WorldWideScience

Sample records for controlled ecological life-support

  1. Controlled Ecological Life Support System Breadboard Project - 1988

    Science.gov (United States)

    Knott, W. M.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.

  2. Controlled ecological life support system breadboard project, 1988

    Science.gov (United States)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  3. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  4. Robotics in a controlled, ecological life support system

    Science.gov (United States)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  5. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  6. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  7. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    Science.gov (United States)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  8. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  9. Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu

    Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.

  10. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A.

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  11. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  12. Non-methane hydrocarbons in a controlled ecological life support system.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-02-01

    Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    Science.gov (United States)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  14. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Science.gov (United States)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  15. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  16. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  17. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    Science.gov (United States)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  18. The nutritional adequacy of a limited vegan diet for a controlled ecological life-support system

    Science.gov (United States)

    Saha, P. R.; Trumbo, P. R.

    Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.

  19. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-01-01

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m 3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m 3 , with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Selection of candidate salad vegetables for controlled ecological life support system

    Science.gov (United States)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  1. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    Science.gov (United States)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  2. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    Science.gov (United States)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  3. Controlled ecological life support systems; Proceedings of Workshop II of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    Science.gov (United States)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor)

    1987-01-01

    The present conference on the development status of Controlled Ecological Life Support Systems (CELSSs) discusses food production and gas exchange with the Spirulina blue-green alga, biomass recycling for greater energy efficiency in algal culture CELSSs, algal proteins for food processing in a CELSS, a CELSS with photosynthetic N2-fixing cyanobacteria, the NASA CELSS program, and vapor compression ditillation and membrane technology for water revitalization. Also discussed are a fundamental study of CELSS gas monitoring, the application of catalytic wet oxidation to CELSS, a large-scale perspective on ecosystems, Japanese CELSS research activities, the use of potatoes in bioregenerative life-support, wheat production in controlled environments, and a trickle water and feeding system in plant culture.

  4. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  5. Closed ecological life-support systems and their applications

    Science.gov (United States)

    Gitelson, Josef I.

    The advent of man-made closed ecosystems (CES) is a solution of the fundamental problem-egress of humans beyond the Earth's biosphere, providing biological basis for exploitation of Space and celestial bodies. Yet, before proceeding to these ambitious project elements of closed life-support biotechnologies, there can be found diverse applications on Earth in human settlements providing for high quality of life under extreme environment conditions: high latitudes, deserts, mountains and industrially polluted areas. This presentation considers these variations of terrestrial applications of CELSS technologies. The version of CES under development is based on making direct use of the light energy in plant photosynthesis. In this case life support of one man on the Earth orbit requires solar light collected from 5-10m2. Among terrestrial applications of prime importance is the development of an ecohome designed to provide people with a high quality of life in Arctic and Antarctic territories. The developed technology of cascade employment of energy makes possible (expending 10-15 kw of installed power per a house-3-5 member family) to provide for: permanent supply of fresh vitamin-full vegetables, absorption and processing oaf excreta, purification of water and air in the living quarters, habitual colour and light conditions in the premises in winter making up to sensorial deprivation and, finally, psychological comfort of close contact with the plants during the long polar night. Ecohabitat based on the technology described in realistic today and depends only on the energy available and the resolution and readiness (sagacity) of the decision-makers to be committed with ecohome assigning. The ecological and economical significance of construction of ecohabitats for the northern territories of Canada, Alaska and Russia is apparent. This principle can be used (with considerable economy of energy and construction costs) to maintain normal partial pressure of oxygen inside

  6. Life Support Systems: Trace Contaminant and Particulate Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Trace Contaminant and Particulate Control task: Work in the area of trace contamination and...

  7. Phase Change Permeation Technology For Environmental Control Life Support Systems

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  8. Closed Ecological Life Support Systems (CELSS) Test Facility

    Science.gov (United States)

    Macelroy, Robert D.

    1992-01-01

    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology.

  9. Project Orion, Environmental Control and Life Support System Integrated Studies

    Science.gov (United States)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  10. Automated Subsystem Control for Life Support System (ASCLSS)

    Science.gov (United States)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  11. System Engineering and Integration of Controls for Advanced Life Support

    Science.gov (United States)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  12. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  13. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  14. Incineration for resource recovery in a closed ecological life support system

    Science.gov (United States)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  15. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    Science.gov (United States)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and

  16. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  17. Teaching school children basic life support improves teaching and basic life support skills of medical students: A randomised, controlled trial.

    Science.gov (United States)

    Beck, Stefanie; Meier-Klages, Vivian; Michaelis, Maria; Sehner, Susanne; Harendza, Sigrid; Zöllner, Christian; Kubitz, Jens Christian

    2016-11-01

    The "kids save lives" joint-statement highlights the effectiveness of training all school children worldwide in cardiopulmonary resuscitation (CPR) to improve survival after cardiac arrest. The personnel requirement to implement this statement is high. Until now, no randomised controlled trial investigated if medical students benefit from their engagement in the BLS-education of school children regarding their later roles as physicians. The objective of the present study is to evaluate if medical students improve their teaching behaviour and CPR-skills by teaching school children in basic life support. The study is a randomised, single blind, controlled trial carried out with medical students during their final year. In total, 80 participants were allocated alternately to either the intervention or the control group. The intervention group participated in a CPR-instructor-course consisting of a 4h-preparatory seminar and a teaching-session in BLS for school children. The primary endpoints were effectiveness of teaching in an objective teaching examination and pass-rates in a simulated BLS-scenario. The 28 students who completed the CPR-instructor-course had significantly higher scores for effective teaching in five of eight dimensions and passed the BLS-assessment significantly more often than the 25 students of the control group (Odds Ratio (OR): 10.0; 95%-CI: 1.9-54.0; p=0.007). Active teaching of BLS improves teaching behaviour and resuscitation skills of students. Teaching school children in BLS may prepare medical students for their future role as a clinical teacher and support the implementation of the "kids save lives" statement on training all school children worldwide in BLS at the same time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquan; Huang, Yibing; Liu, Chongchu

    2012-02-01

    Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805-0.0831 L kg-1 h-1 and the level of CO2 emission was 0.0705-0.0736 L kg-1 h-1; O2 consumption by the two trial volunteers was 19.71 L h-1 and the volume of respiration-released CO2 was 18.90 L h-1. Under 7000-8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.

  19. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  20. International Space Station Environmental Control and Life Support System Status: 2010 - 2011

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.

  1. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2011 - 2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J

    2013-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.

  2. International Space Station Environmental Control and Life Support System Status: 2009 - 2010

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.

  3. International Space Station Environmental Control and Life Support System Previous Year Status for 2013 - 2014

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  4. International Space Station Environmental Control and Life Support System Status: 2014-2015

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  5. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  6. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  7. Environmental control and life support - Partially closed system will save big money

    Science.gov (United States)

    Guy, W. W.

    1983-01-01

    Although the NASA space station has not yet been completely defined, realistic estimates may be made of the environmental control and life support system requirements entailed by a crew of eight, a resupply interval of 90 days, an initial launch which includes expendables for the first resupply interval, 7.86 lb/day of water per person, etc. An appraisal of these requirements is presented which strongly suggests the utility of a partially closed life support system. Such a scheme would give the crew high quality water to drink, and recycle nonpotable water from hand washing, bathing, clothes and dish washing, and urinal flushing. The excess recovery process water is electrolyzed to provide metabolic and leakage oxygen. The crew would drink electrolysis water and atmospheric humidity control moisture-derived water.

  8. International Space Station Environmental Control and Life Support System Status: 2011-2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2011-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1

  9. Peers versus professional training of basic life support in Syria: a randomized controlled trial.

    Science.gov (United States)

    Abbas, Fatima; Sawaf, Bisher; Hanafi, Ibrahem; Hajeer, Mohammad Younis; Zakaria, Mhd Ismael; Abbas, Wafaa; Alabdeh, Fadi; Ibrahim, Nazir

    2018-06-18

    Peer training has been identified as a useful tool for delivering undergraduate training in basic life support (BLS) which is fundamental as an initial response in cases of emergency. This study aimed to (1) Evaluate the efficacy of peer-led model in basic life support training among medical students in their first three years of study, compared to professional-led training and (2) To assess the efficacy of the course program and students' satisfaction of peer-led training. A randomized controlled trial with blinded assessors was conducted on 72 medical students from the pre-clinical years (1st to 3rd years in Syria) at Syrian Private University. Students were randomly assigned to peer-led or to professional-led training group for one-day-course of basic life support skills. Sixty-four students who underwent checklist based assessment using objective structured clinical examination design (OSCE) (practical assessment of BLS skills) and answered BLS knowledge checkpoint-questionnaire were included in the analysis. There was no statistically significant difference between the two groups in delivering BLS skills to medical students in practical (P = 0.850) and BLS knowledge questionnaire outcomes (P = 0.900). Both groups showed statistically significant improvement from pre- to post-course assessment with significant statistical difference in both practical skills and theoretical knowledge (P-Value life support for medical students was beneficial and it provided a quality of education which was as effective as training conducted by professionals. This method is applicable and desirable especially in poor-resource countries and in crisis situation.

  10. Environmental control and life support system requirements and technology needs for advanced manned space missions

    Science.gov (United States)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  11. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  12. Automated subsystems control development. [for life support systems of space station

    Science.gov (United States)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  13. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    Science.gov (United States)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  14. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  15. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Atmosphere Control and Supply Subsystem

    Science.gov (United States)

    Williams, David E.

    2009-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.

  16. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    Science.gov (United States)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  17. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  18. Environmental control and life support technologies for advanced manned space missions

    Science.gov (United States)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  19. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    Science.gov (United States)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  20. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  1. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  2. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  3. Environmental Control and Life Support (ECLS) Hardware Commonality for Exploration Vehicles

    Science.gov (United States)

    Carrasquillo, Robyn; Anderson, Molly

    2012-01-01

    In August 2011, the Environmental Control and Life Support Systems (ECLSS) technical community, along with associated stakeholders, held a workshop to review NASA s plans for Exploration missions and vehicles with two objectives: revisit the Exploration Atmospheres Working Group (EAWG) findings from 2006, and discuss preliminary ECLSS architecture concepts and technology choices for Exploration vehicles, identifying areas for potential common hardware or technologies to be utilized. Key considerations for selection of vehicle design total pressure and percent oxygen include operational concepts for extravehicular activity (EVA) and prebreathe protocols, materials flammability, and controllability within pressure and oxygen ranges. New data for these areas since the 2006 study were presented and discussed, and the community reached consensus on conclusions and recommendations for target design pressures for each Exploration vehicle concept. For the commonality study, the workshop identified many areas of potential commonality across the Exploration vehicles as well as with heritage International Space Station (ISS) and Shuttle hardware. Of the 36 ECLSS functions reviewed, 16 were considered to have strong potential for commonality, 13 were considered to have some potential commonality, and 7 were considered to have limited potential for commonality due to unique requirements or lack of sufficient heritage hardware. These findings, which will be utilized in architecture studies and budget exercises going forward, are presented in detail.

  4. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  5. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  6. Lessons Learned from the Crew Health Care System (CHeCS) Rack 1 Environmental Control and Life Support (ECLS) Design

    Science.gov (United States)

    Williams, David E.

    2006-01-01

    This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Crew Health Care System (CHeCS) Rack 1 and it will document some of the lessons that have been learned to date for the ECLS equipment in this rack.

  7. NASA Engineering Design Challenges: Environmental Control and Life Support Systems. Water Filtration Challenge. EG-2008-09-134-MSFC

    Science.gov (United States)

    Schneider, Twila, Ed.

