.This paper deals with the advantages of the electronic control systems in Diesel engines in cars, taking intoconsideration the weather and exploitation conditions in our country. The experimental analysis shows the influence ofelectronic injections systems in the fuel consumption and the environmental impact of the exhaust gases.Key words: Diesel inyection, electronic control, ambiental pollution, exhaust gases.

  5. Rocket potential measurements during electron beam injection into the ionosphere

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Shutte, N.M.

    1981-01-01

    Electron flux measurements were made during pulsed injection of electron beams at a current of about 0.5 A and energy of 15 or 27 keV, using a retarding potential analyzer which was mounted on the lateral surface of the Eridan rocket during the ARAKS experiment of January 26, 1975. The general character of the retardation curves was found to be the same regardless of the electron injection energy, and regardless of the fact whether the plasma generator, injecting quasineutral cesium plasma with an ion current of about 10 A, was switched on. A sharp current increase in the interval between 10 to the -7th and 10 to the -6th A was observed with a decrease of the retarding potential. The rocket potential did not exceed approximately 150 V at about 130 to 190 km, and decreased to 20 V near 100 km. This was explained by the formation of a highly conducting region near the rocket, which was formed via intense plasma waves generated by the beam. Measurements of electron fluxes with energies of 1 to 3 keV agree well with estimates based on the beam plasma discharge theory

  6. Injection, compression and confinement of electrons in a magnetic mirror

    International Nuclear Information System (INIS)

    Fisher, A.

    1975-01-01

    A Helmholtz coil configuration has been constructed where the magnetic field can be increased to about 10 kGauss in 20 μsec. Electrons are injected from a hot tantalum filament between two plates across which a potential of about 5 keV is applied. The electric field E is perpendicular to the magnetic field B so that the direction of the E x B drift is radial--into the magnetic mirror. About 10 14 electrons were injected and about 10 13 electrons were trapped. The initial electron energy was about 5 keV and after compression 500 keV x-rays were observed. The confinement time is very sensitive to vacuum. Confinement times of milliseconds and good compression were observed at vacuum of 5.10 -5 torr or less. Above 5.10 -5 torr there was no trapping or compression. After a compressed ring of electrons was formed, it was released by a pulse applied to one of the Helmholtz coils that reduced the field. Ejection of the electron ring was observed by x-ray measurements

  7. Evaluation of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy.

    Science.gov (United States)

    Ari, Seyhmus; Nergiz, Yusuf; Aksit, Ihsan; Sahin, Alparslan; Cingu, Kursat; Caca, Ihsan

    2015-03-01

    To evaluate the effects of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy (SEM). Twenty-eight female rabbits were randomly divided into four equal groups. Rabbits in groups 1 and 2 underwent intracameral injection of 1 mg/0.1 mL and 0.5 mg/0.05 mL ranibizumab, respectively; group 3 was injected with 1.25 mg/0.05 mL bevacizumab. All three groups were injected with a balanced salt solution (BSS) into the anterior chamber of the left (fellow) eye. None of the rabbits in group 4 underwent an injection. Corneal thickness and intraocular pressure were measured before the injections, on the first day, and in the first month after injection. The rabbits were sacrificed and corneal tissues were excised in the first month after injection. Specular microscopy was used for the corneal endothelial cell count. Endothelial cell density was assessed and comparisons drawn between the groups and the control. Micrographs were recorded for SEM examination. The structure of the corneal endothelial cells, the junctional area of the cell membrane, the distribution of microvillus, and the cell morphology of the eyes that underwent intracameral injection of vascular endothelial growth factor (VEGF), BSS, and the control group were compared. Corneal thickness and intraocular pressure were not significantly different between the groups that underwent anti-VEGF or BSS injection and the control group on the first day and in the first month of injection. The corneal endothelial cell count was significantly diminished in all three groups; predominantly in group 1 and 2 (P<0.05). The SEM examination revealed normal corneal endothelial histology in group 3 and the control group. Eyes in group 1 exhibited indistinctness of corneal endothelial cell borders, microvillus loss in the luminal surface, excessive blebbing, and disintegration of intercellular junctions. In group 2, the cell structure of the corneal endothelium

  8. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9669-6] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste...

  9. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9461-5] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste...

  10. 76 FR 42125 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9440-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ConocoPhillips... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  11. 76 FR 36129 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-06-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9321-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ExxonMobil... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  12. 78 FR 76294 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-12-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9904-21-OW] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Mosaic... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  13. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act have been...

  14. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  15. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-08-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9724-1] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the...

  16. Electrokinetically controlled fluid injection into unicellular microalgae.

    Science.gov (United States)

    Zhou, Xuewen; Zhang, Xixi; Boualavong, Jonathan; Durney, Andrew R; Wang, Tonghui; Kirschner, Scott; Wentz, Michaela; Mukaibo, Hitomi

    2017-10-01

    Electrokinetically controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely studied model microalga Chlamydomonas reinhardtii. A microinjection system using glass capillary pipettes was developed to capture and impale the motile cells. To apply an electric field and induce electrokinetic flow (e.g., electrophoresis and electroosmosis), an electrode was inserted directly into the solution inside the impaling injection pipette and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate/propidium iodide dual fluorescent dye based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the injection pipette. Successful electrokinetic microinjection into cells was confirmed by both an increase in cell volume under an applied voltage and electric field dependent delivery of fluorescent fluorescein molecules into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and implementing a diffuse controller that, intervenes the electronic injection of fuel in a vehicle, for the utilization HHO as a supplementary fuel

    International Nuclear Information System (INIS)

    Chinchilla Vargas, Erick Gustavo

    2014-01-01

    A study was performed on the behavior of an internal combustion engine of a vehicle when has added oxyhydrogen (HHO) as a supplementary fuel, produced from a modified alkaline type electrolyser called HHO generator. The first stage is consisted of a theoretical and experimental analysis of the happened in the internal combustion engine by adding oxyhydrogen. The experimental part has performed road tests and equipment available were used in the engine test laboratories of RECOPE, as a roller dynamometer and a gas analyzer. The result from this first stage has found a slight increase in fuel performance and an unstable idling speed in the engine, this latest product in the vehicle's computer has been without design for the engine had operate with the addition of HHO. The second stage has designed one controller based in the diffuse logic with it is achieved in fuel performance and the flaws found are annulled. The third stage has involved the implementation of controller in the vehicle, which has involved taking the sensor signals of airflow and oxygen, pass by the controller, to be assigned new parameters and then deliver again to the vehicle computer without this notice the change. The performance of the designed controller is verified in the fourth stage, the same tests were made as in the first stage, in this way it was possible to verify and validate the data. Finally, a further increase is obtained in vehicle fuel efficiency, coupled with improved engine performance in different driving conditions without sacrificing power and torque. (author) [es

  18. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  19. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  20. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2013-01-01

    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  1. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  2. Runaway electron generation during plasma shutdown by killer pellet injection

    International Nuclear Information System (INIS)

    Gal, K; Feher, T; Smith, H; Fueloep, T; Helander, P

    2008-01-01

    Tokamak discharges are sometimes terminated by disruptions that may cause large mechanical and thermal loads on the vessel. To mitigate disruption-induced problems it has been proposed that 'killer' pellets could be injected into the plasma in order to safely terminate the discharge. Killer pellets enhance radiative energy loss and thereby lead to rapid cooling and shutdown of the discharge. But pellets may also cause runaway electron generation, as has been observed in experiments in several tokamaks. In this work, runaway dynamics in connection with deuterium or carbon pellet-induced fast plasma shutdown is considered. A pellet code, which calculates the material deposition and initial cooling caused by the pellet is coupled to a runaway code, which determines the subsequent temperature evolution and runaway generation. In this way, a tool has been created to test the suitability of different pellet injection scenarios for disruption mitigation. If runaway generation is avoided, the resulting current quench times are too long to safely avoid large forces on the vessel due to halo currents

  3. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  4. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  5. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    Science.gov (United States)

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  6. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  7. Fluorescence spectral shift of QD films with electron injection: Dependence on counterion proximity

    Science.gov (United States)

    Lu, Meilin; Li, Bo; Zhang, Yaxin; Liu, Weilong; Yang, Yanqiang; Wang, Yuxiao; Yang, Qingxin

    2017-05-01

    Due to the promising application of quantum dot (QD) films in solar cells, LEDs and environmental detectors, the fluorescence of charged QD films has achieved much attention during recent years. In this work, we observe the spectral shift of photoluminescence (PL) in charged CdSe/ZnS QD films controlled by electrochemical potential. The spectral center under negative bias changes from red-shift to blue-shift while introducing smaller inorganic counterions (potassium ions) into the electrolyte. This repeatable effect is attributed to the enhanced electron injection with smaller cations and the electronic perturbations of QD luminescence by these excess charges.

  8. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    , the dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying...... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study...

  9. Calculation of the mobility of electrons injected in liquid argon

    International Nuclear Information System (INIS)

    Ascarelli, G.

    1986-01-01

    A model calculation is carried out in which we evaluate the mobility of electrons injected in liquid argon. Scattering by both phonons and static density fluctuations is taken into account. The calculation for the mobility limited by phonon scattering differs from the usual calculation in crystals by considering both the local changes in the deformation potential and the changes of the amplitude of the phonons that are caused by the existence of density fluctuations. The calculation of the mobility limited by scattering from density fluctuations is carried out with the assumption that they give rise to a square-well (or barrier) potential that will scatter the electrons. The above perturbation ΔV 0 is related to a density fluctuation Δn by ΔV 0 = V 0 (n-bar+Δn)-V 0 (n-bar). The scattering volumes Ω, where the density fluctuation Δn is located, are weighted by exp(-r/xi) where xi is the correlation length and r is the radius of Ω. The magnitude of the different density fluctuations is weighted by exp[-(Δn) 2 Ω/2nS(0)], where S(0) = nk/sub B/TK/sub T/, K/sub T/ is the isothermal compressibility. The calculation of the mean free path is carried out using partial waves. Both scattering mechanisms, scattering by phonons and static density fluctuations, give comparable contributions to the mobility

  10. Buildup of electrons with hot electron beam injection into a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Bashko, V.A.; Krivoruchko, A.M.; Tarasov, I.K.

    1989-01-01

    The injection of the monoenergetic beam of electrons into the vacuum drift channel under the conditions when the beam current exceeds a certain threshold value involves a virtual cathode creation. The process of virtual cathode creation leads to an exchange of one-fluid movement of beam particles to three-fluid one corresponding to incident, reflected and passed through anticathode beam particles. For the monoenergetic beam case when the velocity spread Δv dr (v dr is the beam drift velocity), the beam instability was predicted in theory and was observed in experiment. Meanwhile, the injection in the drift space of the 'hot' beam having finite spread in velocities may be accompanied not only by the reflection of particles if their velocity v 1/2 (where φ is the electrostatic potential dip value, e and m are the electron charge and mass, respectively), but also the mutual Coulomb scattering of incident and reflected electrons. The scattering process leads in its turn to appearance of viscosity forces and to trapping of a part of beam electrons into the effective potential well formed by electrostatic potential dip and the viscous force potential. The interaction of travelling and trapped particles may occur even at the stage preceding the virtual electrode formation and it may influence the process of its appearance and also the current flow through the drift space. In this report there are described the experimental results on accumulation of electrons when electron beam propagates in vacuum and has a large spread in particle velocities Δv dr in the homogeneous longitudinal magnetic field when ω pe He where ω pe is the electron Langmuir frequency of beam electrons, ω He is the electron cyclotron frequency. (author) 6 refs., 2 figs

  11. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  12. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  13. Turbulent shear control with oscillatory bubble injection

    International Nuclear Information System (INIS)

    Park, Hyun Jin; Oishi, Yoshihiko; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi

    2009-01-01

    It is known that injecting bubbles into shear flow can reduce the frictional drag. This method has advantages in comparison to others in simplicity of installation and also in environment. The amount of drag reduction by bubbles depends on the void fraction provided in the boundary layer. It means, however, that certain power must be consumed to generate bubbles in water, worsening the total power-saving performance. We propose oscillatory bubble injection technique to improve the performance in this study. In order to prove this idea of new type of drag reduction, velocity vector field and shear stress profile in a horizontal channel flow are measured by ultrasonic velocity profiler (UVP) and shear stress transducer, respectively. We measure the gas-liquid interface from the UVP signal, as well. This compound measurement with different principles leads to deeper understanding of bubble-originated drag reduction phenomena, in particular for unsteady process of boundary layer alternation. At these experiments, the results have demonstrated that the intermittency promotes the drag reduction more than normal continuous injection for the same void fraction supplied.

  14. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    Science.gov (United States)

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  15. The DFT investigations of the electron injection in hydrazone-based sensitizers

    KAUST Repository

    Al-Sehemi, Abdullah G.; Irfan, Ahmad; Asiri, Abdullah M.

    2012-01-01

    solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling

  16. Fuelling regulation with Electronic fuel injection for small spark ignition engine using Fuzzy Logic

    International Nuclear Information System (INIS)

    Shah, S.R.; Sahir, M.H.

    2004-01-01

    The use of Electronic Control systems in automotive applications gives the design engineer greater control over various processes compared with mechanical methods Examples of such electronic control systems are Electronic Fuel Injection (EFI), Traction Control Systems (TCS) and Anti-lock Braking Systems (ABS). In addition, the development of inexpensive and fast microcontrollers has remarkably improve, performance of passive and active safety systems of automobiles, without causing excessive increase in prices of vehicles -a favourable factor from the consumer's perspective. This paper deals with a possible electronic aid for the improvement of power control in a motorcycle. Controlling the speed and power of a motorcycle is difficult; especially on bumpy and uneven terrain. In this paper, the development of an EPI system is discussed, incorporating artificial intelligence to regulate the fuel supplied to the engine. It would minimize wheel slippage and jerky and sudden acceleration which potentially dangerous. It would also reduce production of large quantities of pollutant like hydrocarbons and carbon monoxide. Fuel consumption would also improve during stop-and-go traffic. (author)

  17. Regulatory controls and slurry fracture injection

    International Nuclear Information System (INIS)

    Dusseault, M. B.; Bilak, R. A.

    1997-01-01

    The technological and regulatory framework necessary for the safe operation of solid waste disposal using slurry fracture injection (SFI) in Saskatchewan and Alberta was studied. Seven current SFI sites were used as the source of experience. Regular audits of volumes, continuous pressure recording, careful deformation monitoring and analysis, and repeated evaluation of reservoir properties were considered to be the essential features. In the case of toxic wastes, microseismic monitoring and regular well interference or tracer tests might be additional measures used to increase confidence in the containment method. Given the recent introduction of SFI technology, guarding against over-regulation was recommended to allow SFI to operate under the most effective operating conditions, and to preserve its attractiveness as an environmentally attractive and safe waste disposal alternative. 5 refs., 3 tabs., 4 figs

  18. Computer control of the ISX-B neutral injection beamlines

    International Nuclear Information System (INIS)

    Hanna, P.C.

    1982-09-01

    A system of controls for the Impurity Study Experiment (ISX-B) neutral injection beamlines at the Oak Ridge National Laboratory is presented. The system uses standard CAMAC equipment interfaced to the actual beamline controls and driven by a PDP-11/34 mini-computer. It is designed to relieve the operator of most of the mundane tasks of beam injection and also to reduce the number of operators needed to monitor multiple beamlines

  19. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  20. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  1. Improving Charge Injection in Organic Electronic Devices Using Self-Assembled Monolayers

    Science.gov (United States)

    Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    Organic electronic devices consist of one or more insulating organic layers contacted by metallic conductors. The Schottky energy barrier between the metal and the organic material is determined by the work function of the metal contact as described in the ideal Schottky model. The magnitude of the metal/organic Schottky energy barrier controls charge injection from the metal into the organic layer. Previously, polar alkane-thiol based self-assembled monolayers (SAMs) were used to change the Schottky energy barrier between the metal and an organic film by more than 1 eV. In these SAMs, the large energy gap of the alkane molecules blocks charge injection into the organic layer despite the decrease of the Schottky energy barrier. Here, we demonstrate improved charge injection into the organic material by using conjugated self-assembled monolayers. The conjugated SAMs have modest energy gaps which allow improved charge injection into the organic layer. We present measurements of current-voltage characteristics and metal/organic Schottky energy barriers for device structures both with and without conjugated SAMs.

  2. Electronic control devices

    International Nuclear Information System (INIS)

    Hartill, D.L.

    1981-01-01

    The subject of these lectures is the translation of information from particle detectors to computers. Large solid angle general purpose detectors at the intersection regions of high energy e+e- storage rings and pp and pp storage rings are discussed. Three choices for data acquisition are reviewed: use CAMAC (Computer Aided Measurement and Control), start from scratch and design a system, or wait for the final version of the proposed FASTBUS to be developed. The do-it-yourself procedure includes designs of drift chamber discriminator, time to amplitude converter, and data card block diagram. Trigger systems, the fast decision making systems judging an event interesting enough for a read-out cycle to be initiated, are discussed. Finally, a FASTBUS system layout, with its goals of minimum bus speed, general system topologies, and support multiple smart devices is given

  3. Laser injection of ultra-short electron bursts for the diagnosis of Hall thruster plasma

    International Nuclear Information System (INIS)

    Albarede, L; Gibert, T; Lazurenko, A; Bouchoule, A

    2006-01-01

    The present developments of Hall thrusters for satellite control and space mission technologies represent a new step towards their routine use in place of conventional thermal thrusters. In spite of their long R and D history, the complex physics of the E x B discharge at work in these structures has prevented, up to now, the availability of predictive simulations. The electron transport in the accelerating layers of these thrusters is one of the remaining challenges in this direction. From the experimental point of view, any diagnostics of electron transport and electric field in this critical layer would be welcome for comparison with code predictions. Appropriate diagnostics are difficult, due to the very aggressive local plasma conditions. This paper presents the first step in the development of a new tool for characterization of the plasma electric field in the very near exhaust thruster plume and comparison with simulation code predictions. The main idea is to use very short bursts of electrons, probing local electron dynamics in this critical plume area. Such bursts can be obtained through photoelectric emission induced by a UV pulsed laser beam on a convenient target. A specific study, devoted to the characterization of the electron burst emission, is presented in the first section of the paper; the implementation and testing of the injection of electrons in the critical layer of Hall thruster plasma is described in the second section. The design and testing of a fast and sensitive system for characterizing the transport of injected bursts will be the next step of this program. It requires a preliminary evaluation of electron trajectories which was achieved by using simulation code. Simulation data are presented in the last section of the paper, with the full diagnostic design to be tested in the near future, when runs will be available in the renewed PIVOINE facility. The same electron burst injection could also be a valuable input in the present

  4. Spin injection into a two-dimensional electron gas using inter-digital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.M.; Nitta, J.; Jensen, Ane

    2002-01-01

    We present a model that describes the spin injection across a single interface with two electrodes. The spin-injection rate across a typical hybrid junction made of ferromagnet (FM) and a two-dimensional electron gas (2DEG) is found at the percentage level. We perforin spin-injection-detection ex......-injection-detection experiment on devices with two ferromagnetic contacts on a 2DEG confined in an InAs quantum well. A spin-injection rate of 4.5% is estimated from the measured magnetoresistance....

  5. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  6. High pressure common rail injection system modeling and control.

    Science.gov (United States)

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Fast electron beam charge injection and switching in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Fitting, Hans-Joachim; Schreiber, Erik [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Touzin, Matthieu [Laboratoire de Structure et Proprietes de l' Etat Solide, UMR CNRS 8008, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2011-04-15

    Basic investigations of secondary electrons (SE) relaxation and attenuation are made by means of Monte Carlo simulations using ballistic electron scattering and interactions with optical and acoustic phonons as well as impact ionization of valence band electrons. Then the electron beam induced selfconsistent charge transport and secondary electron emission in insulators are described by means of an electron-hole flight-drift model (FDM). Ballistic secondary electrons and holes, their attenuation and drift, as well as their recombination, trapping, and field- and temperature-dependent Poole-Frenkel detrapping are included. Whereas the initial switching-on of the secondary electron emission proceeds over milli-seconds due to long-lasting selfconsistent charging, the switching-off process occurs much faster, even over femto-seconds. Thus a rapid electron beam switching becomes possible with formation of ultra-short electron beam pulses offering an application in stroboscopic electron microscopy and spectroscopy. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Manipulating the electron distribution through a combination of electron injection and MacKenzie’s Maxwell Demon

    International Nuclear Information System (INIS)

    Yip, Chi-Shung; Hershkowitz, Noah

    2015-01-01

    Experiments on electron heating are performed in a biased hot filament-produced argon plasma. Electrons are confined by multi-dipole magnetic fields on the radial wall of the cylindrical chamber but not the planar end walls. Electron heating is provided by a combination of cold electron injection (Hershowitz N and Leung K N 1975 Appl. Phys. Lett. 26 607) and a MacKenzie Maxwell Demon (Mackenzie K R et al 1971 Appl. Phys. Lett. 18 529). This approach allows the manipulation of the electrons by introducing a depleted tail into the electron energy distribution function or by removing a depleted tail. It is found that the injected electrons mimic and thermalize with the electron species with the closest average energy or temperature. The effect of the injected electrons is optimal when they mimic the secondary electrons emitted from the wall instead of the degraded primary electrons. Both approaches combine to achieve increases in electron temperature T e from 0.67 to 2.8 eV, which was not significantly higher than using each approach alone. (paper)

  9. First observations of acceleration of injected electrons in a laser plasma beatwave experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Martin, F.; Bordeur, P.; Heighway, E.A.; Matte, J.P.; Pepin, H.; Lavigne, P.

    1986-01-01

    The first experimental observations of acceleration of injected electrons in a laser driven plasma beatwave are presented. The plasma waves were excited in an ionized gas jet, using a short pulse high intensity CO 2 laser with two collinearly propagating beams (at λ = 9.6 μm and 10.6 μm) to excite a fast wave (v/sub p/ = c). The source of electrons was a laser plasma produced on an aluminum slab target by a third, synchronized CO 2 laser beam. A double-focusing dipole magnet was used to energy select and inject electrons into the beatwave, and a second magnetic spectrograph was used to analyze the accelerated electrons. Electron acceleration was only observed when the appropriate resonant plasma density was produced (∼ 10 17 cm -3 ), the two laser lines were incident on the plasma, and electrons were injected into this plasma from an external source

  10. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  11. Electron gun controlled smart structure

    Science.gov (United States)

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  12. The control system for SSRF injection and extraction

    International Nuclear Information System (INIS)

    Yuan Qibing; Gu Ming; Wang Ruiping; Cheng Zhihao; Fan Xuerong; Zhu Haijun

    2007-01-01

    This paper introduces the injection and extraction control system design for SSRF, which is a distributed control system aimed at stability and reliability of the pulse power supplies, PPS (Personnel Protection System) and MPS (Machine Protection System). The hardware environment is mainly based on PLC (Programmable Logic Controller), and ARM (Advanced RISC Machine) is also applied for studying stability of the power supplies. WinCC and EPICS (Experimental Physics and Industrial Control System) have been selected as the platforms of SCADA (Supervisory Control and Data Acquisition). For unifying the interfacing to the control computer, all front-end equipments are connected via Industrial Ethernet. (authors)

  13. Electron injection mechanisms of green organic light-emitting devices fabricated utilizing a double electron injection layer consisting of cesium carbonate and fullerene

    International Nuclear Information System (INIS)

    Yang, J.S.; Choo, D.C.; Kim, T.W.; Jin, Y.Y.; Seo, J.H.; Kim, Y.K.

    2010-01-01

    Electron injection mechanisms of the luminance efficiency of green organic light-emitting devices (OLEDs) fabricated utilizing a cesium carbonate (Cs 2 CO 3 )/fullerene (C 60 ) heterostructure acting as an electron injection layer (EIL) were investigated. Current density-voltage and luminance-voltage measurements showed that the current densities and the luminances of the OLEDs with a Cs 2 CO 3 or Cs 2 CO 3 /C 60 EIL were higher than that of the OLEDs with a Liq EIL. The luminance efficiency of the OLEDs with a Cs 2 CO 3 EIL was almost three times higher than that of the OLEDs with a Liq EIL. Because the electron injection efficiency of the Cs 2 CO 3 layer in OLEDs was different from that of the C 60 layer, the luminance efficiency of the OLEDs with a double EIL consisting of a Cs 2 CO 3 layer and a C 60 layer was smaller than that of the OLEDs with a Cs 2 CO 3 EIL. The electron injection mechanisms of OLEDs with a Cs 2 CO 3 and C 60 double EIL are described on the basis of the experimental results.

  14. Injection-limited electron current in a methanofullerene

    NARCIS (Netherlands)

    Duren, J.K.J. van; Mihailetchi, V.D.; Blom, P.W.M.; Woudenbergh, T. van; Hummelen, J.C.; Rispens, M.T.; Janssen, R.A.J.; Wienk, M.M.

    2003-01-01

    The dark current of bulk-heterojunction photodiodes consisting of a blend of a methanofullerene (PCBM) as n-type electron acceptor and a dialkoxy-(p-phenylene vinylene) (OC1C10-PPV) as a p-type electron donor sandwiched between electrodes with different work functions has been investigated. With

  15. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  16. Quality control of injection moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2009-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection moulded components selected from an industrial application. These parts are measured...... using an Optical Coordinate Measuring Machine (OCMM), which guarantees fast surface scans suitable for in line quality control. The uncertainty assessment of the measurements is calculated following the substitution method. To investigate the influence parameters in optical coordinate metrology two...

  17. Injection of an electron beam into a plasma and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  18. Survey of Botulinum Toxin Injections in Anticoagulated Patients: Korean Physiatrists' Preference in Controlling Anticoagulation Profile Prior to Intramuscular Injection.

    Science.gov (United States)

    Jang, Yongjun; Park, Geun-Young; Park, Jihye; Choi, Asayeon; Kim, Soo Yeon; Boulias, Chris; Phadke, Chetan P; Ismail, Farooq; Im, Sun

    2016-04-01

    To evaluate Korean physiatrists' practice of performing intramuscular botulinum toxin injection in anticoagulated patients and to assess their preference in controlling the bleeding risk before injection. As part of an international collaboration survey study, a questionnaire survey was administered to 100 Korean physiatrists. Physiatrists were asked about their level of experience with botulinum toxin injection, the safe international normalized ratio range in anticoagulated patients undergoing injection, their tendency for injecting into deep muscles, and their experience of bleeding complications. International normalized ratio injection by 41% of the respondents. Thirty-six respondents replied that the international normalized ratio should be lowered to sub-therapeutic levels before injection, and 18% of the respondents reported that anticoagulants should be intentionally withheld and discontinued prior to injection. In addition, 20%-30% of the respondents answered that they were uncertain whether they should perform the injection regardless of the international normalized ratio values. About 69% of the respondents replied that they did have any standardized protocols for performing botulinum toxin injection in patients using anticoagulants. Only 1 physiatrist replied that he had encountered a case of compartment syndrome. In accordance with the lack of consensus in performing intramuscular botulinum toxin injection in anticoagulated patients, our survey shows a wide range of practices among many Korean physiatrists; they tend to avoid botulinum toxin injection in anticoagulated patients and are uncertain about how to approach these patients. The results of this study emphasize the need for formulating a proper international consensus on botulinum toxin injection management in anticoagulated patients.

  19. Enhanced Control for Local Helicity Injection on the Pegasus ST

    Science.gov (United States)

    Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.

    2017-10-01

    Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Predicting, monitoring and controlling geomechanical effects of CO2 injection

    International Nuclear Information System (INIS)

    Streit, J.E.; Siggins, A.F.

    2005-01-01

    A key objective of geological carbon dioxide (CO 2 ) storage in porous rock is long-term subsurface containment of CO 2 . Fault stability and maximum sustainable pore-fluid pressures should be estimated in geomechanical studies in order to avoid damage to reservoir seals and fault seals of storage sites during CO 2 injection. Such analyses rely on predicting the evolution of effective stresses in rocks and faults during CO 2 injection. However, geomechanical analyses frequently do not incorporate poroelastic behaviour of reservoir rock, as relevant poroelastic properties are rarely known. The knowledge of rock poroelastic properties would allow the use of seismic methods for the accurate measurement of the effective stress evolution during CO 2 injection. This paper discussed key geomechanical effects of CO 2 injection into porous rock, and in particular, focused on the effects that the poroelasticity of reservoir rocks and pore pressure/stress coupling have on effective stresses. Relevant geophysical monitoring techniques were also suggested. The paper also outlined how these techniques could be applied to measure stress changes related to poroelastic rock behaviour during CO 2 injection and to test the predictions of sustainable changes in effective stress in CO 2 storage sites. It was concluded that a combination of predictive geomechanical techniques and application of geophysical monitoring techniques is a valid new concept for controlling and monitoring the geomechanical effects of CO 2 storage. 36 refs., 5 figs

  1. Laser pulse control of bridge mediated heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Wang Luxia; May, Volkhard

    2009-01-01

    Ultrafast heterogeneous electron transfer from surface attached dye molecules into semiconductor band states is analyzed. The focus is on systems where the dye is separated from the surface by different bridge anchor groups. To simulate the full quantum dynamics of the transfer process a model of reduced dimensionality is used. It comprises the electronic levels of the dye, the bridge anchor group electronic levels and the continuum of semiconductor band states, all defined versus a single intramolecular vibrational coordinate. The effect of the bridge states is demonstrated, firstly, in studying the injection dynamics following an impulsive excitation of the dye. Then, by discussing different control tasks it is demonstrate in which way the charge injection process can be influenced by tailored laser pulses. To highlight the importance of electron wave function interference emphasis is put on asymmetric two-bridge molecule systems which are also characterized by different and complex valued electronic transfer matrix elements.

  2. Stable, tunable, quasimonoenergetic electron beams produced in a laser wakefield near the threshold for self-injection

    Directory of Open Access Journals (Sweden)

    S. Banerjee

    2013-03-01

    Full Text Available Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low-energy spread, ∼10  pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear focus of the laser pulse within the plasma suppresses continuous injection, thus reducing the low-energy tail of the electron beam.

  3. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser

  4. Numerical study on formation process of helical nonneutral plasmas using electron injection from outside magnetic surfaces

    International Nuclear Information System (INIS)

    Nakamura, Kazutaka; Himura, Haruhiko; Masamune, Sadao; Sanpei, Akio; Isobe, Mitsutaka

    2009-01-01

    In order to investigate the formation process of helical nonneutral plasmas, we calculate the orbits of electron injected in the stochastic magnetic field when the closed helical magnetic surfaces is correspond with the equipotential surfaces. Contrary to the experimental observation, there are no electrons inward penetrating. (author)

  5. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    Science.gov (United States)

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.

    2018-05-01

    We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as  ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.

  6. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  7. Controlling electronics boards with PVSS

    CERN Document Server

    Jacobsson, Richard

    2005-01-01

    This paper addresses several aspects of implementing a control system for electronics boards in order to perform remote Field Programmable Gate Array (FPGA) programming, hardware configuration, register control, and monitoring, as well as interfacing it to an expert system. The paper presents an implementation, using the Distributed Information Management (DIM) package and the industrial SCADA system PVSS II from ETM, in which the access mechanisms to the board resources are completely generic and in which the device prescription and the handling of mapping between functional parameters and physical registers follow a common structure independent of the board type. The control system also incorporates mechanisms by which it may be controlled from a finite state machine based expert system. Finally the paper suggests an improvement in which the mapping between logical parameters and physical registers is represented by descriptors in the device description such that the translation can be handled by a common m...

  8. Characteristics of post-disruption runaway electrons with impurity pellet injection

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Nakano, Tomohide; Isayama, Akihiko; Asakura, Nobuyuki; Tamai, Hiroshi; Kubo, Hirotaka; Takenaga, Hidenobu; Bakhtiari, Mohammad; Ide, Shunsuke; Kondoh, Takashi; Hatae, Takaki

    2005-01-01

    Characteristics of post-disruption runaway electrons with impurity pellet injection were investigated for the first time using the JT-60U tokamak device. A clear deposition of impurity neon ice pellets was observed in a post-disruption runaway plasma. The pellet ablation was attributed to the energy deposition of relativistic runaway electrons in the pellet. A high normalized electron density was stably obtained with n e bar /n GW ∼2.2. Effects of prompt exhaust of runaway electrons and reduction of runaway plasma current without large amplitude MHD activities were found. One possible explanation for the basic behavior of runaway plasma current is that it follows the balance of avalanche generation of runaway electrons and slowing down predicted by the Andersson-Helander model, including the combined effect of collisional pitch angle scattering and synchrotron radiation. Our results suggested that the impurity pellet injection reduced the energy of runaway electrons in a stepwise manner. (author)

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  10. Efficient scattering of electrons below few keV by Time Domain Structures around injection fronts

    Science.gov (United States)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.

    2016-12-01

    Van Allen Probes observations show an abundance of non-linear large-amplitude electrostatic spikes around injection fronts in the outer radiation belt. These spikes referred to as Time Domain Structures (TDS) include electron holes, double layers and more complicated solitary waves. The electron scattering driven by TDS may not be evaluated via the standard quasi-linear theory, since TDS are in principle non-linear plasma modes. In this paper we analyze the scattering of electrons by three-dimensional TDS (with non-negligible perpendicular electric field) around injection fronts. We derive the analytical formulas describing the local scattering by single TDS and show that the most efficiently scattered electrons are those in the first cyclotron resonance (electrons crossing TDS on a time scale comparable with their gyroperiod). The analytical formulas are verified via the test-particle simulation. We compute the bounce-averaged diffusion coefficients and demonstrate their dependence on the TDS spatial distribution, individual TDS parameters and L shell. We show that TDS are able to provide the pitch-angle scattering of <5 keV electrons at rate 10-2-10-4 s-1 and, thus, can be responsible for driving loss of electrons out of injections fronts on a time scale from few minutes to few hours. TDS can be, thus, responsible for driving diffuse aurora precipitations conjugated to injection fronts. We show that the pitch-angle scattering rates driven by TDS are comparable with those due to chorus waves and exceed those due to electron cyclotron harmonics. For injections fronts with no significant wave activity in the frequency range corresponding to chorus waves, TDS can be even dominant mechanism for losses of below few keV electrons.

  11. Modeling and Experiments on Injection into University of Maryland Electron Ring

    International Nuclear Information System (INIS)

    Bai, G.; Kishek, R. A.; Beaudoin, B.; Bernal, S.; Feldman, D.; Godlove, T.; Haber, I.; Quinn, B.; Reiser, M.; Sutter, D.; Walter, M.; O'Shea, P. G.

    2006-01-01

    The University of Maryland Electron Ring (UMER) is built as a low-cost testbed for intense beam physics for benefit of larger ion accelerators. The beam intensity is designed to be variable, spanning the entire range from low current operation to highly space-charge-dominated transport. The ring has been closed and multi-turn commissioning has begun. One of the biggest challenges of multi-turn operation of UMER is correctly operating the Y-shaped injection/recirculation section, which is specially designed for UMER multi-turn operation. It is a challenge because the system requires several quadrupoles and dipoles in a very stringent space, resulting in mechanical, electrical, and beam control complexities. Also, the Earth's magnetic field and the image charge effects have to be investigated because they are strong enough to impact the beam centroid motion. This paper presents both simulation and experimental study of the beam centroid motion in the injection region to address above issues

  12. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    Science.gov (United States)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Novel multi-chromophor light absorber concepts for DSSCs for efficient electron injection

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Robert; Strothkaemper, Christian; Bartelt, Andreas; Hannappel, Thomas; Eichberger, Rainer [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fasting, Carlo [Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany); Thomas, Inara [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2011-07-01

    Dye sensitized solar cells (DSSCs) operate by injecting electrons from the excited state of a light-harvesting dye into the continuum of conduction band states of a wide bandgap semiconductor. The light harvesting efficiency of pure organic dyes is limited by a narrow spectral electronic transition. A beneficial broad ground state absorption in the VIS region can be achieved by applying a single molecular dye system with multiple chromophors involving a Foerster resonance energy transfer (FRET) mechanism for an efficient electron injection. A model donor acceptor dye system capable for FRET chemically linked to colloidal TiO{sub 2} and ZnO nanorod surfaces was investigated in UHV environment. We used VIS/NIR femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy to study the charge injection dynamics of the antenna system. Different chromophors attached to a novel scaffold/anchor system connecting the organic absorber unit to the metal oxide semiconductor were probed.

  14. Electron injection from graphene quantum dots to poly(amido amine) dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, T. N.; Inciong, M. R.; Santiago, S. R.; Shu, G. W.; Yuan, C. T.; Shen, J. L., E-mail: jlshen@cycu.edu.tw [Department of Physics, Center for Nanotechnology, and Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Kao, C. W. [Master Program in Nanotechnology at CYCU, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yeh, J. M.; Chen-Yang, Y. W. [Department of Chemistry, Center for Nanotechnology, and Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2016-04-18

    The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.

  15. Parameter Dependence of Inward Diffusion on Injected Electrons in Helical Non-Neutral Plasmas

    International Nuclear Information System (INIS)

    Wakabayashi, H.; Himura, H.; Fukao, M.; Yoshida, Z.

    2003-01-01

    Experimental studies on an electron injection into a helical magnetic field and characteristics of non-neutral plasmas have been performed. It is found that the space potential φs has a weak dependence on the injection angle except for a narrow 'window' region in which φs significantly drops. A calculation shows that because of the electric field Eg of the electron gun (e-gun), the emitted electrons are launched quasi-parallel to the helical magnetic field B, regardless of α. This seems to agree with the observation. The 'window' seen in the data may be attributed to an current-driven instability which might result in the insufficient electron penetration or the degradation of electron confinement in the magnetic surface

  16. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Oskari [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 (Finland); Håkansson, Markus [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Sakari, E-mail: sakari.kulmala@aalto.fi [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland)

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F{sup +}-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes. - Highlights: • Hot electrons injected into aqueous electrolyte solution. • Generation of hydrated electrons. • Hole injection into aqueous electrolyte solution. • Generation of hydroxyl radicals.

  17. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  18. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    Science.gov (United States)

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  19. Apparatus and method for controlling the secondary injection of fuel

    Science.gov (United States)

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  20. Electron self-injection and trapping into an evolving plasma bubble.

    Science.gov (United States)

    Kalmykov, S; Yi, S A; Khudik, V; Shvets, G

    2009-09-25

    The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams.

  1. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  2. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  3. Results and analysis of the TMX electron-beam injection experiments

    International Nuclear Information System (INIS)

    Poulsen, P.; Grubb, D.P.

    1980-01-01

    Electron beams (e-beams) were injected into the Tandem Mirror Experiment (TMX) plasma in order to investigate the effect on the ion cyclotron fluctuations of the plasma. The power level of the e-beams was comparable to that of the injected neutral beams. It was found that injection of the e-beams produced no significant effect on the ion cyclotron fluctuations, the measured plasma parameters, or the particle and power flow of the plasma. The increase in bulk electron temperature and the production of mirror-confined electrons found in previous experiments in which e-beams were injected into a mirror-confined plasma were not observed in this experiment. Analysis of the regions and frequencies of wave creation and absorption within the plasma shows that the plasma density and magnetic field profiles through the plasma strongly affect the resonances encountered by the waves. The steep axial density profiles produced by neutral-beam injection in the TMX experiment are not conducive to efficient coupling of the e-beam energy to the plasma

  4. Electron self-injection and acceleration in the bubble regime of laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. The intense laser-plasma and beam-plasma interactions are highly nonlinear-phenomena, which besides being of fundamental interest, attract a great attention due to a number of important applications. One of the key applications is particle acceleration based on excitation of the strong plasma wakefield by laser pulse. In the linear regime of interaction when the laser intensity is low the plasma wake is the linear plasma wave. Moreover, the ponderomotive force of the laser pulse pushes out the plasma electrons from high intensity region leaving behind the laser pulse the plasma cavity - bubble, which is almost free from the plasma electrons. This is the bubble the laser-plasma interaction. Although the bubble propagates with velocity, which is close to speed of light, the huge charge of unshielded ions inside the plasma cavity can trap the cold plasma electrons. Moreover, the electrons are trapped in the accelerated phase of the bubble plasma field thereby leading to efficient electron acceleration. The electron self-injection is an important advantage of the plasma-based acceleration, which allows to exclude the beam loading system requiring accurate synchronization and additional space. The recent experiments have demonstrated high efficiency of the electron self-injection. The beam quality is often of crucial importance in many applications ranging from inertial confinement fusion to the x-ray free electron lasers. Despite a great interest there is still a little theory for relativistic electron dynamics in the plasma wake in multidimensional geometry including electron self-injection. The dynamics of the self-injected electrons can be roughly divided into three stage: (i) electron scattering by the laser pulse, (ii) electron trapping by the bubble, (iii) electron acceleration in the bubble. We developed two analytical models for electron dynamics in the bubble field and verify them by direct measurements of model parameters

  5. Ultrafast Phase Transition in Vanadium Dioxide Driven by Hot-Electron Injection

    Directory of Open Access Journals (Sweden)

    Prasankumar R. P.

    2013-03-01

    Full Text Available We present a novel all-optical method of triggering the phase transition in vanadium dioxide by means of ballistic electrons injected across the interface between a mesh of Au nanoparticles coveringd VO2 nanoislands. By performing non-degenerate pump-probe transmission spectroscopy on this hybrid plasmonic/phase-changing nanostructure, structural and electronic dynamics can be retrieved and compared.

  6. Dextrose Prolotherapy Versus Control Injections in Painful Rotator Cuff Tendinopathy.

    Science.gov (United States)

    Bertrand, Helene; Reeves, Kenneth Dean; Bennett, Cameron J; Bicknell, Simon; Cheng, An-Lin

    2016-01-01

    To compare the effect of dextrose prolotherapy on pain levels and degenerative changes in painful rotator cuff tendinopathy against 2 potentially active control injection procedures. Randomized controlled trial, blinded to participants and evaluators. Outpatient pain medicine practice. Persons (N=73) with chronic shoulder pain, examination findings of rotator cuff tendinopathy, and ultrasound-confirmed supraspinatus tendinosis/tear. Three monthly injections either (1) onto painful entheses with dextrose (Enthesis-Dextrose), (2) onto entheses with saline (Enthesis-Saline), or (3) above entheses with saline (Superficial-Saline). All solutions included 0.1% lidocaine. All participants received concurrent programmed physical therapy. Primary: participants achieving an improvement in maximal current shoulder pain ≥2.8 (twice the minimal clinically important difference for visual analog scale pain) or not. Secondary: improvement in the Ultrasound Shoulder Pathology Rating Scale (USPRS) and a 0-to-10 satisfaction score (10, completely satisfied). The 73 participants had moderate to severe shoulder pain (7.0±2.0) for 7.6±9.6 years. There were no baseline differences between groups. Blinding was effective. At 9-month follow-up, 59% of Enthesis-Dextrose participants maintained ≥2.8 improvement in pain compared with Enthesis-Saline (37%; P=.088) and Superficial-Saline (27%; P=.017). Enthesis-Dextrose participants' satisfaction was 6.7±3.2 compared with Enthesis-Saline (4.7±4.1; P=.079) and Superficial-Saline (3.9±3.1; P=.003). USPRS findings were not different between groups (P=.734). In participants with painful rotator cuff tendinopathy who receive physical therapy, injection of hypertonic dextrose on painful entheses resulted in superior long-term pain improvement and patient satisfaction compared with blinded saline injection over painful entheses, with intermediate results for entheses injection with saline. These differences could not be attributed to a

  7. The effect of external electron injection and the environment composition on development of atmospheric discharge investigation

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Oginov, A.V.; Chajkovskij, S.A.; Shpakov, K.V.

    2012-01-01

    The effect of external electron injection (with energy about 150 keV) on initial phase development of the high-voltage (1.0-1.2 MV) long (500-700 mm) gas discharge is investigated. The experiments were conducted in atmospheric pressure air and in a mixture of air and water droplet phase [ru

  8. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  9. Computations on injection into organics - or how to let electrons shine

    NARCIS (Netherlands)

    Uijttewaal, M.A.

    2007-01-01

    This thesis studies various aspects of electron injection into organic light-emitting diodes (OLEDs) using density functional theory and the master equation approach (only the last chapter). The first part of the thesis studies the relation between the work function and the surface stability of a

  10. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed

  11. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  12. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  13. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    International Nuclear Information System (INIS)

    Zeitler, Benno Michael Georg

    2017-01-01

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  14. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  15. Development of integrated control system for smart factory in the injection molding process

    Science.gov (United States)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  16. Improved electron injection into Alq{sub 3} based devices using a thin Erq{sub 3} injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, P; Desai, P; Gillin, W P [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Curry, R J [Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-04-21

    The role of a thin erbium(III) tris(8-hydroxyquinoline) (Erq{sub 3}) interface layer on the electron injection into aluminium(III) tris(8-hydroxyquinoline) (Alq{sub 3}) based organic light emitting devices (OLEDs) has been investigated. It has been shown that the use of a 40 A interface layer can increase the efficiency of a simple Alq{sub 3} OLED with an Al cathode to a level comparable with other, well established, high-efficiency cathodes such as LiF/Al. We also show that, despite the bulk HOMO and LUMO positions for Erq{sub 3} being little different from those for Alq{sub 3}, the presence of an interfacial layer makes the devices turn-on voltage almost independent of the cathode metal. This is explained by there being a vacuum level shift for Erq{sub 3} which is dependent on the work function of the cathode metal.

  17. Laser control of electron matter waves

    NARCIS (Netherlands)

    Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.

    2016-01-01

    In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted

  18. The DFT investigations of the electron injection in hydrazone-based sensitizers

    KAUST Repository

    Al-Sehemi, Abdullah G.

    2012-03-01

    Quantum chemical calculations were carried out by using density functional theory and time-dependant density functional theory at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) level of theories. The absorption spectra have been computed with and without solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling constant, we have shed light on the nature of different sensitizers. The coplanarity between the benzene near anchoring group having LUMO and the bridge (N-N) is broken in System6 and System7 that would hamper the recombination process. The electron injection of System2-System10 is superior to System1. The highest electronic coupling constant has been observed for System6 that followed the System7 and System8. The light-harvesting efficiency of all the sensitizers enlarged in acetonitrile and ethanol. The long-range-corrected functional (LC-BLYP), Coulomb-attenuating method (CAM-B3LYP), and BH and HLYP functional underestimate the excitation energies while B3LYP is good to reproduce the experimental data. Moreover, we have investigated the effect of cyanoacetic acid as anchoring group on the electron injection. © 2012 Springer-Verlag.

  19. Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Wang, Nengchao; Jin, Hai; Zhuang, Ge; Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen

    2014-01-01

    A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded

  20. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  1. Control of cluster ion sizes for efficient injection heating

    International Nuclear Information System (INIS)

    Enjoji, Hiroshi; Be, S.H.; Yano, Katsuki; Okamoto, Kosuke

    1976-01-01

    For heating of plasmas by injection of hydrogen cluster ions, the specific size (N/Z) approximately 10 2 molecules/charge is believed to be most desirable. A fundamental research to develop a practical method for tailoring large cluster ions into small suitable sizes has been carried out by using nitrogen cluster ions of the initial mean specific size (N/Z) 0 approximately 10 5 . The beam of neutral large clusters of total intensity 20 mAsub(eq) was led to an ionizer and then the large cluster ions are accelerated to 8.9 keV before entering the divider which disintegrates them into small fragments by multiple ionization. The mean specific size of disintegrated cluster ions (N/Z)' becomes smaller with increase in ionizing electron current of the divider. (N/Z)' becomes 10 3 approximately 10 4 at an electron current of 140 mA and an accelerating voltage of 680 V of the divider with its efficiency of 20 approximately 60%. Thus, the original large cluster ions are divided into small fragments of which the mean specific size is 1/20 approximately 1/100 of the initial value without much decrease in total intensity of the cluster ion beam

  2. Feedforward Coordinate Control of a Robotic Cell Injection Catheter.

    Science.gov (United States)

    Cheng, Weyland; Law, Peter K

    2017-08-01

    Remote and robotically actuated catheters are the stepping-stones toward autonomous catheters, where complex intravascular procedures may be performed with minimal intervention from a physician. This article proposes a concept for the positional, feedforward control of a robotically actuated cell injection catheter used for the injection of myogenic or undifferentiated stem cells into the myocardial infarct boundary zones of the left ventricle. The prototype for the catheter system was built upon a needle-based catheter with a single degree of deflection, a 3-D printed handle combined with actuators, and the Arduino microcontroller platform. A bench setup was used to mimic a left ventricle catheter procedure starting from the femoral artery. Using Matlab and the open-source video modeling tool Tracker, the planar coordinates ( y, z) of the catheter position were analyzed, and a feedforward control system was developed based on empirical models. Using the Student's t test with a sample size of 26, it was determined that for both the y- and z-axes, the mean discrepancy between the calibrated and theoretical coordinate values had no significant difference compared to the hypothetical value of µ = 0. The root mean square error of the calibrated coordinates also showed an 88% improvement in the z-axis and 31% improvement in the y-axis compared to the unmodified trial run. This proof of concept investigation leads to the possibility of further developing a feedfoward control system in vivo using catheters with omnidirectional deflection. Feedforward positional control allows for more flexibility in the design of an automated catheter system where problems such as systemic time delay may be a hindrance in instances requiring an immediate reaction.

  3. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    International Nuclear Information System (INIS)

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  4. Injection of a single electron from static to moving quantum dots.

    Science.gov (United States)

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan

    2016-05-27

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

  5. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  6. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  7. Ion and electron injection in ionosphere and magnetosphere. Application to the parallel electric field measurement in auroral zones

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-11-01

    New methods of measuring parallel electric field in auroral zones are investigated in this thesis. In the studied methods, artificial injection of ions Li + and electrons from a spacecraf is used. Measurements obtained during the ARAKS experiment are also presented. The behaviour of the ionospheric plasma located few hundred meters from a 0,5A electron beam injected in ionosphere from a rocket is studied, together with the behaviour of a Cs plasma artificially injected from the same spacecraft [fr

  8. Beam-plasma interaction in case of injection of the electron beam to the symmetrically open plasma system

    International Nuclear Information System (INIS)

    Opanasenko, A.V.; Romanyuk, L.I.

    1992-01-01

    A beam-plasma interaction at the entrance of the symmetrically open plasma system with an electron beam injected through it is investigated. An ignition of the plasma-beam discharge on waves of upper hybrid dispersion branch of a magnetoactive plasma is found in the plasma penetrating into the vacuum contrary to the beam. It is shown that the beam-plasma discharge is localized in the inhomogeneous penetrating plasma in the zone where only these waves exist. Regularities of the beam-plasma discharge ignition and manifestation are described. It is determined that the electron beam crossing the discharge zone leads to the strong energy relaxation of the beam. It is shown possible to control the beam-plasma discharge ignition by changing the potential of the electron beam collector. (author)

  9. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  10. Generation of microwaves by a slow wave electron cyclotron maser with axial injection

    International Nuclear Information System (INIS)

    Michie, R.B.; Vomvoridis, J.

    1984-01-01

    Experimental measurements of microwave generation by a new electron beam wave interaction is presented. This slow wave electron cyclotron maser (ECM) has a continuous electron beam injected axially into a slow wave structure containing a circularly polarized HE, hybrid electric (HE) mode. A longitudinal magnetic field produces microwaves by maser action. The slow wave structure allows energy to be coupled out of an electron beam with no initial transverse momentum. This is similar to klystrons, traveling wave tubes, and Cherenkov masers, but there is no axial beam bunching. Therefore, ECM designs using relativistic electron beams are allowed. This ECM is similar to a gyrotron in that the electrons are coupled through their cyclotron motion to the wave, but there is no need for initial electron velocity perpendicular to the background magnetic field. Therefore, a narrower spread of electron beam energy about the ECM resonance is possible which gives higher theoretical efficiency. A nonlinear analysis of energy coupling of electrons to the slow wave in the ECM and the design of the slow wave ECM microwave amplifier at 10 GHz using a 200 KeV axial electron beam in 3 KG magnetic field is included

  11. Controlling Electronics Boards with PVS

    CERN Multimedia

    2005-01-01

    - Introduction - Control System Architecture - Device Description - FPGA Programming - Register Control - Data Subscription - Examples of Graphics User Interfaces - Parameter - Register Translation - Application on the LHCb Timing Fast Control System

  12. Observations of fast magnetospheric echoes of artificially injected electrons above an auroral arc

    International Nuclear Information System (INIS)

    Wilhelm, K.; Becker, C.; Schmidt, R.

    1984-04-01

    Electron beam experiments using rocket-borne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. These experiments were jointly carried out by the University of Minnesota, the National Research Council of Canada and the Max-Planck-Institut fuer Aeronomie. A total of 234 echoes have been observed in a pitch angle range from 0 0 to 110 0 at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by approximately 50 ms. No echoes have been found in the 7.9 keV-detector channels. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is briefly discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection. Two consequences of this interaction, namely, strong energy and pitch angle diffusion and electron acceleration are illustrated with several examples. (orig.) [de

  13. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  14. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  15. ASIL determination for motorbike's Electronics Throttle Control System (ETCS) mulfunction

    Science.gov (United States)

    Zaman Rokhani, Fakhrul; Rahman, Muhammad Taqiuddin Abdul; Ain Kamsani, Noor; Sidek, Roslina Mohd; Saripan, M. Iqbal; Samsudin, Khairulmizam; Khair Hassan, Mohd

    2017-11-01

    Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been applied on motorbike's ETCS to determine the required automotive safety integrity level. Based on the analysis, the established automotive safety integrity level can help to derive technical and functional safety measures for ETCS development.

  16. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  17. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    International Nuclear Information System (INIS)

    Smolyar, V.A.; Eremin, A.V.; Eremin, V.V.

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well [ru

  18. Electron current generated in a toroidal plasma on injection of high-energy neutrals

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Reznik, S.N.

    1981-01-01

    Problem of generation of electron current in toroidal plasma with a high-energy ion beam produced during neutral injection has been considered. The analysis was performed on the assumption that plasma is in the regime of rare collisions (banana regime) and ion beam velocity is considerably lower than thermal velocity of plasma ions. Formulae establishing the relation between beam current and electron current have been derived. It follows from them that toroidal affect considerably plasma current generated with the beam and under certain conditions result in changing this current direction in an area remoted from magne-- tic axis [ru

  19. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  20. The new control system of the SPS injection kicker

    CERN Document Server

    Antoine, A; Marchand, A; Verhagen, H

    2002-01-01

    The SPS accelerator will be used as injector for the LHC and has to be adapted to the LHC requirements. The tight specification on beam blow-up and bunch spacing in the SPS has required an upgrade program of the SPS injection kicker in order to obtain a reduction of the magnetic field ripple to less than ± 0.5% and of the magnet current rise time to less than 145 ns. In this context, the slow control part has been entirely rebuilt on the basis of off-the-shelf industrial components. A hierarchical architecture based on a SIEMENS S7-400 master programmable logic controller interconnected through PROFIBUS-DP to S7-300 deported and decentralised I/Os has been implemented. Integration of in-house specific G-64 hardware systems inside this industrial environment has been done through a PROFIBUS-DP to G-64 intelligent interface based on an OEM fieldbus mezzanine board on one side and an FPGA implementing the required functionality on the other. Simultaneously, the fast timing system has been completely reshuffled ...

  1. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  2. plasma modes behaviors and electron injection influence in an audio-ultrasonic air gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.; Haleem, N.A.

    2010-01-01

    the main purpose of this study is to investigate the favorable conditions for the production of plasma particle acceleration in an audio-ultrasonic air gas discharge of 20 cm long and 34 mm diameter.it is found that according to the applied conditions the formed plasma changes its behavior and overtakes diverse modes of different characteristics. the pressure, the voltage, and the frequency applied to the plasma determine its proper state. both experimental data collection and optical observations are introduced to clarify and to put in evidence the present plasma facts. the distribution of the electrons density along the plasma tube draws in average the electric field distribution of the ionization waves. in addition, the plasma is studied with and without electrons injection in order to investigate its influence . it is found that the electron injection decreases the plasma intensity and the plasma temperature, while it increases the discharge current. in turn, the decrease of the plasma temperature decreases the plasma oscillations and enhances the plasma instability. on the other hand,the enhancement of the plasma instability performs good conditions for electron acceleration. as a result, the qualified mode for particles acceleration is attained and its conditions are retrieved and defined for that purpose.

  3. Numerical simulation of neutral injection in a hot-electron mirror target plasma

    International Nuclear Information System (INIS)

    Werkoff, F.; Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Grenoble, 38

    1976-01-01

    In the case of neutral injection into a hot-electron target plasma, the use of the existing Fokker-Planck codes is greatly complicated by the fact that the scale of the energies and times of the confined ions and electrons is very large. To avoid this difficulty, a simplified multi-species model is set up, in which each species is described by time-dependent density and energy equations with analytical approximations for the interactions between the species. During the neutral injection, instantaneous high values of the ambipolar potential (higher than the half value of hot-ion energy) may appear, but do not prevent hot-ion density build-up. However, the hot-electron target plasma must not be maintained for a too long time. Numerical runs are performed with typical target parameters: density 2x10 13 cm -3 , electron energy 30 keV, ion energy 400 eV, time duration during which the target density is maintained 1 ms. Hot-ion density, a few 10 14 cm -3 , can be achieved with a neutral beam of 100 A, 20 keV. (author)

  4. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials.

    Science.gov (United States)

    Coombes, Brooke K; Bisset, Leanne; Vicenzino, Bill

    2010-11-20

    Few evidence-based treatment guidelines for tendinopathy exist. We undertook a systematic review of randomised trials to establish clinical efficacy and risk of adverse events for treatment by injection. We searched eight databases without language, publication, or date restrictions. We included randomised trials assessing efficacy of one or more peritendinous injections with placebo or non-surgical interventions for tendinopathy, scoring more than 50% on the modified physiotherapy evidence database scale. We undertook meta-analyses with a random-effects model, and estimated relative risk and standardised mean differences (SMDs). The primary outcome of clinical efficacy was protocol-defined pain score in the short term (4 weeks, range 0-12), intermediate term (26 weeks, 13-26), or long term (52 weeks, ≥52). Adverse events were also reported. 3824 trials were identified and 41 met inclusion criteria, providing data for 2672 participants. We showed consistent findings between many high-quality randomised controlled trials that corticosteroid injections reduced pain in the short term compared with other interventions, but this effect was reversed at intermediate and long terms. For example, in pooled analysis of treatment for lateral epicondylalgia, corticosteroid injection had a large effect (defined as SMD>0·8) on reduction of pain compared with no intervention in the short term (SMD 1·44, 95% CI 1·17-1·71, ptendon rupture). By comparison with placebo, reductions in pain were reported after injections of sodium hyaluronate (short [3·91, 3·54-4·28, peffective than was eccentric exercise. Despite the effectiveness of corticosteroid injections in the short term, non-corticosteroid injections might be of benefit for long-term treatment of lateral epicondylalgia. However, response to injection should not be generalised because of variation in effect between sites of tendinopathy. None. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  6. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... position was measured on the polymer μ-parts to evaluate filling behavior of the polymer melt flowing through μ-features. Experimental results obtained under different processing conditions were evaluated to correlate the process parameter levels influence on the selected responses. Results showed...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  7. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  8. Electron Injection from Copper Diimine Sensitizers into TiO2

    DEFF Research Database (Denmark)

    Mara, Michael W.; Bowman, David N.; Buyukcakir, Onur

    2015-01-01

    (I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)]+ and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)]+ (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT...... spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (systems does not have significant effect...... on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices....

  9. Pain Elimination during Injection with Newer Electronic Devices: A Comparative Evaluation in Children.

    Science.gov (United States)

    Bansal, Neha; Saha, Sonali; Jaiswal, Jn; Samadi, Firoza

    2014-05-01

    The present study was taken up to clinically evaluate and compare effectiveness of transcutaneous electrical nerve stimulator (TENS) and comfort control syringe (CCS) in various pediatric dental procedures as an alternative to the conventional method of local anesthesia (LA) administration. Ninety healthy children having at least one deciduous molar tooth indicated for extraction in either maxillary right or left quadrant in age group of 6 to 10 years were randomly divided into three equal groups having 30 subjects each. Group I: LA administration using conventional syringe, group II: LA administration using TENS along with the conventional syringe, group III: LA administration using CCS. After LA by the three techniques, pain, anxiety and heart rate were measured. The observations, thus, obtained were subjected to statistical analysis using analysis of variance (ANOVA), student t-test and paired t-test. The mean pain score was maximum in group I followed by group II, while group III revealed the minimum pain, where LA was administered using CCS. Mean anxiety score was maximum in group I followed by group II, while group III revealed the minimum score. Mean heart rate was maximum in group I followed in descending order by groups II and III. The study supports the belief that CCS could be a viable alternative in comparison to the other two methods of LA delivery in children. How to cite this article: Bansal N, Saha S, Jaiswal JN, Samadi F. Pain Elimination during Injection with Newer Electronic Devices: A Comparative Evaluation in Children. Int J Clin Pediatr Dent 2014;7(2):71-76.

  10. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time....

  11. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  12. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  13. Electric potential structures and propagation of electron beams injected from a spacecraft into a plasma

    International Nuclear Information System (INIS)

    Singh, Nagendra; Hwang, K.S.

    1988-01-01

    The propagation of electron beams injected from a spacecraft into an ambient plasma and the associated potential structures are investigated by one-dimensional Vlasov simulations. For moderate beams, for which the time average spacecraft potential (Φ sa ) lies in the range T e much-lt eΦ sa approx-lt W B , where T e is the electron temperature in energy units and W B is the average beam energy, a double layer forms near the beam head which propagates into the ambient plasma much more slowly than the initial beam velocity. The double layer formation is being reported for the first time. For weak beams, for which |eΦ sa | approx-lt T e , the beam propagates with the initial beam velocity, and no double layer formation occurs. On the other hand, for strong beams for which eΦ sa > W B , the bulk of the beam is returned to the spacecraft, and the main feature of the potential structure is a sheath formation with an intense electric field limited to distances d near the spacecraft surface. These features of the potential structures are compared with those seen in laboratory and space experiments on electron beam injections

  14. Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Steven T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Granger, Devin B. [University of Kentucky; Anthony, John E. [University of Kentucky

    2018-02-26

    We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

  15. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    International Nuclear Information System (INIS)

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  16. A linear current injection generator for the generation of electrons in a nuclear reactor

    International Nuclear Information System (INIS)

    Kar, Moutushi; Thakur, Satish Kumar; Agiwal, Mamta; Sholapurwala, Zarir H.