    2010-01-01

    This educator guide is organized into seven chapters: (1) Overview; (2) The Design Challenge; (3) Connections to National Curriculum Standards; (4) Preparing to Teach; (5) Classroom Sessions; (6) Opportunities for Extension; and (7) Teacher Resources. Chapter 1 provides information about Environmental Control and Life Support Systems used on NASA…

  8. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    Science.gov (United States)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  9. Plant growth and mineral recycle trade-offs in different scenarios for a CELSS. [Closed Ecological Life Support System

    Science.gov (United States)

    Ballou, E. V.; Wydeven, T.; Spitze, L. A.

    1982-01-01

    Data for hydroponic plant growth in a manned system test is combined with nutritional recommendations to suport trade-off calculations for closed and partially closed life support system scenarios. Published data are used as guidelines for the masses of mineral nutrients needed for higher plant production. The results of calculations based on various scenarios are presented for various combinations of plant growth chamber utilization and fraction of mineral recycle. Estimates are made of the masses of material needed to meet human nutritional requirements in the various scenarios. It appears that food production from a plant growth chamber with mineral recycle is favorable to reduction of the total launch weight in missions exceeding 3 years.

  10. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  11. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2010-2011

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2012-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.

  12. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: initial results from Biosphere 2.

    Science.gov (United States)

    Nelson, M; Dempster, W; Alvarez-Romo, N; MacCallum, T

    1994-11-01

    Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necessary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.

  13. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: Initial results from biosphere 2

    Science.gov (United States)

    Nelson, M.; Dempster, W.; Alvarez-Romo, N.; MacCallum, T.

    1994-11-01

    Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necesary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.

  14. Development of a Mars Environmental Control and Life Support System (ECLSS).

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    ECLS systems for very long-duration human missions to Mars will be designed to operate reliably for many years and will never be returned to Earth. The need for high reliability is driven by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. Simply put, the goal of an ECLSS is to duplicate the functions the Earth provides in terms of human living and working on our home planet but without the benefit of the Earth's large buffers - the atmospheres, the oceans and land masses. With small buffers a space-based ECLSS must operate as a true dynamic system rather than independent processors taking things from tanks, processing them, and then returning them to product tanks. Key is a development process that allows for a logical sequence of validating successful development (maturation) in a stepwise manner with key performance parameters (KPPs) at each step; especially KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This paper will explore the implications of such an approach to ECLSS development and the roles of ground and space-based testing necessary to develop a highly reliable life support system for long duration human exploration missions. Historical development and testing of ECLS systems from Mercury to the International Space Station (ISS) will be reviewed. Current work as well as recommendations for future work will be described.

  15. E-learning in pediatric basic life support: a randomized controlled non-inferiority study.

    Science.gov (United States)

    Krogh, Lise Qvirin; Bjørnshave, Katrine; Vestergaard, Lone Due; Sharma, Maja Bendtsen; Rasmussen, Stinne Eika; Nielsen, Henrik Vendelbo; Thim, Troels; Løfgren, Bo

    2015-05-01

    Dissemination of pediatric basic life support (PBLS) skills is recommended. E-learning is accessible and cost-effective, but it is currently unknown whether laypersons can learn PBLS through e-learning. The hypothesis of this study was to investigate whether e-learning PBLS is non-inferior to instructor-led training. Participants were recruited among child-minders and parents of children aged 0-6 years. Participants were randomized to either 2-h instructor-led training or e-learning using an e-learning program (duration 17 min) including an inflatable manikin. After training, participants were assessed in a simulated pediatric cardiac arrest scenario. Tests were video recorded and PBLS skills were assessed independently by two assessors blinded to training method. Primary outcome was the pass rate of the PBLS test (≥8 of 15 skills adequately performed) with a pre-specified non-inferiority margin of 20%. In total 160 participants were randomized 1:1. E-learning was non-inferior to instructor-led training (difference in pass rate -4%; 95% CI -9:0.5). Pass rates were 100% among instructor-led trained (n=67) and 96% among e-learned (n=71). E-learners median time spent on the e-learning program was 30 min (range: 15-120 min) and the median number of log-ons was 2 (range: 1-5). After the study, all participants felt that their skills had improved. E-learning PBLS is non-inferior to instructor-led training among child-minders and parents with children aged 0-6 years, although the pass rate was 4% (95% CI -9:0.5) lower with e-learning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    Science.gov (United States)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  17. Phase 1 engineering and technical data report for the thermal control extravehicular life support system

    Science.gov (United States)

    1975-01-01

    A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.

  18. Solar-energy conversion system provides electrical power and thermal control for life-support systems

    Science.gov (United States)

    Davis, B. K.

    1974-01-01

    System utilizes Freon cycle and includes boiler turbogenerator with heat exchanger, regenerator and thermal-control heat exchangers, low-pressure and boiler-feed pumps, and condenser. Exchanger may be of interest to engineers and scientists investigating new energy sources.

  19. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    Science.gov (United States)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  20. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  1. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  2. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  3. The effect of pre-course e-learning prior to advanced life support training: a randomised controlled trial.

    Science.gov (United States)

    Perkins, Gavin D; Fullerton, James N; Davis-Gomez, Nicole; Davies, Robin P; Baldock, Catherine; Stevens, Harry; Bullock, Ian; Lockey, Andrew S

    2010-07-01

    The role of e-learning in contemporary healthcare education is quickly developing. The aim of this study was to examine the relationship between the use of an e-learning simulation programme (Microsim, Laerdal, UK) prior to attending an Advanced Life Support (ALS) course and the subsequent relationship to candidate performance. An open label, multi-centre randomised controlled study was conducted. The control group received a course manual and pre-course MCQ four weeks prior to the face to face course. The intervention group in addition received the Microsim programme on a CD. The primary outcome was performance during a simulated cardiac arrest at the end of the course. Secondary outcomes were performance during multiple choice exams, resuscitation skills assessments and feedback to Microsim programme. 572 participants were randomised (287 Microsim, 285 control). There were no significant differences in the primary outcome (performance during a standard cardiac arrest simulation) or secondary outcomes. User evaluations were favorable. 79% would recommend it to colleagues. 9% stated Microsim could replace the entire ALS course, 25% parts. Over 70% of participants' perceived that Microsim improved their understanding of the key learning domains of the ALS course. Distributing Microsim to healthcare providers prior to attending an ALS courses did not improve either cognitive or psychomotor skills performance during cardiac arrest simulation testing. The challenge that lies ahead is to identify the optimal way to use e-learning as part of a blended approach to learning for this type of training programme.

  4. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  5. Basic life support training into cardiac rehabilitation programs: A chance to give back. A community intervention controlled manikin study.

    Science.gov (United States)

    González-Salvado, Violeta; Abelairas-Gómez, Cristian; Peña-Gil, Carlos; Neiro-Rey, Carmen; Barcala-Furelos, Roberto; González-Juanatey, José Ramón; Rodríguez-Núñez, Antonio

    2018-03-12

    Early basic life support is crucial to enhance survival from out-of-hospital cardiac arrest but rates remain low, especially in households. High-risk groups' training has been advocated, but the optimal method is unclear. The CArdiac REhabilitation and BAsic life Support (CAREBAS) project aims to compare the effectiveness of two basic life support educational strategies implemented in a cardiac rehabilitation program. A community intervention study including consecutive patients enrolled on an exercise-based cardiac rehabilitation program after acute coronary syndrome or revascularization was conducted. A standard basic life support training (G-Stan) and a novel approach integrating cardiopulmonary resuscitation hands-on rolling refreshers (G-CPR) were randomly assigned to each group and compared. Basic life support performance was assessed by means of simulation at baseline, following brief instruction and after the 2-month program. 114 participants were included and 108 completed the final evaluation (G-Stan:58, G-CPR:50). Basic life support performance was equally poor at baseline and significantly improved following a brief instruction. A better skill retention was found after the 2-month program in G-CPR, significantly superior for safety and sending for an automated external defibrillator. Confidence and self-perceived preparation were also significantly greater in G-CPR after the program. Integrating cardiopulmonary resuscitation hands-on rolling refreshers in the training of an exercise-based cardiac rehabilitation program is feasible and improves patients' skill retention and confidence to perform a basic life support sequence, compared to conventional training. Exporting this formula to other programs may result in increased numbers of trained citizens, enhanced social awareness and bystander resuscitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Improving Pediatric Basic Life Support Performance Through Blended Learning With Web-Based Virtual Patients: Randomized Controlled Trial.

    Science.gov (United States)

    Lehmann, Ronny; Thiessen, Christiane; Frick, Barbara; Bosse, Hans Martin; Nikendei, Christoph; Hoffmann, Georg Friedrich; Tönshoff, Burkhard; Huwendiek, Sören

    2015-07-02

    E-learning and blended learning approaches gain more and more popularity in emergency medicine curricula. So far, little data is available on the impact of such approaches on procedural learning and skill acquisition and their comparison with traditional approaches. This study investigated the impact of a blended learning approach, including Web-based virtual patients (VPs) and standard pediatric basic life support (PBLS) training, on procedural knowledge, objective performance, and self-assessment. A total of 57 medical students were randomly assigned to an intervention group (n=30) and a control group (n=27). Both groups received paper handouts in preparation of simulation-based PBLS training. The intervention group additionally completed two Web-based VPs with embedded video clips. Measurements were taken at randomization (t0), after the preparation period (t1), and after hands-on training (t2). Clinical decision-making skills and procedural knowledge were assessed at t0 and t1. PBLS performance was scored regarding adherence to the correct algorithm, conformance to temporal demands, and the quality of procedural steps at t1 and t2. Participants' self-assessments were recorded in all three measurements. Procedural knowledge of the intervention group was significantly superior to that of the control group at t1. At t2, the intervention group showed significantly better adherence to the algorithm and temporal demands, and better procedural quality of PBLS in objective measures than did the control group. These aspects differed between the groups even at t1 (after VPs, prior to practical training). Self-assessments differed significantly only at t1 in favor of the intervention group. Training with VPs combined with hands-on training improves PBLS performance as judged by objective measures.

  7. Bioregenerative life-support systems

    Science.gov (United States)

    Mitchell, C. A.

    1994-01-01

    Long-duration future habitation of space involving great distances from Earth and/or large crew sizes (eg, lunar outpost, Mars base) will require a controlled ecological life-support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate human food (for a vegetarian diet). Photosynthetic higher plants and algae will provide the essential functions of biomass productivity in a CELSS, and a combination of physicochemical and bioregenerative processes will be used to regenerate renewable resources from waste materials. Crop selection criteria for a CELSS include nutritional use characteristics as well as horticultural characteristics. Cereals, legumes, and oilseed crops are used to provide the major macronutrients for the CELSS diet. A National Aeronautics and Space Administration (NASA) Specialized Center of Research and Training (NSCORT) was established at Purdue University to establish proof of the concept of the sustainability of a CELSS. The Biosphere 2 project in Arizona is providing a model for predicted and unpredicted situations that arise as a result of closure in a complex natural ecosystem.

  8. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    Science.gov (United States)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  9. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    Science.gov (United States)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  10. Home care for life-supported persons: the French system of quality control, technology assessment, and cost containment.

    OpenAIRE

    Goldberg, A I

    1989-01-01

    Home care for persons who require the prolonged use of life-supportive medical technology is a reality in several nations. France has had more than a quarter of a century of experience with providing home care for patients with chronic respiratory insufficiency and with a system to evaluate the patients' outcomes. The French approach features decentralized regional organizations which offer grassroots involvement by the beneficiaries who participate directly in the system. Since June 1981, a ...

  11. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  12. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  13. Starship Life Support

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to

  14. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    Science.gov (United States)

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  15. Proposed minimum requirements for the operational characteristics and testing of closed circuit life support system control electronics.