    2011-01-01

    While, operating a nuclear reactor it is absolutely necessary for generating a chain reaction or fission. A chain reaction can be initiated by bombardment of a heavy nucleus with fast moving particles. One of the common methods used for generating a fast moving particle is injecting a very high voltage into a particle accelerator and accelerating high energy particle beams using machine like cyclotron, synchrotron, linear accelerators i.e. linac and similar equipment. These equipment generated and run by several high voltage applications like simple high voltage DC systems and supplies or pulsed electron systems. (author)

  17. Annular-cathode electron gun for in-line injection in a racetrack microtron

    International Nuclear Information System (INIS)

    Manca, J.J.; Edmonds, D.S. Jr.; Froelich, H.R.

    1976-01-01

    A compact annular-cathode electron gun which allows direct, efficient injection into the accelerating structure of a racetrack microtron was designed, built, and tested. The gun operates under pulsed conditions with applied high voltages of 40 kV or more and delivers an output current in excess of 1 A. Design and construction details are presented for both a basic gun and a gun with built-in output current monitor. Gun performance in a test chamber and in the multicavity racetrack microtron at the University of Western Ontario is described

  18. Theoretical Study of Ultrafast Electron Injection into a Dye/TiO2 System in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Lin, Chundan; Xia, Qide; Li, Kuan; Li, Juan; Yang, Zhenqing

    2018-06-01

    The ultrafast injection of excited electrons in dye/TiO2 system plays a critical role, which determines the device's efficiency in large part. In this work, we studied the geometrical structures and electronic properties of a dye/TiO2 composite system for dye-sensitized solar cells (DSSCs) by using density functional theory, and we analyzed the mechanism of ultrafast electron injection with emphasis on the power conversion efficiency. The results show that the dye SPL103/TiO2 (101) surface is more stable than dye SPL101. The electron injection driving force of SPL103/TiO2 (101) is 3.55 times that of SPL101, indicating that SPL103/TiO2 (101) has a strong ability to transfer electrons. SPL103 and SPL101/TiO2 (101) both have fast electron transfer processes, and especially the electron injection time of SPL103/TiO2 (101) is only 1.875 fs. The results of this work are expected to provide a new understanding of the mechanism of electron injection in dyes/TiO2 systems for use in highly effective DSSCs.

  19. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  20. Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D

    International Nuclear Information System (INIS)

    Casper, T A; Burrell, K H; Doyle, E J; Gohil, P; Lasnier, C J; Leonard, A W; Moller, J M; Osborne, T H; Snyder, P B; Thomas, D M; Weiland, J; West, W P

    2006-01-01

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes. Our initial experiments and modelling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters, namely ion temperature and rotation, electron density and impurity concentration. At onset and termination of the EC pulse, dynamically changing conditions are induced that provide a rapid evolution of T e /T i profiles accessible with 0.3 e /T i ) axis e /T i ratio as the ion temperature and density profiles flatten with this change in transport. The change in transport is consistent with a destabilization of ITG turbulence as inferred from the reduction of the stability threshold due to the change in T e /T i

  1. Modelling of profile control with LH wave injection in the HL-2A single-null divertor plasma

    International Nuclear Information System (INIS)

    Gao Qingdi; Yuan Baoshan; Li Fangzhu; Wang, Aike; Budny, R.V.

    2005-01-01

    In the HL-2A tokamak a single-null divertor configuration has been established. The separatrix of the single-null diverted plasma was identified with a filament model, and the determined striking area on the target plate is in agreement with the measurements of electric probe array. Higher power LH wave (1.5MW) is injected to the diverted plasma with a nearly symmetric spectrum. Dominant electron heating and current profile control are investigated with numerical simulation. Plasma heating by electron Landau interaction results in operation scenarios of preferentially dominant electron heating. Due to the off-axis driven current, an optimized q-profile is formed, and an enhanced confinement regime with steep electron temperature gradient is produced. The clear decrease of the electron thermal conductivity in the LH power deposition region shows that an electron-ITB is developed. When higher LH power injects into the target plasma that is heated by NBI (0.5MW), the ion temperature has a large increment in addition to the high increase of electron temperature. The temperature profiles indicate that an enhanced core confinement is established with both ion-ITB and electron-ITB developed. (author)

  2. Intelligent Electronic Speed Controller, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project intends to design and develop an Intelligent Electronic Speed Controller (IESC) for use on Unmanned Aerial Vehicles (UAVs). The IESC will advance the...

  3. Can electronic stability control replace studded tyres?

    DEFF Research Database (Denmark)

    Elvik, Rune

    2015-01-01

    Highlights • Electronic stability control can substitute studded tyres. • This makes it easier to discourage the use of studded tyres. • A certain level of use of studded tyres makes roads less slippery.......Highlights • Electronic stability control can substitute studded tyres. • This makes it easier to discourage the use of studded tyres. • A certain level of use of studded tyres makes roads less slippery....

  4. Recent results on the beat wave acceleration of externally injected electrons on a plasma

    International Nuclear Information System (INIS)

    Clayton, C.E.; Marsh, K.; Dyson, A.; Everett, M.; Lal, A.; Josh, C.; Williams, R.; Katsouleas, T.

    1992-01-01

    In the Plasma Beat Wave Accelerator (PBWA) two laser beams of slightly different frequencies resonantly beat in a plasma in such a way that their frequency and wavenumber differences correspond to the plasma wave frequency and wavenumber. The amplitude-modulated electromagnetic wave envelope of the laser pulse exerts a periodic nonlinear force on the plasma electrons, causing them to bunch. The resulting space-charge wave can have a phase velocity nearly equal to the speed of light. If an electron bunch is injected with a velocity close to this it can be trapped and accelerated. The UCLA program investigating PBWA has found that tunnel or multi-photon ionized plasmas a re homogeneous enough for coherent macroscopic acceleration. The laser pulse should be short, and the peak laser intensity should be such that Iλ 2 ∼ 2 x 10 16 W/cm 2 μm 2 in order to get substantial beat wave amplitudes. tab., 3 refs

  5. Experimental validation of combustion control with multi-pulse fuel injection

    NARCIS (Netherlands)

    Luo, X.; Velayutham, S.; Willems, F.P.T.

    2017-01-01

    Closed-loop combustion control helps to achieve precise fuel injection and robust engine performance against disturbances. The controller design complexity increases greatly with larger number of fuel injection pulses due to the coupled influence of changing individual pulse on the combustion

  6. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  7. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Directory of Open Access Journals (Sweden)

    A. C. Dexter

    2011-03-01

    Full Text Available The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  8. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from the...

  9. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  10. An analysis of the SCEX 3 ionospheric electron beam injection experiment

    International Nuclear Information System (INIS)

    Goerke, R.T.

    1992-01-01

    The SCEX 3 experiment (Several Compatible EXperiments using a rocket-borne accelerator) was carried to ionospheric altitudes (375 km) by a Black Brant 11 rocket on February 1, 1990. The experiment was launched from Poker Flat Research Range (65.1 degree N, 147.5 degree W) at 1207 UT. The payload split into two parts (hereafter forward and aft payloads) 116 seconds after launch. The aft payload carried two electron accelerators as well as several diagnostic instruments. The forward payload was ejected at an angle of 6 degree with the magnetic field in a northwesterly direction. This payload carried a multiband plasma wave receiver and various particle detectors to make in situ measurements of the Beam Plasma Interaction (BPI) region. Two Throw Away Detectors (TAD's 1 and 2) were also ejected from the aft payload in the east and west directions respectively. TAD 1 also carried a multiband plasma wave receiver. Preceding the launch an auroral arch along the southern boundary of a diffuse auroral patch suddenly brightened, split into two separate arcs and moved to a position north of the rocket's trajectory. SCEX 3 was launched into an active breakup aurora consisting of tall rays and diffuse patches. The purpose of this experiment were (1) to observe injected electrons reflected from the naturally occurring parallel electric field structures which are thought to accelerate the auroral electron, (2) to observe a variety of plasma effects caused by the artificial electron beam and the associated spacecraft charging, and (3) study the natural phenomena associated with auroral activity. This work is a summary of the interesting observations made by the SCEX 3 experiment. These observations include VHF emissions produced by the electron beam via the Beam Plasma Discharge (BPD), Diffuse resonance emissions by the hot plasma region surrounding the electron beam and auroral Z-mode emissions

  11. Possible control scenario of radial electric field by loss-cone-particle injection into helical device

    International Nuclear Information System (INIS)

    Motojima, Osamu; Shishkin, A.A.; Inagaki, Shigeru; Watanabe, Kiyomasa

    1999-08-01

    The possibility of controlling the radial electric field of toroidal plasmas by injecting high energy electrons along the reversible loss cone orbit of the helical magnetic traps is investigated. It is well known that the radial electric field plays an important role in the confinement improvement scenario especially in the low collisional regime under the physics picture of neoclassical theory. For this purpose, it is made clear that the most suitable particles are transit particles, which show a transition from helically trapped orbits to blocked ones. It is also found that a parallel AC electric field launched from outside assists this transition and makes it possible for particles to penetrate deeply into the plasma. In addition we clarify that the viscosity of the plasma coupled with the helical field configuration provide a bifurcation of plasma states and its stable solution results in confinement improvement. (author)

  12. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  13. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    Science.gov (United States)

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  14. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  15. An injection limiting thrustor control device for internal combustion engines

    International Nuclear Information System (INIS)

    Givaudan, B.

    1993-01-01

    The aim of this device is the automatic limitation, without any command circuit, of the injection in large diesel engines (16 or 20 cylinders) during a compressed air assisted start-up. The thrustor is driven directly by the compressed air. The limitation may be extended and regulated by the means of valves. Application to start-up of diesel generating sets for nuclear power plants

  16. Tungsten migration studies by controlled injection of volatile compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Coenen, J. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Ivanova, D. [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Möller, S. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Petersson, P. [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Brezinsek, S.; Kreter, A.; Philipps, V.; Pospieszczyk, A.; Schweer, B. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany)

    2013-07-15

    Volatile tungsten hexa-fluoride was locally injected into the TEXTOR tokamak as a marker for material migration studies. The injection was accompanied by puffing N-15 rare isotope as a nitrogen tracer in discharges with edge cooling by impurity seeding. The objective was to assess material balance by qualitative and quantitative determination of a global and local deposition pattern, material mixing effects and fluorine residence in plasma-facing components. Spectroscopy and ex situ ion beam analysis techniques were used. Tungsten was detected on all types of limiter tiles and short-term probes retrieved from the vessel. Over 80% of the injected W was identified. The largest tungsten concentration, 1 × 10{sup 18} cm{sup −2}, was in the vicinity of the gas inlet. Co-deposits contained tungsten and a mix of light isotopes: H, D, He-4, B-10, B-11, C-12, C-13, N-14, N-15, O-16 and small quantities of F-19 thus showing that both He and nitrogen are trapped following wall conditioning (He glow) and edge cooling.

  17. HPLC FOR CONTROL STABILITY OF QUERCETIN INJECTABLE DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Martynov AV

    2016-12-01

    Full Text Available Introduction. Quercetin is a flavone derivatives which known like a substances with vitamin activity, high antioxidant, antimutagenic and anticarcinogenic activity and many other types of biological activity. Wide usage of quercetin prevents their polyphenolic nature structure which does not allow a high bioavailability of pure quercetin when administered orally. This is associated with a wide spectrum variety of chemical reactions for the phenolic groups: from interaction with amino acid residues in proteins to reactions with amine heterocyclic alkaloids and polysaccharides. In our days Corvitin – one from the number of quercetin based drugs with sufficiently low levels all types toxicity, allergenic and has no irritating action on intravenous administration. In the same time quercetin cannot be used in full measure because of the limited number of publications with analysis methods, especially HPLC. Determining the stability over time of concentrate quercetin solution, as well as determining the stability of the concentrate to the original autoclave sterilization conditions is a promising direction in creating new drugs. Materials and methods The objective was to research quercetin soluble formulation samples in different conditions: 1 fresh dilute concentrate (0.9% sodium chloride; 2 the original dilute concentrate, which was stored at room temperature for 14 days in light and 3 similar to the first sample dilute concentrate, which went before breeding in autoclaving at 120 0 C for 20 minutes. The objects used in the studies were industrial drug-substance quercetin (Sinkea manufactured (China, the original pharmaceutical composition as the soluble form of quercetin for injection and aerosol applications, glycerol (Sigma, Polysorbat 80 (Merk, ethanol 96 %. For the HPLC – analysis, chromatograph "Milichrom A-02" (SiChrom, Knauer (Econova, Novosibirsk, Russia was used. Results and discussion Quercetin was identified using information on its

  18. Controlling runaway vortex via externally injected high-frequency electromagnetic waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Chris; Tang, Xianzhu

    2017-10-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as the whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by parallel electric field. By introducing a wave that resonantly interacts with runaways at a particular range of energy that is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  19. Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fathipour, Vala; Jang, Sung Jun; Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208 (United States)

    2015-01-12

    We present a quantitative study of the influence of three-dimensional geometry of the isolated electron–injection detectors on their characteristics. Significant improvements in the device performance are obtained as a result of scaling the injector diameter with respect to the trapping/absorbing layer diameters. Devices with about ten times smaller injector area with respect to the trapping/absorbing layer areas show more than an order of magnitude lower dark current, as well as an order of magnitude higher optical gain compared with devices of same size injector and trapping/absorbing layer areas. Devices with 10 μm injector diameter and 30 μm trapping/absorbing layer diameter show an optical gain of ∼2000 at bias voltage of −3 V with a cutoff wavelength of 1700 nm. Analytical expressions are derived for the electron-injection detector optical gain to qualitatively explain the significance of scaling the injector with respect to the absorber.

  20. Electron density profile determination by means of laser blow-off injected neutral beam

    International Nuclear Information System (INIS)

    Kocsis, G.; Bakos, J.S.; Ignacz, P.N.; Kardon, B.; Koltai, L.; Veres, G.

    1992-01-01

    This paper is devoted to the experimental and theoretical studies of the determination of the electron density profiles by means of laser blow-off neutrals. For the determination of the density profile the time and spatial distributions of the spectral line radiation intensity of the injected neutrals are used. The method is compared to other previously proposed methods and the advantages and disadvantages of the different methods are discussed. The result of the comparison is that our method gives the most reliable result with the highest temporal resolution for the density profile of the edge plasma. The only disadvantage is the need of careful calibration of the sensitivity of the spatial channels. The advantage is the ability of the method as a standard diagnostic. (orig.)

  1. Automatic control variac system for electronic accelerator

    International Nuclear Information System (INIS)

    Zhang Shuocheng; Wang Dan; Jing Lan; Qiao Weimin; Ma Yunhai

    2006-01-01

    An automatic control variac system is designed in order to satisfy the controlling requirement of the electronic accelerator developed by the Institute. Both design and operational principles, structure of the system as well as the software of industrial PC and micro controller unit are described. The interfaces of the control module are RS232 and RS485. A fiber optical interface (FOC) could be set up if an industrial FOC network is necessary, which will extend the filed of its application and make the communication of the system better. It is shown in practice that the system can adjust the variac output voltage automatically and assure the accurate and automatic control of the electronic accelerator. The system is designed in accordance with the general design principles and possesses the merits such as easy operation and maintenance, good expansibility, and low cost, thus it could also be used in other industrial branches. (authors)

  2. Control, data acquisition and analysis for the JET neutral injection test bed

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brenan, P.R.; Rodgers, M.E.; Stork, D.; Young, I.D.

    1984-01-01

    The Neutral Injection Test-Bed (NITB) is a major experimental assembly in support of the Neutral Beam Heating Programme for JET. In addition to its prime function of testing the Neutral Injection hardware, the Test Bed serves as the prototype to test the computer control and data acquisition system, which is described. (author)

  3. Electronically controllable spoof localized surface plasmons

    Science.gov (United States)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  4. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    Science.gov (United States)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  5. Long-lasting injection of solar energetic electrons into the heliosphere

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  6. Control and metallurgical examination on safety injection piping

    International Nuclear Information System (INIS)

    Thebault, Y.; Grandjean, Y.; Gauthier, V.; Lambert, B.; Debustcher, B.

    1998-01-01

    From 1992 until 1997, cracking phenomena by thermal fatigue regarding safety injection piping were evidenced on several PWR 900 MW reactors. These events led EDF to the implementation of a first maintenance programme. In December 1996, a new leak occurred on an EDF 900 MW PWR in operation and was located on a safety injection pipe. In site inspections and metallurgical examinations carried out in the EDF hot Laboratory evidenced defects inside the pipe, out of the welding areas. These degradations are the consequence of a fatigue cracking phenomenon with thermal cycling linked to permanent tensile stresses. Following this incident, a programme of non destructive testing was implemented on all the EDF 900 MW plants. These inspections exhibited the same defects on other PWR 900 MW units. The results of the metallurgical examinations and also in site inspection results allowed EDF to understand the phenomenon and to validate an inspection programme on the one hand and a modification of the design of the circuits on the other hand. (authors)

  7. Control electronics of the PEP RF system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1981-01-01

    The operation of the major components used for controlling the phase and field level of the PEP RF cavities is described. The control electronics of one RF station is composed of several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the fields of each cavity balanced; the total gap voltage developed by a pair of cavities is regulated by a gap voltage controller; finally, the phase variation along the amplification chain, the klystron and the cavities are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented

  8. Preliminary study on the control of direct injection diesel engine for better fuel flexibility and emissions control. Pt. 3

    Energy Technology Data Exchange (ETDEWEB)

    Egnell, R.; Kassem, N.; Bohlin, T.

    1985-01-01

    This report summarizes the results of a preliminary study on turbocharged direct injection diesel engines. The objectives and scope of this study are: 1. To explore the potential of using electronic control systems based on dynamic models of the engine in order to reduce fuel consumption, while maintaining good driveability. 2. To analyze the transient response of a turbocharged diesel engine based on experimental data collected from one of SAAB-SCANIA's test cells. 3. To survey the hardware components that would satisfy the requirements of the electronic control systems mentioned above. Part III discusses the transient response measurements obtained from two sets of experiments conducted on a six-cylinder motor working under varying conditions of load and speed. The objective of the first set of experiments was to quantify the difference in ignition delay between the transient and steady state operating conditions. The second set of experiments were aimed to provide a basis on which the engine efficiency obtained under transient conditions can be compared to that obtained from a single-cylinder motor working under steady state conditions.

  9. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  10. Controlled dissemination of Electronic Medical Records

    NARCIS (Netherlands)

    van 't Noordende, G.

    2011-01-01

    Building upon a security analysis of the Dutch electronic patient record system, this paper describes an approach to construct a fully decentralized patient record system, using controlled disclosure of references to medical records. This paper identifies several paths that can be used to disclose

  11. Long-lasting solar energetic electron injection during the 26 Dec 2013 widespread SEP event

    Science.gov (United States)

    Dresing, N.; Klassen, A.; Temmer, M.; Gomez-Herrero, R.; Heber, B.; Veronig, A.

    2017-12-01

    The solar energetic particle (SEP) event on 26 Dec 2013 was detected all around the Sun by the two STEREO spacecraft and close-to-Earth observers. While the two STEREOs were separated by 59 degrees and situated at the front side of the associated large coronal event, it was a backside-event for Earth. Nevertheless, significant and long-lasting solar energetic electron anisotropies together with long rise times were observed at all three viewpoints, pointing to an extended electron injection. Although the CME-driven shock appears to account for the SEP event at a first glance a more detailed view reveals a more complex scenario: A CME-CME interaction takes place during the very early phase of the SEP event. Furthermore, four hours after the onset of the event, a second component is measured at all three viewpoints on top of the first SEP increase, mainly consisting of high energy particles. We find that the CME-driven shock alone can hardly account for the observed SEP event in total but a trapping scenario together with ongoing particle acceleration is more likely.

  12. Electron beam injection and associated phenomena as observed in a large space simulation chamber

    International Nuclear Information System (INIS)

    Beghin, C.; Arnal, Y.; Delahaye, J.Y.

    1982-01-01

    This chapter describes an experiment whose main purpose was to perform a simulation under conditions where the ambient neutral and ionized gas, magnetic field strength and lay-out of the different packages were as close as possible to those anticipated for the First Spacelab Flight (FSLP) mission. Phenomena Induced by Charged Particle Beams (PICPAB) are planned to be investigated during the FSLP using a Euopean payload. The PICPAB experiment consists of two accelerators of electron and ion beams and associated diagnostic instruments including wave receivers, thermal plasma probes and return current particle energy-analyzers. The main results of the test with the electron beam are reported. Topics considered include the experimental configuration; a transverse dc electric field in the absence of background plasma; a transverse dc electric field in the background plasma; ambient plasma response; a high-frequency electric field; return current characteristics; and collector vs. plasma behavior. The complexity of the beam-plasma-collector-gun system is shown where nonlinear processes are generated in several consecutive steps. It is concluded that under the peculiar conditions described (with the beam propagation distance shorter than the first node focalization length and nearly zero pitch-angle injection, neutral gas pressure ranging from less to 10 -6 up to 10 -4 torr), the beam plasma discharge was never triggered

  13. Magnetically insulated transmission line used for relativistic electron beam injection into SPAC-VI

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya; Narihara, Kazumichi; Tomita, Yukihiro; Mohri, Akihiro.

    1980-10-01

    For the purpose to inject the electron beam with energy of about 1.5 MeV and current of about 100 kA into the SPAC-6 (torus device), a magnetically insulated transmission line was designed and constructed. The motion of electrons in the line was theoretically analyzed. The requirements for the design of the transmission line were as follows-: (a) condition of magnetic insulation, (b) suppression against reverse gas flow from the beam source to the torus, (c) care to minimize the influence of strong torus magnetic field, (d) reduction of inductance and (e) safety engineering measures, e.g., separation valve in the MITL between the beam source and the SPAC-6. The transmission line of 2.4 m long was designed and constructed. The wave forms of electric potential and current were measured. The transmission efficiency of current along the axis and the efficiency as a function of current at the end of the line were also measured. The reason of the loss of current is discussed. (J.P.N.)

  14. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  15. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  16. A case control study of breast cancer risk and exposure to injectable ...

    African Journals Online (AJOL)

    A case control study of breast cancer risk and exposure to injectable progestogen contraceptives. R. Bailie, J Katzenellenbogen, M. Hoffman, G Schierhout, H Truter, D Dent, A Gudgeon, J van Zyl, L Rosenberg, S Shapiro ...

  17. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  18. Controller for control of pulsed electron linear accelerator

    International Nuclear Information System (INIS)

    Bryazgin, A.A.; Faktorovich, B.L.

    1995-01-01

    The controller is based on the K1816VE31 microprocessor and contains 22-channel integrating 10-digital two-wire analog-to-digital converter, 8-channel 12-digit digital-to-analog converter, 24-digit output register, 16-digit input register pulse generator in the range of 0.5 - 50 Hz with the regulation step of 0.05 Hz and delayed pulse generator. The controller is used for pulsed electron linear accelerator control and is reduced to regulation of the electron beam pulse repetition rate and beam energy. 1 ref., 1 fig

  19. Statistical process control for electron beam monitoring.

    Science.gov (United States)

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Echo 2: a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket

    International Nuclear Information System (INIS)

    Winckler, J.R.; Arnoldy, R.L.; Hendrickson, R.A.

    1975-01-01

    The Black Brant V-C Echo 2 rocket was launched at Fort Churchill on September 25, 1972, and it injected 64-ms pulses of electron beams of 80-mA current and 45-keV voltage into the ionosphere. This paper studies the responses of on-board electrostatic deflection and solid state detectors to injected electrons after motion in the near ionosphere and atmosphere. It is shown that it was only through some form of scattering that the detectors could sense the injected beam electrons. By means of 'phase maps' of injection and detection pitch angles a number of distinct regions are found corresponding to a rocket scattering halo, an atmospheric scattering halo, a region of weak responses, and a source of strong scattering above the rocket. The atmospheric scattering has been compared with the theoretical and experimental results of the Echo 1 experiment, and it is found to be in reasonable agreement. The rocket halo is discussed qualitatively; but no explanation is found for the backscatter from above the rocket, which may be associated with an occasional violent beam instability. This analysis has been carried out to better understand the complexities of electron motion observed near large rockets carrying artifical electron accelerators as a guide in the planning of future experiments

  1. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.

    2015-01-01

    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  2. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An electronically controlled automatic security access gate

    Directory of Open Access Journals (Sweden)

    Jonathan A. ENOKELA

    2014-11-01

    Full Text Available The security challenges being encountered in many places require electronic means of controlling access to communities, recreational centres, offices, and homes. The electronically controlled automated security access gate being proposed in this work helps to prevent an unwanted access to controlled environments. This is achieved mainly through the use of a Radio Frequency (RF transmitter-receiver pair. In the design a microcontroller is programmed to decode a given sequence of keys that is entered on a keypad and commands a transmitter module to send out this code as signal at a given radio frequency. Upon reception of this RF signal by the receiver module, another microcontroller activates a driver circuitry to operate the gate automatically. The codes for the microcontrollers were written in C language and were debugged and compiled using the KEIL Micro vision 4 integrated development environment. The resultant Hex files were programmed into the memories of the microcontrollers with the aid of a universal programmer. Software simulation was carried out using the Proteus Virtual System Modeling (VSM version 7.7. A scaled-down prototype of the system was built and tested. The electronically controlled automated security access gate can be useful in providing security for homes, organizations, and automobile terminals. The four-character password required to operate the gate gives the system an increased level of security. Due to its standalone nature of operation the system is cheaper to maintain in comparison with a manually operated type.

  4. Plasma dynamics near an earth satellite and neutralization of its electric charge during electron beam injection into the ionosphere

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    2000-01-01

    A study is made of the dynamics of the ionospheric plasma in the vicinity of an earth satellite injecting an electron beam. The time evolution of the electric charge of the satellite is determined. The electric potential of the satellite is found to be well below the beam-cutoff potential. It is shown that, under conditions typical of active experiments in space, the plasma electrons are capable of neutralizing the satellite's charge

  5. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    When the mould unit is full, this drive keeps transporting filament materials without proper control. This project developed a closed loop feedback tension control system and it is to replace servo motor drive system for the transportation of filament and it demonstrated a new technological advancement and the theory of ...

  6. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  7. Cylinder Pressure-based Combustion Control with Multi-pulse Fuel Injection

    NARCIS (Netherlands)

    Luo, X.; Wang, S.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With an increased number of fuel injection pulses, the control problem in diesel engines becomes complex. Consisting of multiple single-input single-output (SISO) controllers, the conventional control strategy shows unsatisfactory dynamic performance in tracking combustion load and phase reference

  8. Pengaruh Prosentase Etanol terhadap Torsi dan Emisi Motor Indirect Injection dengan Memodifikasi Engine Control Module

    Directory of Open Access Journals (Sweden)

    Hadi Rahmad

    2016-10-01

    Full Text Available This research present the torque and exhaust emission level from four stroke indirect injection fuel system engine. An engine fueled by ethanol gasoline blend. The original Engine Controle Module injected lean mixture into Combustion Chamber. Lean Mixture decreased Torque drastically. Therefore, the Engine Controle Module was modified to produce stoichiometric mixture. Injector was controlled by digital pulse of Fuel Controller. Ethanol was added into gasoline 0% - 100% at 1500 rpm-5000 rpm. The result demonstrate that increasing ethanol concentration into gasoline fuel system, decreasing Torque, and CO, HC, CO2 emission. By increasing ethanol concentration also increase CO2 emission to 34.6%.

  9. Closed Loop Sawtooth Period Control Using Variable Eccd Injection Angles on Tore Supra

    International Nuclear Information System (INIS)

    Lennholm, M.; Eriksson, L.G.; Turco, F.; Bouquey, F.; Darbos, C.; Dumont, R.; Giruzzi, G.; Jung, M.; Lambert, R.; Magne, R.; Molina, D.; Moreau, P.; Rimini, F.; Segui, J.L.; Song, S.; Traisnel, E.

    2009-01-01

    Closed loop control of the period of fast ion stabilized sawtooth has been demonstrated for the first time on Tore Supra by varying the electron cyclotron current drive (ECCD) injection angles in real time. Fast ions generated by up to 4 MW of central ion cyclotron resonance heating (ICRH) increased the sawtooth period from the ohmic value of 25 ms to 60 to 100 ms. This sawtooth period was reduced to 30 ms by the addition of only 300 kW of ECCD. In ICRH heated shots where the normalized minor radius of the ECCD absorption location was swept from 0.4 to 0.05 in 4 s, the sawtooth period showed an abrupt change from 70 to 30 ms when the ECCD deposition normalized minor radius reached ∼ 0.2. This short period was then maintained until the absorption location moved well inside the sawtooth inversion radius at which point it abruptly returned to 70 ins. A closed loop controller was implemented that allowed the sawtooth period to be switched in real time between short and long sawteeth with a response time of the order of 1 s. (authors)

  10. ASIL determination for motorbike’s Electronics Throttle Control System (ETCS) mulfunction

    OpenAIRE

    Rokhani Fakhrul Zaman; Abdul Rahman Muhammad Taqiuddin; Kamsani Noor Ain; Mohd Sidek Roslina; Saripan M Iqbal; Samsudin Khairulmizam; Hassan Mohd Khair

    2017-01-01

    Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been app...

  11. Class I Underground Injection Control Program: Study of the Risks Associated with Class I Underground Injection Wells

    Science.gov (United States)

    The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.

  12. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  13. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    Science.gov (United States)

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  14. Investigation of organic light-emitting diodes with novel organic electron injection layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunae; Sethuraman, Kunjithapatham; An, Jongdeok; Im, Chan [Konkuk University, Seoul (Korea, Republic of); Hwang, Boseon [Jinwoong Industrial Co. Ltd., Seoul (Korea, Republic of)

    2012-03-15

    1-(diphenyl-phosphinoyl)-4-(2,2-diphenyl-vinyl)-benzene (DpDvB) and 4-(diphenyl-phosphinoyl)-4'-(2,2-diphenyl-vinyl)-biphenyl (DpDvBp) have been prepared and used as efficient electron injection layers (EILs) between aluminum cathode and tris (8-hydroxyquinoline) aluminum organic light emitting diodes (OLED). The performances of devices with different thicknesses of DpDvB and DpDvBp were investigated. Experimental results show that the turn-on voltage of the devices was decreased and the luminance of the devices was enhanced with increasing thickness of the EILs. Power efficiencies of 1.07 lm/W and 0.97 lm/W were obtained by inserting a 3-nm-thick EIL of DpDvB and a 5 nm thick EIL of DpDvBp, respectively. These efficiencies are comparable to that of the device using LiF as an EIL. The results prove that DpDvB and DpDvBp layers are also suitable for efficient EILs in OLEDs.

  15. MTBE and priority contaminant treatment with high energy electron beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J; Nickelsen, Michael G; Mezyk, Stephen P; Leslie, Greg; Tornatore, Paul M; Hardison, Wayne; Hajali, Paris A

    2002-11-01

    A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.

  16. MTBE and priority contaminant treatment with high energy electron beam injection

    International Nuclear Information System (INIS)

    Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.

    2002-01-01

    A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters

  17. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  18. Control, data acquisition and analysis for the JET neutral injection test bed

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brenan, P.R.; Rodgers, M.E.; Stork, D.; Young, I.D.

    1985-01-01

    The Neutral Injection Test-Bed (NITB) is a major experimental assembly in support of the Neutral Beam Heating Programme for JET. In addition to its prime function of testing the Neutral Injection hardware, the Test Bed serves as the prototype to test the computer control and data acquisition system, which is described in this paper. The software system has been written in a portable, data-driven manner with the aim to adapt it, with only minor modifications to the operation of the first. Neutral Injection Beamline on JET, which will involve operation both synchronous and asynchronous with that of the JET Tokamak

  19. Voltage controlled nano-injection system for single-cell surgery

    Science.gov (United States)

    Seger, R. Adam; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2015-01-01

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes. PMID:22899383

  20. Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles

    Science.gov (United States)

    Li, Jingling; Guo, Qiling; Jin, Hu; Wang, Kelai; Xu, Dehua; Xu, Yongjun; Xu, Gang; Xu, Xueqing

    2017-10-01

    In a typical light emitting diode (QD-LED), with ZnO nanoparticles (NPs) serving as the electron transport layer (ETL) material, excessive electron injection driven by the matching conduction band maximum (CBM) between the QD and this oxide layer usually causes charge imbalance and degrades the device performance. To address this issue, the electronic structure of ZnO NPs is modified by the yttrium (Y) doping method. We demonstrate that the CBM of ZnO NPs has a strong dependence on the Y-doping concentration, which can be tuned from 3.55 to 2.77 eV as the Y doping content increases from 0% to 9.6%. This CBM variation generates an enlarged barrier between the cathode and this ZnO ETL benefits from the modulation of electron injection. By optimizing electron injection with the use of a low Y-doped (2%) ZnO to achieve charge balance in the QD-LED, device performance is significantly improved with maximum luminance, peak current efficiency, and maximal external quantum efficiency increase from 4918 cd/m2, 11.3 cd/A, and 4.5% to 11,171 cd/m2, 18.3 cd/A, and 7.3%, respectively. This facile strategy based on the ETL modification enriches the methodology of promoting QD-LED performance.

  1. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  2. Bipolar spintronics: from spin injection to spin-controlled logic

    International Nuclear Information System (INIS)

    Zutic, Igor; Fabian, Jaroslav; Erwin, Steven C

    2007-01-01

    An impressive success of spintronic applications has been typically realized in metal-based structures which utilize magnetoresistive effects for substantial improvements in the performance of computer hard drives and magnetic random access memories. Correspondingly, the theoretical understanding of spin-polarized transport is usually limited to a metallic regime in a linear response, which, while providing a good description for data storage and magnetic memory devices, is not sufficient for signal processing and digital logic. In contrast, much less is known about possible applications of semiconductor-based spintronics and spin-polarized transport in related structures which could utilize strong intrinsic nonlinearities in current-voltage characteristics to implement spin-based logic. Here we discuss the challenges for realizing a particular class of structures in semiconductor spintronics: our proposal for bipolar spintronic devices in which carriers of both polarities (electrons and holes) contribute to spin-charge coupling. We formulate the theoretical framework for bipolar spin-polarized transport, and describe several novel effects in two- and three-terminal structures which arise from the interplay between nonequilibrium spin and equilibrium magnetization

  3. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  4. The enhanced electron injection by fluorinated tris-(8-hydroxy-quinolinato) aluminum derivatives in high efficient Si-anode OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shi, M.M., E-mail: minminshi@zju.edu.c [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, Y.Z. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Shi, Y.W. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ran, G.Z.; Qin, G.G. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Wang, M.; Chen, H.Z. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Fabrication of organic light-emitting diodes (OLEDs) and lasers on silicon substrates is a feasible route to integrate microelectronic chips with optical devices for telecommunications. However, the efficiency of Si-anode based OLEDs is restricted by the imbalance of hole-electron injection because a p-type Si anode owns better hole injection ability than ITO. We have used fluorinated tris-(8-hydroxy-quinolinato) aluminum (FAlq{sub 3}) derivatives to prepare Si-anode based OLEDs. We observed that, when tris-(5-fuloro-8-hydroxyquinolinato) aluminum (5FAlq{sub 3}) is used as the electron-transporting material instead of Alq{sub 3}, the cathode electron injection is enhanced due to its lower lowest unoccupied molecular orbital (LUMO) compared to the Alq{sub 3}. The device can keep the relative carrier balance even when a Si anode capable of stronger hole injection was used. Further optimization of the device structure by introducing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as a hole blocking layer showed significant increase in the device power efficiency from 0.029 to 0.462 lm/W. This indicates that use of fluorinated Alq{sub 3} derivatives is an effective way to improve the performance of Si-anode based OLEDs.

  5. Evaluation of a needle social marketing strategy to control HIV among injecting drug users in China.

    Science.gov (United States)

    Wu, Zunyou; Luo, Wei; Sullivan, Sheena G; Rou, Keming; Lin, Peng; Liu, Wei; Ming, Zhongqiang

    2007-12-01

    To evaluate the effectiveness of a needle social marketing strategy to reduce needle sharing and hepatitis C Virus (HCV)/HIV transmission among injecting drug users (IDU) in China. Two-armed, prospective, community-randomized prevention trial. Four counties/townships in Guangxi and Guangdong provinces; one randomized to intervention the other to control in each province. Injecting drug users: 823 (443 intervention, 382 control) at baseline and 852 (415 intervention, 407 control) at the second cross-sectional survey 12 months later. A needle social marketing programme, including promotion of safe injection norms and increased access to clean needles over a 12 month period. Cross sectional surveys at baseline and follow-up compared changes in drug using behaviours and HIV and HCV rates in the intervention and control communities. Needle sharing behaviours were similar in the two groups at baseline (68.4 vs. 67.8%), and dropped significantly to 35.3% in the intervention community and remained relatively stable in the control community (62.3%; P marketing can reduce risky injecting behaviour and HIV/HCV transmission among injecting drug users in China and should be expanded.

  6. A comparison of water-diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions

    International Nuclear Information System (INIS)

    Subramanian, K.A.

    2011-01-01

    Experiments were conducted to compare the effects of water-diesel emulsion and water injection into the intake manifold on performance, combustion and emission characteristics of a DI diesel engine under similar operating conditions. The water to diesel ratio for the emulsion was 0.4:1 by mass. The same water-diesel ratio was maintained for water injection method in order to assess both potential benefits. All tests were done at the constant speed of 1500 rpm at different outputs. The static injection timing of 23 o BTDC was kept as constant for all experimental tests. In the first phase, experiments were carried out to asses the performance, combustion and emission characteristics of the engine using the water-diesel emulsion. The emulsion was prepared using the surfactant of HLB:7. The emulsion was injected using the conventional injection system during the compression stroke. The second phase of work was that water was injected into the intake manifold of the engine using an auxiliary injector during the suction stroke. An electronic control unit (ECU) was developed to control the injector operation such as start of injection and water injection duration with respect to the desired crank angle. The experimental result indicates the both methods (emulsion and injection) could reduce NO emission drastically in diesel engines. At full load, NO emission decreased drastically from 1034 ppm with base diesel to 645 ppm with emulsion and 643 ppm with injection. But, NO emission reduction is lesser with injection than emulsion at part loads. Smoke emission is lower with the emulsion (2.7 BSU) than with water injection (3.2 BSU) as compared to base diesel (3.6 BSU). However, CO and HC levels were higher with emulsion than water injection. As regards NO and smoke reduction, the emulsion was superior to injection at all loads. Peak pressure, ignition delay and maximum rate of pressure rise were lesser with water injection as compared to the emulsion. It is well demonstrated

  7. A Study of Spill Control Characteristics of JP-8 and Conventional Diesel Fuel with a Common Rail Direct Injection System

    Directory of Open Access Journals (Sweden)

    Seomoon Yang

    2017-12-01

    Full Text Available Diversification of energy sources is a key task for decreasing environmental impacts and global emission of gases. JP-8, a fuel derived from natural gas, coal, biomass, and waste plastics, is a bright prospect. JP-8 is considered a multi-source multi-purpose fuel, with several applications. A preliminary characterization of the JP-8 injection rate and injection quantity behavior was investigated based on the high-pressure common rail injection system used in a heavy-duty engine. According to the spill injection and injection pressure, a trade-off trend between injection rate and injection quantity was observed. As expected, pilot injection of JP-8 aviation fuel and diesel fuel affects the spray quantity and injection evolution of the subsequent operation without pilot injection. The difference in spilling between diesel and JP-8 aviation fuel is greater than the difference in injection amount per time; in the process of controlling the injector solenoid through ECU (Electric Control Units, the oil pressure valve and the needle valve operate to a higher extent in order to maintain the diesel fuel’s injection quantity volume. It was found that the total injection quantity was decreased by adding 20% pilot injection duration. Because the pilot injection quantity causes solenoid response, loss and needle lift stroke friction loss.

  8. Ultrasound-Guided Hyaluronic Acid Injections for Trigger Finger: A Double-Blinded, Randomized Controlled Trial.

    Science.gov (United States)

    Liu, Ding-Hao; Tsai, Mei-Wun; Lin, Shan-Hui; Chou, Chen-Liang; Chiu, Jan-Wei; Chiang, Chao-Ching; Kao, Chung-Lan

    2015-12-01

    To investigate the effects of ultrasound-guided injections of hyaluronic acid (HA) versus steroid for trigger fingers in adults. Prospective, double-blinded, randomized controlled study. Tertiary care center. Subjects with a diagnosis of trigger finger (N=36; 39 affected digits) received treatment and were evaluated. Subjects were randomly assigned to HA and steroid injection groups. Both study medications were injected separately via ultrasound guidance with 1 injection. The classification of trigger grading, pain, functional disability, and patient satisfaction were evaluated before the injection and 3 weeks and 3 months after the injection. At 3 months, 12 patients (66.7%) in the HA group and 17 patients (89.5%) in the steroid group exhibited no triggering of the affected fingers (P=.124). The treatment results at 3 weeks and 3 months showed similar changes in the Quinnell scale (P=.057 and .931, respectively). A statistically significant interaction effect between group and time was found for visual analog scale (VAS) and Michigan Hand Outcome Questionnaire (MHQ) evaluation (Pinjection (steroid 0.5±1.1 vs HA 2.7±2.4; Pinjection of HA demonstrated promising results for the treatment of trigger fingers. The optimal frequency, dosage, and molecular weight of HA injections for trigger fingers deserve further investigation for future clinical applications. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.

    Science.gov (United States)

    Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony

    2017-08-23

    We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.

  10. Feedback controlled fuel injection system can accommodate any alcohol-gasoline blend

    Energy Technology Data Exchange (ETDEWEB)

    Pefley, R K; Pullman, J B; Suga, T P; Espinola, S

    1980-01-01

    A fuel metering system has been adapted and permits operation on all blends of alcohols and gasoline ranging from pure gasoline to pure ethanol and methanol. It is a closed loop electronic feedback controlled fuel injection system (EFI) with exhaust oxygen sensor. The system is used by Toyota Motor Company in their Supra and Cressida models in conjunction with a 3-way catalytic exhaust system. These models meet California exhaust and evaporative emission standards. An unmodified model has been tested on alcohol gasoline blends from pure gasoline to 50% ethanol-50% gasoline and 30% methanol-70% gasoline and found to meet all exhaust and evaporative emissions standards. A Cressida with modified EFI system is currently being tested. It is capable of operating on pure gasoline, pure methanol or ethanol and all intermediate blends. The testing to date shows that the vehicle meets all exhaust emissions standards while operating over the blend range from pure gasoline to pure ethanol while maintaining driveability and energy based fuel economy. The paper will present the total test evidence for all gasoline-alcohol blends. This will include exhaust and evaporative emissions, fuel economy and driveability as determined in accordance with United States Federal Test Procedures. Additionally, the paper will report experiences accumulated from road operation of the vehicle over a six-month period.

  11. Injection Process Control of the Well at the Hydrodynamic Research of Coalbed

    Science.gov (United States)

    Odnokopylov, I. G.; Galtseva, O. V.; Krasnov, I. Yu; Smirnov, A. O.; Karpov, M. S.; Surzhikova, O. A.; Kuznetsov, V. V.; Li, J.

    2017-04-01

    This scientific work is devoted to the study results of water injection process into the well at the hydrodynamic research by using the high pressure unregulated pump. The injection process should be accompanied by the retention of some hydraulic parameters at constant level during some time. Various variants for use of mechatronic nodes for automatization of water injection process are considered. Scheme for reducing the load on the pump and equipment in hydraulic system and also for improving the quality control system with high accuracy is shown. Simulation results of injection process into the well at the pressure and consumption fixation and recommendations for the use of the proposed schemes depending on the technological process are given.

  12. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  13. Optical detection of ballistic electrons injected by a scanning-tunneling microscope

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Wolter, J.H.

    2001-01-01

    We demonstrate a spectroscopic technique which is based on ballistic injection of minority carriers from the tip of a scanning-tunneling microscope into a semiconductor heterostructure. By analyzing the resulting electroluminescence spectrum as a function of tip-sample bias, both the injection

  14. Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

    Science.gov (United States)

    James, Daniel

    Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a "diffract and destroy" methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.

  15. Low power RF beam control electronics for the LEB

    International Nuclear Information System (INIS)

    Mestha, L.K.; Mangino, J.; Brouk, V.; Uher, T.; Webber, R.C.

    1993-05-01

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results

  16. Preliminary study on the control of direct injection diesel engine for better fuel flexibility and emissions control. Pt. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Egnell, R.; Kassem, N.; Bohlin, T.

    1985-01-01

    This report summarizes the results of a preliminary study on turbocharged direct injection diesel engines. Part I reviews the qualitative dynamic aspects of turbocharged diesel engine and the factors that affect its transient behaviour. It gives a brief account of the model structure and the interrelationships between the different components of the model as well as the different types of engine models and the methods of simulation. The transient response of a turbocharged engine under changing load, speed, and ambient conditions are discussed. Methods to improve the transient response, thus reducing fuel consumption and smoke emissions are briefly reviewed. Finally, both conventional and advanced control strategies are discussed with emphasis on the control of fuel injection (Delta-control), injection time (Alfa-control), and exhaust gas recirculation (EGR-control). Part II (in Swedish) consists of a literature survey on hardware components such as sensors, actuators, and injection systems that are, or expect to be, available with reasonable commercial costs. The objective of this survey is to provide the grounds on which to decide if these components satisfy the requirements of electronic control systems. Part III (in Swedish) discusses the transient response measurements obtained from two sets of experiments conducted on a six-cylinder motor working under varying conditions of load and speed. The objective of the first set of experiments was to quantify the difference in ignition delay between the transient and steady state operating conditions. The second set of experiments were aimed to provide a basis on which the engine efficiency obtained under transient conditions can be compared to that obtained from a single-cylinder motor working under steady state conditions.

  17. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    Sharma, Vijay; Rajan, Rehim; Acharya, S.; Mittal, K.C.

    2011-01-01

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  18. Minimum-Voltage Vector Injection Method for Sensorless Control of PMSM for Low-Speed Operations

    DEFF Research Database (Denmark)

    Xie, Ge; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2016-01-01

    In this paper, a simple signal injection method is proposed for sensorless control of PMSM at low speed, which ideally requires one voltage vector only for position estimation. The proposed method is easy to implement resulting in low computation burden. No filters are needed for extracting...... may also be further developed to inject two opposite voltage vectors to reduce the effects of inverter voltage error on the position estimation accuracy. The effectiveness of the proposed method is demonstrated by comparing with other sensorless control method. Theoretical analysis and experimental...

  19. Photonics and electronics for nitrogen vacancy control

    International Nuclear Information System (INIS)

    Shaun Ho

    2014-01-01

    Deterministic indistinguishable single photon sources are one of the key requirements for the realisation of Optical Quantum Computing. Recent low temperature experiments have shown the potential of the negatively charged nitrogen vacancy (NV-) centre as a source of indistinguishable photons. Furthermore its ground state spin structure with extensional decoherence time and spin dependent transitions means it can be harnessed as a spin-photon interface. However, development of these potential applications requires exquisite control of te electronic and spin states via Stark and Zeeman shifting, as well as enhanced photon collection through photonic structures. Here we present the integration of micro-fabricated solid immersion lenses with lithographically defined gold electrodes for control and spin manipulation. (author)

  20. A concealed observational study of infection control and safe injection practices in Jordanian governmental hospitals.

    Science.gov (United States)

    Al-Rawajfah, Omar M; Tubaishat, Ahmad

    2017-10-01

    The recognized international organizations on infection prevention recommend using an observational method as the gold standard procedure for assessing health care professional's compliance with standard infection control practices. However, observational studies are rarely used in Jordanian infection control studies. This study aimed to evaluate injection practices among nurses working in Jordanian governmental hospitals. A cross-sectional concealed observational design is used for this study. A convenience sampling technique was used to recruit a sample of nurses working in governmental hospitals in Jordan. Participants were unaware of the time and observer during the observation episode. A total of 384 nurses from 9 different hospitals participated in the study. A total of 835 injections events were observed, of which 73.9% were performed without handwashing, 64.5% without gloving, and 27.5% were followed by needle recapping. Handwashing rate was the lowest (18.9%) when injections were performed by beginner nurses. Subcutaneous injections were associated with the lowest rate (26.7%) of postinjection handwashing compared with other routes. This study demonstrates the need for focused and effective infection control educational programs in Jordanian hospitals. Future studies should consider exploring the whole infection control practices related to waste disposal and the roles of the infection control nurse in this process in Jordanian hospitals. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics.

    Science.gov (United States)

    Hu, J; Jiang, J; Wang, N

    2018-02-01

    Citrus huanglongbing (HLB) or greening is a devastating disease of citrus worldwide and no effective control measure is currently available. Plant defense activators environmentally friendly compounds capable of inducing resistance against many plant pathogens. Earlier studies showed that foliar spray of plant defense inducers could slow down HLB disease progress. In this study, eight plant defense activators and three antibiotics were evaluated in three field trials for their effect to control HLB by trunk injection of young and mature sweet orange trees. Results showed that four trunk injections of several activators, including salicylic acid, oxalic acid, acibenzolar-S-methyl, and potassium phosphate, provided significant control of HLB by suppressing 'Candidatus Liberibacter asiaticus' titer and disease progress. Trunk injection of penicillin, streptomycin, and oxytetracycline hydrochloride resulted in excellent control of HLB. In general, antibiotics were more effective in reduction of 'Ca. L. asiaticus' titer and HLB symptom expressions than plant defense activators. These treatments also resulted in increased yield and better fruit quality. Injection of both salicylic acid and acibenzolar-S-methyl led to significant induction of pathogenesis-related (PR) genes PR-1 and PR-2 genes. Meanwhile, injection of either potassium phosphate or oxalic acid resulted in significant induction of PR-2 or PR-15 gene expression, respectively. These results suggested that HLB diseased trees remained inducible for systemic acquired resistance under field conditions. In summary, this study presents information regarding controlling HLB via trunk injection of plant defense activators and antibiotics, which helps citrus growers in decision making regarding developing an effective HLB management program.

  2. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    International Nuclear Information System (INIS)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-01

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  3. Electronic circuit provides automatic level control for liquid nitrogen traps

    Science.gov (United States)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  4. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  5. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    International Nuclear Information System (INIS)

    Cornish, S.; Gummersall, D.; Carr, M.; Khachan, J.

    2014-01-01

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory

  6. Optimizing insulin injection technique and its effect on blood glucose control

    Directory of Open Access Journals (Sweden)

    Giorgio Grassi, MD

    2014-12-01

    Conclusions: Targeted individualized training in IT, including the switch to a 4 mm needle, is associated with improved glucose control, greater satisfaction with therapy, better and simpler injection practices and possibly lower consumption of insulin after only a three month period.

  7. TEST DESIGN FOR ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) OF ADD-ON NOX CONTROL UTILIZING OZONE INJECTION

    Science.gov (United States)

    The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...

  8. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  9. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Zou Ye; Deng Zhenbo; Xu Denghui; Lü Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng

    2012-01-01

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq 3 )/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq 3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  10. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  11. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  12. Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Görmeli, Gökay; Görmeli, Cemile Ayşe; Ataoglu, Baybars; Çolak, Cemil; Aslantürk, Okan; Ertem, Kadir

    2017-03-01

    To compare the effectiveness of intraarticular (IA) multiple and single platelet-rich plasma (PRP) injections as well as hyaluronic acid (HA) injections in different stages of osteoarthritis (OA) of the knee. A total of 162 patients with different stages of knee OA were randomly divided into four groups receiving 3 IA doses of PRP, one dose of PRP, one dose of HA or a saline injection (control). Then, each group was subdivided into two groups: early OA (Kellgren-Lawrence grade 0 with cartilage degeneration or grade I-III) and advanced OA (Kellgren-Lawrence grade IV). The patients were evaluated before the injection and at the 6-month follow-ups using the EuroQol visual analogue scale (EQ-VAS) and International Knee Documentation Committee (IKDC) subjective scores. Adverse events and patient satisfaction were recorded. There was a statistically significant improvement in the IKDC and EQ-VAS scores in all the treatment groups compared with the control group. The knee scores of patients treated with three PRP injections were significantly better than those patients of the other groups. There was no significant difference in the scores of patients injected with one dose of PRP or HA. In the early OA subgroups, significantly better clinical results were achieved in the patients treated with three PRP injections, but there was no significant difference in the clinical results of patients with advanced OA among the treatment groups. The clinical results of this study suggest IA PRP and HA treatment for all stages of knee OA. For patients with early OA, multiple (3) PRP injections are useful in achieving better clinical results. For patients with advanced OA, multiple injections do not significantly improve the results of patients in any group. I.

  13. Attack methodology Analysis: SQL Injection Attacks and Their Applicability to Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston

    2005-09-01

    Database applications have become a core component in control systems and their associated record keeping utilities. Traditional security models attempt to secure systems by isolating core software components and concentrating security efforts against threats specific to those computers or software components. Database security within control systems follows these models by using generally independent systems that rely on one another for proper functionality. The high level of reliance between the two systems creates an expanded threat surface. To understand the scope of a threat surface, all segments of the control system, with an emphasis on entry points, must be examined. The communication link between data and decision layers is the primary attack surface for SQL injection. This paper facilitates understanding what SQL injection is and why it is a significant threat to control system environments.

  14. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  15. Paraspinous Lidocaine Injection for Chronic Nonspecific Low Back Pain: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Imamura, Marta; Imamura, Satiko Tomikawa; Targino, Rosa Alves; Morales-Quezada, León; Onoda Tomikawa, Luis C; Onoda Tomikawa, Luis G; Alfieri, Fabio M; Filippo, Thais R; da Rocha, Ivan D; Neto, Raul Bolliger; Fregni, Felipe; Battistella, Linamara Rizzo

    2016-05-01

    In this large, sham-controlled, randomized trial, we examined the efficacy of the combination of standard treatment and paraspinous lidocaine injection compared with standard therapy alone in subjects with chronic low back pain. There is little research-based evidence for the routine clinical use of paraspinous lidocaine injection for low back pain. A total of 378 subjects with nonspecific chronic low back pain were randomized to 3 groups: paraspinous lidocaine injection, analgesics, and exercises (group 1, LID-INJ); sham paraspinous lidocaine injection, analgesics, and exercises (group 2, SH-INJ); and analgesics and exercises (group 3, STD-TTR). A blinded rater assessed the study outcomes at 3 time points: baseline, after treatment, and after 3 months of follow-up. There were increased frequency of pain responses and better low back functional scores in the LID-INJ group compared with the SH-INJ and STD-TTR groups. These effects remained at the 3-month follow-up but differed between all 3 groups. There were significant changes in pain threshold immediately after treatment, supporting the effects of this intervention in reducing central sensitization. Paraspinous lidocaine injection therapy is not associated with a higher risk of adverse effects compared with conventional treatment and sham injection. Its effects on hyperalgesia might correlate with changes in central sensitization. NCT02387567. There are few data to support paraspinous lidocaine injection use in patients with nonspecific chronic low back pain. Our results show that this therapy when combined with standard therapy significantly increases the number of responders versus standard treatment alone. Its effects on hyperalgesia might correlate with a change in central sensitization. Copyright © 2016. Published by Elsevier Inc.

  16. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  17. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    Science.gov (United States)

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  18. Automated injection of a radioactive sample for preparative HPLC with feedback control

    International Nuclear Information System (INIS)

    Iwata, Ren; Yamazaki, Shigeki

    1990-01-01

    The injection of a radioactive reaction mixture into a preparative HPLC column has been automated with computer control for rapid purification of routinely prepared positron emitting radiopharmaceuticals. Using pneumatic valves, a motor-driven pump and a liquid level sensor, two intelligent injection methods for the automation were compared with regard to efficient and rapid sample loading into a 2 mL loop of the 6-way valve. One, a precise but rather slow method, was demonstrated to be suitable for purification of 18 F-radiopharmaceuticals, while the other, due to its rapid operation, was more suitable for 11 C-radiopharmaceuticals. A sample volume of approx 0.5 mL can be injected onto a preparative HPLC column with over 90% efficiency with the present automated system. (author)

  19. Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

  20. Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime.

    Science.gov (United States)

    Kumar, Anup; Capua, Eyal; Fontanesi, Claudio; Carmieli, Raanan; Naaman, Ron

    2018-04-24

    Spin-polarized electrons are injected from an electrochemical cell through a chiral self-assembled organic monolayer into a AlGaN/GaN device in which a shallow two-dimensional electron gas (2DEG) layer is formed. The injection is monitored by a microwave signal that indicates a coherent spin lifetime that exceeds 10 ms at room temperature. The signal was found to be magnetic field independent; however, it depends on the current of the injected electrons, on the length of the chiral molecules, and on the existence of 2DEG.

  1. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  2. Lime Juice and Vinegar Injections as a Cheap and Natural Alternative to Control COTS Outbreaks.

    Science.gov (United States)

    Moutardier, Grégoire; Gereva, Sompert; Mills, Suzanne C; Adjeroud, Mehdi; Beldade, Ricardo; Ham, Jayven; Kaku, Rocky; Dumas, Pascal

    2015-01-01

    Outbreaks of the corallivorous crown-of-thorns seastar Acanthaster planci (COTS) represent one of the greatest disturbances to coral reef ecosystems in the Indo-Pacific, affecting not only coral reefs but also the coastal communities which rely on their resources. While injection approaches are increasingly used in an attempt to control COTS densities, most of them display severe drawbacks including logistical challenges, high residual environmental impacts or low cost-effectiveness. We tested a new alternative control method based upon acidic injections of cheap, 100% natural products. We investigated the lethal doses, intra- and inter-specific disease transmission and immune responses of COTS when injected with fresh lime juice (extracted from local Citrus arantifolia) and white spirit vinegar. High COTS mortality was achieved with small volumes: 10-20 ml per seastar induced death in 89%/97% of injected specimens after an average 34.3 h/29.8 h for lime juice and vinegar respectively. Highest efficiency was reached for both solutions with double shots of (2 × 10 ml) in two different areas on the body: 100% mortality occurred within 12-24 h, which is similar or faster compared with other current injection methods. Multiple immune measures suggested that death was very likely caused by pH stress from the acidic solutions rather than a bacterial infection. Contagion to either conspecifics or a variety of other reef species was not observed, even at COTS densities 15 times higher than the highest naturally reported. 10 to 20 l lime juice/vinegar could kill up to a thousand COTS at a cost of less than 0.05 USD per specimen; no permits or special handling procedures are required. We conclude that injections of lime juice and vinegar offer great advantages when compared to current best practises and constitute a cheap and natural option for all reefs affected by COTS.

  3. Acupuncture point injection treatment of primary dysmenorrhoea: a randomised, double blind, controlled study.

    Science.gov (United States)

    Wade, C; Wang, L; Zhao, W J; Cardini, F; Kronenberg, F; Gui, S Q; Ying, Z; Zhao, N Q; Chao, M T; Yu, J

    2016-01-05

    To determine if injection of vitamin K3 in an acupuncture point is optimal for the treatment of primary dysmenorrhoea, when compared with 2 other injection treatments. A Menstrual Disorder Centre at a public hospital in Shanghai, China. Chinese women aged 14-25 years with severe primary dysmenorrhoea for at least 6 months not relieved by any other treatment were recruited. Exclusion criteria were the use of oral contraceptives, intrauterine devices or anticoagulant drugs, pregnancy, history of abdominal surgery, participation in other therapies for pain and diagnosis of secondary dysmenorrhoea. Eighty patients with primary dysmenorrhoea, as defined on a 4-grade scale, completed the study. Two patients withdrew after randomisation. A double-blind, double-dummy, randomised controlled trial compared vitamin K3 acupuncture point injection to saline acupuncture point injection and vitamin K3 deep muscle injection. Patients in each group received 3 injections at a single treatment visit. The primary outcome was the difference in subjective perception of pain as measured by an 11 unit Numeric Rating Scale (NRS). Secondary measurements were Cox Pain Intensity and Duration scales and the consumption of analgesic tablets before and after treatment and during 6 following cycles. Patients in all 3 groups experienced pain relief from the injection treatments. Differences in NRS measured mean pain scores between the 2 active control groups were less than 1 unit (-0.71, CI -1.37 to -0.05) and not significant, but the differences in average scores between the treatment hypothesised to be optimal and both active control groups (1.11, CI 0.45 to 1.78) and (1.82, CI 1.45 to 2.49) were statistically significant in adjusted mixed-effects models. Menstrual distress and use of analgesics were diminished for 6 months post-treatment. Acupuncture point injection of vitamin K3 relieves menstrual pain rapidly and is a useful treatment in an urban outpatient clinic. NCT00104546; Results

  4. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    Science.gov (United States)

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  5. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    Science.gov (United States)

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  6. Electromagnetically controlled measuring device for measuring injection quantities in a diesel injection pump volumetrically. Elektromagnetisch gesteuerte Messvorrichtung zur volumetrischen Messung von Einspritzmengen einer Dieseleinspritzpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K H; Mueller, M; Decker, R; Huber, G

    1990-11-22

    The invention concerns a measuring device for volumetric measurements of injection quantities of a diesel injection pump which injects its contents into a volumetric chamber controlled electromagnetically by a discharge valve and enclosed by a non-impact gas pressure loaded volumetric vessel and effects a retreating movement of the latter. The device is provided with an inductive path controller fitted with a differential pair of coils containing an axially movable ferromagnetic core. The path controller forms a part of a lifter rod connected to the volumetric vessel. It gives an opening signal to the discharge valve after each retreat of the volumetric vessel and a closing signal as soon as a defined height of suspension corresponding to the original position of the volumetric vessel after its return is reached.

  7. Experimental Study of Low Speed Sensorless Control of PMSM Drive Using High Frequency Signal Injection

    Directory of Open Access Journals (Sweden)

    Jyoti Agrawal

    2016-01-01

    Full Text Available Conventional techniques for sensorless control of permanent magnet synchronous motor drive (PMSM, which requires information on rotor position, are reviewed, and recent developments in this area are introduced in this paper along with their inherent advantages and drawbacks. The paper presents an improved method for sensorless speed control of PMSM drive with emphasis placed on signal injection method. This signal injection method examines the control performance of sensorless PMSM drive by injecting signal externally and thereby sensing the rotor position. The main objective of this drive system is to have speed control at standstill and low speed regions. Several tests are carried out to demonstrate the ability of proposed models at different operating conditions with the help of simulation results in Matlab/Simulink environment. Simulation results confirm that the proposed sensorless control approach of PMSM can achieve high performance at standstill and low speeds but not at very high speeds. An experimental setup is implemented using a 1HP surface mounted (SM PMSM and DsPICDEM^TM MCHV-2 development board, to check the validity of simulation results.