    Science.gov (United States)

    Kirk, J C

    1998-01-01

    The popularization and transformation of scuba diving into a broadly practiced sport has served to ignite the interest of technically oriented divers into ever more demanding areas. This, along with the gradual release of military data, equipment, and techniques of closed circuit underwater breathing apparatus, has resulted in a virtual explosion of semiclosed and closed circuit systems for divers. Although many of these systems have been carefully thought out by capable designers, the impulse to rush to market with equipment that has not been fully developed and carefully tested is irresistible to marketers. In addition, the presence of systems developed by well-intentioned and otherwise competent designers who are, nonetheless, inexperienced in the field of life support can result in the sale of failure-prone equipment to divers who lack the knowledge and skills to identify deficiencies before disaster occurs. For this reason, a set of industry standards establishing minimum requirements and testing is needed to guide the designers of this equipment, and to protect the user community from incomplete or inadequate design. Many different technologies go into the development of closed circuit scuba. One key area is the design of electronics to monitor and maintain the critical gas mixtures of the closed circuit loop. Much of the system reliability and inherent danger is resident in the design of the circuitry and the software (if any) that runs it. This article will present a set of proposed minimum requirements, with the goal of establishing a dialog for the creation of guidelines for the classification, rating, design, and testing of embedded electronics for life support systems used in closed circuit applications. These guidelines will serve as the foundation for the later creation of a set of industry specifications.

  16. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  17. Characterizing Biological Closed-Loop Life Support Systems for Thermal Control and Revitalization of Spacecraft Cabin Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental Control and Support Systems (ECLSS) are required for all manned spaceflight missions to provide the most fundamental physiological needs. One of these...

  18. [Habitability and life support systems].

    Science.gov (United States)

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  19. An estimate of the second law thermodynamic efficiency of the various units comprising an Environmental Control and Life Support System (ECLSS)

    Science.gov (United States)

    Chatterjee, Sharmista; Seagrave, Richard C.

    1993-01-01

    The objective of this paper is to present an estimate of the second law thermodynamic efficiency of the various units comprising an Environmental Control and Life Support System (ECLSS). The technique adopted here is based on an evaluation of the 'lost work' within each functional unit of the subsystem. Pertinent information for our analysis is obtained from a user interactive integrated model of an ECLSS. The model was developed using ASPEN. A potential benefit of this analysis is the identification of subsystems with high entropy generation as the most likely candidates for engineering improvements. This work has been motivated by the fact that the design objective for a long term mission should be the evaluation of existing ECLSS technologies not only the basis of the quantity of work needed for or obtained from each subsystem but also on the quality of work. In a previous study Brandhorst showed that the power consumption for partially closed and completely closed regenerable life support systems was estimated as 3.5 kw/individual and 10-12 kw/individual respectively. With the increasing cost and scarcity of energy resources, our attention is drawn to evaluate the existing ECLSS technologies on the basis of their energy efficiency. In general the first law efficiency of a system is usually greater than 50 percent. From literature, the second law efficiency is usually about 10 percent. The estimation of second law efficiency of the system indicates the percentage of energy degraded as irreversibilities within the process. This estimate offers more room for improvement in the design of equipment. From another perspective, our objective is to keep the total entropy production of a life support system as low as possible and still ensure a positive entropy gradient between the system and the surroundings. The reason for doing so is as the entropy production of the system increases, the entropy gradient between the system and the surroundings decreases, and the

  20. Creation of closed life support systems

    Science.gov (United States)

    Gitelson, I.

    The 40-year-long experience in devising ecological systems with a significantly closed material cycling (CES), which are intended for human life support outside the Earth's biosphere, allows us to state that this problem has been largely solved technically. To test the terrestrial prototypes of these systems: Bios in Krasnoyarsk, the Terrestrial Ecological System (TES) in Moscow, and Bioplex in Houston, crews of humans stayed inside them over long periods of time. In Bios-3 humans could be fully (100%) provided with regenerated air and water and with a vegetable part (80%) of their diet. One human requires 4.5 kW of light energy, which is equal to the light energy incident on an 8-m2 surface perpendicular to solar rays in the Earth's orbit. The regeneration of air and water can be alternatively performed by a 17-L2 microalgal cultivator with a light-receiving surface of 8 m at 2 kW of light energy or by a conveyer culture of agricultural plants. To regenerate the vegetable part of2 the diet to the full, the area must increase to 31.5 m per person. Similar values have been obtained in the TES and in Bioplex. It can be concluded that the system is ready to be implemented in the engineering-technical designs of specific versions: for orbital flights, for missions to Mars and other planets, and for stations on the Moon and Mars. To improve the CES further, a number of new key problems should be resolved. The first of them are: to robotize the technological processes and to establish an optimized system of the internal control of the CES by the crew working in it; to develop a hybrid physicochemical-biological technology for returning the dead-end products of biosynthesis into the system's cycling; to solve the fundamental problem of regenerating the human ration completely inside the CES by the autotrophic chemo - and photosynthesis. Once this problem is solved, the energy requirements for life support in space will be significantly reduced. This will also considerably

  1. Human life support for advanced space exploration

    Science.gov (United States)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  2. Life Support Systems: Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Environmental Monitoring (EM) systems task objectives are to develop and demonstrate onboard...

  3. Introduction to Life Support Systems

    Science.gov (United States)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  4. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in

  5. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  6. Learning basic life support (BLS) with tablet PCs in reciprocal learning at school: are videos superior to pictures? A randomized controlled trial.

    Science.gov (United States)

    Iserbyt, Peter; Charlier, Nathalie; Mols, Liesbet

    2014-06-01

    It is often assumed that animations (i.e., videos) will lead to higher learning compared to static media (i.e., pictures) because they provide a more realistic demonstration of the learning task. To investigate whether learning basic life support (BLS) and cardiopulmonary resuscitation (CPR) from video produce higher learning outcomes compared to pictures in reciprocal learning. A randomized controlled trial. A total of 128 students (mean age: 17 years) constituting eight intact classes from a secondary school learned BLS in reciprocal roles of doer and helper with tablet PCs. Student pairs in each class were randomized over a Picture and a Video group. In the Picture group, students learned BLS by means of pictures combined with written instructions. In the Video group, BLS was learned through videos with on-screen instructions. Informational equivalence was assured since instructions in both groups comprised exactly the same words. BLS assessment occurred unannounced, three weeks following intervention. Analysis of variance demonstrated no significant differences in chest compression depths between the Picture group (M=42 mm, 95% CI=40-45) and the Video group (M=39 mm, 95% CI=36-42). In the Picture group significantly higher percentages of chest compressions with correct hand placement were achieved (M=67%, CI=58-77) compared to the Video group (M=53%, CI=43-63), P=.03, η(p)(2)=.03. No other significant differences were found. Results do not support the assumption that videos are superior to pictures for learning BLS and CPR in reciprocal learning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. The effect of peer-group size on the delivery of feedback in basic life support refresher training: a cluster randomized controlled trial.

    Science.gov (United States)

    Cho, Youngsuk; Je, Sangmo; Yoon, Yoo Sang; Roh, Hye Rin; Chang, Chulho; Kang, Hyunggoo; Lim, Taeho

    2016-07-04

    Students are largely providing feedback to one another when instructor facilitates peer feedback rather than teaching in group training. The number of students in a group affect the learning of students in the group training. We aimed to investigate whether a larger group size increases students' test scores on a post-training test with peer feedback facilitated by instructor after video-guided basic life support (BLS) refresher training. Students' one-rescuer adult BLS skills were assessed by a 2-min checklist-based test 1 year after the initial training. A cluster randomized controlled trial was conducted to evaluate the effect of student number in a group on BLS refresher training. Participants included 115 final-year medical students undergoing their emergency medicine clerkship. The median number of students was 8 in the large groups and 4 in the standard group. The primary outcome was to examine group differences in post-training test scores after video-guided BLS training. Secondary outcomes included the feedback time, number of feedback topics, and results of end-of-training evaluation questionnaires. Scores on the post-training test increased over three consecutive tests with instructor-led peer feedback, but not differ between large and standard groups. The feedback time was longer and number of feedback topics generated by students were higher in standard groups compared to large groups on the first and second tests. The end-of-training questionnaire revealed that the students in large groups preferred the smaller group size compared to their actual group size. In this BLS refresher training, the instructor-led group feedback increased the test score after tutorial video-guided BLS learning, irrespective of the group size. A smaller group size allowed more participations in peer feedback.

  8. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  9. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  10. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    Science.gov (United States)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  11. Reproducible analyses of microbial food for advanced life support systems

    Science.gov (United States)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  12. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  13. Use of the learning conversation improves instructor confidence in life support training: An open randomised controlled cross-over trial comparing teaching feedback mechanisms.

    Science.gov (United States)

    Baldwin, Lydia J L; Jones, Christopher M; Hulme, Jonathan; Owen, Andrew

    2015-11-01

    Feedback is vital for the effective delivery of skills-based education. We sought to compare the sandwich technique and learning conversation structured methods of feedback delivery in competency-based basic life support (BLS) training. Open randomised crossover study undertaken between October 2014 and March 2015 at the University of Birmingham, United Kingdom. Six-hundred and forty healthcare students undertaking a European Resuscitation Council (ERC) BLS course were enrolled, each of whom was randomised to receive teaching using either the sandwich technique or the learning conversation. Fifty-eight instructors were randomised to initially teach using either the learning conversation or sandwich technique, prior to crossing-over and teaching with the alternative technique after a pre-defined time period. Outcome measures included skill acquisition as measured by an end-of-course competency assessment, instructors' perception of teaching with each feedback technique and candidates' perception of the feedback they were provided with. Scores assigned to use of the learning conversation by instructors were significantly more favourable than for the sandwich technique across all but two assessed domains relating to instructor perception of the feedback technique, including all skills-based domains. No difference was seen in either assessment pass rates (80.9% sandwich technique vs. 77.2% learning conversation; OR 1.2, 95% CI 0.85-1.84; p=0.29) or any domain relating to candidates' perception of their teaching technique. This is the first direct comparison of two feedback techniques in clinical medical education using both quantitative and qualitative methodology. The learning conversation is preferred by instructors providing competency-based life support training and is perceived to favour skills acquisition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  15. [Basic life support in pediatrics].

    Science.gov (United States)

    Calvo Macías, A; Manrique Martínez, I; Rodríguez Núñez, A; López-Herce Cid, J

    2006-09-01

    Basic life support (BLS) is the combination of maneuvers that identifies the child in cardiopulmonary arrest and initiates the substitution of respiratory and circulatory function, without the use of technical adjuncts, until the child can receive more advanced treatment. BLS includes a sequence of steps or maneuvers that should be performed sequentially: ensuring the safety of rescuer and child, assessing unconsciousness, calling for help, positioning the victim, opening the airway, assessing breathing, ventilating, assessing signs of circulation and/or central arterial pulse, performing chest compressions, activating the emergency medical service system, and checking the results of resuscitation. The most important changes in the new guidelines are the compression: ventilation ratio and the algorithm for relieving foreign body airway obstruction. A compression/ ventilation ratio of 30:2 will be recommended for lay rescuers of infants, children and adults. Health professionals will use a compression: ventilation ratio of 15:2 for infants and children. If the health professional is alone, he/she may also use a ratio of 30:2 to avoid fatigue. In the algorithm for relieving foreign body airway obstruction, when the child becomes unconscious, the maneuvers will be similar to the BLS sequence with chest compressions (functioning as a deobstruction procedure) and ventilation, with reassessment of the mouth every 2 min to check for a foreign body, and evaluation of breathing and the presence of vital signs. BLS maneuvers are easy to learn and can be performed by anyone with adequate training. Therefore, BLS should be taught to all citizens.