  8. Development of the electron gun control system of SSRF

    International Nuclear Information System (INIS)

    Zhou Dayong; Lin Guoqiang; Liu Dekang; Shen Liren

    2010-01-01

    An electron gun is the key part of a linac, the beam quality of which depends on beam quality of the electron gun, hence the need of a stable control system of the electron gun to ensure its safe operation.In this paper, we report our progresses in developing the linac's electron gun control system of Shanghai Synchrotron Radiation Facility (SSRF). It uses PLC as the device controllers, with the monitoring software developed on EPICS. The whole system is connected by Ethernet. The PLC and Ethernet technology ensures good reliability and easy maintenance of the electron gun control system. (authors)

  9. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-Da)

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E. M. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Parks, P. B. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Commaux, N. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Eidietis, N. W. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Moyer, R. A. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Shiraki, D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Austin, M. E. [Institute for Fusion Studies, University of Texas—Austin, 2100 San Jacinto Blvd, Austin, Texas 78712, USA; Lasnier, C. J. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA; Paz-Soldan, C. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Rudakov, D. L. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

    2015-05-01

    The evolution of the runaway electron (RE) energy distribution function fεfε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, fεfε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ~0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  10. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-01-01

    The evolution of the runaway electron (RE) energy distribution function f ε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f ε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy

  11. Randomised controlled trial of local corticosteroid injections for de Quervain's tenosynovitis in general practice

    Directory of Open Access Journals (Sweden)

    Groenier Klaas H

    2009-10-01

    Full Text Available Abstract Background De Quervain's tenosynovitis is a stenosing tenosynovitis of the first dorsal compartment of the wrist and leads to wrist pain and to impaired function of the wrist and hand. It can be treated by splinting, local corticosteroid injection and operation. In this study effectiveness of local corticosteroid injections for de Quervain's tenosynovitis provided by general practitioners was assessed. Methods Participants with de Quervain's tenosynovitis were recruited by general practitioners. Short-term outcomes (one week after injections were assessed in a randomised, placebo-controlled trial. Long-term effectiveness was evaluated in an open prospective cohort-study of steroid responders during a follow-up period of 12 months. Participants were randomised to one or two local injections of 1 ml of triamcinolonacetonide (TCA or 1 ml of NaCl 0.9% (placebo. Non-responders to NaCl were treated with additional TCA injections. Main outcomes were immediate treatment response, severity of pain, improvement as perceived by participant and functional disability using sub items hand and finger function of the Dutch Arthritis Impact Measurement Scale (Dutch AIMS-2-HFF. Results 11 general practitioners included 21 wrists in 21 patients. The TCA-group had better results for short-term outcomes treatment response (78% vs. 25%; p = 0.015, perceived improvement (78% vs. 33%; p = 0.047 and severity of pain (4.27 vs. 1.33; p = 0.031 but not for the Dutch-AIMS-HFF (2.71 vs. 1.92; p = 0.112. Absolute risk reduction for the main outcome short-term treatment response was 0.55 (95% CI: 0.34, 0.76 with a number needed to treat of 2 (95% CI: 1, 3. In the cohort of steroid responders (n = 12 the beneficial effects of steroid injections were sustained during the follow-up of 12 months regarding severity of pain (p = 0.67 and scores of Dutch AIMS-2-HFF (p = 0.36, but not for patient perceived improvement (p = 0.02. No adverse events were observed during the 12

  12. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon; Chung, Suk-Ho

    2013-01-01

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled

  13. 76 FR 56982 - Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide (CO2

    Science.gov (United States)

    2011-09-15

    ...-9465-1] Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide... Injection Control (UIC) Class VI Program for Carbon Dioxide (CO 2 ) Geologic Sequestration (GS) Wells under... highlighted in the ``Report of the Interagency Task Force on Carbon Capture and Storage'' (August 2010), it is...

  14. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    Science.gov (United States)

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  15. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Science.gov (United States)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  16. A novel current injection model of PWMSC for control and analysis of power system stability

    Directory of Open Access Journals (Sweden)

    Safari Amin

    2013-01-01

    Full Text Available This paper proposes a novel current injection model of Pulse width Modulation based Series Compensator (PWMSC, as new FACTS controller, for damping of low frequency oscillations. The PWMSC operates as a means of continuous control of the degree of series compensation through the variation of the duty cycle of a train of fixed frequency-pulses. The methodology is tested on the sample single machine power system including PWMSC controller by performing computer simulations for small and large distributions. MATLAB/ Simulink software package was used for the simulations.

  17. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  18. Prospective randomized controlled trial of an injectable esophageal prosthesis versus a sham procedure for endoscopic treatment of gastroesophageal reflux disease

    NARCIS (Netherlands)

    Fockens, P.; Cohen, L.; Edmundowicz, S.A.; Binmoeller, K.; Rothstein, R.I.; Smith, D.; Lin, E.; Nickl, N.; Overholt, B.; Kahrilas, P.J.; Vakil, N.; Abdel Aziz Hassan, A.M.; Lehman, G.A.

    2010-01-01

    This study aimed to assess whether endoscopic implantation of an injectable esophageal prosthesis, the Gatekeeper Reflux Repair System (GK), is a safe and effective therapy for controlling gastroesophageal reflux disease (GERD). A prospective, randomized, sham-controlled, single-blinded,

  19. Study Protocol- Lumbar Epidural Steroid Injections for Spinal Stenosis (LESS: a double-blind randomized controlled trial of epidural steroid injections for lumbar spinal stenosis among older adults

    Directory of Open Access Journals (Sweden)

    Friedly Janna L

    2012-03-01

    Full Text Available Abstract Background Lumbar spinal stenosis is one of the most common causes of low back pain among older adults and can cause significant disability. Despite its prevalence, treatment of spinal stenosis symptoms remains controversial. Epidural steroid injections are used with increasing frequency as a less invasive, potentially safer, and more cost-effective treatment than surgery. However, there is a lack of data to judge the effectiveness and safety of epidural steroid injections for spinal stenosis. We describe our prospective, double-blind, randomized controlled trial that tests the hypothesis that epidural injections with steroids plus local anesthetic are more effective than epidural injections of local anesthetic alone in improving pain and function among older adults with lumbar spinal stenosis. Methods We will recruit up to 400 patients with lumbar central canal spinal stenosis from at least 9 clinical sites over 2 years. Patients with spinal instability who require surgical fusion, a history of prior lumbar surgery, or prior epidural steroid injection within the past 6 months are excluded. Participants are randomly assigned to receive either ESI with local anesthetic or the control intervention (epidural injections with local anesthetic alone. Subjects receive up to 2 injections prior to the primary endpoint at 6 weeks, at which time they may choose to crossover to the other intervention. Participants complete validated, standardized measures of pain, functional disability, and health-related quality of life at baseline and at 3 weeks, 6 weeks, and 3, 6, and 12 months after randomization. The primary outcomes are Roland-Morris Disability Questionnaire and a numerical rating scale measure of pain intensity at 6 weeks. In order to better understand their safety, we also measure cortisol, HbA1c, fasting blood glucose, weight, and blood pressure at baseline, and at 3 and 6 weeks post-injection. We also obtain data on resource utilization

  20. Mechanical and Controlled PRP Injections in Patients Affected by Androgenetic Alopecia.

    Science.gov (United States)

    Gentile, Pietro; Garcovich, Simone; Scioli, Maria Giovanna; Bielli, Alessandra; Orlandi, Augusto; Cervelli, Valerio

    2018-01-27

    23 patients (18 male and 5 female) aged 21-70 years who displayed male pattern hair loss (MPHL) in Stage 1 to Stage 5 as determined by the Norwood-Hamilton classification scale, and female pattern hair loss (FPHL) in Stage 1 to Stage 2 as determined by the Ludwig classification scale, were treated with non-activated autologous platelet-rich plasma (A-PRP). Autologous blood (55 mL) was harvested using sodium citrate as an anticoagulant. A-PRP (23 mL) was produced for all cases using a closed system according to the transfusion service protocol. Following centrifugation (260 x g for 10 min) the A-PRP was inserted in a laser light selector device, and after the centrifugation, 9 mL of A-PRP was collected. The scalp of the patients affected by androgenetic alopecia (AGA) was divided into four areas (frontal, parietal, vertex, and occipital); local anesthesia was not performed. Interfollicular A-PRP injections (0.2 mL x cm 2 ) were performed by controlled and mechanical injections scheduled at a depth of 5 mm using a medical injector gun. Treatment sessions were performed with a 30-day interval. For each patient, three treatment sessions were performed. PRP was injected in the androgen-related areas of scalp affected by hair loss. Placebo (normal saline solution) was loaded in another syringe (10 mL) and injected on the adjacent side in a similar fashion.

  1. A new electronic control system for unmanned underwater vehicles

    OpenAIRE

    Molina Molina, J.C.; Guerrero González, A.; Gilabert, J.

    2015-01-01

    In this paper a new electronic control system for unmanned underwater vehicles is presented. This control system is characterized by a distribution in control over two network of type CANBus and Ethernet. This new electronic control system integrates functionalities of AUVs, as the automatic execution of preprogrammed trajectories. The control system also integrates an acoustic positioning system based on USBL. The information of relative positioning is sent through specific...

  2. Safety of radiofrequency treatment over human skin previously injected with medium-term injectable soft-tissue augmentation materials: a controlled pilot trial.

    Science.gov (United States)

    Alam, Murad; Levy, Ross; Pajvani, Urvi; Pavjani, Urvi; Ramierez, James A; Guitart, Joan; Veen, Heather; Gladstone, Hayes B

    2006-03-01

    Several soft-tissue augmentation materials are now available for reduction of nasolabial fold creases and perioral rhytides. Nasolabial folds and perioral rhytides can also be improved by skin tightening delivered by non-ablative radiofrequency (RF) treatment. The purpose of this study was to assess the safety of RF treatment over skin areas recently injected with medium-term injectable soft-tissue augmentation materials. Five subjects were assigned to the experimental arm (augmentation materials plus RF) and one to the control arm (augmentation materials alone). Each subject received injections of 0.3 mL of hyaluronic acid derivative (Restylane) and calcium hydroxylapatite (Radiesse) 3 cm apart on the upper inner arm. Two weeks later, two non-overlapping passes of RF (Thermage ThermaCool TC) were delivered at 63.5 setting with medium-fast 1.5 cm2 tip over injected sites in all of the experimental subjects. Punch skin biopsies were obtained 3 days later from each of the two injection sites on each subject. Light microscopy and digital photomicrographs obtained at low, medium, and high power showed no difference between filler materials in experimental and control subjects. In both cases filler was evident at the deep dermal-subcutaneous junction. Nodule formation, foreign body extravasation, or hemorrhage/clot was not observed grossly or histologically. Subjects and physicians did not report any difference in signs and symptoms between the experimental and control arms. Slightly increased transitory pain was noted when RF was delivered over filler versus over normal skin. Applying RF treatment over the same area 2 weeks after deep dermal injection with hyaluronic acid derivatives or calcium hydroxylapatite does not appear to cause gross morphological changes in the filler material or surrounding skin. Further studies with different parameters are necessary to confirm these findings. 2006 Wiley-Liss, Inc.

  3. Weed control by direct injection of plant protection products according to specific situations

    Directory of Open Access Journals (Sweden)

    Krebs, Mathias

    2016-02-01

    Full Text Available Precision Farming in agriculture allows a site-specific management of the crop. The aim of plant protection is to apply plant protection products (PPP according to the site specific requirements on the field. Within the context of a research program to promote innovation, a sprayer with direct injection of plant protection products was developed. The direct injection offers site specific spraying of different individual PPP in a single pass. The sprayer prototype is equipped with a special spray boom combining three nozzle lines. In order to prevent delay times, the nozzle lines are preloaded before spraying. First results for weed control from test stand measurements and field trials showed that the injection pumps work with high accuracy. The prototype can be used without delay times site specific with up to three different herbicides. Field trials for site-specific weed control in winter wheat demonstrate the applicability of the system under practical conditions. By treatment of subareas herbicides and therefore costs could be saved. A reduction in yield compared with the conventionally treated field areas could not be ascertained. Also an efficacy reduction through washout of active ingredient from target surfaces due to simultaneous use of all three nozzle lines with up to 1050 l/ha application rate could not be detected. At high water spray rates, the efficacy effect occurs delayed. Overall, the newly developed direct injection system proved fieldabillity during the first tests. So weed control can be carried out situation-responsive, which can save herbicides and environmental impacts are reduced.

  4. Novel animal model for Achilles tendinopathy: Controlled experimental study of serial injections of collagenase in rabbits.

    Science.gov (United States)

    de Cesar Netto, Cesar; Godoy-Santos, Alexandre Leme; Augusto Pontin, Pedro; Natalino, Renato Jose Mendonça; Pereira, Cesar Augusto Martins; Lima, Francisco Diego de Oliveira; da Fonseca, Lucas Furtado; Staggers, Jackson Rucker; Cavinatto, Leonardo Muntada; Schon, Lew Charles; de Camargo, Olavo Pires; Fernandes, Túlio Diniz

    2018-01-01

    Our goal was to develop a novel technique for inducing Achilles tendinopathy in animal models which more accurately represents the progressive histological and biomechanical characteristic of chronic Achilles tendinopathy in humans. In this animal research study, forty-five rabbits were randomly assigned to three groups and given bilateral Achilles injections. Low dose (LD group) (n = 18) underwent a novel technique with three low-dose (0.1mg) injections of collagenase that were separated by two weeks, the high dose group (HD) (n = 18) underwent traditional single high-dose (0.3mg) injections, and the third group were controls (n = 9). Six rabbits were sacrificed from each experimental group (LD and HD) at 10, 12 and 16 weeks. Control animals were sacrificed after 16 weeks. Histological and biomechanical properties were then compared in all three groups. At 10 weeks, Bonar score and tendon cross sectional area was highest in HD group, with impaired biomechanical properties compared to LD group. At 12 weeks, Bonar score was higher in LD group, with similar biomechanical findings when compared to HD group. After 16 weeks, Bonar score was significantly increased for both LD group (11,8±2,28) and HD group (5,6±2,51), when compared to controls (2±0,76). LD group showed more pronounced histological and biomechanical findings, including cross sectional area of the tendon, Young's modulus, yield stress and ultimate tensile strength. In conclusion, Achilles tendinopathy in animal models that were induced by serial injections of low-dose collagenase showed more pronounced histological and biomechanical findings after 16 weeks than traditional techniques, mimicking better the progressive and chronic characteristic of the tendinopathy in humans.

  5. Control of insect pests with electrons

    International Nuclear Information System (INIS)

    Hayashi, Toru; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko

    2003-01-01

    Effects of electron beams with an energy of 2.5 MeV on insect pests were slightly smaller than those of gamma-rays. Electron beams at 400 Gy inactivated all the pests for cut flowers tested; spider mite (Tetraychus urticae), mealybug (Pseudococcus comstocki), leaf miner (Liriomyza trifolii), thrips (Thrips palmi, and Thrips tabaci), cutworm (Spodoptera litura) and aphid (Myzus persicae). Carnation, alstromeria, gladiolus, tulip, statice, stock, dendrobium, prairie gentian, oncidium, campanula, gloriosa, fern, gypsophila, freesia, lobelia, triteleia and gerbera were tolerant to electron beams at 400-600 Gy, while chrysanthemum, rose, lily, calla, antherium, sweet pea and iris were intolerant. Radiation-induced deterioration of chrysanthemum could be prevented by post-irradiation treatment with commercial preservative solutions or sugar solutions. Soft-electrons at 60 keV effectively inactivated eggs, larvae and pupae of red flour beetle (Tribolium castaneum) and Indian meal moth (Plodia interpunctella) and eggs of adzuki bean weevil (Callosobruchus chinensis) at a dose of 1 kGy. The adults of T. castaneum and P. interpunctella were inactivated by electron treatment at 5.0 kGy and 7.5 kGy, respectively. Adults of C. chinensis survived at 7.5 kGy, but were inactivated having lost ability to walk at 2.5 kGy. Soft-electrons at 60 keV could not completely inactivate the larvae of C. chinensis and smaller larvae (2nd instar) of maize weevil (Stiophilus zeamais) inside beans and grains, because the electrons with low penetration did not reach the larvae due to the shield of beans or grains. However, soft-electrons at 60 keV inactivated eggs, larger larvae (4th instar) and pupae of S. zeamais in rice grains, which indicated that S. zeamais was exposed to electrons even inside the grains. (author)

  6. A randomized controlled trial of intra-articular prolotherapy versus steroid injection for sacroiliac joint pain.

    Science.gov (United States)

    Kim, Woong Mo; Lee, Hyung Gon; Jeong, Cheol Won; Kim, Chang Mo; Yoon, Myung Ha

    2010-12-01

    Controversy exists regarding the efficacy of ligament prolotherapy in alleviating sacroiliac joint pain. The inconsistent success rates reported in previous studies may be attributed to variability in patient selection and techniques between studies. It was hypothesized that intra-articular prolotherapy for patients with a positive response to diagnostic block may mitigate the drawbacks of ligament prolotherapy. The purpose of this study was to evaluate the efficacy and long-term effectiveness of intra-articular prolotherapy in relieving sacroiliac joint pain, compared with intra-articular steroid injection. This was a prospective, randomized, controlled trial. The study was conducted at an outpatient pain medicine clinic at Chonnam National University Hospital in Gwang-ju, Korea. The study included patients with sacroiliac joint pain, confirmed by ≥50% improvement in response to local anesthetic block, lasting 3 months or longer, and who failed medical treatment. The treatment involved intra-articular dextrose water prolotherapy or triamcinolone acetonide injection using fluoroscopic guidance, with a biweekly schedule and maximum of three injections. Pain and disability scores were assessed at baseline, 2 weeks, and monthly after completion of treatment. The numbers of recruited patients were 23 and 25 for the prolotherapy and steroid groups, respectively. The pain and disability scores were significantly improved from baseline in both groups at the 2-week follow-up, with no significant difference between them. The cumulative incidence of ≥50% pain relief at 15 months was 58.7% (95% confidence interval [CI] 37.9%-79.5%) in the prolotherapy group and 10.2% (95% CI 6.7%-27.1%) in the steroid group, as determined by Kaplan-Meier analysis; there was a statistically significant difference between the groups (log-rank p prolotherapy provided significant relief of sacroiliac joint pain, and its effects lasted longer than those of steroid injections. Further studies

  7. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-02-17

    ...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...

  8. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Science.gov (United States)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  9. Computer-controlled data acquisition system for the ISX-B neutral injection system

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Sherrill, B.; Pearce, J.W.

    1980-05-01

    A data acquisition system for the Impurity Study Experiment (ISX-B) neutral injection system at the Oak Ridge National Laboratory is presented. The system is based on CAMAC standards and is controlled by a MIK-11/2 microcomputer. The system operates at the ion source high voltage on the source table, transmitting the analyzed data to a terminal at ground potential. This reduces the complexity of the communications link and also allows much flexibility in the diagnostics and eventual control of the beam line

  10. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability...

  11. Cavitation control on a 2D hydrofoil through a continuous tangential injection of liquid: Experimental study

    Science.gov (United States)

    Timoshevskiy, M. V.; Zapryagaev, I. I.; Pervunin, K. S.; Markovich, D. M.

    2016-10-01

    In the paper, the possibility of active control of a cavitating flow over a 2D hydrofoil that replicates a scaled-down model of high-pressure hydroturbine guide vane (GV) was tested. The flow manipulation was implemented by a continuous tangential liquid injection at different flow rates through a spanwise slot in the foil surface. In experiments, the hydrofoil was placed in the test channel at the attack angle of 9°. Different cavitation conditions were reached by varying the cavitation number and injection velocity. In order to study time dynamics and spatial patterns of partial cavities, high-speed imaging was employed. A PIV method was used to measure the mean and fluctuating velocity fields over the hydrofoil. Hydroacoustic measurements were carried out by means of a pressure transducer to identify spectral characteristics of the cavitating flow. It was found that the present control technique is able to modify the partial cavity pattern (or even totally suppress cavitation) in case of stable sheet cavitation and change the amplitude of pressure pulsations at unsteady regimes. The injection technique makes it also possible to significantly influence the spatial distributions of the mean velocity and its turbulent fluctuations over the GV section for non-cavitating flow and sheet cavitation.

  12. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  13. Local corticosteroid versus autologous blood injections in lateral epicondylitis: meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Sirico, Felice; Ricca, Flavia; DI Meglio, Franca; Nurzynska, Daria; Castaldo, Clotilde; Spera, Rocco; Montagnani, Stefania

    2017-06-01

    Lateral epicondylitis is a common painful elbow disorder. Several approaches to treatment have been proposed, with a local injection of corticosteroids being the most frequently used. Recent insights into the pathophysiology encouraged the introduction of autologous blood injections as an alternative treatment method. The aim of this meta-analysis is to summarize quantitatively the evidence regarding the efficacy of corticosteroids and autologous blood injections for treatment of pain in lateral epicondylitis. Studies were considered eligible based on the following inclusion criteria: adult human, diagnosis of lateral epicondylitis, randomized controlled trials comparing corticosteroids versus autologous blood injections, pain assessment. Exclusion criteria were previous surgery for lateral epicondylitis or for other elbow disorders, concurrent treatment with drugs or physiotherapy, diagnosis of musculoskeletal systemic disorder. A systematic search of literature was performed according to the PRISMA statement. Effect size of each included study was calculated and analyzed in a random-effects model. Four studies, enrolling total of 218 patients (139 females and 79 males), were included in quantitative analysis. At 2 weeks, there was a trend towards a reduction of VAS score in the corticosteroid group (WMD=2.12 [95% CI: 4.38 to 0.14], P=0.07). No significant differences were recorded in the medium-term (4-12 weeks; WMD=0.85 [95% CI: -0.44 to 2.15], P=0.19) and long-term (24 weeks; WMD=0.63 [95% CI: -2.40 to 3.66], P=0.68) follow-up. Few high-quality trials compare the efficacy of corticosteroid and autologous blood injections in the control of pain related to lateral epicondylitis. Available data indicate that corticosteroids tend to reduce VAS score in short-term follow-up, although these data are not statistically significant. No differences were recorded in the medium and long term. Contrary to popular opinion among medical professionals, and despite

  14. Lumbar Intradiskal Platelet-Rich Plasma (PRP) Injections: A Prospective, Double-Blind, Randomized Controlled Study.

    Science.gov (United States)

    Tuakli-Wosornu, Yetsa A; Terry, Alon; Boachie-Adjei, Kwadwo; Harrison, Julian R; Gribbin, Caitlin K; LaSalle, Elizabeth E; Nguyen, Joseph T; Solomon, Jennifer L; Lutz, Gregory E

    2016-01-01

    To determine whether single injections of autologous platelet-rich plasma (PRP) into symptomatic degenerative intervertebral disks will improve participant-reported pain and function. Prospective, double-blind, randomized controlled study. Outpatient physiatric spine practice. Adults with chronic (≥6 months), moderate-to-severe lumbar diskogenic pain that was unresponsive to conservative treatment. Participants were randomized to receive intradiskal PRP or contrast agent after provocative diskography. Data on pain, physical function, and participant satisfaction were collected at 1 week, 4 weeks, 8 weeks, 6 months, and 1 year. Participants in the control group who did not improve at 8 weeks were offered the option to receive PRP and subsequently followed. Functional Rating Index (FRI), Numeric Rating Scale (NRS) for pain, the pain and physical function domains of the 36-item Short Form Health Survey, and the modified North American Spine Society (NASS) Outcome Questionnaire were used. Forty-seven participants (29 in the treatment group, 18 in the control group) were analyzed by an independent observer with a 92% follow-up rate. Over 8 weeks of follow-up, there were statistically significant improvements in participants who received intradiskal PRP with regards to pain (NRS Best Pain) (P = .02), function (FRI) (P = .03), and patient satisfaction (NASS Outcome Questionnaire) (P = .01) compared with controls. No adverse events of disk space infection, neurologic injury, or progressive herniation were reported following the injection of PRP. Participants who received intradiskal PRP showed significant improvements in FRI, NRS Best Pain, and NASS patient satisfaction scores over 8 weeks compared with controls. Those who received PRP maintained significant improvements in FRI scores through at least 1 year of follow-up. Although these results are promising, further studies are needed to define the subset of participants most likely to respond to biologic intradiskal

  15. Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux

    Directory of Open Access Journals (Sweden)

    Nurul Fazlin Roslan

    2018-02-01

    Full Text Available Renewable Energy Source (RES-based power plants need to control the active and reactive power at the Point of Common Connection (PCC with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs. This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs. In this work, the synchronization with the grid is done based on the Virtual Flux (VF concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometres away. In this paper the main principle for this remote power control is presented. Likewise, the simulation and experimental results will be shown in order to analyse the effectiveness of the proposed system.

  16. A videotaped intervention to enhance child control and reduce anxiety of the pain of dental injections.

    Science.gov (United States)

    Weinstein, P; Raadal, M; Naidu, S; Yoshida, T; Kvale, G; Milgrom, P

    2003-12-01

    While the psychological literature shows that perceptions of uncontrollability contribute to anxiety and other pathologies, interventions that enhance perceived control have been shown to reduce anxiety. This study attempted to assess a brief videotape to enhance child perceived control in a dental setting. 101 children aged 7-9 years completed warm-up procedures and viewed either: a) the experimental intervention, a 2 minutes video of a dentist explaining what an injection will feel like and proposing hand raising as a signal mechanism; or b) the control condition, a 2 minutes video of Disneyland. Fear of dental injections was assessed on a 10 cm visual analogue scale before and after the intervention. In the experimental group there was a significant fear reduction from pre- to post-intervention, while this was not the case in the control group. Children with higher pre-existing levels of fear benefited more from the intervention than children with lower levels of fear. The results of this pilot study suggest that intervention packages that impact child control have promise in lowering anxiety.

  17. Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.V.; Hoppe, K.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.S.; Chandra, A.; Chemseddine, A.; Zrineh, A.; Biswas, A.; Faupel, F.; Chadderton, L.T.

    2004-01-01

    The impact of swift heavy ions onto silicon oxide and silicon oxynitride on silicon creates etchable tracks in these insulators. After their etching and filling-up with highly resistive matter, these nanometric pores can be used as charge extraction or injection paths towards the conducting channel in the underlying silicon. In this way, a novel family of electronic structures has been realized. The basic characteristics of these 'TEMPOS' (=tunable electronic material with pores in oxide on silicon) structures are summarized. Their functionality is determined by the type of insulator, the etch track diameters and lengths, their areal densities, the type of conducting matter embedded therein, and of course by the underlying semiconductor and the contact geometry. Depending on the TEMPOS preparation recipe and working point, the structures may resemble gatable resistors, condensors, diodes, transistors, photocells, or sensors, and they are therefore rather universally applicable in electronics. TEMPOS structures are often sensitive to temperature, light, humidity and organic gases. Also light-emitting TEMPOS structures have been produced. About 37 TEMPOS-based circuits such as thermosensors, photosensors, humidity and alcohol sensors, amplifiers, frequency multipliers, amplitude modulators, oscillators, flip-flops and many others have already been designed and successfully tested. Sometimes TEMPOS-based circuits are more compact than conventional electronics

  18. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  19. Reduction of electron density in a plasma by injection of liquids

    Science.gov (United States)

    Sodha, M. S.; Evans, J. S.

    1974-01-01

    In this paper, the authors have investigated the physics of various processes relevant to the reduction of electron density in a plasma by addition of water droplets; two processes have in particular been analyzed in some detail, viz, the electron attachment to charged dielectric droplets and the emission of negative ions by vaporization from these droplets. The results of these analyses have been applied to a study of the kinetics of reduction of electron density and charging of droplets in an initially overionized plasma, after addition of water droplets. A number of simplifying assumptions including uniform size and charge on droplets and negligible change in the radius of the droplet due to evaporation have been made.

  20. Intramuscular diclofenac vs periprostatic lidocaine injection for controlling pain undergoing transrectal ultrasound guided prostatic biopsy

    International Nuclear Information System (INIS)

    Alam, S.I.

    2017-01-01

    Background: Transrectal ultrasound (TRUS) technique for getting prostatic tissue for histopathology is now the standard procedure for malignant lesions of the prostate and imperative diagnostic investigation of patients with clinical specks of prostatic neoplasia. During TRUS guided biopsy, pain control has been important issue therefore, highly potent analgesia before this procedure should be considered on high priority according to current census. Therefore, we compared intramuscular diclofenac injection with sensory blockade of injection lidocaine to abolish pain undergoing prostatic biopsy with TRUS technique. Methods: Total 200 patients were selected for this study having raised PSA values and suspicious nodule on Digital Rectal Examination. These patients were segregated into two groups by randomization. Group Ar eceived intramuscular diclofenac and group Bw ere infiltrated with lidocaine injection for sensory blockade. Results: Patients in group A was having mean age of 64.5±5.8 years while for group B patients was 65.6±4.9 years (p=0.16). Both groups have statistically insignificant difference in their mean PSA values (p=0.24) and mean prostatic volume (p=0.22). The mean pain scores on visual analogue scale in groups A was 3.5±0.8 and in group B it was 2.4±0.8 (p<0.001). 60% group A patients reported with mild or no pain compared to 90% in group B. (p<0.001). Conclusion: Local blockade with lidocaine injection has better pain control as compared to patients experienced pain with intramuscular diclofenac used for prostatic biopsy through TRUS technique.

  1. development of an electronic vehicular traffic signal controller

    African Journals Online (AJOL)

    INTRODUCTION ... The SCOOT (Split Cycle Offset Optimization Technique) signal control system implements an adaptive ... An electronic traffic signal controller is basically a sequential machine whose operation can be modeled using finite ...

  2. Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene

    OpenAIRE

    Han, Wei; Wang, W. H.; Pi, K.; McCreary, K. M.; Bao, W.; Li, Yan; Miao, F.; Lau, C. N.; Kawakami, R. K.

    2009-01-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by non-local spin valve measurements at room temperature. Gate voltage dependence shows that the non-local magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic/nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the non-local MR reveal an electron-hole asymmetry in which the non-...

  3. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  4. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  5. Effect of electron injection on defect reactions in irradiated silicon containing boron, carbon, and oxygen

    Science.gov (United States)

    Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.

    2018-04-01

    Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.

  6. Impact of the Anchoring Ligand on Electron Injection and Recombination Dynamics at the Interface of Novel Asymmetric Push-Pull Zinc Phthalocyanines and TiO2

    NARCIS (Netherlands)

    Sharma, Divya; Steen, Gerrit Willem; Korterik, Jeroen P.; Garcia-Iglesias, M.; Vazquez, P; Torres, T.; Herek, Jennifer Lynn; Huijser, Jannetje Maria

    2013-01-01

    Phthalocyanines are promising photosensitizers for dye-sensitized solar cells (DSSCs). A parameter that has been problematic for a long time involves electron injection (EI) into the TiO2. The development of push-pull phthalocyanines shows great potential to improve the ratio of EI to back electron

  7. The injected-charse contrast mechanism in scanned imaging of doped semiconductors by very slow electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Müllerová, Ilona

    2005-01-01

    Roč. 106, č. 1 (2005), s. 28-36 ISSN 0304-3991 R&D Projects: GA ČR(CZ) GA202/04/0281 Keywords : Low-energy electrons * SEM * Dopant contrast Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.490, year: 2005

  8. Simulations and experiments on external electron injection for laser wakefield acceleration

    NARCIS (Netherlands)

    Dijk, van W.

    2010-01-01

    Laser wake field acceleration is a technique that can be used to accelerate electrons using electric fields that are several orders of magnitude higher than those available in conventional accelerators. With these higher fields, it is possible to drastically reduce the length of accelerator needed

  9. Ultrafast electron injection at the cationic porphyrin-graphene interface assisted by molecular flattening

    KAUST Repository

    Aly, Shawkat Mohammede; Parida, Manas R.; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    The steady-state and femtosecond (fs) time-resolved data clearly demonstrate that the charge transfer (CT) process at the porphyrin-graphene carboxylate (GC) interfaces can be tuned from zero to very sufficient and ultrafast by changing the electronic structure of the meso unit and the redox properties of the porphyrin cavity. This journal is © the Partner Organisations 2014.

  10. The Edinburgh Addiction Cohort: recruitment and follow-up of a primary care based sample of injection drug users and non drug-injecting controls

    Directory of Open Access Journals (Sweden)

    Kimber Jo

    2010-02-01

    Full Text Available Abstract Background Injection drug use is an important public health problem. Epidemiological understanding of this problem is incomplete as longitudinal studies in the general population are difficult to undertake. In particular little is known about early life risk factors for later drug injection or about the life course of injection once established including the influence of medical and social interventions. Methods Individuals thought to be drug injectors were identified through a single primary medical care facility in Edinburgh between 1980 and 2006 and flagged with the General Registry Office. From October 2005 - October 2007, these cases were traced and invited to undergo interview assessment covering early life experience, substance use, health and social histories. Age and sex matched controls for confirmed cases (alive and dead were later recruited through the same health facility. Controls for living cases completed the same structured interview schedule. Data were also collected on cases and controls through linkage to routine primary care records, death registrations, hospital contact statistics and police and prison records. All interviews were conducted with the knowledge and permission of the current GP. Results The initial cohort size was 814. At start of follow up 227 had died. Of the remaining 587: 20 had no contact details and 5 had embarked from the UK; 40 declined participation; 38 did not respond to invitations; 14 were excluded by their GP on health or social grounds and 22 had their contact details withheld by administrative authorities. 448 were interviewed of whom 16 denied injection and were excluded. Of 191 dead cases with medical records 4 were excluded as their records contained no evidence of injection. 5 interviewed cases died before follow up was concluded though these individuals were counted as "live" cases. 1 control per case (dead and alive was recruited. Linkage to Scottish Morbidity Records data

  11. Subcutaneous Injection of Adalimumab Trial compared with Control (SCIATiC): a randomised controlled trial of adalimumab injection compared with placebo for patients receiving physiotherapy treatment for sciatica.

    Science.gov (United States)

    Williams, Nefyn H; Jenkins, Alison; Goulden, Nia; Hoare, Zoe; Hughes, Dyfrig A; Wood, Eifiona; Foster, Nadine E; Walsh, David A; Carnes, Dawn; Sparkes, Valerie; Hay, Elaine M; Isaacs, John; Konstantinou, Kika; Morrissey, Dylan; Karppinen, Jaro; Genevay, Stephane; Wilkinson, Clare

    2017-10-01

    Biological treatments such as adalimumab (Humira ® ; AbbVie Ltd, Maidenhead, UK) are antibodies targeting tumour necrosis factor alpha, released from ruptured intervertebral discs, which might be useful in sciatica. Recent systematic reviews concluded that they might be effective, but that a definitive randomised controlled trial was needed. Usual care in the NHS typically includes a physiotherapy intervention. To test whether or not injections of adalimumab plus physiotherapy are more clinically effective and cost-effective than injections of saline plus physiotherapy for patients with sciatica. Pragmatic, parallel-group, randomised controlled trial with blinded participants and clinicians, and an outcome assessment and statistical analysis with concurrent economic evaluation and internal pilot. Participants were referred from primary care and musculoskeletal services to outpatient physiotherapy clinics. Adults with persistent symptoms of sciatica of 1-6 months' duration and with moderate to high levels of disability. Eligibility was assessed by research physiotherapists according to clinical criteria for diagnosing sciatica. After a second eligibility check, trial participants were randomised to receive two doses of adalimumab (80 mg and then 40 mg 2 weeks later) or saline injections. Both groups were referred for a course of physiotherapy. Outcomes were measured at the start, and after 6 weeks' and 6 months' follow-up. The main outcome measure was the Oswestry Disability Index (ODI). Other outcomes: leg pain version of the Roland-Morris Disability Questionnaire, Sciatica Bothersomeness Index, EuroQol-5 Dimensions, 5-level version, Hospital Anxiety and Depression Scale, resource use, risk of persistent disabling pain, pain trajectory based on a single question, Pain Self-Efficacy Questionnaire, Tampa Scale of Kinesiophobia and adverse effects. To detect an effect size of 0.4 with 90% power, a 5% significance level for a two-tailed t -test and 80% retention

  12. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  13. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    Science.gov (United States)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  14. Design and remote fiber communication of NSRL electron gun controller

    International Nuclear Information System (INIS)

    Wang Weibing; Gao Hui; Hong Jun; Chen Jun; Wang Guicheng; He Duohui; Chen Gang

    2005-01-01

    A new kind of pulse electron gun controller for 200 MeV LINAC at National Synchrotron Radiation Laboratory was introduced in this paper, including the working principle of the pulse electron gun, the applications of I 2 C serial bus and embedded microcontroller in controlling system. The emphasis is on the hardware design of digital controlled current regulator, digital controlled switch voltage source and high voltage pulse power supply. The software design of fiber communication and PC controlling is also presented. The electron gun controller has successfully been used in NSRL. The result shows that it is quite reliable and the performance is good. This electronic digital system has completely replaced the old mechanical control system. (authors)

  15. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  16. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Pliat, M.J.; Wilder, J.M. [University of Washington, Seattle, WA (United States). Dept. of Civil & Environmental Engineering

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.

  17. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  18. Monitoring of density in tokamaks: pumping and gas injection; Controle de la densite dans les tokamaks: pompage et injection de matiere

    Energy Technology Data Exchange (ETDEWEB)

    Dejarnac, R

    2002-11-01

    In thermonuclear fusion devices, controlling the Deuterium-Tritium fuel density and exhausting the Helium ashes is a crucial point. This is achieved by fuelling the discharges by different methods (gas puffing and pellet injection are the most commonly used) and by implementing pumping devices at the plasma periphery. These two issues are treated in this work, both from an experimental and a modelling point of view, using the neutral transport code EIRENE as main tool for our studies. As far as pumping is concerned, we have modelled the outboard pump limiter of the Tore Supra tokamak with the EIRENE code to which we coupled a plasma module specially developed to simulate the neutrals and the plasma in a coherent way. This allowed to validate the code against experimental data. As far as plasma fuelling is concerned, we present here an original method: the supersonic pulsed gas injection (SPGI). This intermediate method between conventional gas puff (GP) and pellet injection was designed and tested at Tore Supra. It consists of injecting very dense and short gas puffs at high speed into the plasma. Experimentally, SPGI was found to have a better fuelling efficiency than GP and to lead to a strong plasma cooling. The mechanisms responsible for this improved efficiency are analysed by modelling, using the EIRENE code to determine the ionisation source and a 1 D transport model to reproduce the plasma density response. At last, an extrapolation of the present injector is presented, discussing the possibility to obtain a radial drift of the injected matter as observed in the case of high field side pellet injection. (author)

  19. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  20. Modeling and Control of a teletruck using electronic load sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt

    2010-01-01

    system is most commonly controlled using a hydro-mechanical control scheme called Hydraulic Load Sensing (HLS). However, with the demands for increased efficiency and controllability the HLS solutions are reaching their limits. Motivated by availability of electronic controllable fluid power...... components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid...... the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...

  1. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  2. Electron Cyclotron Resonance Heating (ECRH) Control System

    International Nuclear Information System (INIS)

    Heefner, J.W.; Williams, C.W.; Lauze, R.R.; Karsner, P.G.

    1985-01-01

    The ECRH Control System was installed on the Tandem Mirror Experiment-Upgrade (TMX-U) in 1980. The system provides approximately 1 MW of 28 GHz microwave power to the TMX-U plasma. The subsystems of ECRH that must be controlled include high-voltage charging supplies, series pass tubes, and magnet supplies. In addition to the devices that must be controlled, many interlocks must be continuously monitored. The previous control system used relay logic and analog controls to operate the system. This approach has many drawbacks such as lack of system flexibility and maintainability. In order to address these problems, it was decided to go with a CAMAC and Modicon based system that uses a Hewlett-Packard 9836C personal computer to replace the previous analog controls. 2 figs

  3. Electronic control system for irradiation probes

    International Nuclear Information System (INIS)

    Gluza, E.; Neumann, J.; Zahalka, F.

    1980-01-01

    The EROS-78 system for the supply and power control of six heating sections of the irradiation probe of the CHOUCA type placed in the reactor vessel is described. The system allows temperature control at the location of the heat sensor with an accuracy of +-1% of the rated value within the region of 100 to 1000 degC. The equipment is provided with its own quartz controlled clock. The temperature is picked up by a chromel-alumel jacket thermocouple. The power input of the heating elements is thyristor controlled. (J.B.)

  4. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  5. The system of RF beam control for electron gun

    International Nuclear Information System (INIS)

    Barnyakov, A.M.; Levichev, A.E.; Chernousov, Yu.D.; Ivannikov, V.I.; Shebolaev, I.V.

    2015-01-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described

  6. Isolated sub-100-attosecond pulse generation via controlling electron dynamics

    OpenAIRE

    Lan, Pengfei; Lu, Peixiang; Cao, Wei; Li, Yuhua; Wang, Xinlin

    2007-01-01

    A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be a...

  7. Electronic structure properties of the In(Ga)As/GaAs quantum dot–quantum well tunnel-injection system

    International Nuclear Information System (INIS)

    Sęk, Grzegorz; Andrzejewski, Janusz; Ryczko, Krzysztof; Poloczek, Przemysław; Misiewicz, Jan; Semenova, Elizaveta S; Lemaitre, Aristide; Patriarche, Gilles; Ramdane, Aberrahim

    2009-01-01

    We report on the electronic properties of GaAs-substrate-based structures designed as a tunnel-injection system composed of self-assembled InAs quantum dots and an In 0.3 Ga 0.7 As quantum well separated by a GaAs barrier. We have performed photoluminescence and photoreflectance measurements which have allowed the determination of the optical transitions in the QW–QD tunnel structure and its respective references with just quantum dots or a quantum well. The effective mass calculations of the band structure dependence on the tunnelling barrier thickness have shown that in spite of an expected significant tunnelling between both parts of the system, its strong asymmetry and the strain distribution cause that the quantum-mechanical-coupling-induced energy shift of the optical transitions is almost negligible for the lowest energy states and weakly sensitive to the width of the barrier, which finds confirmation in the existing experimental data

  8. Automatic and remote controlled ictal SPECT injection for seizure focus localization by use of a commercial contrast agent application pump.

    Science.gov (United States)

    Feichtinger, Michael; Eder, Hans; Holl, Alexander; Körner, Eva; Zmugg, Gerda; Aigner, Reingard; Fazekas, Franz; Ott, Erwin

    2007-07-01

    In the presurgical evaluation of patients with partial epilepsy, the ictal single photon emission computed tomography (SPECT) is a useful noninvasive diagnostic tool for seizure focus localization. To achieve optimal SPECT scan quality, ictal tracer injection should be carried out as quickly as possible after the seizure onset and under highest safety conditions possible. Compared to the commonly used manual injection, an automatic administration of the radioactive tracer may provide higher quality standards for this procedure. In this study, therefore, we retrospectively analyzed efficiency and safety of an automatic injection system for ictal SPECT tracer application. Over a 31-month period, 26 patients underwent ictal SPECT by use of an automatic remote-controlled injection pump originally designed for CT-contrast agent application. Various factors were reviewed, including latency of ictal injection, radiation safety parameters, and ictal seizure onset localizing value. Times between seizure onset and tracer injection ranged between 3 and 48 s. In 21 of 26 patients ictal SPECT supported the localization of the epileptogenic focus in the course of the presurgical evaluation. In all cases ictal SPECT tracer injection was performed with a high degree of safety to patients and staff. Ictal SPECT by use of a remote-controlled CT-contrast agent injection system provides a high scan quality and is a safe and confirmatory presurgical evaluation technique in the epilepsy-monitoring unit.

  9. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  10. Impact on caesarean section rates following injections of sterile water (ICARIS): a multicentre randomised controlled trial.

    Science.gov (United States)

    Lee, Nigel; Mårtensson, Lena B; Homer, Caroline; Webster, Joan; Gibbons, Kristen; Stapleton, Helen; Dos Santos, Natalie; Beckmann, Michael; Gao, Yu; Kildea, Sue

    2013-05-03

    Sterile water injections have been used as an effective intervention for the management of back pain during labour. The objective of the current research is to determine if sterile water injections, as an intervention for back pain in labour, will reduce the intrapartum caesarean section rate. A double blind randomised placebo controlled trialSetting: Maternity hospitals in AustraliaParticipants: 1866 women in labour, ≥18 years of age who have a singleton pregnancy with a fetus in a cephalic presentation at term (between 37 + 0 and 41 + 6 weeks gestation), who assess their back pain as equal to or greater than seven on a visual analogue scale when requesting analgesia and able to provide informed consent. Participants will be randomised to receive either 0.1 to 0.3 millilitres of sterile water or a normal saline placebo via four intradermal injections into four anatomical points surrounding the Michaelis' rhomboid over the sacral area. Two injections will be administered over the posterior superior iliac spine (PSIS) and the remaining two at two centimetres posterior, and one centimetre medial to the PSIS respectively. Proportion of women who have a caesarean section in labour.Randomisation: Permuted blocks stratified by research site.Blinding (masking):Double-blind trial in which participants, clinicians and research staff blinded to group assignment. Funded by the National Health and Medical Research CouncilTrial registration:Australian New Zealand Clinical Trials Registry (No ACTRN12611000221954). Sterile water injections, which may have a positive effect on reducing the CS rate, have been shown to be a safe and simple analgesic suitable for most maternity settings. A procedure that could reduce intervention rates without adversely affecting safety for mother and baby would benefit Australian families and taxpayers and would reduce requirements for maternal operating theatre time. Results will have external validity, as the technique may be easily applied to

  11. An Electron-Beam Controlled Semiconductor Switch

    Science.gov (United States)

    1989-11-01

    of the Seventeenth Power Modulator Symposium, Seattle, WA, pp. 214-218. 1986. 21. Bovino , L., ’ioumans,R., Weiner, H., Burke, T . , "Optica lly... Bovino , R. Youmans, M. Weiner, and T. Burke, ’ ’Optically Co ntrolled Semiconducto r Switch for ~lulti-~legawatt Rep-Rated Pulse r s ," Conf. Record...p. 615. (II 1 W. N. Carr, IEEE Trans. Electron Devices, vol. ED-12, p. 531 , 1965. (121 T. Burke, M. Weiner. L. Bovino , and R. Youmans, in Proc

  12. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    Science.gov (United States)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  13. DNA in glasses at 77 K: high energy ionizing radiation versus UV electron injection

    International Nuclear Information System (INIS)

    Malone, M.E.; Parker, A.W.

    1994-01-01

    Most in the field of ionizing radiation damage to DNA in frozen aqueous solutions agree that two major types of radical ions are formed, i.e. . G + / . A + and . T - / . C - . The main evidence stems from EPR and strand break studies. Fluid solutions exposed to laser light are known to give G .+ and e solv - with low yields of single strand breaks. We have explored this contrast by photoionizing DNA solutions at 77 K, in the expectation that this would prevent the formation of e solv - and hence that the results might be similar to those for high energy radiation. They are not: the results show only the formation of G .+ (or) A .+ , the fate of the ejected electrons is unclear except for sodium perchlorate glasses when they react to give O .- . (Author)

  14. Real-time observation of ultrafast electron injection at graphene–Zn porphyrin interfaces

    KAUST Repository

    Masih, Dilshad

    2015-02-25

    We report on the ultrafast interfacial electron transfer ( ET) between zinc( II) porphyrin ( ZnTMPyP) and negatively charged graphene carboxylate ( GC) using state- of- the- art femtosecond laser spectroscopy with broadband capabilities. The steady- state interaction between GC and ZnTMPyP results in a red- shifted absorption spectrum, providing a clear indication for the binding affinity between ZnTMPyP and GC via electrostatic and p- p stacking interactions. Ultrafast transient absorption ( TA) spectra in the absence and presence of three different GC concentrations reveal ( i) the ultrafast formation of singlet excited ZnTMPyP*, which partially relaxes into a long- lived triplet state, and ( ii) ET from the singlet excited ZnTMPyP* to GC, forming ZnTMPyP + and GC , as indicated by a spectral feature at 650- 750 nm, which is attributed to a ZnTMPyP radical cation resulting from the ET process.

  15. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    International Nuclear Information System (INIS)

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  16. Risperidone Injection

    Science.gov (United States)

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  17. Haloperidol Injection

    Science.gov (United States)

    ... haloperidol extended-release injection are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  18. Attosecond control of electron beams at dielectric and absorbing membranes

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  19. Validation of analytical method for quality control of B12 Vitamin-10 000 injection

    International Nuclear Information System (INIS)

    Botet Garcia, Martha; Garcia Penna, Caridad Margarita; Troche Concepcion, Yenilen; Cannizares Arencibia, Yanara; Moreno Correoso, Barbara

    2009-01-01

    Analytical method reported by USA Pharmacopeia was validated for quality control of injectable B 1 2 Vitamin (10 000 U) by UV spectrophotometry because this is a simpler and low-cost method allowing quality control of finished product. Calibration curve was graphed at 60 to 140% interval, where it was linear with a correlation coefficient similar to 0, 9999; statistical test for interception and slope was considered non-significant. There was a recovery of 99.7 % in study concentrations interval where the Cochran (G) and Student(t) test were not significant too. Variation coefficient in repetition study was similar to 0.59 % for the 6 assayed replies, whereas in intermediate precision analysis, the Fisher and Student tests were not significant. Analytical method was linear, precise, specific and exact in study concentrations interval

  20. Quality control and process capability assessment for injection-moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measured...... using an optical coordinate measuring machine, which guarantees fast surface scans suitable for inline quality control. The uncertainty assessment of the measurements is calculated and three analyses are carried out and discussed in order to investigate the influence parameters in optical coordinate...... metrology. The estimation of the total variability of the optical measurements and the instrument repeatability are reported; moreover, the measurement system capability is evaluated according to the measurement system capability indices Cg and Cgk....

  1. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-06-01

    ... electronic flight control system. The applicable airworthiness regulations do not contain adequate or... Design Features The Gulfstream Model GVI airplane has an electronic flight control system and no direct... impending control surface limiting, piloted or auto-flight system control of the airplane might be...

  2. Electron Gun for Computer-controlled Welding of Small Components

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Vlček, Ivan; Zobač, Martin

    2001-01-01

    Roč. 62, 2-3 (2001), s. 159-164 ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam-welding machine * Electron gun * Computer- control led beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.541, year: 2001

  3. Engineered Surfaces to Control Secondary Electron Yield for Multipactor Suppression

    Science.gov (United States)

    2017-09-14

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 9-14-2017 Engineered Surfaces to Control Secondary Electron Yield for...Multipactor Suppression James M. Sattler Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electrical and Electronics Commons... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

  4. Electronic Monitoring and Family Control in Probation and Parole.

    Science.gov (United States)

    Quinn, James F.; Holman, John E.

    1992-01-01

    Examined effects of electronic monitoring on family's contribution to external constraint of felony offenders under community supervision. Data from probationers and parolees (n=121) indicated that reported levels of family control did not change significantly during three months of electronic monitoring. Demographic variables, offense type, and…

  5. Enhanced performance of inverted organic photovoltaic cells using CNTs-TiO(X) nanocomposites as electron injection layer.

    Science.gov (United States)

    Zhang, Hong; Xu, Meifeng; Cui, Rongli; Guo, Xihong; Yang, Shangyuan; Liao, Liangsheng; Jia, Quanjie; Chen, Yu; Dong, Jinquan; Sun, Baoyun

    2013-09-06

    In this study, we fabricated inverted organic photovoltaic cells with the structure ITO/carbon nanotubes (CNTs)-TiO(X)/P3HT:PCBM/MoO₃/Al by spin casting CNTs-TiO(X) nanocomposite (CNTs-TiO(X)) as the electron injection layer onto ITO/glass substrates. The power conversion efficiency (PCE) of the 0.1 wt% single-walled nanotubes (SWNTs)-TiO(X) nanocomposite device was almost doubled compared with the TiO(X) device, but with increasing concentration of the incorporated SWNTs in the TiO(X) film, the performance of the devices appeared to decrease rapidly. Devices with multi-walled NTs in the TiO(X) film have a similar trend. This phenomenon mainly depends on the inherent physical and chemical characteristics of CNTs such as their high surface area, their electron-accepting properties and their excellent carrier mobility. However, with increasing concentration of CNTs, CNTs-TiO(X) current leakage pathways emerged and also a recombination of charges at the interfaces. In addition, there was a significant discovery. The incorporated CNTs were highly conducive to enhancing the degree of crystallinity and the ordered arrangement of the P3HT in the active layers, due to the intermolecular π-π stacking interactions between CNTs and P3HT.

  6. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    Science.gov (United States)

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  7. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  8. Patient assessment of an electronic device for subcutaneous self-injection of interferon ß-1a for multiple sclerosis: an observational study in the UK and Ireland

    Directory of Open Access Journals (Sweden)

    D'Arcy C

    2012-01-01

    Full Text Available Caroline D’Arcy1, Del Thomas2, Dee Stoneman3, Laura Parkes31West London Neuroscience Centre, Charing Cross Hospital, London, UK; 2Wye Valley NHS Trust, Hereford, UK; 3Merck Serono Ltd, Feltham, Middlesex, UKBackground: Injectable disease-modifying drugs (DMDs reduce the number of relapses and delay disability progression in patients with relapsing–remitting multiple sclerosis (RRMS. Regular self-injection can be stressful and impeded by MS symptoms. Auto-injection devices can simplify self-injection, overcome injection-related issues, and increase treatment satisfaction. This study investigated patient responses to an electronic auto-injection device.Methods: Patients with RRMS (n = 63, aged 18–65 years, naïve to subcutaneous (sc interferon (IFN ß-1a therapy, were recruited to a Phase IV, observational, open-label, multicenter study (NCT01195870. Patients self-injected sc IFN ß-1a using the RebiSmart™ (Merck Serono S.A. – Geneva, Switzerland electronic auto-injector for 12 weeks, including an initial titration period if recommended by the prescribing physician. In week 12, patients completed a questionnaire comprising of a visual analog scale (VAS to rate how much they liked using the device, a four-point response question on ease of use (‘very difficult’, ‘difficult’, ‘easy’, or ‘very easy’, and a list of ten device functions to rank, based upon their experiences.Results: Six patients (9.5% discontinued the study: one switched to manual injection; two discontinued all treatment; three changed therapy. In total, 59 out of 63 patients (93.7% completed the VAS; 54 out of 59 (91.5%; 95% confidence interval: 81.3%–97.2% ‘liked’ using the electronic auto-injector (score ≥6, whereas 57 out of 59 (96.6% rated the device overall as ‘easy’ or ‘very easy’ to use. Device features rated as most useful were the hidden needle (mean [standard deviation] score: 3.3 [3.01]; n = 56, confirmation sound (3.9 [2.45], and

  9. Atto-second control of collective electron motion in plasmas

    International Nuclear Information System (INIS)

    Borot, Antonin; Malvache, Arnaud; Chen, Xiaowei; Jullien, Aurelie; Lopez-Martens, Rodrigo; Geindre, Jean-Paul; Audebert, Patrick; Mourou, Gerard; Quere, Fabien

    2012-01-01

    Today, light fields of controlled and measured waveform can be used to guide electron motion in atoms and molecules with atto-second precision. Here, we demonstrate atto-second control of collective electron motion in plasmas driven by extreme intensity (approximate to 10 18 W cm -2 ) light fields. Controlled few-cycle near-infrared waves are tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide sub-cycle motion of electrons from the plasma with characteristic energies in the multi-kilo-electron-volt range-two orders of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent extreme ultraviolet radiation emerging from the light-plasma interaction allows us to probe this collective motion of charge with sub-200 as resolution. This is an important step towards atto-second control of charge dynamics in laser-driven plasma experiments. (authors)

  10. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  11. Assessment of Safety Standards for Automotive Electronic Control Systems

    Science.gov (United States)

    2016-06-01

    This report summarizes the results of a study that assessed and compared six industry and government safety standards relevant to the safety and reliability of automotive electronic control systems. These standards include ISO 26262 (Road Vehicles - ...

  12. Controlling front-end electronics boards using commercial solutions

    CERN Document Server

    Beneyton, R; Jost, B; Schmeling, S

    2002-01-01

    LHCb is a dedicated B-physics experiment under construction at CERN's large hadron collider (LHC) accelerator. This paper will describe the novel approach LHCb is taking toward controlling and monitoring of electronics boards. Instead of using the bus in a crate to exercise control over the boards, we use credit-card sized personal computers (CCPCs) connected via Ethernet to cheap control PCs. The CCPCs will provide a simple parallel, I2C, and JTAG buses toward the electronics board. Each board will be equipped with a CCPC and, hence, will be completely independently controlled. The advantages of this scheme versus the traditional bus-based scheme will be described. Also, the integration of the controls of the electronics boards into a commercial supervisory control and data acquisition (SCADA) system will be shown. (5 refs).

  13. Dynamic modelling and PID loop control of an oil-injected screw compressor package

    Science.gov (United States)

    Poli, G. W.; Milligan, W. J.; McKenna, P.

    2017-08-01

    A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.

  14. Pellet ablation and cloud flow characteristics in the JIPP T-IIU plasma with the injection-angle controllable system

    International Nuclear Information System (INIS)

    Sakakita, H.; Sato, K.N.; Liang, R.; Hamada, Y.; Ando, A.; Kano, Y.; Sakamoto, M.

    1994-01-01

    Pellet ablation and flow characteristics of ablation cloud have been studied in the JIPP T-IIU plasma by using an injection-angle controllable system. A new technique for an ice pellet injection system with controllability of injection angle has been developed and installed to the JIPP T-IIU tokamak in order to vary deposition profile of ice pellets within a plasma. Injection angle can be varied easily and successfully during an interval of two plasma shots in the course of an experiment, so that one can carry out various basic experiments by varying the pellet deposition profile. The injection angle has been varied poloidally from -6 to 6 degree by changing the angle of the last stage drift tube. This situation makes possible for pellets to aim at from about r = -2a/3 to r = 2a/3 of the plasma. From two dimensional observations by CCD cameras, details of the pellet ablation structures with various injection angles have been studied, and a couple of interesting phenomena have been found. In the case of an injection angle (θ) larger than a certain value (θ ≥ 4 o ), a pellet penetrates straightly through the plasma with a trace of straight ablation cloud, which has been expected from usual theoretical consideration. On the other hand, a long helical tail of ablation light has been observed in the case of the angle smaller than the certain value (θ ≤ 4 o ). (author) 4 refs., 4 figs

  15. Chaotic behaviour and controlling chaos in free electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie; Chen Shigang; Du Xiangwan; Wang Guangrui

    1995-01-01

    Chaos in free electron lasers (FEL) is reviewed. Special attention has been paid to the chaotic behaviour of the electrons and the laser field. The problem of controlling and utilizing chaotic motion of the electrons and the laser field has also been discussed. In order to find out the rules of instability and chaos in FEL, some typical methods of the chaotic theory are used. These methods include making the Poincare surface of section, drawing the phase space diagrams of the electron orbits, calculating the Liapunov exponents, and computing the power spectrum, etc. Finally, some problems in FEL research are discussed (103 refs., 54 figs.)

  16. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Østergaard, Peter Friis; Taboryski, Rafael; Wolff, Anders; Hansen, Mikkel Fougt; Haugshøj, Kenneth Brian; Poulsen, Carl Esben

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads to numerically robust results with limited computational demands and a low number of iterations. Numerical and simplified analytical results are validated against the experimental results. We find that injection moulding and ultrasonic welding are effective for chip production and that the experimental burst pressures could be estimated with an average accuracy of 5% using the presented numerical model. (paper)

  17. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  18. Evaluation of a Trunk Injection Technique to Control Grapevine Wood Diseases

    Directory of Open Access Journals (Sweden)

    G. Darrieutort

    2007-04-01

    Full Text Available Vineyard experiments were conducted over five years in the Bordeaux area to evaluate the effectiveness of trunk injections in controlling Eutypa dieback (4 trials and esca (1 trial. Single treatments were applied in winter 2001 or 2002 using the tree injector StemJect®. Three compounds were tested: two triazole-derived fungicides, propiconazole and difenoconazole, and one elicitor, 2-hydroxybenzoïc acid. Symptomatic vines of two susceptible cultivars, Cabernet Sauvignon and Cabernet Franc, had first been identified in summer in the year before the treatments were started. A disease scale was used to rate the severity of the foliar symptoms. After treatment, disease development was recorded on the same vines in the following years, from 2002 to 2005. Analyses were based on the evolution of foliar symptoms and on the development of wood symptoms (% area of dead wood. This novel procedure made it possible to determine the sanitary status of each vine in terms of three classes of disease severity: remission of symptoms, stability or worsening. No treatment had a significantly durable effect on disease expression irrespective of the site, the compound or the disease studied. Some phytotoxic effects with the triazole fungicides were noticed. Prospects for trunk injections as a means to solve these insidious problems in viticulture are discussed.

  19. Digital signal processing in power electronics control circuits

    CERN Document Server

    Sozanski, Krzysztof

    2013-01-01

    Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using

  20. Laboratory electron exposure of TSS-1 thermal control coating

    Science.gov (United States)

    Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.

    1995-01-01

    RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.

  1. Electronic circuit for control rod attracting electromagnet

    International Nuclear Information System (INIS)

    Ito, Koji.

    1991-01-01

    The present invention provides a discharging circuit for control rod attracting electromagnet used for a reactor which is highly reliable and has high performance. The resistor of the circuit comprises a non-linear resistor element and a blocking rectification element connected in series. The discharging circuit can be prevented from short-circuit by selecting a resistor having a resistance value about ten times as great as the coil resistance, even in a case where the blocking rectification element and the non-linear resistor element are failed. Accordingly, reduction of attracting force and the increase of scream releasing time can be minimized. (I.S.)

  2. Pressure injection of methyl 2-benzimidazole carbamate hydrochloride solution as a control for Dutch elm disease

    Science.gov (United States)

    Garold F. Gregory; Thomas W. Jones

    1973-01-01

    A preliminary evaluation of the effectiveness of injecting methyl 2-benzimidazole carbamate hydrochloride solution into elms for prevention or cure of Dutch elm disease is reported. Symptom development was diminished or prevented in elms injected with fungicide before inoculation. Symptom development was arrested in all crown-inoculated diseased trees injected with the...

  3. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    Science.gov (United States)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  4. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  5. Development of control system for the electron gun modulator

    International Nuclear Information System (INIS)

    Hasegawa, T.; Nagasawa, S.; Kobayashi, T.; Hanaki, H.

    2004-01-01

    We have been developing a compact and inexpensive electron gun modulator for the SPring-8 Linac. The modulator was redesigned and manufactured to achieve good maintainability and high controllability. A control system of the modulator and a high voltage station is composed mainly of PLCs as a controller and touch panels for human interface. This simplified construction will result in enhancement of its reliability. The rich graphical user interface on the touch panels greatly extends the function of the control system. (author)

  6. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    Science.gov (United States)

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  7. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  8. Gated-controlled electron pumping in connected quantum rings

    International Nuclear Information System (INIS)

    Lima, R.P.A.; Domínguez-Adame, F.