  16. Reciprocal learning with task cards for teaching Basic Life Support (BLS): investigating effectiveness and the effect of instructor expertise on learning outcomes. A randomized controlled trial.

    Science.gov (United States)

    Iserbyt, Peter; Mols, Liesbet; Charlier, Nathalie; De Meester, Sophie

    2014-01-01

    Basic Life Support (BLS) education in secondary schools and universities is often neglected or outsourced because teachers indicate not feeling competent to teach this content. Investigate reciprocal learning with task cards as instructional model for teaching BLS and the effect of instructor expertise in BLS on learning outcomes. There were 175 students (mean age = 18.9 years) randomized across a reciprocal/BLS instructor (RBI) group, a reciprocal/non-BLS instructor (RNI) group, and a traditional/BLS instructor group (TBI). In the RBI and RNI group, students were taught BLS through reciprocal learning with task cards. The instructor in the RBI group was certified in BLS by the European Resuscitation Council. In the TBI, students were taught BLS by a certified instructor according to the Belgian Red Cross instructional model. Student performance was assessed 1 day (intervention) and 3 weeks after intervention (retention). At retention, significantly higher BLS performances were found in the RBI group (M = 78%), p = 0.007, ES = 0.25, and the RNI group (M = 80%), p < 0.001, Effect Size (ES) = .36, compared to the TBI (M = 73%). Significantly more students remembered and performed all BLS skills in the experimental groups at intervention and retention. No differences in BLS performance were found between the reciprocal groups. Ventilation volumes and flow rates were significantly better in the TBI at intervention and retention. Reciprocal learning with task cards is a valuable model for teaching BLS when instructors are not experienced or skilled in BLS. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  18. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    Science.gov (United States)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  19. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  20. Pediatric advanced life support and sedation of pediatric dental patients.

    Science.gov (United States)

    Kim, Jongbin

    2016-03-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency situations, basic life support is most important. However, emergencies in young children mostly involve breathing. Therefore, physicians who treat pediatric dental patients should learn PALS. It is necessary for the physician to regularly renew training every two years to be able to immediately implement professional skills in emergency situations. In order to manage emergency situations in the pediatric dental clinic, respiratory support is most important. Therefore, mastering professional PALS, which includes respiratory care and core cases, particularly upper airway obstruction and respiratory depression caused by a respiratory control problem, would be highly desirable for a physician who treats pediatric dental patients. Regular training and renewal training every two years is absolutely necessary to be able to immediately implement professional skills in emergency situations.

  1. Hospital Costs Of Extracorporeal Life Support Therapy

    NARCIS (Netherlands)

    Oude Lansink-Hartgring, Annemieke; van den Hengel, Berber; van der Bij, Wim; Erasmus, Michiel E.; Mariani, Massimo A.; Rienstra, Michiel; Cernak, Vladimir; Vermeulen, Karin M.; van den Bergh, Walter M.

    Objectives: To conduct an exploration of the hospital costs of extracorporeal life support therapy. Extracorporeal life support seems an efficient therapy for acute, potentially reversible cardiac or respiratory failure, when conventional therapy has been inadequate, or as bridge to transplant, but

  2. Life Support Baseline Values and Assumptions Document

    Science.gov (United States)

    Anderson, Molly S.; Ewert, Michael K.; Keener, John F.

    2018-01-01

    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers.

  3. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  4. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  5. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  6. Design Rules for Life Support Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  7. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  8. Need for Cost Optimization of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.; Anderson, Grant

    2017-01-01

    As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.

  9. What influences parents' decisions to limit or withdraw life support?

    Science.gov (United States)

    Sharman, Mahesh; Meert, Kathleen L; Sarnaik, Ashok P

    2005-09-01

    Decisions to forgo life support from critically ill children are commonly faced by parents and physicians. Previous research regarding parents' perspectives on the decision-making process has been limited by retrospective methods and the use of closed-ended questionnaires. We prospectively identified and described parents' self-reported influences on decisions to forgo life support from their children. Deeper understanding of parents' views will allow physicians to focus end-of-life discussions on factors important to parents and help resolve conflicts. Prospective, qualitative pilot study. Pediatric intensive care unit of a university-affiliated children's hospital. A total of 14 parents of ten children whose pediatric intensive care unit physician had made a recommendation to limit or withdraw life support. : In-depth, semistructured interviews were conducted with parents during their decision-making process. Factors influencing the parents in this study in their decision to forgo life support included their previous experience with death and end-of-life decision making for others, their personal observations of their child's suffering, their perceptions of their child's will to survive, their need to protect and advocate for their child, and the family's financial resources and concerns regarding life-long care. Parents in this study expressed the desire to do what is best for their child but struggled with feelings of selfishness, guilt, and the need to avoid agony and sorrow. Physician recommendations, review of options, and joint formulation of a plan helped parents gain a sense of control over their situation. Parents of eight children agreed to forgo life support and parents of two did not. Prospective interviews with open-ended questions identified factors influencing parents' decision making not previously described in the critical care literature such as parents' past experiences with end-of-life decisions and their anticipated emotional adjustments and

  10. Canadian advanced life support capacities and future directions

    Science.gov (United States)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  11. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  12. Mathematical Modeling Of Life-Support Systems

    Science.gov (United States)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  13. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  14. Monitoring and life-support devices

    International Nuclear Information System (INIS)

    Noback, C.R.; Murphy, C.H.

    1987-01-01

    The radiographic and physical principles involved in interpreting films, and some of the altered anatomy and pathology that may be seen on such films, are discussed. This chapter considers the radiographic appearances of monitoring and life-support devices. Appropriate positioning and function are shown, as are some of the complications associated with their placement and/or function

  15. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  16. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post

  17. Rapid Deterioration of Basic Life Support Skills in Dentists With Basic Life Support Healthcare Provider.

    Science.gov (United States)

    Nogami, Kentaro; Taniguchi, Shogo; Ichiyama, Tomoko

    2016-01-01

    The aim of this study was to investigate the correlation between basic life support skills in dentists who had completed the American Heart Association's Basic Life Support (BLS) Healthcare Provider qualification and time since course completion. Thirty-six dentists who had completed the 2005 BLS Healthcare Provider course participated in the study. We asked participants to perform 2 cycles of cardiopulmonary resuscitation on a mannequin and evaluated basic life support skills. Dentists who had previously completed the BLS Healthcare Provider course displayed both prolonged reaction times, and the quality of their basic life support skills deteriorated rapidly. There were no correlations between basic life support skills and time since course completion. Our results suggest that basic life support skills deteriorate rapidly for dentists who have completed the BLS Healthcare Provider. Newer guidelines stressing chest compressions over ventilation may help improve performance over time, allowing better cardiopulmonary resuscitation in dental office emergencies. Moreover, it may be effective to provide a more specialized version of the life support course to train the dentists, stressing issues that may be more likely to occur in the dental office.

  18. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  19. Developing Reliable Life Support for Mars

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and

  20. Emergency Neurological Life Support: Intracerebral Hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Pineda, Jose A; Hemphill, J Claude

    2015-12-01

    Intracerebral hemorrhage (ICH) is a subset of stroke due to bleeding within the parenchyma of the brain. It is potentially lethal, and survival depends on ensuring an adequate airway, reversal of coagulopathy, and proper diagnosis. ICH was chosen as an Emergency Neurological Life Support protocol because intervention within the first critical hour may improve outcome, and it is critical to have site-specific protocols to drive care quickly and efficiently.

  1. IT for advanced Life Support in English

    DEFF Research Database (Denmark)

    Sejerø Pedersen, Birgitte; Jeberg, Kirsten Ann; Koerner, Christian

    2009-01-01

    In this study we analyzed how IT support can be established for the treatment and documentation of advanced life support (ALS) in a hospital. In close collaboration with clinical researchers, a running prototype of an IT solution to support the clinical decisions in ALS was developed and tried out...... in a full scale simulation environment. We have named this IT solution the CardioData Prototype....

  2. Axiomatic Design of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  3. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  4. Vampire Bat Rabies: Ecology, Epidemiology and Control

    Science.gov (United States)

    Johnson, Nicholas; Aréchiga-Ceballos, Nidia; Aguilar-Setien, Alvaro

    2014-01-01

    Extensive surveillance in bat populations in response to recent emerging diseases has revealed that this group of mammals acts as a reservoir for a large range of viruses. However, the oldest known association between a zoonotic virus and a bat is that between rabies virus and the vampire bat. Vampire bats are only found in Latin America and their unique method of obtaining nutrition, blood-feeding or haematophagy, has only evolved in the New World. The adaptations that enable blood-feeding also make the vampire bat highly effective at transmitting rabies virus. Whether the virus was present in pre-Columbian America or was introduced is much disputed, however, the introduction of Old World livestock and associated landscape modification, which continues to the present day, has enabled vampire bat populations to increase. This in turn has provided the conditions for rabies re-emergence to threaten both livestock and human populations as vampire bats target large mammals. This review considers the ecology of the vampire bat that make it such an efficient vector for rabies, the current status of vampire-transmitted rabies and the future prospects for spread by this virus and its control. PMID:24784570

  5. Vampire Bat Rabies: Ecology, Epidemiology and Control

    Directory of Open Access Journals (Sweden)

    Nicholas Johnson

    2014-04-01

    Full Text Available Extensive surveillance in bat populations in response to recent emerging diseases has revealed that this group of mammals acts as a reservoir for a large range of viruses. However, the oldest known association between a zoonotic virus and a bat is that between rabies virus and the vampire bat. Vampire bats are only found in Latin America and their unique method of obtaining nutrition, blood-feeding or haematophagy, has only evolved in the New World. The adaptations that enable blood-feeding also make the vampire bat highly effective at transmitting rabies virus. Whether the virus was present in pre-Columbian America or was introduced is much disputed, however, the introduction of Old World livestock and associated landscape modification, which continues to the present day, has enabled vampire bat populations to increase. This in turn has provided the conditions for rabies re-emergence to threaten both livestock and human populations as vampire bats target large mammals. This review considers the ecology of the vampire bat that make it such an efficient vector for rabies, the current status of vampire-transmitted rabies and the future prospects for spread by this virus and its control.

  6. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  7. Pediatric advanced life support and sedation of pediatric dental patients

    OpenAIRE

    Kim, Jongbin

    2016-01-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency ...

  8. Ecological Controls on Land-Atmosphere Exchange

    Science.gov (United States)

    Goulden, M. L.; Litvak, M. E.; Winston, G.; Miller, S. D.; Read, E.; Elliot, R.

    2002-12-01

    We have been using long-term eddy covariance to investigate the patterns of energy and CO2 exchange between the atmosphere and a freshwater marsh in California, and also between the atmosphere and a series of boreal forest stands in Manitoba, Canada. Most researchers believe that ecological phenomenon, such as plant herbivore interactions and interspecific differences in plant life-history strategy, are relatively unimportant in determining the interannual and landscape patterns of Land-Atmosphere exchange. However, we have found that interactions between plants and herbivores exert a large control on the interannual patterns of energy and CO2 exchange in the freshwater marsh, and that interspecific differences in plant strategy are critical for understanding the landscape scale patterns of energy and CO2 exchange in the boreal forest. Despite a relatively constant climate and flooding regime at the California marsh, annual Carbon balance varied by 6 tC ha-1 or more from year to year. These deviations were caused in part by variation in herbivory by rodents and insects. Likewise, peak CO2 uptake by boreal forest stands recovering from fire differed less than expected, with a 4-year-old stand assimilating CO2 at rates comparable to that by middle aged stands, and faster than that by old stands. These patterns reflect differences in the life history strategies of the dominant plants, with the youngest stands dominated by fast growing ruderals, the middle aged stands dominated by fast growing competitive species, and the old stands dominated by slow growing stress tolerant species.