    2014-01-01

    We study the electronic transport across connected quantum rings attached to leads and subjected to time-harmonic side-gate voltages. Using the Floquet formalism, we calculate the net pumped current generated and controlled by the side-gate voltage. The control of the current is achieved by varying the phase shift between the two side-gate voltages as well as the Fermi energy. In particular, the maximum current is reached when the side-gate voltages are in quadrature. This new design based on connected quantum rings controlled without magnetic fields can be easily integrated in standard electronic devices. - Highlights: • We introduce and study a minimal setup to pump electrons through connected quantum rings. • Quantum pumping is achieved by time-harmonic side-gate voltages instead of the more conventional time-dependent magnetic fluxes. • Our new design could be easily integrated in standard electronic devices

  9. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  10. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  11. Dose controlled low energy electron irradiator for biomolecular films.

    Science.gov (United States)

    Kumar, S V K; Tare, Satej T; Upalekar, Yogesh V; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  12. Dose controlled low energy electron irradiator for biomolecular films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.; Tsering, Thupten [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  13. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going...... from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...... structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads...

  14. Electrically controlled fuel injection device for internal combustion engines with air quantity meter. Elektrisch gesteuerte Kraftstoffeinspritzeinrichtung fuer Brennkraftmaschinen mit Luftmengenmesser

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, B; Soell, W

    1980-12-11

    The invention concerns an electrically controlled preferably intermittently working fuel injection device for internal combustion engines with a throttle valve, a solenoid operated injection valve and a transistor circuit, which supplies electrical pulses used to open the injection valve synchronously to the revolution of the crankshaft. The invention is characterized by the fact that an electrical control device is provided, which extends the individual opening pulses in thrust operation (with the throttle valve closed or nearly closed and with a working speed above the speed). The extension produced by the control device decreases from a value at about 20% for the maximum speed to a value of 0 for the tickover speed. Details of the transistor control are made clear by detailed circuit diagrams and 5 patent claims.

  15. Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2014-01-01

    The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers...... by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast...

  16. Intercalated Injection, Target Model Construction and H 2 Performance of Retrospective Cost Adaptive Control

    Science.gov (United States)

    Rahman, Yousaf

    This dissertation extends retrospective cost adaptive control (RCAC) by devel- oping a novel interpretation of RCAC, wherein the retrospective cost minimization uses intercalated injection between the controller numerator and denominator to fit a specific closed-loop transfer function to a target model. The target model thus incor- porates the modeling information required by RCAC. To demonstrate the effect of the target model on closed-loop performance, RCAC is applied to a collection of problems that demonstrate adaptive pole placement, where the target model is used to place closed-loop poles; adaptive PID control, where RCAC adaptively tunes PID gains; and LQG cost minimization, where the optimality and closed-loop frequency response of RCAC is compared with the performance of discrete-time LQG controllers. Next, RCAC is applied to plants that are difficult to control using fixed gain con- trollers, including an aircraft lateral dynamics model that has an unknown transition from minimum-phase to nonminimum-phase (NMP) dynamics, as well as plants with severely limited achievable gain and delay margin. xvi. Methods are developed to control NMP plants without knowledge of the NMP zero. Specifically, a decentralized feedback-feedforward architecture as well as quasi- FIR controllers are considered, where the FIR controller operates in parallel with an internal model controller in order to follow commands for NMP plants without knowledge of the NMP zeros. Next, the following question is considered: Are all full-order dynamic compen- sators observer-based? It is shown that the only case where a dynamic compensator is not observer-based is the case where n is odd and the closed-loop spectrum has no real eigenvalues. Since this is the case, such controllers are necessarily suboptimal in the sense of LQG. This question is relevant to understanding the closed-loop pole locations arising from full-order RCAC compensators. Finally, retrospective cost model refinement (RCMR

  17. Process control and product evaluation in micro molding using a screwless/two-plunger injection unit

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Dormann, B.

    2010-01-01

    A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ-injection......A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ......-injection molding was investigated using the Design of Experiments technique. Injection pressure and piston stroke speed as well as part weight and dimensions were considered as quality factors over a wide range of process parameters. Experimental results obtained under different processing conditions were...

  18. Cutaneous cooling to manage botulinum toxin injection-associated pain in patients with facial palsy: A randomised controlled trial.

    Science.gov (United States)

    Pucks, N; Thomas, A; Hallam, M J; Venables, V; Neville, C; Nduka, C

    2015-12-01

    Botulinum toxin injections are an effective, well-established treatment to manage synkinesis secondary to chronic facial palsy, but they entail painful injections at multiple sites on the face up to four times per year. Cutaneous cooling has long been recognised to provide an analgesic effect for cutaneous procedures, but evidence to date has been anecdotal or weak. This randomised controlled trial aims to assess the analgesic efficacy of cutaneous cooling using a cold gel pack versus a room-temperature Control. The analgesic efficacy of a 1-min application of a Treatment cold (3-5 °C) gel pack versus a Control (room-temperature (20 °C)) gel pack prior to botulinum toxin injection into the platysma was assessed via visual analogue scale (VAS) ratings of pain before, during and after the procedure. Thirty-five patients received both trial arms during two separate clinic appointments. Cold gel packs provided a statistically significant reduction in pain compared with a room-temperature Control (from 26.4- to 10.2-mm VAS improvement (p injected or the order in which the Treatment or Control gel packs were applied. Cryoanalgesia using a fridge-cooled gel pack provides an effective, safe and cheap method for reducing pain at the botulinum toxin injection site in patients with facial palsy. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Coherent control of single electrons: a review of current progress

    Science.gov (United States)

    Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier

    2018-05-01

    In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.

  20. Method’s and Test Stand for Electronic PID Controller

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents method’s and a testing stand for electronic controller using for this a signal generator and a digital oscilloscope respectively the virtual instrumentation and the signal acquisitions from the controllers input and output through an data acquisition board and an PC on that Lab View program runs.

  1. Isolated sub-100-as pulse generation via controlling electron dynamics

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    A method to coherently control electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp; thus an isolated 80-as pulse is straightforwardly obtained, and even shorter pulses are achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes. In addition, the few-cycle synthesized pulse is expected to be useful for manipulating a wide range of laser-atom interactions

  2. A computer-controlled conformal radiotherapy system. IV: Electronic chart

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; McShan, Daniel L.; Matrone, Gwynne M.; Weaver, Tamar A.; Lewis, James D.; Kessler, Marc L.

    1995-01-01

    Purpose: The design and implementation of a system for electronically tracking relevant plan, prescription, and treatment data for computer-controlled conformal radiation therapy is described. Methods and Materials: The electronic charting system is implemented on a computer cluster coupled by high-speed networks to computer-controlled therapy machines. A methodical approach to the specification and design of an integrated solution has been used in developing the system. The electronic chart system is designed to allow identification and access of patient-specific data including treatment-planning data, treatment prescription information, and charting of doses. An in-house developed database system is used to provide an integrated approach to the database requirements of the design. A hierarchy of databases is used for both centralization and distribution of the treatment data for specific treatment machines. Results: The basic electronic database system has been implemented and has been in use since July 1993. The system has been used to download and manage treatment data on all patients treated on our first fully computer-controlled treatment machine. To date, electronic dose charting functions have not been fully implemented clinically, requiring the continued use of paper charting for dose tracking. Conclusions: The routine clinical application of complex computer-controlled conformal treatment procedures requires the management of large quantities of information for describing and tracking treatments. An integrated and comprehensive approach to this problem has led to a full electronic chart for conformal radiation therapy treatments

  3. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    Science.gov (United States)

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  4. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  5. Quality control of the documentation process in electronic economic activities

    Directory of Open Access Journals (Sweden)

    Krutova A.S.

    2017-06-01

    Full Text Available It is proved that the main tool that will provide adequate information resources e economic activities of social and economic relations are documenting quality control processes as the basis of global information space. Directions problems as formation evaluation information resources in the process of documentation, namely development tools assess the efficiency of the system components – qualitative assessment; development of mathematical modeling tools – quantitative evaluation. A qualitative assessment of electronic documentation of economic activity through exercise performance, efficiency of communication; document management efficiency; effectiveness of flow control operations; relationship management effectiveness. The concept of quality control process documents electronically economic activity to components which include: the level of workflow; forms adequacy of information; consumer quality documents; quality attributes; type of income data; condition monitoring systems; organizational level process documentation; attributes of quality, performance quality consumer; type of management system; type of income data; condition monitoring systems. Grounded components of the control system electronic document subjects of economic activity. Detected components IT-audit management system economic activity: compliance audit; audit of internal control; detailed multilevel analysis; corporate risk assessment methodology. The stages and methods of processing electronic transactions economic activity during condition monitoring of electronic economic activity.

  6. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  7. A randomized controlled trial of an electronic informed consent process.

    Science.gov (United States)

    Rothwell, Erin; Wong, Bob; Rose, Nancy C; Anderson, Rebecca; Fedor, Beth; Stark, Louisa A; Botkin, Jeffrey R

    2014-12-01

    A pilot study assessed an electronic informed consent model within a randomized controlled trial (RCT). Participants who were recruited for the parent RCT project were randomly selected and randomized to either an electronic consent group (n = 32) or a simplified paper-based consent group (n = 30). Results from the electronic consent group reported significantly higher understanding of the purpose of the study, alternatives to participation, and who to contact if they had questions or concerns about the study. However, participants in the paper-based control group reported higher mean scores on some survey items. This research suggests that an electronic informed consent presentation may improve participant understanding for some aspects of a research study. © The Author(s) 2014.

  8. [Application of nested case-control study on safe evaluation of post-marketing traditional Chinese medicine injection].

    Science.gov (United States)

    Xiao, Ying; Zhao, Yubin; Xie, Yanming

    2011-10-01

    The nested case-control study design (or the case-control in a cohort study) is described here as a new study design used in safe evaluation of post-marketing traditional Chinese medicine injection. In the nested case-control study, cases of a disease that occur in a defined cohort are identified and, for each, a specified number of matched controls is selected from among those in the cohort who have not developed the disease by the time of disease occurrence in the case. For many research questions, the nested case-control design potentially offers impressive reductions in costs and efforts of data collection and analysis compared with the full cohort approach, with relatively minor loss in statistical efficiency. The nested case-control design is particularly advantageous for studies in safe evaluation of post-marketing traditional Chinese medicine injection. Some examples of the application of nested case-control study were given.

  9. Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.

    Science.gov (United States)

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf

    2017-04-01

    In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons

  10. Monitoring and control system of the Saclay electron linear accelerator

    International Nuclear Information System (INIS)

    Lafontaine, Antoine

    1974-01-01

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

  11. Spray-controlled combustionprocess with piezo injection; Strahlgefuehrtes Brennverfahren mit Piezo-Benzineinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schaupp, U.; Altenschmidt, F.; Bertsch, D.; Laudenbach, N. [DaimlerChrysler AG, Stuttgart (Germany)

    2007-07-01

    The novel 2nd generation injection system of Mercedes-Benz have resulted in reduced fuel consumption and lower emissions while improving the engine performance. The piezo technology is a great technical advance. The characteristic field range in which stratified charge operation is possible has been extended since the first generation of injection systems. Lower fuel consumption is achieved not only in normal traffic but also when cruising on motorways at constant speed. The advantages are noticeable not only in the test cycle but also in real operation. The piezo injection valve was not available on the market and had to be constructed, including the 200 bar high-pressure fuel injection system. The stability of the injection system and the good mixing characteristics resulted in an optimally combustible mixture at the spark plug. Apart from stability in stratified charge operation, the possibility of multiple injection also has further advantages and potentials in terms of consumption and emissions. (orig.)

  12. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    Science.gov (United States)

    2018-02-19

    AFRL-AFOSR-JP-TR-2018-0012 Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures PHILIP Kim HARVARD COLLEGE PRESIDENT...21-02-2018 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      15 Aug 2015 to 14 Feb 2017 4.  TITLE AND SUBTITLE Nano Electronics on...NOTES 14.  ABSTRACT We report molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films

  13. Ultrasound guided versus landmark guided corticosteroid injection in patients with rotator cuff syndrome: Randomised controlled trial.

    Science.gov (United States)

    Bhayana, Himanshu; Mishra, Puneet; Tandon, Anupama; Pankaj, Amite; Pandey, Rohit; Malhotra, Raskesh

    2018-03-01

    Impingement syndrome is the most common differential in a patient presenting to an orthopaedic OPD with shoulder pain. Impingement syndrome is often managed with subacromial corticosteroid injection, which can be instilled using either landmark guided (LMG) approach or with the assistance of ultrasound (US). This study was envisaged to enquire whether ultrasound assistance improves the accuracy, efficacy or safety profile of the injection. 60 patients of rotator cuff syndrome underwent diagnostic ultrasound. They were randomly assigned to receive subacromial injection of 2 ml (40 mg/ml) methylprenisolone and 2 ml of 1% lignocaine combination either by US assistance (n = 30) or using LMG assistance (n = 30). The patients were evaluated before injection and on follow up visits at day 5, week 3, week 6 and 3rd month by a single assessor. The assessor was blinded of the treatment group to which patient belonged. Clinical assessment included demographic and clinical data, accuracy of injection, VAS (0-100) for pain, Constant score with goniometer evaluation of range of motion, patient's self assessment proforma and post injection side effects if any. Initial demographic, clinical and US findings in the groups exhibited no significant differences. The accuracy of US guided injections (100%) was more when compared from LMG injection (93.3%). Both VAS and Constant score showed significant improvement following steroid injection up to 3 months of follow up. However the differences in the two groups were not significant suggesting comparable efficacy of the two approaches. (Mean VAS score decrease: 27.23 for US and 25.16 for LMG, p guided injections have a higher accuracy of drug placement in the subacromial bursa, there is no difference in terms of clinical outcomes or safety profile of either of the method. Hence US guided injections seems to be unjustified, when compared to equally efficacious and cost effective LMG steroid injection.

  14. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection

    KAUST Repository

    Eita, Mohamed Samir

    2014-08-28

    Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Indian primacy procedures handbook for the public water system supervision (PWSS) program and the underground injection control (UIC) program

    International Nuclear Information System (INIS)

    1993-03-01

    The handbook defines primacy, the responsibilities of primacy, primacy's advantages and limitations, and how to seek primacy. Primacy is a provision in the 1986 Amendments to the Safe Drinking Water Act (SDWA). It allows Indian Tribes the opportunity to assume principal responsibility in the enforcement of public drinking water and/or underground injection control (UIC) regulations within the Indian Tribe's jurisdiction. To attain primacy a Tribe must have drinking water and underground injection control regulations which are at least as strict as EPA regulations, and must have an independent agency or organization within the Tribal government that has the power to enforce its regulations

  16. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  17. Optimization of control parameters for SR in EDM injection flushing type on stainless steel 304 workpiece

    International Nuclear Information System (INIS)

    Reza, M S; Yusoff, A R; Shaharun, M A

    2012-01-01

    The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. surface roughness (SR). Higher SR during EDM machining process results for poor surface integrity of the workpiece. Hence, the quality characteristic for SR is set to lower-the-better to achieve the optimum surface integrity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the SR. The use of Taguchi method in the experiment saves a lot of time and cost of machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the lower the machining diameter, the lower will be the SR.

  18. Interaction of an ice pellet and a toroidal plasma in the JIPP T-IIU tokamak with the injection-angle controllable system

    International Nuclear Information System (INIS)

    Sato, K.N.; Sakakita, H.; Liang, R.; Hamada, Y.; Ida, K.; Kano, Y.; Sakamoto, M.

    1994-01-01

    The interaction of an ice pellet and a toroidal plasma has been studied in the JIPP T-IIU tokamak by using an injection-angle controllable system. In order to carry out various basic experiments by varying the pellet deposition profile within a plasma, anew technique for an ice pellet injection system with controllability of the injection angle has been developed and installed with the JIPP t-IIU tokamak. Injection angle can be varied easily and successfully during an interval of two plasma shots in the course of an experiment. The injection angle has been varied poloidally from 6 to 6 degree by changing the angle of the last stage drift tube, and this makes possible for pellets to aim at from about r = -2 a/3 to r = 2 a/3 of the plasma. From two dimensional observations by CCD cameras, details of the pellet ablation structures with various injections angles have been studied, and a couple of interesting phenomena have been found. In the case of an injection angle (θ) larger than a certain value (θ ≥ 4 0 ), a pellet penetrates straightly through the plasma with a trace of straight ablation cloud, which has been expected from usual theoretical consideration. On the other hand, a long helical tail of ablation light has been observed in the case of the angle smaller than the certain value (θ ≤ 4 0 ). The direction of helical rotation (tail) is independent to that of the total magnetic field lines of the torus. In order to examine the tail direction, further experiments have been carried out as to four conditions of the combination with two (clockwise and counter-clockwise) toroidal field directions and with two plasma current directions. The results show that it seems to rotate to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from

  19. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  20. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  1. Beam-plasma interaction with an electron beam injecting into a symmetrically open plasma system; Electron beam relaxation. Puchkovo-plazmennoe vzaimodejstvie pri inzhektsii ehlektronnogo puchka v simmetrichno otkrytuyu plazmennuyu sistemu; Relaksatsiya ehlektronnogo puchka

    Energy Technology Data Exchange (ETDEWEB)

    Opanasenko, A V; Romanyuk, L I [AN Ukrainskoj SSR, Kiev (Ukrainian SSR). Inst. Yadernykh Issledovanij

    1989-10-01

    The relaxation of the electron beam with the electron density of 1-2 keV injected through the symmetrically open plasma system with the independent hot cathode Penning discharge is experimentally investigated. It is shown that the velocity distribution function of the electron beam changes after passing each wave generation zone induced by the beam. The contribution of different wave zones to the beam relaxation depends on the prehistory of the beam-plasma interaction and may be regulated by the selection of the plasma system parameters. By this way the complete relaxation of the electron beam can be achieved after the beam crossing the whole system.

  2. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  3. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  4. Radiation tolerance studies using fault injection on the Readout Control FPGA design of the ALICE TPC detector

    Science.gov (United States)

    Alme, J.; Fehlker, D.; Lippmann, C.; Mager, M.; Rehman, A. U.; Røed, K.; Röhrich, D.; Ullaland, K.

    2013-01-01

    Single Event Upsets (SEUs) are a major concern for the TPC Readout Control Unit (RCU) of the ALICE experiment. A SEU is defined as a radiation related bit-flip in a memory cell, and a SEU in the onboard SRAM based FPGA of the RCU may lead to corrupted data or, even worse, a system malfunction. The latter situation will affect the operation of the ALICE detector since it causes a premature end of data taking. Active partial reconfiguration is utilized in a dedicated reconfiguration solution on the RCU, and this makes it possible to implement fault injection. Fault injection means inserting bit flips in the configuration memory of the FPGA in a controlled laboratory environment. This paper presents the results of the fault injection study and shows how this result can be combined with SEU measurements to estimate the functional failure rate as a function of luminosity.

  5. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  6. A first approach to runaway electron control in FTU

    International Nuclear Information System (INIS)

    Boncagni, L.; Carnevale, D.; Cianfarani, C.; Esposito, B.; Granucci, G.; Maddaluno, G.; Marocco, D.; Martin-Solis, J.R.; Pucella, G.; Sozzi, C.; Varano, G.; Vitale, V.; Zaccarian, L.

    2013-01-01

    The Plasma Control System (PCS) of the Frascati Tokamak Upgrade (FTU) is not equipped with any runaway electron (RE) beam control or suppression tool. In this paper we propose an upgraded PCS including an architecture for the control of disruption-generated REs that, making use of filtering techniques to estimate the onsets of the current quench (CQ) and of the RE beam current plateau, provides a controlled plasma current shut-down and a simultaneous RE position control. The control strategy is based on a nonlinear technique, called Input Allocation, that allows to re-configure the current in the poloidal field (PF) coils and improve the PCS responsiveness needed for RE position control. Preliminary results on the implementation of the Input Allocation and an experimental proposal to test the control scheme architecture are discussed

  7. A first approach to runaway electron control in FTU

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Carnevale, D., E-mail: carnevaledaniele@gmail.com [Dipartimento Ing. Civile ed Ing. Informatica Università di Roma, Tor Vergata, Via del Politecnico 1, 00133 Roma (Italy); Cianfarani, C.; Esposito, B. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Granucci, G. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Maddaluno, G.; Marocco, D. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Martin-Solis, J.R. [Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes-Madrid (Spain); Pucella, G. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Sozzi, C. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Varano, G. [Dipartimento Ing. Civile ed Ing. Informatica Università di Roma, Tor Vergata, Via del Politecnico 1, 00133 Roma (Italy); Vitale, V. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Zaccarian, L. [CNRS, LAAS, 7 av. du colonel Roche, F-31400 Toulouse (France); Univ. de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-10-15

    The Plasma Control System (PCS) of the Frascati Tokamak Upgrade (FTU) is not equipped with any runaway electron (RE) beam control or suppression tool. In this paper we propose an upgraded PCS including an architecture for the control of disruption-generated REs that, making use of filtering techniques to estimate the onsets of the current quench (CQ) and of the RE beam current plateau, provides a controlled plasma current shut-down and a simultaneous RE position control. The control strategy is based on a nonlinear technique, called Input Allocation, that allows to re-configure the current in the poloidal field (PF) coils and improve the PCS responsiveness needed for RE position control. Preliminary results on the implementation of the Input Allocation and an experimental proposal to test the control scheme architecture are discussed.

  8. Aminocaproic Acid Injection

    Science.gov (United States)

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  9. Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargine-injected diabetic patients.

    Science.gov (United States)

    Yanagisawa, Katsuyuki; Ashihara, Junya; Obara, Shinji; Wada, Norio; Takeuchi, Masayoshi; Nishino, Yuri; Maeda, Sayaka; Ishibashi, Yuji; Yamagishi, Sho-ichi

    2014-11-01

    Basal and bolus insulin therapy is required for strict blood control in diabetic patients, which could lead to prevention of vascular complications in diabetes. However, the optimal combination regimen is not well established. Fifty-nine diabetic patients (49 type 1 and 10 type 2; 52.9 ± 13.3 years old) whose blood glucose levels were uncontrolled (HbA1c  > 6.2%) by combination treatment of basal insulin glargine with multiple daily pre-meal injections of bolus short-acting insulin [aspart (n = 19), lispro (n = 37) and regular human insulin (n = 3)] for at least 8 weeks were enrolled in this study. We examined whether glycaemic control and vascular injury were improved by replacement of short-acting insulin with glulisine. Patient satisfaction was assessed with Diabetes Treatment Satisfaction Questionnaire. Although bolus and basal insulin doses were almost unchanged before and after replacement therapy, switching to glulisine insulin for 24 weeks significantly decreased level of HbA1c , advanced glycation end products (AGEs), soluble receptor for AGEs (sRAGE), monocyte chemoattractant protein-1 (MCP-1) and urinary albumin excretion. In multiple stepwise regression analysis, change in MCP-1 values from baseline (ΔMCP-1) was a sole determinant of log urinary albumin excretion. ΔAGEs and ΔsRAGE were independently correlated with each other. The relationship between ΔMCP-1 and ΔsRAGE was marginally significant (p = 0.05). Replacement of short-acting insulin by glulisine significantly increased Diabetes Treatment Satisfaction Questionnaire scores. Our present study suggests that combination therapy of glargine with multiple daily pre-meal injections of glulisine might show superior efficacy in controlling blood glucose, preventing vascular damage and improving treatment satisfaction in diabetic patients. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  11. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    Vilardy, J; Salas, V.; Torres, C.

    2016-01-01

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  12. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  13. The clinical value of Huangqi injection in the treatment of leucopenia: a meta-analysis of clinical controlled trials.

    Directory of Open Access Journals (Sweden)

    Changsong Zhang

    Full Text Available BACKGROUND: Huangqi injection is derived from Astragalus membranaceus root. In China, recent reports of Huangqi injection for the treatment of leucopenia have emerged. However, a systematic review of these reports has not been performed. Thus, we conducted a meta-analysis of clinical controlled trials to assess the clinical value of Huangqi injection in the treatment of leucopenia. METHODS: We searched the Chinese Biomedical Literature Database (CBM, Wanfang Database, China National Knowledge Infrastructure (CNKI, Chinese Scientific Journals Full-text Database (VIP, as well as PubMed and EMBASE to collect the data about trials of Huangqi injection for treating leucopenia. A meta-analysis was performed using RevMan 5.2 software. RESULTS: A total of 13 studies involving 841 patients were included in this study. The overall study quality was lower according to the Jadad scale. The meta-analysis showed that experimentally treated patients experienced greater therapeutic efficacy and lower white blood cell counts than control groups treated with Western medicine (P < 0.05. No publication bias was evident, according to Egger's test. CONCLUSIONS: The validity of this meta-analysis was limited by the overall poor quality of the included studies. Huangqi injection may have potential clinical value in the treatment of leucopenia, but confirmation with rigorously well-designed multi-center trials is needed.

  14. Evaluation of the Spatiotemporal Dynamics of Oxytetracycline and Its Control Effect Against Citrus Huanglongbing via Trunk Injection.

    Science.gov (United States)

    Hu, Jiahuai; Wang, Nian

    2016-12-01

    Citrus huanglongbing (HLB) or greening is a devastating bacterial disease that has destroyed millions of trees and is associated with phloem-residing 'Candidatus Liberibacter asiaticus' (Las) in Florida. In this study, we evaluated the spatiotemporal dynamics of oxytetracycline in planta and its control effect against HLB via trunk injection. Las-infected 'Hamlin' sweet orange trees on 'Swingle' citrumelo rootstock at the early stage of decline were treated with oxytetracycline hydrochloride (OTC) using trunk injection with varying number of injection ports. Spatiotemporal distribution of OTC and dynamics of Las populations were monitored by high-performance liquid chromatography method and qPCR assay, respectively. Uniform distribution of OTC throughout tree canopies and root system was achieved 2 days postinjection. High levels of OTC (>850 µg/kg) were maintained in leaf and root for at least 1 month and moderate OTC (>500 µg/kg) persisted for more than 9 months. Reduction of Las populations in root system and leaves of OTC-treated trees were over 95% and 99% (i.e., 1.76 and 2.19 log reduction) between 2 and 28 days postinjection. Conditions of trees receiving OTC treatment were improved, fruit yield was increased, and juice acidity was lowered than water-injected control even though their differences were not statistically significant during the test period. Our study demonstrated that trunk injection of OTC could be used as an effective measure for integrated management of citrus HLB.

  15. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  16. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  17. Help system for control of JAERI FEL (Free Electron laser)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  18. Power electronic converters PWM strategies and current control techniques

    CERN Document Server

    Monmasson, Eric

    2013-01-01

    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  19. Electroluminescence analysis of injection-enhanced annealing of electron irradiation-induced defects in GaInP top cells for triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tiancheng; Lu, Ming; Yang, Kui; Xiao, Pengfei; Wang, Rong, E-mail: wangr@bnu.edu.cn

    2014-09-15

    Direct injection-enhanced annealing of defects in a GaInP top cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.8 MeV electrons with a fluence of 1 × 10{sup 15} cm{sup −2} has been observed and analyzed using electroluminescence (EL) spectra. Minority-carrier injection under forward bias conditions is observed to enhance defect annealing in the GaInP top cell, and recovery of the EL intensity of the GaInP top cell was observed even at room temperature. Moreover, the injection-enhanced defect annealing rates obey a simple Arrhenius law; therefore, the annealing activation energy was determined and is equal to 0.51 eV. Lastly, the H2 defect has been identified as the primary non-radiative recombination center based on a comparison of the annealing activation energies.

  20. Control-grid electron gun as a source of modulated electron beam for a collective accelerator

    International Nuclear Information System (INIS)

    Bakumenko, A.A.; Belikov, V.V.; Zvyagintsev, A.V.; Lyul'chenko, V.I.; Lymar', A.G.; Martynenko, P.A.; Suryadnyj, A.V.

    1989-01-01

    Structure is described and experimental results of investigations into an electron gun with transverse beam compression and control grid are presented. The pulse trailing edge is formed by a sectioned discharger. A modulated electron beam with the following parameters: 110 keV beam energy, 70 A current amplitude, 3-8 MHz modulation frequency, 100% modulation depth, ≅8-6 mm minimal beam diameter, ≅ 10μs pulse duration, 3% pulse top non-uniformity, more than 200 compression degree is obtained when introducing the positive feedback in auto-generator regime to the gun supply circuit. Further it is supposed to use the developed electron gun for heavy ion acceleration by a field of space charge of a modulated electron beam in a corrugated liner. It should be underlined that power supply of such an accelerator does not require powerful outside HF generator. 5 refs.; 1 fig

  1. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    Science.gov (United States)

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  2. Effect of Metabolic Syndrome on the Functional Outcome of Corticosteroid Injection for Lateral Epicondylitis: Retrospective Matched Case-Control Study.

    Science.gov (United States)

    Roh, Young Hak; Oh, Minjoon; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-09-07

    Both obesity and diabetes mellitus are well-known risk factors for tendinopathies. We retrospectively compared the efficacy of single corticosteroid injections in treating lateral epicondylitis in patients with and without metabolic syndrome (MetS). Fifty-one patients with lateral epicondylitis and MetS were age- and sex-matched with 51 controls without MetS. Pain severity, Disability of the Arm, Shoulder, and Hand score, and grip strength were assessed at base line and at 6, 12 and 24 weeks post-injection. The pain scores in the MetS group were greater than those in the control group at 6 and 12 weeks. The disability scores and grip strength in the MetS group were significantly worse than those of the control group at 6 weeks. However, there were no significant differences at 24 weeks between the groups in terms of pain, disability scores and grip strengths. After 24 weeks, three patients (6%) in the control group and five patients (10%) in the MetS group had surgical decompression (p = 0.46). Patients with MetS are at risk for poor functional outcome after corticosteroid injection for lateral epicondylitis in the short term, but in the long term there was no difference in outcomes of steroid injection in patients with and without MetS.

  3. Radiosterilization process control in plants using electron accelerators

    International Nuclear Information System (INIS)

    Stuglik, Z.

    1997-01-01

    Electron beam parameters deciding the irradiation dose in radiosterilization plants should be continuously controlled during the process. Dosimetric procedure suitable to irradiated material and dose range should be chosen. The practical advice and directions in this subject have been done. 7 refs

  4. 21 CFR 11.200 - Electronic signature components and controls.

    Science.gov (United States)

    2010-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1) Employ at least two distinct identification components such as an identification code and password. (i... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...

  5. 75 FR 16235 - Electronic Prescriptions for Controlled Substances

    Science.gov (United States)

    2010-03-31

    ... mature standard for the formatting of prescription data, most electronic prescriptions are routed from... prescriptions prior to granting access to sign such prescriptions, two-factor authentication including a hard... practitioner can retain control of a biometric or hard token. Authentication based only on knowledge factors is...

  6. Electronic Performance Monitoring: An Organizational Justice and Concertive Control Perspective.

    Science.gov (United States)

    Alder, G. Stoney; Tompkins, Phillip K.