  9. NASA's Interests in Bioregenerative Life Support

    Science.gov (United States)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  10. Ecological risks of biological control agents: impacts on IPM

    NARCIS (Netherlands)

    Hokkanen, H.M.T.; Lenteren, van J.C.; Menzler-Hokkanen, I.

    2007-01-01

    Since the early days of integrated pest management a sound ecological foundation has been considered essential for the development of effective systems. From time to time, there have been attempts to evaluate the ways in which ecological theory is exploited in pest control, and to review the lessons

  11. Termination of life support after major trauma.

    Science.gov (United States)

    Sullivan, D J; Hansen-Flaschen, J

    2000-06-01

    As the population continues to age, greater numbers and more severely injured elderly patients require care in ICUs. With the attendant increase in the medical complexity of such patients, investigators anticipate that trauma and critical care resources will become increasingly stretched. Because of economic and societal forces, it will become increasingly important for trauma surgeons to appropriately counsel patients and their families regarding the outcome from their injuries and to become comfortable approaching families about withdrawal of support when medical futility is recognized. The authors propose the following guidelines for discussing limitation or termination of life support with patients and their families. Physicians should (1) discuss the patient's wishes regarding life support on admission or early in the hospital course; (2) at the initial discussion, establish who the decision maker will be if the patient is or becomes incapacitated; (3) maintain regular communication and continuity of care; and (4) inevitably, when conflict occurs, involve consultants and a hospital ethics committee for assistance in its resolution.

  12. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  13. Extracorporeal life support in pediatric cardiac patients

    Directory of Open Access Journals (Sweden)

    Matteo Di NARDO

    2016-10-01

    Full Text Available Extracorporeal Life Support (ECLS is a valuable tool in the management of neonates and older children with severe cardiac or respiratory failure. In this review, we focus on ECLS when used for neonatal and pediatric cardiac disease. Strict selection of patients and timely deployment are necessary to optimize outcomes. Although every attempt should be made to deploy ECLS urgently rather than emergently, extracorporeal cardiopulmonary resuscitation (ECPR is being increasingly used and reasonable survival rates have been achieved after initiation of ECLS during active compressions of the chest following in-hospital cardiac arrest. Contraindications to ECLS are falling over time, although lethal chromosomal abnormalities, severe irreversible brain injury, and extremely low gestational age and weight (<32 weeks gestation or <1.5 kg remain firm contraindications.

  14. Life support approaches for Mars missions

    Science.gov (United States)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  15. Methodological Challenges in Studies Comparing Prehospital Advanced Life Support with Basic Life Support.

    Science.gov (United States)

    Li, Timmy; Jones, Courtney M C; Shah, Manish N; Cushman, Jeremy T; Jusko, Todd A

    2017-08-01

    Determining the most appropriate level of care for patients in the prehospital setting during medical emergencies is essential. A large body of literature suggests that, compared with Basic Life Support (BLS) care, Advanced Life Support (ALS) care is not associated with increased patient survival or decreased mortality. The purpose of this special report is to synthesize the literature to identify common study design and analytic challenges in research studies that examine the effect of ALS, compared to BLS, on patient outcomes. The challenges discussed in this report include: (1) choice of outcome measure; (2) logistic regression modeling of common outcomes; (3) baseline differences between study groups (confounding); (4) inappropriate statistical adjustment; and (5) inclusion of patients who are no longer at risk for the outcome. These challenges may affect the results of studies, and thus, conclusions of studies regarding the effect of level of prehospital care on patient outcomes should require cautious interpretation. Specific alternatives for avoiding these challenges are presented. Li T , Jones CMC , Shah MN , Cushman JT , Jusko TA . Methodological challenges in studies comparing prehospital Advanced Life Support with Basic Life Support. Prehosp Disaster Med. 2017;32(4):444-450.

  16. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  17. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  18. [Knowledge about basic life support in European students].

    Science.gov (United States)

    Marton, József; Pandúr, Attila; Pék, Emese; Deutsch, Krisztina; Bánfai, Bálint; Radnai, Balázs; Betlehem, József

    2014-05-25

    Better knowledge and skills of basic life support can save millions of lives each year in Europe. The aim of this study was to measure the knowledge about basic life support in European students. From 13 European countries 1527 volunteer participated in the survey. The questionnaire consisted of socio-demographic questions and knowledge regarding basic life support. The maximum possible score was 18. Those participants who had basic life support training earned 11.91 points, while those who had not participated in lifesaving education had 9.6 points (pbasic life support between students from different European countries. Western European youth, and those who were trained had better performance.

  19. Ecology and control of the natural environment

    International Nuclear Information System (INIS)

    Izrael, Y.A.

    1992-01-01

    The book is in three parts: comprehensive analysis and regulation of the environment; the principles of monitoring; and global ecological problems - critical anthropogenic effects. The third part has a section on anthropogenic effects on the atmosphere and climate, which include: the direct impact on the state of the atmosphere; impacts which alter the physical and chemical properties of the atmosphere, and in particular its radiation and electrical characteristics; the impact on the upper atmosphere which alters its characteristics and state; and factors affecting the characteristics of the underlying surface and changing its reflectivity, and also affecting the interaction between the elements of the climatic system. There is also a section on the transport of pollutants over long distances and the ecotoxicology of acid rain. Priority is given to the transport of SO 2 and its transformation products NO x and their transformation products heavy metals, pesticides and radioactive substances. 629 refs., 74 figs., 42 tabs

  20. Nonlinear Dynamic Models in Advanced Life Support

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  1. Local and global control of ecological and biological networks

    OpenAIRE

    Alessandro Ferrarini

    2014-01-01

    Recently, I introduced a methodological framework so that ecological and biological networks can be controlled both from inside and outside by coupling network dynamics and evolutionary modelling. The endogenous control requires the network to be optimized at the beginning of its dynamics (by acting upon nodes, edges or both) so that it will then go inertially to the desired state. Instead, the exogenous control requires that exogenous controllers act upon the network at each time step. By th...

  2. Light, plants, and power for life support on Mars

    Science.gov (United States)

    Salisbury, F. B.; Dempster, W. F.; Allen, J. P.; Alling, A.; Bubenheim, D.; Nelson, M.; Silverstone, S.

    2002-01-01

    Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.

  3. Advanced Technologies to Improve Closure of Life Support Systems

    Science.gov (United States)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  4. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  5. Predator control promotes invasive dominated ecological states.

    Science.gov (United States)

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.

  6. Topographic and ecologic controls on root reinforcement

    Science.gov (United States)

    T.C. Hales; C.R. Ford; T. Hwang; J.M. Vose; L.E. Band

    2009-01-01

    Shallow landslides are a significant hazard in steep, soil-mantled landscapes. During intense rainfall events, the distribution of shallow landslides is controlled by variations in landscape gradient, the frictional and cohesive properties of soil and roots, and the subsurface hydrologic response. While gradients can be estimated from digital elevation models,...

  7. Topographic and ecological controls on root reinforcement

    Science.gov (United States)

    T.C. Hales; C.R. Ford; T. Hwang; J.M. Vose; L.E. Band

    2009-01-01

    Shallow landslides are a significant hazard in steep, soil-mantled landscapes. During intense rainfall events, the distribution of shallow landslides is controlled by variations in landscape gradient, the frictional and cohesive properties of soil and roots, and the subsurface hydrologic response. While gradients can be estimated from digital elevation models,...

  8. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  9. [Effect of ecological civilized homestead construction on schistosomiasis control].

    Science.gov (United States)

    Tang, Meng; Jia, Tie-Wu; Wu, Zi-Song; Mao, Ping; Chen, Lin; Li, Han-Gang; Zhong, Bo; Qiu, Dong-Chuan; Yao, Qin; Hu, You-Ping

    2012-02-01

    To evaluate the effect of Ecological Civilized Homestead Construction on schistosomiasis control. The data of ecological civilized homestead construction and schistosomiasis control were collected and analyzed in Meiwan Village, Shuangqiao Town, Danling County, Sichuan Province from 2004 to 2010. Ecological Civilized Homestead Construction was carried out from 2004 to 2010. Totally 454 bio-gas pools were built. All the farmers used well water. The popularized rates of the household bio-gas pool, sanitary toilet, sewage treatment pool reached 100%. The number of cattle was 4, which decreased by 91.30% compared with that in 2004, and all the cattle were fed in captivity. The schistosome infection rates of populations were 0.26% and 0.30% in 2005 and 2008, respectively, and nobody was infected in other years. The infection rate of cattle was 0 from 2004 to 2010. The awareness rate of knowledge about schistosomiasis control achieved 100% in the population over 6 years old. Most of the farmers could use certain protective measures while they were farming. The effect of ecological civilized homestead construction on schistosomiasis control is remarkable.

  10. [Eutrophication control in local area by physic-ecological engineering].

    Science.gov (United States)

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  11. A simulation based optimization approach to model and design life support systems for manned space missions

    Science.gov (United States)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  12. Preliminary study of the space adaptation of the MELiSSA life support system

    Science.gov (United States)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  13. Improving basic life support training for medical students

    OpenAIRE

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Mariam Lami, Pooja Nair, Karishma GadhviFaculty of Medicine, Imperial College, London, London, UKAbstract: Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.Keywords: medical education, basic life support

  14. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    Science.gov (United States)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  15. Can basic life support personnel safely determine that advanced life support is not needed?

    Science.gov (United States)

    Cone, D C; Wydro, G C

    2001-01-01

    To determine whether firefighter/emergency medical technicians-basic (FF/EMT-Bs) staffing basic life support (BLS) ambulances in a two-tiered emergency medical services (EMS) system can safely determine when advanced life support (ALS) is not needed. This was a prospective, observational study conducted in two academic emergency departments (EDs) receiving patients from a large urban fire-based EMS system. Runs were studied to which ALS and BLS ambulances were simultaneously dispatched, with the patient transported by the BLS unit. Prospectively established criteria for potential need for ALS were used to determine whether the FF/EMT-B's decision to cancel the ALS unit was safe, and simple outcomes (admission rate, length of stay, mortality) were examined. In the system studied, BLS crews may cancel responding ALS units at their discretion; there are no protocols or medical criteria for cancellation. A convenience sample of 69 cases was collected. In 52 cases (75%), the BLS providers indicated that they cancelled the responding ALS unit because they did not feel ALS was needed. Of these, 40 (77%) met study criteria for ALS: 39 had potentially serious chief complaints, nine had abnormal vital signs, and ten had physical exam findings that warranted ALS. Forty-five (87%) received an intervention immediately upon ED arrival that could have been provided in the field by an ALS unit, and 16 (31%) were admitted, with a median length of stay of 3.3 days (range 1.1-73.4 days). One patient died. Firefighter/EMT-Bs, working without protocols or medical criteria, cannot always safely determine which patients may require ALS intervention.