    1997-01-01

    Applies theories of organizational justice/concertive control to account for contradictions inherent in electronic monitoring of workers by organizations. Argues that results are usually positive when workers are involved in the design and implementation of monitoring systems, and monitoring is restricted to performance-related activities with…

  7. Plastic Injection Quality Controlling Using the Lean Six Sigma and FMEA Method

    Science.gov (United States)

    Mansur, A.; Mu'alim; Sunaryo

    2016-01-01

    PT. Yogya Presisi Teknikatama Industri (PT. YPTI) is a mold, precision part, and plastic injection maker company. One of the obstacles faced by the company is the high level of nonconformity on its production results. The waste on production process can be identified and classified into four types, i.e.: a). during the process of injection molding machines, b). finishing and cutting processes, c). quality control process and d). the packaging process. The objectives of this research are minimizing the defective goods and reducing the waste using Lean Six Sigma and FMEA approaches, especially for Bush product. From the analysis result, defective types on Bush product can be classified into bubble, speckle, short shoot, sunken, sink mark, over-cut, flashing, and discolor. Based on the attributes data on Bush product, the DPMO score is 988.42 or the sigma level is 4.6, While the DPMO score on the variable data on each dimension i.e.: a). Slit width on the bottom side has DPMO score of 30119 (sigma level 3.37), b). Diameter of the circle on the top side has DPMO score of 392294 (sigma level 1.77), c). Product thickness on the top side has DPMO score of 70474 (sigma level 2.97), d). Product height has DPMO score of 82107 (sigma level 2.89), product thickness on the bottom side has DPMO score of 24448 (sigma level 3.47), and f). Diameter of the circle on the bottom side has DPMO score of 24448 (sigma level 3.47). The highest RPN score on the dominant types of product defects which needs improvement are the defective goods of bubble type has RPN score of 729, flashing and the molten material out on the heating channel has RPN score of 384, over cutting has RPN score of 324 and sink mark has RPN score of 270. The recommendations for improvement that can be given from this research are making checklist for maintenance and production monitoring, enhancing work supervision and inspection, as well as improving the environment and work stations.

  8. Randomized Clinical Trial of Periarticular Drug Injection used in combination Patient-Controlled Analgesia versus Patient-Controlled Analgesia Alone in Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    MN Sabran

    2008-11-01

    Full Text Available This is a prospective randomized clinical trial to compare use of a combination of periarticular drug injection with patient- controlled analgesia (PCA to PCA alone in post-total knee arthroplasty (TKA. Thirty patients who were admitted for unilateral total knee arthroplasty were selected randomly into an Injection group or a Standard group. The periarticular injection contained Ropivacaine, Ketorolac and Adrenaline, given intra-operatively. The mean amount of opioid used was 22.87 mmol/L in the Injection group as compared to 39.78 mmol/L in the Standard group (p = 0.026. The Injection group had lower pain score at rest and during exercise (p=0.021, p=0.041, respectively, as well as better return to function (p=0.026 and shorter hospital stay (6.1 days, Injection; 7.5 days, Standard, p=0.027. Overall, the group receiving periarticular drugs injection had less pain, less narcotic usage, earlier return to function, similar experience of adverse effects and shorter hospital stays.

  9. Transverse acceptance calculation for continuous ion beam injection into the electron beam ion trap charge breeder of the ReA post-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-11-11

    The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.

  10. Efficacy of tramadol and butorphanol pretreatment in reducing pain on propofol injection: A placebo-controlled randomized study.

    Science.gov (United States)

    Singh, Arvinderpal; Sharma, Geeta; Gupta, Ruchi; Kumari, Anita; Tikko, Deepika

    2016-01-01

    Pain of propofol injection has been recalled by many patients as the most painful part of the induction of anesthesia. Tramadol and butorphanol are commonly used analgesics for perioperative analgesia in anesthesia practice. However, their potential to relieve propofol injection pain still needs to be explored. A randomized, double-blind, placebo-controlled study was conducted on 90 American Society of Anesthesiologists I and II adult patients undergoing elective surgery under general anesthesia with propofol as an induction agent. Consecutive sampling technique with random assignment was used to allocate three groups of 30 patients each. Group I patients received an injection of normal saline 3 ml intravenously (placebo) while Group II and Group III patients received injection of tramadol 50 mg and butorphanol 1 mg intravenously, respectively. Before induction of anesthesia patients were asked about the intensity of pain on propofol injection by using visual analog scale (VAS) before the loss of consciousness. Descriptive statistics and analysis of variance with Chi-square test were used to analyze the data. The value of P pain in Group I was observed in 80% of the patients, while it was observed in 23.33% and 20% of patients in Group II and III, respectively. Mean VAS scores were 2.27 ± 1.51, 1.14 ± 1.74, and 1.03 ± 1.72 in Group I, II, and Group III patients, respectively. The incidence of pruritus was 10% and 6.7% and erythema in 13.2% and 6.7% in Group II and III, respectively. Pretreatment with both butorphanol and tramadol significantly reduced pain on propofol injection; however, they exhibited comparable efficacy among each other. Thus, either of these two drugs can be considered for pretreatment to reduce propofol injection pain.

  11. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  12. Supply system with microprocessor control for electron gun

    International Nuclear Information System (INIS)

    Duplin, N.I.; Sergeev, N.N.

    1988-01-01

    Precision supply system for electron gun used in Auger-spectrometer is described. The supply system consists of control and high-voltage parts, made as separate units. Supply high-voltage unit includes system supply module, filament module to supply electron gun cathode and 6 high-volt modules to supply accelerating, modulating and three focusing electrodes of the gun. High-voltage modules have the following characteristics: U-(100-1000)V output voltage, 5x10 -5 U stability, 10 -5 xU pulsation amplitude, J-(0-5)A filament current change range at 10 -4 xJ stability. Control unit including microprocessor, timer and storage devices forms control voltage for all modules and regulates voltage and current of filament at electrodes

  13. Control system by the technological electron Linac KUT-20

    CERN Document Server

    Akchurin, Y I; Gurin, V A; Demidov, N V

    2001-01-01

    The high-power technological electron linac KUT-20 was developed at the Science Research Complex 'Accelerator' of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun,a klystron type buncher and an accelerating cavity.With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1A,the beam energy will be up to 20 MeV.An average beam power is planned to be 20 kW.All systems of the accelerator are controlled by a computerised control system. The program and technical complex consist of PC equipped with fast ADC control console, synchronization unit, microprocessor-operated complexes.

  14. Speed Control of General Purpose Engine with Electronic Governor

    Science.gov (United States)

    Sawut, Umerujan; Tohti, Gheyret; Takigawa, Buso; Tsuji, Teruo

    This paper presents a general purpose engine speed control system with an electronic governor in order to improve the current system with a mechanical governor which shows unstable characteristics by change of mecanical friction or A/F ratio (Air/Fuel ratio). For the control system above, there are problems that the feedback signal is only a crank angle because of cost and the controlled object is a general purpose engine which is strongly nonlinear. In order to overcome these problems, the system model is shown for the dynamic estimation of the amount of air flow and the robust controller is designed. That is, the proposed system includes the robust sliding-mode controller by the feedback signal of only a crank angle where Genetic Algorithm is applied for the controller design. The simulation and the experiments by MATLAB/Simulink are performed to show the effectiveness of our proposal.

  15. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  16. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  17. Control and monitoring systems for electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Licki, J.; Mazurekc, J.; Nelskic, L.; Sobolewskic, L.

    2011-01-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO 2 and NO x removal efficiencies by control of amount of spray water at the spray cooler, amount of NH 3 injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO 2 and NO x removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  18. Control and monitoring systems for electron beam flue gas treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, J. [Institute of Atomic Energy, Otwock-Świerk (Poland); Mazurekc, J.; Nelskic, L.; Sobolewskic, L. [Dolna Odra Group, Pomorzany Power Plant, Szczecin (Poland)

    2011-07-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO{sub 2} and NO{sub x} removal efficiencies by control of amount of spray water at the spray cooler, amount of NH{sub 3} injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO{sub 2} and NO{sub x} removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  19. Implementation to spanish protocol of quality control of accelerators to daily control of electron beams

    International Nuclear Information System (INIS)

    Adaimi Hernandez, P.; Ramirez Ros, J. C.; Casa de Julian, M. A. de la; Clemente Gutierrez, F.; Cabello Murillo, E.; Diaz Fuente, R.; Ferrando Sanchez, A.

    2011-01-01

    A revised procedure for daily control of the electron beams to make measurements more meaningful physically, having a better reproducibility and more in line with the recommendations of the Spanish Protocol for Quality Control in Electron Linear Accelerators Clinical Use. The daily quality control beams of high energy electrons that had been done so far was the finding that the record of a series of measures (symmetry, uniformity, stability, energy, beam central dose) were within tolerance values established. The amendment is to check the beam quality by directly measuring changes in absorption depth at which the dose is reduced to half its maximum value, R50.

  20. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    Energy Technology Data Exchange (ETDEWEB)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During

  1. Techniques for increasing the reliability of accelerator control system electronics

    International Nuclear Information System (INIS)

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics

  2. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  3. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  4. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  5. Electron precipitation control of the Mars nightside ionosphere

    Science.gov (United States)

    Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.

    2017-12-01

    The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.

  6. Physics of the current injection process during localized helicity injection

    Science.gov (United States)

    Hinson, Edward Thomas

    An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.

  7. Clinical effect of intratympanic dexamethasone injection in acute unilateral tinnitus: A prospective, placebo-controlled, multicenter study.

    Science.gov (United States)

    Lee, Hyun-Jin; Kim, Min-Beom; Yoo, Shin-Young; Park, Shi Nae; Nam, Eui-Cheol; Moon, In Seok; Lee, Ho-Ki

    2018-01-01

    The purpose of this study was to investigate the effectiveness of intratympanic dexamethasone injection (ITDI) in acute tinnitus of presumed cochlear origin. A prospective, randomized, placebo-controlled, double-blinded, multicenter study. Between August 2013 and December 2015, 54 patients with unilateral tinnitus were enrolled at four different centers. Patients were assigned either to an ITDI (n = 27) or an intratympanic normal saline injection (ITNI; n = 27) group through block randomization. Intratympanic injections were administered four times over 2 weeks. At 4 weeks after initial injection, we analyzed the improvement rates of tinnitus using the tinnitus handicap Inventory (THI) and visual analogue scale (VAS) for loudness, awareness, and annoyance. We defined improvement as the reduction of more than 7 points or of more than 20% in the final THI score compared to the initial THI score. The initial mean hearing thresholds and VAS and THI scores of the two groups did not differ significantly. At 4 weeks after initial injection, the mean VAS and THI scores of both groups had significantly reduced. However, the improvement rate did not differ significantly between the groups (ITDI, 51.9%; ITNI, 59.3%). The results indicate that ITDI might not be more effective than ITNI for the treatment of acute unilateral tinnitus. Therefore, ITDI should not be considered as the main treatment for patients presenting with acute tinnitus as the primary symptom. 1b. Laryngoscope, 128:184-188, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Mechanism of enhancement of controllable secondary-electron emission from fast single electrons

    International Nuclear Information System (INIS)

    Lorikyan, M.P.; Kavalov, R.L.; Trofimchuk, N.N.; Arvanov, A.N.; Gavalyan, V.G.

    For porous KCl films (density approximately 2 percent, thickness 50-400 μm), the controllable secondary electron emission (CSEE) from fast single electrons with energies of 0.7-2 MeV was studied. An electric field E of approximately 10 4 -10 5 V/cm was set up inside the porous films and the emission curves anti sigma = f(E) and the energy spectra of the secondary electrons were measured. The mean emission coefficient anti sigma increases with increasing E, reaching a value of anti sigma approximately equal to 230. Internal enhancement of CSEE under the action of the E field is explained by a process similar to the Townsend semi-self-maintained discharge in gases. The mean free path L/sub e/ of the secondary electrons estimated on the basis of this mechanism of CSEE enhancement is in good agreement with the L/sub e/ value obtained independently from the energy spectra of the secondary electrons. The report examines the effect of the first critical potential U/sub il/ and of the electron affinity of the dielectric α on the formation of CSEE from a porous dielectric film. The possibility of using such films in particle detectors is discussed

  9. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  10. Control systems for power electronics a practical guide

    CERN Document Server

    Patil, Mahesh

    2015-01-01

    The scope of the book covers most of the aspects as a primer on power electronics starting from a simple diode bridge to a DC-DC convertor using PWM control. The thyristor-bridge and the mechanism of designing a closed loop system are discussed in chapter one, two and three. The concepts are applied in the fourth chapter as a case study for buck converter which uses MOSFETs as switching devices and the closed loop system is elaborated in the fifth chapter. Chapter six is focused on the embedded system basics and the implementation of controls in the digital domain. Chapter seven is a case study of application of an embedded control system for a DC motor. With this book, the reader will find it easy to work on the practical control systems with microcontroller implementation. The core intent of this book is to help gain an accelerated learning path to practical control system engineering and transform control theory to an implementable control system through electronics. Illustrations are provided for most of...

  11. Research on fuzzy PID control to electronic speed regulator

    Science.gov (United States)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  12. Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells.

    Science.gov (United States)

    Suárez, Javier Amaya; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez

    2017-06-07

    Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO 2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu 2 S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.

  13. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  14. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-19

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  15. Electron spin control of optically levitated nanodiamonds in vacuum

    Science.gov (United States)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  16. Emission spectra of dimethoxybenzenes by controlled electron impact

    International Nuclear Information System (INIS)

    Ogawa, Teiichiro; Imasaka, Totaro; Toyoda, Minoru; Tsuji, Masaharu; Ishibashi, Nobuhiko

    1975-01-01

    The emission spectra of o-, m-, and p-dimethoxybenzenes under controlled electron impact excitation (200 eV) were measured in the 220 - 450 nm region at very low pressures. The photoemissions of the excited parent species and such fragment species as H, CH, CO, and CO + were observed and assigned. The relative intensities of the photoemissions of the parent species were compared with those of the fluorescence spectra (photoexcitation) in an n-hexane solution. The excited parent species, H, and CH were concluded to be produced in one-electron processes; however, the CO + species were assumed to be produced in both one- and two-electron processes, and the relative contributions are evaluated. It was concluded that the rate of the predissociation of o-dimethoxybenzene was faster than those of the other two isomers, and the observed characteristics of o-dimethoxybenzene had something to do with this faster rate. (auth.)

  17. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  18. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    Science.gov (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  19. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  20. Electronic Integrated Disease Surveillance System and Pathogen Asset Control System

    Directory of Open Access Journals (Sweden)

    Tom G. Wahl

    2012-06-01

    Full Text Available Electronic Integrated Disease Surveillance System (EIDSS has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS. Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP sponsored by the US Defense Threat Reduction Agency (DTRA.

  1. Electronic integrated disease surveillance system and pathogen asset control system.

    Science.gov (United States)

    Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K

    2012-06-20

    Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).

  2. Electronic Control Of Small Hydro-Generators Part II

    International Nuclear Information System (INIS)

    Diaz B, Pedro; Torres M, Carlos A.

    1994-01-01

    The present project arises for the Colombian population's necessity to overcome the underdevelopment, the poverty, the education and the level of life in rural areas of difficult access, for an economic rural electrification. The UIS, by means of the advisory committee of investigations of the ability of Physical-mechanical Sciences and the ability of Electricity and Electronic, it begins the process of developing in 1991 a study of economic and reliable control for the handling of small micro-centrals. Providing from electric power to the rural sector is a world problem, and have more than enough this some countries (China, Nepal, Peru, The islands of Papua, New Guinea), they have made investigations, outlining and building central micro controlled by microprocessor. The present study is developed with the objective of carrying out a load control that acts reliable and quickly. Traditionally they have been come using mechanical governors, which are those in charge of making the load control by means of valves that regulate the flow of water in the turbines, involving this way big retards characteristic of any mechanical control. In summary, the electronic governor of load presents on the mechanical governor, the advantage of acting to more speed and consequently to maintain stable the frequency of the system. To continue with the study, the objective that this project must develop, is an electronic control of load which presents to a small hydro generator, a relatively constant and independent electric load that the demanded consumption for the user varies from none to full load, given as initial parameters a constant flow in the turbine and a control in the line tension. This way it seeks to improve the energy quality given by isolated generators

  3. Analysis on electronic control unit of continuously variable transmission

    Science.gov (United States)

    Cao, Shuanggui

    Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.

  4. Auxiliary controllers for data acquisition from scintillation detector electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leonenko, D A; Rybakov, V G; Sen' ko, V A [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1983-01-01

    Structural schemes of auxiliary controllers of three types ensuring compression, filtration and record in buffer storage of data from scintillation detectors electronic equipment are described. The electronics is made according to the CAMAC ideology. The KD-85 controller exercises data readout from analog-to-digital converters (ADC), subtraction of pedestal values, discrimination by the bottom level and record into the buffer storage module. The KD-86 controller summarizes data from all the ADC channels in a crate dicscriminates the summarized data by the upper and bottom levels, and rejects data classified as useless. The KD-90 controller ensures data reading from different modules of the crate according to preset code and records information in the buffer storage module. The considered controllers employ integral microcircuits of the K 155 series. At present the controllers are under experimental operation. Their utilization would permit to adopt new arrangement of data acquisition from experimental facilities in the nearest future and essentially increase the operating efficiency of these facilities.

  5. Control of electron internal transport barriers in TCV

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M A; Behn, R; Coda, S; Condrea, I; Duval, B P; Goodman, T P; Karpushov, A; Martin, Y; Martynov, An; Moret, J-M; Nikkola, P; Porte, L; Sauter, O; Scarabosio, A; Zhuang, G [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CRPP-EPFL, 1015 Lausanne (Switzerland)

    2004-05-01

    Current profile tailoring has been performed by application of electron cyclotron heating (ECH) and electron cyclotron current drive, leading to improved energy confinement in the plasma core of the TCV tokamak. The improved confinement is characterized by a substantial enhancement (H-factor) of the global electron energy confinement time relative to the prediction of the RLW scaling law (Rebut P H et al 1989 Proc. 12th Int. Conf. of Plasma Physics and Controlled Fusion Research (Nice, 1988) vol 2 (Vienna: IAEA) p 191), which predicts well Ohmic and standard ECH discharges on TCV. The improved confinement is attributed to a hollow current density profile producing a reversed shear profile creating an electron internal transport barrier. We relate the strength of the barrier to the depth of the hollow current density profile and the volume enclosed by the radial location of the peak current density. The {rho}{sub T}{sup *} (Tresset G et al 2002 Nucl. Fusion 42 520) criterion is used to evaluate the performance of the barrier relative to changes in the ECH parameters or the addition of Ohmic current, which aid in identifying the control parameters available for improving either the strength or volume of the barrier for enhanced performance. A figure of merit for the global scaling factor is used that scales the confinement enhancement as the product of the barrier volume and strength.

  6. Control of electron internal transport barriers in TCV

    International Nuclear Information System (INIS)

    Henderson, M A; Behn, R; Coda, S; Condrea, I; Duval, B P; Goodman, T P; Karpushov, A; Martin, Y; Martynov, An; Moret, J-M; Nikkola, P; Porte, L; Sauter, O; Scarabosio, A; Zhuang, G

    2004-01-01

    Current profile tailoring has been performed by application of electron cyclotron heating (ECH) and electron cyclotron current drive, leading to improved energy confinement in the plasma core of the TCV tokamak. The improved confinement is characterized by a substantial enhancement (H-factor) of the global electron energy confinement time relative to the prediction of the RLW scaling law (Rebut P H et al 1989 Proc. 12th Int. Conf. of Plasma Physics and Controlled Fusion Research (Nice, 1988) vol 2 (Vienna: IAEA) p 191), which predicts well Ohmic and standard ECH discharges on TCV. The improved confinement is attributed to a hollow current density profile producing a reversed shear profile creating an electron internal transport barrier. We relate the strength of the barrier to the depth of the hollow current density profile and the volume enclosed by the radial location of the peak current density. The ρ T * (Tresset G et al 2002 Nucl. Fusion 42 520) criterion is used to evaluate the performance of the barrier relative to changes in the ECH parameters or the addition of Ohmic current, which aid in identifying the control parameters available for improving either the strength or volume of the barrier for enhanced performance. A figure of merit for the global scaling factor is used that scales the confinement enhancement as the product of the barrier volume and strength

  7. Control of climatics environments to enhance reliability of electronics systems

    International Nuclear Information System (INIS)

    Sekhon, K.S.

    1979-01-01

    The techniques to control temperature and humidity to reduce failures in semiconductor devices are presented. The maximum operating junction temperature affects the electronic system reliability, and the equation for the junction temperature of the device shows that internal and external thermal resistances affect component life. Junction temperature reductions up to 60 C were achieved by the development of heat pipes for microcircuits, which will enhance electronics life by 32 times. Humidity control by improved sealing and use of heaters to prevent moisture condensation proved difficult and costly, and high pressure dehydrators were heavy and expensive. Therefore, low pressure dehydrator was developed which is smaller, lighter, and less expensive. The development of low pressure dehumidifying system including test data is presented

  8. Mechanical design of an electronic control unit using axiomatic principles

    Directory of Open Access Journals (Sweden)

    Cazacu Vlad

    2017-01-01

    Full Text Available If the engine of the car can be considered as the heart, then the E.C.U’s represents the brain of the car. Electronic control units (E.C.U’s are electronic devices which control the way different components of a car (engine, windows, airbags, etc. react in some situations (overheating, button pressed by a passenger, crash, etc.. Axiomatic design is a set of principles that theorizes the act of conceiving a new project. Based on two axiom this method comes into designers help, giving them the option to reach in a short period of time a fully functional and compliant product without supporting the design of the product on chance, past experiences or “try and fail” principle.

  9. The upper level of control system of electron accelerators

    International Nuclear Information System (INIS)

    Gribov, I.V.; Nedeoglo, F.N.; Shvedunov, I.V.

    2005-01-01

    The upper level software of a three-level control system that supports several electron accelerators is described. This software operates in the Linux and RTLinux (Real Time Linux) environment. The object information model functions on the basis of a parametric description supported by the SQLite Data Base Management System. The Javascript sublanguage is used for script forming, and the Qt Designer application is used to construct the user interface [ru

  10. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    Science.gov (United States)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  11. Ultrasound guided injection of dexamethasone versus placebo for treatment of plantar fasciitis: protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Gilheany Mark F

    2010-07-01

    Full Text Available Abstract Background Plantar fasciitis is the most commonly reported cause of chronic pain beneath the heel. Management of this condition commonly involves the use of corticosteroid injection in cases where less invasive treatments have failed. However, despite widespread use, only two randomised trials have tested the effect of this treatment in comparison to placebo. These trials currently offer the best available evidence by which to guide clinical practice, though both were limited by methodological issues such as insufficient statistical power. Therefore, the aim of this randomised trial is to compare the effect of ultrasound-guided corticosteroid injection versus placebo for treatment of plantar fasciitis. Methods The trial will be conducted at the La Trobe University Podiatry Clinic and will recruit 80 community-dwelling participants. Diagnostic ultrasound will be used to diagnose plantar fasciitis and participants will be required to meet a range of selection criteria. Participants will be randomly allocated to one of two treatment arms: (i ultrasound-guided injection of the plantar fascia with 1 mL of 4 mg/mL dexamethasone sodium phosphate (experimental group, or (ii ultrasound-guided injection of the plantar fascia with 1 mL normal saline (control group. Blinding will be applied to participants and the investigator performing procedures, measuring outcomes and analysing data. Primary outcomes will be pain measured by the Foot Health Status Questionnaire and plantar fascia thickness measured by ultrasound at 4, 8 and 12 weeks. All data analyses will be conducted on an intention-to-treat basis. Conclusion This will be a randomised trial investigating the effect of dexamethasone injection on pre-specified treatment outcomes in people with plantar fasciitis. Within the parameters of this protocol, the trial findings will be used to make evidence-based recommendations regarding the use of corticosteroid injection for treatment of this

  12. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  13. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Control system for 10 MeV irradiation electron linac

    International Nuclear Information System (INIS)

    Zeng Ziqiang; Zhang Lifeng; Lu Weixing; Gao Zhenjiang; Zhang Yan; Han Guangwen; Wang Shuxian

    2005-01-01

    Control system of the 10 MeV electron linac using Distributed Control System (DCS) was studied. The hardware of control system consists of four SIEMENS PLCs and monitor computer, the software bases on STEP 7, Labwindows/CVI and SQL Server. The bus between the monitor computer and the main PLC is 100 M industrial networks, between PLCs is MPI bus, between PLC and remote partner is PROFIBUS, between PLC and terminals is RS485/422. The software of control system can provide a friendly human machine interface to operate the machine, protect the human and equipment from risk, and storage the status of the accelerator real time to the database. The monitor and maintenance of the linac can been carried out not only on local computer or local network, but also in internet. (author)

  15. Detection and excision of non-palpable breast lesions by radio guided surgery and air injection for radiological control

    International Nuclear Information System (INIS)

    Machado, Rafael Henrique Szymanski; Gutfilen, Bianca; Fonseca, Lea Mirian Barbosa da

    2005-01-01

    Purpose: to asses the efficiency of the radioguided localization and removal of occult breast lesions using radiopharmaceuticals injected directly into the lesions or close to them with posterior air injection as a radiological control. Methods: twenty-nine consecutive patients with thirty-two occult breast lesions detected mammographically or by ultrasound, and categorized 3, 4 and 5 BI-RADS, were included in this observational study with results expressed in percentages. The radiopharmaceutical used was human serum albumin labeled with 99m Tc-HSA injected inside or close to the lesion using mammographic or ultrasonographic guidance. The injection of the radiopharmaceutical was followed immediately by air injection through the needle used for stereotaxis as a radiological control of the radiopharmaceutical placement. The excision biopsy was carried out with the aid of a hand-held gamma-detecting probe and the entire removal of the lesion was verified by X-ray of the surgical specimens or by intraoperative frozen section examination. Results: breast cancer was found in 10.0% (1/10) of the 3 BI-RADS lesions, in 31.5% (6/19) of the 4 BI-RADS and in 66.6% (2/3) of the 5 BI-RADS. The radiotracer was correctly positioned in 96.8% of the specimens (31/32) allowing the removal of also 96.8% of the studied non-palpable breast lesions. To show the entire removal, X-ray was used in 23 cases (71.8%), intraoperative frozen section study in 21.8% (7/32) and both methods in 6.2% (2/32). Conclusions: radioguided surgery showed to be an important tool in the removal of non-palpable breast lesions, as a simple, fast and feasible method that can be implemented in the clinical routine of these patients. (author)

  16. Repeated tender point injections of granisetron alleviate chronic myofascial pain--a randomized, controlled, double-blinded trial.

    Science.gov (United States)

    Christidis, Nikolaos; Omrani, Shahin; Fredriksson, Lars; Gjelset, Mattias; Louca, Sofia; Hedenberg-Magnusson, Britt; Ernberg, Malin

    2015-01-01

    Serotonin (5-HT) mediates pain by peripheral 5-HT3-receptors. Results from a few studies indicate that intramuscular injections of 5-HT3-antagonists may reduce musculoskeletal pain. The aim of this study was to investigate if repeated intramuscular tender-point injections of the 5-HT3-antagonist granisetron alleviate pain in patients with myofascial temporomandibular disorders (M-TMD). This prospective, randomized, controlled, double blind, parallel-arm trial (RCT) was carried out during at two centers in Stockholm, Sweden. The randomization was performed by a researcher who did not participate in data collection with an internet-based application ( www.randomization.com ). 40 patients with a diagnose of M-TMD according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) were randomized to receive repeated injections, one week apart, with either granisetron (GRA; 3 mg) or isotonic saline as control (CTR). The median weekly pain intensities decreased significantly at all follow-ups (1-, 2-, 6-months) in the GRA-group (Friedman test; P  0.075). The numbers needed to treat (NNT) were 4 at the 1- and 6-month follow-ups, and 3.3 at the 2-month follow-up in favor of granisetron. Repeated intramuscular tender-point injections with granisetron provide a new pharmacological treatment possibility for myofascial pain patients with repeated intramuscular tender-point injections with the serotonin type 3 antagonist granisetron. It showed a clinically relevant pain reducing effect in the temporomandibular region, both in a short- and long-term aspect. European Clinical Trials Database 2005-006042-41 as well as at Clinical Trials NCT02230371 .

  17. Phase Grouping of Larmor Electrons by a Synchronous Wave in Controlled Magnetrons

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Yakovlev, V. [Fermilab

    2018-04-01

    A simplified analytical model based on the charge drift approximation has been developed. It considers the resonant interaction of the synchronous wave with the flow of Larmor electrons in a magnetron. The model predicts stable coherent generation of the tube above and below the threshold of self-excitation. This occurs if the magnetron is driven by a sufficient resonant injected signal (up to -10 dB). The model substantiates precise stability, high efficiency and low noise at the range of the magnetron power control over 10 dB by variation of the magnetron current. The model and the verifying experiments with 2.45 GHz, 1 kW magnetrons are discussed.

  18. Extended Release Liposomal Bupivacaine Injection (Exparel) for Early Postoperative Pain Control Following Palatoplasty.

    Science.gov (United States)

    Day, Kristopher M; Nair, Narayanan M; Sargent, Larry A

    2018-05-14

    Liposomal bupivacaine (LB) is a long-acting local anesthetic reported to decrease postoperative pain in adults. The authors demonstrate the safe use of LB in pediatric patients with improved pain control following palatoplasty. Retrospective patient series of all single-surgeon palatoplasty patients treated at a tertiary craniofacial center from August 2014 to December 2015 were included. All patients received 1.3% LB intraoperatively as greater palatal nerve and surgical field blocks in 2-flap V-Y pushback palatoplasty. Postoperative oral intake, opioids administered, duration of hospitalization, and FLACC (face, legs, activity, cry, consolability) pain scores were measured. Twenty-seven patients (16 males and 11 females, average age of 10.8 months, weight 8.8 kg) received 2.9 ± 0.9 mL (2.6 ± 1.9 mg/kg) 1.3% LB. Average FLACC scores were 2.4 ± 2.2/10 in the postanesthesia care unit and 3.8 ± 1.8/10 while inpatients. Oral intake was first tolerated 10.3 ± 11.5 hours postoperatively and tolerated 496.4 ± 354.2 mL orally in the first 24 hours postoperatively. Patients received 8.5 ± 8.4 mg hydrocodone equivalents (0.46 ± 0.45 mg/kg per d hydrocodone equivalents) and were discharged 2.1 ± 1.3 days postoperatively. Opioid-related adverse events included emesis in 7.4% and pruritis in 3.7% of patients. The LB may be used safely in pediatric patients. Intraoperative injection of LB during palatoplasty can yield low postoperative opioid use and an early and adequate volume of oral intake over an average hospital stay. Further cost-efficacy studies of LB are needed to assess its value in pediatric plastic surgery.

  19. Lobular and cellular patterns of early hepatic glycogen deposition in the rat as observed by light and electron microscopic radioautography after injection of 3H-galactose

    International Nuclear Information System (INIS)

    Michaels, J.E.; Hung, J.T.; Garfield, S.A.; Cardell, R.R. Jr.

    1984-01-01

    Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting 3 H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Two hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions

  20. Randomised controlled trial of local corticosteroid injections for de Quervain's tenosynovitis in general practice

    NARCIS (Netherlands)

    Peters-Veluthamaningal, Cyriac; Winters, Jan C.; Groenier, Klaas H.; Meyboom-deJong, Betty

    2009-01-01

    Background: De Quervain's tenosynovitis is a stenosing tenosynovitis of the first dorsal compartment of the wrist and leads to wrist pain and to impaired function of the wrist and hand. It can be treated by splinting, local corticosteroid injection and operation. In this study effectiveness of local