  16. Is advanced life support better than basic life support in prehospital care? A systematic review

    Directory of Open Access Journals (Sweden)

    Ryynänen Olli-Pekka

    2010-11-01

    Full Text Available Abstract Background - Prehospital care is classified into ALS- (advanced life support and BLS- (basic life support levels according to the methods used. ALS-level prehospital care uses invasive methods, such as intravenous fluids, medications and intubation. However, the effectiveness of ALS care compared to BLS has been questionable. Aim - The aim of this systematic review is to compare the effectiveness of ALS- and BLS-level prehospital care. Material and methods - In a systematic review, articles where ALS-level prehospital care was compared to BLS-level or any other treatment were included. The outcome variables were mortality or patient's health-related quality of life or patient's capacity to perform daily activities. Results - We identified 46 articles, mostly retrospective observational studies. The results on the effectiveness of ALS in unselected patient cohorts are contradictory. In cardiac arrest, early cardiopulmonary resuscitation and defibrillation are essential for survival, but prehospital ALS interventions have not improved survival. Prehospital thrombolytic treatment reduces mortality in patients having a myocardial infarction. The majority of research into trauma favours BLS in the case of penetrating trauma and also in cases of short distance to a hospital. In patients with severe head injuries, ALS provided by paramedics and intubation without anaesthesia can even be harmful. If the prehospital care is provided by an experienced physician and by a HEMS organisation (Helicopter Emergency Medical Service, ALS interventions may be beneficial for patients with multiple injuries and severe brain injuries. However, the results are contradictory. Conclusions - ALS seems to improve survival in patients with myocardial infarction and BLS seems to be the proper level of care for patients with penetrating injuries. Some studies indicate a beneficial effect of ALS among patients with blunt head injuries or multiple injuries. There is

  17. Ecology

    Science.gov (United States)

    Ternjej, Ivancica; Mihaljevic, Zlatko

    2017-10-01

    Ecology is a science that studies the mutual interactions between organisms and their environment. The fundamental subject of interest in ecology is the individual. Topics of interest to ecologists include the diversity, distribution and number of particular organisms, as well as cooperation and competition between organisms, both within and among ecosystems. Today, ecology is a multidisciplinary science. This is particularly true when the subject of interest is the ecosystem or biosphere, which requires the knowledge and input of biologists, chemists, physicists, geologists, geographists, climatologists, hydrologists and many other experts. Ecology is applied in a science of restoration, repairing disturbed sites through human intervention, in natural resource management, and in environmental impact assessments.

  18. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    habitat. In order to ensure Thermal control of the habitat, multiple radiators on the exterior and a thermal shield on the inner circumference of the habitat are proposed. Food production on-board the habitat is proposed to be facilitated through vertical farming systems. These multi-storey farming systems are known to be more efficient in terms of area and sustainable than conventional farms. Agriculture on-board these farms are proposed to be facilitated through hydroponics and enriched regolith. Apart from food production, these farms can cater to fish farming as means of food, animal and insect breeding. In order to ensure waste treatment of organic matter, a biogas plant is proposed in the habitat which can be used to generate electrical or mechanical power .An optimum atmospheric pressure of 51.1Kpa is proposed for the habitat comprising of Oxygen and Helium. Recreational facilities although not directly related to life support systems, play a very important role in optimum liveability of inhabitants. Open spaces, sports facilities, micro gravity swimming pools, orbital hotels are proposed as modes of recreation to ensure long term sustainability for the inhabitants.

  19. Study of basic-life-support training for college students.

    Science.gov (United States)

    Srivilaithon, Winchana; Amnaumpatanapon, Kumpon; Limjindaporn, Chitlada; Imsuwan, Intanon; Daorattanachai, Kiattichai

    2015-03-01

    To study about attitude and knowledge regarding basic-life-support among college students outside medical system. The cross-sectional study in the emergency department of Thammasat Hospital. The authors included college students at least aged 18 years old and volunteers to be study subjects. The authors collected data about attitudes and knowledge in performing basic-life-support by using set of questionnaires. 250 college students participated in the two hours trainingprogram. Most ofparticipants (42.4%) were second-year college students, of which 50 of 250 participants (20%) had trained in basic-life-support program. Twenty-seven of 250 participants (10.8%) had experience in basic-life-support outside the hospital. Most of participants had good attitude for doing basic-life-support. Participants had a significant improved score following training (mean score 8.66 and 12.34, respectively, pbasic-life-support to cardiac arrest patient. The training program in basic-life-support has significant impact on knowledge after training.

  20. Chemical and ecological control methods for Epitrix spp.

    Directory of Open Access Journals (Sweden)

    A. G. S. Cuthbertson

    2015-01-01

    Full Text Available Very little information exists in regards to the control options available for potato flea beetles, Epitrix spp. This short review covers both chemical and ecological options currently available for control of Epitrix spp. Synthetic pyrethroids are the weapon of choice for the beetles. However, the impetus in integrated pest management is to do timely (early-season applications with something harsh which will give long-term protection at a time when there are not a lot of beneficials in the field. Finding the balance for control of Epitrix spp. is proving difficult.

  1. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to utilize ionic liquids with the Bosch process to achieve closed-loop life support. Specific tasks are to: 1) Advance the technology readiness of...

  2. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  3. Improving basic life support training for medical students.

    Science.gov (United States)

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.

  4. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  5. Life support for aquatic species - past; present; future

    Science.gov (United States)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  6. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  7. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  8. Internal cost control on the ecological quality of products

    Directory of Open Access Journals (Sweden)

    N.P. Syroid

    2018-04-01

    Full Text Available To improve the environmental quality of products due attention should be paid to control the processes related to environmental quality input of the product. The results of the study help to state the purpose and objectives of the control, also to define objects for internal control of operations cost of environmental quality. So, we believe that the main purpose of internal cost control on the ecological quality of products is the establishment of the correctness and legality of business operations, prevention of violations and abuses in the expenditure of natural, labour, material and financial resources to ensure the minimization of negative impact on the health of consumers and the environment. The basic objectives of internal control of expenditure are brought forward, but it should be noted that they can vary and depend on the size, structure, spheres and types of economic activity of the enterprise, the requirements of management personnel. In the process of identifying the objects of control of environmental quality it should be noted that this list is not exhaustive, but it is most relevant to highlight objects such as genetically modified organisms and waste production. Also the subjects of cost control to environmental quality, their functions and the information base for monitoring are determined. Proper organization of the process of internal cost control on the ecological quality of products would benefit from a clear documentation of transactions, timely and complete registration of accounting data in the registers, the true reflection of information in managerial financial reporting and ensure reduction of the negative impact on the health of consumers and the environment.

  9. Reversible Ammonia Sorption for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.

    2012-01-01

    Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.

  10. Ecology

    International Nuclear Information System (INIS)

    Kalusche, D.

    1978-01-01

    The book turns to the freshment, the teacher, for preparation of ecological topics for lessons, but also to pupils of the secondary stage II, and the main course ecology. The book was knowingly held simple with the restriction to: the ecosystem and its abiotic basic functions, simple articles on population biology, bioceonotic balance ith the questions of niche formation and the life form types coherent with it, of the substance and energy household, the production biology and space-wise and time-wise differentations within an ecological system form the main points. A central role in the volume is given to the illustrations. Their variety is to show and deepen the coherences shown. (orig./HP) [de

  11. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  12. Application of NASA's Advanced Life Support Technologies in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the

  13. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    Science.gov (United States)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  14. Extracorporeal life support in the treatment of colchicine poisoning.

    Science.gov (United States)

    Boisramé-Helms, Julie; Rahmani, Hassène; Stiel, Laure; Tournoud, Christine; Sauder, Philippe

    2015-01-01

    Ingestions of Colchicum autumnale may lead to severe poisoning. It begins with gastrointestinal symptoms and leukocytosis, followed by multi-organ failure with shock and a possible late recovery phase. Mortality is highly dependent on the ingested dose. We report a case of accidental C. autumnale poisoning with refractory cardiogenic shock and eventual survival after extracorporeal life support (ECLS). A 68-year-old woman was admitted to the intensive care unit (ICU) on day 3 after ingestion of C. autumnale in a meal. She first suffered from nausea and vomiting leading to severe dehydration. She then developed multi-organ failure and refractory cardiogenic shock, with a mean arterial pressure nadir of 50 mmHg despite high doses of catecholamines and a left ventricular ejection fraction at 5-10%. Venous-arterial ECLS was therefore started at an initial rate of 3.5 L/min and 3,800 rev/min. Her symptoms also included pancytopenia on day 4 with diffuse bleeding requiring iterative blood product transfusion. Platelet and leukocyte count nadirs were 13 × 10(9)/L (normal range: 150-400 × 10(9)/L) and 0.77 × 10(9)/L (normal range: 4.2-10.7 × 10(9)/L), respectively. ECLS allowed good cardiac contractility recovery within a few days, with complications including bleeding made controllable. Indeed, because of hemostasis disorders, the patient presented hemoptysis and hematuria. She was treated with tranexamic acid and transfused with blood products. She received 15 erythrocyte concentrates, 13 platelet concentrates, and 7 fresh frozen plasma. ECLS was removed by day 10, with subsequent weaning from mechanical ventilation as well as from hemodialysis in the following days. This patient survives after the use of ECLS in Colchicum poisoning, with controllable complications. Thus, ECLS might be indicated to overcome the potentially refractory cardiogenic shock phase.

  15. [Habitability and biological life support systems for man].

    Science.gov (United States)

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  16. Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission

    OpenAIRE

    Caraccio, A.; Poulet, Lucie; Hintze, P.; Miles, J.D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on ...

  17. Environmental forcing, invasion and control of ecological and epidemiological systems.

    Science.gov (United States)

    Greenman, J V; Norman, R A

    2007-08-07

    Destabilising a biological system through periodic or stochastic forcing can lead to significant changes in system behaviour. Forcing can bring about coexistence when previously there was exclusion; it can excite massive system response through resonance, it can offset the negative effect of apparent competition and it can change the conditions under which the system can be invaded. Our main focus is on the invasion properties of continuous time models under periodic forcing. We show that invasion is highly sensitive to the strength, period, phase, shape and configuration of the forcing components. This complexity can be of great advantage if some of the forcing components are anthropogenic in origin. They can be turned into instruments of control to achieve specific objectives in ecology and disease management, for example. Culling, vaccination and resource regulation are considered. A general analysis is presented, based on the leading Lyapunov exponent criterion for invasion. For unstructured invaders, a formula for this exponent can typically be written down from the model equations. Whether forcing hinders or encourages invasion depends on two factors: the covariances between invader parameters and resident populations and the shifts in average resident population levels brought about by the forcing. The invasion dynamics of a structured invader are much more complicated but an analytic solution can be obtained in quadratic approximation for moderate forcing strength. The general theory is illustrated by a range of models drawn from ecology and epidemiology. The relationship between periodic and stochastic forcing is also considered.

  18. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Science.gov (United States)

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  19. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  20. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  1. Is Vitamin E Life Supporter for Gamma Irradiated Galleria Mollenella?

    International Nuclear Information System (INIS)

    Mohamed, H.F.

    2012-01-01

    This study conducted to determine the effect of vitamin E separate or combined with gamma ray in semi artificial diets on some biological aspects of the Greater wax moth, Galleria mellonella L. (Pyralidae : Lepidoptera). The increase in the average number of eggs per mated female for more than 70 % of the control in both treated male and female. Also, through the F1 generation (descendant of P1 progeny fed on artificial diet plus vitamin E) in either irradiated male or female at 100 and 300 Gy dose levels. The life supporter of vitamin E clearly demonstrates throughout F1 whose offspring fed on artificial diet plus Vitamin E, also more pronounced during the first generation treated with gamma irradiation (100 and 300 Gray) which descendant from the offspring were fed on the artificial diet containing Vitamin E (0.02%) than that treatments which treated with gamma irradiation only. The average weight of larvae and pupae significantly increase by using petroleum ether only or this may be abnormal. The average weight of larvae and pupae at the concentration 0.02% was 105.07 and 121.87 % from the control treatment, respectively then decreased to 67.86 and 75.12%, respectively from the control treatment at the concentration 0.04% and then increase at the two concentrations 0.06 and 0.08 %. The increase in weight gain in the case combined ( 100 Gy or 300 Gy with Vitamin E) more than in case using a single dose of gamma irradiation , the increase in case 300 Gy only or combined with Vitamin E more than the control treatment. The best result in case of Vitamin (E) only then when treated the pest with gamma radiation after Vitamin (E) and the effect at 100 Gy better than in case 300 Gy. The combined effect of sub sterilizing dose (300 Gy) and sterilizing doses (400 and 500 Gy) of gamma radiation and vitamin E on the mating competitiveness of F1 males G. Mellenella shows that the competitiveness values more than 1.0 at the combined VE and the two dose levels 400 and 500 Gy

  2. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  3. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  4. Environmental Control and Life Support System (ECLSS) System Engineering Workshop

    Science.gov (United States)

    Peterson, Laurie J.

    2009-01-01

    This slide presentation begins with a recap on a previous lecture on the ECLSS subsystems, and the various types (i.e., Non-regenerative vs Regenerative, open loop vs closed loop, and physical-chemical vs bioregenerative) It also recaps the Equivalent system mass (ESM) metric. The presentation continues with a review of the ECLSS of the various NASA manned space exploration programs from Mercury, to the current planned Altair lunar landing, and Lunar base operations. There is also a team project to establish the ESM of two conceptualized missions.

  5. The environmental control and life support system advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  6. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  7. ADULT BASIC LIFE SUPPORT ON NEAR DROWNING AT THE SCENE

    Directory of Open Access Journals (Sweden)

    Gd. Harry Kurnia Prawedana

    2013-04-01

    Full Text Available Indonesia is a popular tourist destination which has potential for drowning cases. Therefore, required knowledge of adult basic life support to be able to deal with such cases in the field. Basic life support in an act to maintain airway and assist breathing and circulation without the use of tools other than simple breathing aids. The most important factor that determines the outcome of drowning event is the duration and severity of hypoxia induced. The management of near drowning at the scene include the rescue of victim from the water, rescue breathing, chest compression, cleaning the vomit substances which allowing blockage of the airway, prevent loss of body heat, and transport the victim to nearest emergency department for evaluation and monitoring.

  8. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Science.gov (United States)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  9. Phase distribution of ecologically controlled chemical elements in production of extraction phosphoric acid

    International Nuclear Information System (INIS)

    Kazak, V.G.; Agnelov, A.I.; Zajtsev, P.M.

    1995-01-01

    Content of 16 ecologically controlled chemical element (among them Cd, Sr, Th, U, V, Y) in solid and liquid phases of extraction phosphorus acid (EPA) production is determined. These elements are recommended to control by Scientific research institute of human ecology and environment to establish their extraction coefficients to phosphogypsum and EPA and optimal variant of production of ecologically sate phosphorus fertilizers. X-ray fluorescent, atomic-absorption and polarographic methods are used for analysis these elements

  10. Higher plant modelling for life support applications: first results of a simple mechanistic model

    Science.gov (United States)

    Hezard, Pauline; Dussap, Claude-Gilles; Sasidharan L, Swathy

    2012-07-01

    In the case of closed ecological life support systems, the air and water regeneration and food production are performed using microorganisms and higher plants. Wheat, rice, soybean, lettuce, tomato or other types of eatable annual plants produce fresh food while recycling CO2 into breathable oxygen. Additionally, they evaporate a large quantity of water, which can be condensed and used as potable water. This shows that recycling functions of air revitalization and food production are completely linked. Consequently, the control of a growth chamber for higher plant production has to be performed with efficient mechanistic models, in order to ensure a realistic prediction of plant behaviour, water and gas recycling whatever the environmental conditions. Purely mechanistic models of plant production in controlled environments are not available yet. This is the reason why new models must be developed and validated. This work concerns the design and test of a simplified version of a mathematical model coupling plant architecture and mass balance purposes in order to compare its results with available data of lettuce grown in closed and controlled chambers. The carbon exchange rate, water absorption and evaporation rate, biomass fresh weight as well as leaf surface are modelled and compared with available data. The model consists of four modules. The first one evaluates plant architecture, like total leaf surface, leaf area index and stem length data. The second one calculates the rate of matter and energy exchange depending on architectural and environmental data: light absorption in the canopy, CO2 uptake or release, water uptake and evapotranspiration. The third module evaluates which of the previous rates is limiting overall biomass growth; and the last one calculates biomass growth rate depending on matter exchange rates, using a global stoichiometric equation. All these rates are a set of differential equations, which are integrated with time in order to provide

  11. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  12. Ultra Reliable Closed Loop Life Support for Long Space Missions

    Science.gov (United States)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  13. Advanced Hazmat Life Support (AHLS): A Feasibility Assessment

    International Nuclear Information System (INIS)

    Borron, S. W.; Walter, F. G.

    2007-01-01

    A prospective, descriptive, feasibility study aimed to determine whether an interdisciplinary group of health care experts could design and successfully deliver an international, life support, continuing education program that teaches the medical management of hazardous materials (hazmat) patients. The American Academy of Clinical Toxicology and the University of Arizona College of Medicine, Arizona Emergency Medicine Research Center partnered on July 1, 1998 to develop a two-day Advanced Hazmat Life Support (AHLS) Provider Course. Interdisciplinary expert clinicians designed and then delivered the first AHLS Provider Course in 1999. Prior to this, other courses focused on the management of hazmat incidents and almost exclusively on the prehospital care of hazmat victims by firefighters, hazardous materials technicians, and emergency medical technicians (EMTs), not on the medical management of patients from these incidents. Therefore, AHLS was developed for a broader interdisciplinary group of health care professionals, including both prehospital health care professionals and hospital-based, poison center-based, clinic-based, public health care-based, and other health care professionals. From 1999 through 2006, the AHLS Provider Course has trained 7,142 health care professionals from 48 countries. Of the 7,142 health care professionals worldwide, 43% are paramedics, 24% are physicians, 21% are nurses, 2% are pharmacists, 1% are physician assistants, and 9% are other professionals. Of the professionals trained, 88% are from the United States, 5% from Hong Kong, 2% from Canada, 2% from Australia, 1% from Mexico, and the remainder come from 43 other countries. The Advanced Hazmat Life Support Program is feasible and meets the continuing education needs of health care professionals around the world.(author)

  14. Developing Ultra Reliable Life Support for the Moon and Mars

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  15. Sensemaking in the formation of basic life support teams

    DEFF Research Database (Denmark)

    Hallas, Peter; Lauridsen, Johnny; Brabrand, Mikkel

    2018-01-01

    well known in organizational studies. It refers to the collaborative effort among members in a dialogue to create meaning in an ambiguous situation, often by using subtle variations in the sentences in the dialogue. Sentences with high degrees of "sensemaking" activity can be thematized as "co......-orientation", "re-presentation" and/or "subordination" (among others). We sought to establish if elements of "sensemaking" occur in the formation of in-hospital cardiac arrest teams. METHODS: Videos of ten simulations of unannounced in-hospital cardiac arrests treated by basic life support (BLS) providers. We...

  16. Advanced life support for cardiac arrest beyond the algorithm

    DEFF Research Database (Denmark)

    Rudolph, Søren Steemann; Isbye, Dan Lou; Pfeiffer, Peter

    2018-01-01

    In an advanced emergency medical service all parts of the advanced life support (ALS) algorithm can be provided. This evidence-based algorithm outlines resuscitative efforts for the first 10-15 minutes after cardiac arrest, whereafter the algorithm repeats itself. Restoration of spontaneous...... circulation fails in most cases, but in some circumstances the patient may benefit from additional interventional approaches, in which case transport to hospital with ongoing cardiopulmonary resuscitation is indicated. This paper has summarized treatments outside the ALS algorithm, which may be beneficial...

  17. Bioregenerative life support system for a lunar base

    Science.gov (United States)

    Liu, H.; Wang, J.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    We have studied a modular approach to construction of bioregenerative life support system BLSS for a lunar base using soil-like substrate SLS for plant cultivation Calculations of massflow rates in BLSS were based mostly on a vegetarian diet and biological conversion of plant residues in SLS Plant candidate list for lunar BLSS includes the following basic species rice Oryza sativa soy Glycine max sweet potato Ipomoea batatas and wheat Triticum aestivum To reduce the time necessary for transition of the system to steady state we suggest that the first seeding and sprouting could be made on Earth

  18. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  19. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  20. The study of residential life support environment system to initiate policy on sustainable simple housing

    Science.gov (United States)

    Siahaan, N. M.; Harahap, A. S.; Nababan, E.; Siahaan, E.

    2018-02-01

    This study aims to initiate sustainable simple housing system based on low CO2 emissions at Griya Martubung I Housing Medan, Indonesia. Since it was built in 1995, between 2007 until 2016 approximately 89 percent of houses have been doing various home renewal such as restoration, renovation, or reconstruction. Qualitative research conducted in order to obtain insights into the behavior of complex relationship between various components of residential life support environment that relates to CO2 emissions. Each component is studied by conducting in-depth interviews, observation of the 128 residents. The study used Likert Scale to measure residents’ perception about components. The study concludes with a synthesis describing principles for a sustainable simple housing standard that recognizes the whole characteristics of components. This study offers a means for initiating the practice of sustainable simple housing developments and efforts to manage growth and preserve the environment without violating social, economics, and ecology.

  1. MELiSSA celebrates 25 years of research into life support

    International Nuclear Information System (INIS)

    2015-01-01

    MELiSSA (Micro-Ecological Life Support System Alternative) is a collaborative project with the European Space Agency ESA and various other scientific partners. The objective of MELiSSA is to develop a system that is able to provide manned space missions with food, drinking water and oxygen autonomously in space. Drinkable water and oxygen are currently being made in the international space station ISS by filtering waste water and by electrolysing water. However, such physiochemical technologies do not offer a solution for food. The MELiSSA project intends to reuse waste products, which include CO2, water, stools and urine from the astronauts, and even the perspiration moisture in the cabin and to transfer these into food through the use of micro-organisms.

  2. Life Support Filtration System Trade Study for Deep Space Missions

    Science.gov (United States)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  3. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  4. Analysis of silkworm gut microflora in the Bioregenerative Life Support System

    Science.gov (United States)

    Liang, Xue; Liu, lh64. Hong

    2012-07-01

    Silkworm (Bombyx mori L) has advantages in the nutritional composition, growth characteristics and other factors, it is regarded as animal protein source for astronauts in the Bioregenerative Life Support System (BLSS).Due to the features of BLSS, silkworm breeding way is different from the conventional one (mulberry leaves throughout five instars): they were fed with mulberry and lettuce leaves during the 1st-3rd instars and 4th -5th instars, respectively. As the lettuce stem can be eaten by astronauts, the leaves not favored by humans can be insect's foodstuff. Therefore, it is necessary to investigate the gut microbial composition, the type of dominant bacteria of silkworm raised with this way and the differences from the conventional breeding method, so as to reduce the mortality rate caused by the foodstuff change and to provide more animal protein for astronauts. In this study, 16srDNA sequencing, phylogenetic analysis and denaturing gradient gel electrophoresis method were used to analyze the silkworm gut microbial flora under two breeding manners. The results show that conventional and BLSS breeding way have six dominant bacteria in common: Clostridium, Enterococcus, Bacteroides, Chryseobacterium, Parabacteroides, Paenibacillus. We also found Escherichia, Janthinobacterium, Sedimentibacter, Streptococcus, Bacillus, Arcobacter, Rothia, Polaribacter and Acinetobacter, Anaerofilum, Rummeliibacillus, Anaeroplasma, Serratia in the ground conventional and BLSS special breeding way, respectively. Changing the foodstuff of silkworm leads to the dynamic alteration of gut microbial. Dominant bacteria of the two breeding ways have diversities from each other. The ground conventional breeding way has more abundant bacteria than the BLSS one. Due to the lettuce leaves have replaced mulberry leaves at the beginning of the silkworm 4th instar, some silkworms can not survive without the bacteria that digest and absorb lettuce leaves. We suggest those dominant bacteria

  5. Microbial ecology and nematode control in natural ecosystems

    NARCIS (Netherlands)

    Costa, S.R.; Van der Putten, W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  6. Ecology, Impact and Potential Control of Solanum mauritianum in Kenya

    International Nuclear Information System (INIS)

    Hitimana, J; Mutiso, F.M; Kipiapi, J.L; Sang, F.K

    2007-01-01

    Solanum mauritianum is considered as an invasive plant with unknown economic value, fast growing and aggressive gap colonizer associated with forest disturbance. It belongs to the family of Solanaceae and can grow to over 20 m in height. It is native to Southern America and threatens integrity of several natural forest in Western kenya. Surveys were undertaken in 1998 and 2005/2006 at mount Elgon and Kakamega forests to evaluate the species ecology, spread and impact on other tree species. Total enumeration of seedlings, saplings and mature individuals was done over two 1-ha-blocks in each forest. The total number of 0.1 ha plots sampled was 20 per forest in relatively lightly and heavily disturbed areas. The results the species the species relative dominance in Mount Elgon increased from 1.0% in 1998 to 48.9% in 2006, out competing the regeneration of other trees. For example at Labaa, the once dominant Diospyros abyssinica with 36% relative dominance in 1998 declined to 1.9% in 2006. This threat to the health of ecosystems is not yet noticeable in Kakamega forest where the weed relative stocking was 0.2%. A strong positive correlation (n=5, r s =0.9, p=0.95) between S. mauritianum established and charcoal burning still exists in Mount Elgon. Thorough literature review and field observations confirmed about the characteristics of s. mauritanium as weed. Proliferation strategies and opportunities underlying the successive invasion by weed have been reviewed and elements of an integrated, multidisciplinary effort to control the adverse impact of the weed in forest and outside forests identified. Measures to check the invasiveness of these species include include reducing forest gaps, monitoring it's reproductive biology to eliminate mother trees before seeding, educative campaigns to prevent local communities from domesticating this species on their farms, research programme on S. mauritianum to understand causes of it's competitive advantage over others and search

  7. Students' satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching.

    Science.gov (United States)

    Chilkoti, Geetanjali; Mohta, Medha; Wadhwa, Rachna; Saxena, Ashok Kumar; Sharma, Chhavi Sarabpreet; Shankar, Neelima

    2016-11-01

    Students are exposed to basic life support (BLS) and advanced cardiac life support (ACLS) training in the first semester in some medical colleges. The aim of this study was to compare students' satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL) in BLS/ACLS teaching to undergraduate medical students. We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students' satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students' satisfaction levels between the two teaching methods. Data were collected and scores regarding the students' satisfaction levels between these two teaching methods were analysed using a two-sided paired t -test. Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method ( P < 0.05). Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  8. Mass balances for a biological life support system simulation model

    Science.gov (United States)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  9. Effectiveness of Basic Life Support Training for Middle School Students.

    Science.gov (United States)

    Aloush, Sami; Tubaishat, Ahmad; ALBashtawy, Mohammed; Suliman, Mohammad; Alrimawi, Intima; Al Sabah, Ashraf; Banikhaled, Yousef

    2018-01-01

    Bystander cardiopulmonary resuscitation improves survival after out-of-hospital cardiac arrest. This study aimed to assess the effectiveness of a basic life support (BLS) educational course given to 110 middle school children, using a pretest posttest design. In the pretest, students were asked to demonstrate BLS on a manikin to simulate a real-life scenario. After the pretest, a BLS training course of two sessions was provided, followed by posttest on the same manikin. Students were assessed using an observational sheet based on the American Heart Association's BLS guidelines. In the pretest, students showed significant weakness in the majority of guidelines. In the posttest, they demonstrated significant improvement in their BLS skills. BLS training in the middle school was effective, considering the lack of previous skills. It is recommended that BLS education be compulsory in the school setting.

  10. Certified Basic Life Support Instructors Assess Cardiopulmonary Resuscitation Skills Poorly

    DEFF Research Database (Denmark)

    Hansen, Camilla; Rasmussen, Stinne E; Kristensen, Mette Amalie

    2016-01-01

    Introduction: High-quality cardiopulmonary resuscitation (CPR) improves survival from cardiac arrest. During basic life support (BLS) training, instructors assess CPR skills to enhance learning outcome. Emergency department staff and senior residents have been shown to assess chest compression...... quality poorly. Currently no studies have evaluated CPR assessment among certified BLS instructors. The aim of this study was to investigate certified BLS instructors’ assessment of chest compressions and rescue breathing.Methods: Data were collected at BLS courses for medical students at Aarhus...... of CPR skills may be beneficial to ensure high-quality learning outcome.Author Disclosures: C. Hansen: None. S.E. Rasmussen: None. M.A. Nebsbjerg: None. M. Stærk: None. B. Løfgren: None....

  11. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  12. A new chart to assist with advanced trauma life support.

    Science.gov (United States)

    Palmer, I P; Baskett, P J; McCabe, S E

    1992-10-01

    Many studies have drawn attention to deficiencies in the management of major trauma, both in the UK and elsewhere. One area that has received little attention is the documentation of such cases in the Emergency Room. When outcome may be sub-optimal, documentation assumes greater importance if advances are to be made in the organisation of trauma care. Based upon the American College of Surgeons Advanced Trauma Life Support (ATLS) protocols, the authors have designed a document that records dynamically what happens to the multiply injured victim on arrival in the Emergency Room. It unifies the recording of vital signs, whilst acting as an assessment and resuscitation template. By ensuring no life-threatening illness is missed it is likely to improve patient survival. The document can act as a basis for teaching and a medico-legal record, whilst providing the necessary data for quality assurance and outcome audit.

  13. Microbiological characterization of a regenerative life support system

    Science.gov (United States)

    Koenig, D. W.; Bruce, R. J.; Mishra, S. K.; Barta, D. J.; Pierson, D. L.

    1994-01-01

    A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 10(exp 11) Colony Forming Units (CFU)/g, 10(exp 5) CFU/ml, 10(exp 5)CFU/ml, and 600 CFU/m sq, repectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 10(exp 5) CFU/g in the rhizosphere, 4-200 CFU/ml in the spent nutient medium, 110 CFU/ml in the heat exchanger condensate, and 3 CFU/cu m in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.

  14. EARLY IDENTIFICATION AND BASIC LIFE SUPPORT FOR PNEUMOTHORAX

    Directory of Open Access Journals (Sweden)

    I Wayan Ade Punarbawa

    2013-04-01

    Full Text Available Chest injury is one injury that often occurs and need immediate and precise handling that prevent people from death. Chest trauma 1/4 of the trauma that caused the death and 1/3 of those deaths occur in hospitals. One chest injury that often we get to the health center is pneumothorax. WHO declared in 2020 the level of morbidity and mortality from chest injuries will increase, to become the second leading cause of death in the world. From this data that need to know the signs and symptoms of peneumotoraks, identify the signs and symptoms so we can provide basic life support to the patient before the patient was referred to a medical center nearby so as to reduce the morbidity and mortality in patients with pneumothorax.

  15. The Invisible and Indeterminable Value of Ecology: From Malaria Control to Ecological Research in the American South.

    Science.gov (United States)

    Way, Albert G

    2015-06-01

    This essay tells the story of the Emory University Field Station, a malaria research station in southwest Georgia that operated from 1939 to 1958. Using the tools of environmental history and the history of science, it examines the station's founding, its fieldwork, and its place within the broader history of malaria control, eradication, and research. A joint effort of Emory University, the U.S. Public Health Service, and the Communicable Disease Center (CDC), this station was closely aligned with a broader movement of ideas about tropical diseases across the globe, but it also offers a case study of how science in the field can veer from mainstream thinking and official policy. As the CDC and other disease-fighting organizations were moving toward a global strategy of malaria eradication through the use of DDT, the Emory Field Station developed a postsanitarian approach to malaria. Drawing on resistance among American conservationists to environmental transformation in the name of malaria control, the station's staff embraced the science and worldview of ecology in an effort to lighten public health's hand on the land and to link human health to the environment in innovative, if sometimes opaque, ways. This essay, then, argues that the Emory Field Station represents an early confluence of ecology with the biomedical sciences, something very similar to what is now the important discipline of disease ecology.

  16. Do daily fluctuations in inhibitory control predict alcohol consumption? : An ecological momentary assessment study

    NARCIS (Netherlands)

    Jones, Andrew; Tiplady, Brian; Houben, Katrijn; Nederkoorn, Chantal; Field, Matt

    RATIONALE: Deficient inhibitory control is predictive of increased alcohol consumption in the laboratory; however, little is known about this relationship in naturalistic, real-world settings. OBJECTIVES: In the present study, we implemented ecological momentary assessment methods to investigate the

  17. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    Science.gov (United States)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  18. Comparison of Online and Traditional Basic Life Support Renewal Training Methods for Registered Professional Nurses.

    Science.gov (United States)

    Serwetnyk, Tara M; Filmore, Kristi; VonBacho, Stephanie; Cole, Robert; Miterko, Cindy; Smith, Caitlin; Smith, Charlene M

    2015-01-01

    Basic Life Support certification for nursing staff is achieved through various training methods. This study compared three American Heart Association training methods for nurses seeking Basic Life Support renewal: a traditional classroom approach and two online options. Findings indicate that online methods for Basic Life Support renewal deliver cost and time savings, while maintaining positive learning outcomes, satisfaction, and confidence level of participants.

  19. The Effect of Providing Life Support on Nurses' Decision Making Regarding Life Support for Themselves and Family Members in Japan.

    Science.gov (United States)

    Shaku, Fumio; Tsutsumi, Madoka

    2016-12-01

    Decision making in terminal illness has recently received increased attention. In Japan, patients and their families typically make decisions without understanding either the severity of illness or the efficacy of life-supporting treatments at the end of life. Japanese culture traditionally directs the family to make decisions for the patient. This descriptive study examined the influence of the experiences of 391 Japanese nurses caring for dying patients and family members and how that experience changed their decision making for themselves and their family members. The results were mixed but generally supported the idea that the more experience nurses have in caring for the dying, the less likely they would choose to institute lifesupport measures for themselves and family members. The results have implications for discussions on end-of-life care. © The Author(s) 2016.

  20. Prehospital interventions for penetrating trauma victims: a prospective comparison between Advanced Life Support and Basic Life Support.

    Science.gov (United States)

    Seamon, Mark J; Doane, Stephen M; Gaughan, John P; Kulp, Heather; D'Andrea, Anthony P; Pathak, Abhijit S; Santora, Thomas A; Goldberg, Amy J; Wydro, Gerald C

    2013-05-01

    Advanced Life Support (ALS) providers may perform more invasive prehospital procedures, while Basic Life Support (BLS) providers offer stabilisation care and often "scoop and run". We hypothesised that prehospital interventions by urban ALS providers prolong prehospital time and decrease survival in penetrating trauma victims. We prospectively analysed 236 consecutive ambulance-transported, penetrating trauma patients an our urban Level-1 trauma centre (6/2008-12/2009). Inclusion criteria included ICU admission, length of stay >/=2 days, or in-hospital death. Demographics, clinical characteristics, and outcomes were compared between ALS and BLS patients. Single and multiple variable logistic regression analysis determined predictors of hospital survival. Of 236 patients, 71% were transported by ALS and 29% by BLS. When ALS and BLS patients were compared, no differences in age, penetrating mechanism, scene GCS score, Injury Severity Score, or need for emergency surgery were detected (p>0.05). Patients transported by ALS units more often underwent prehospital interventions (97% vs. 17%; p<0.01), including endotracheal intubation, needle thoracostomy, cervical collar, IV placement, and crystalloid resuscitation. While ALS ambulance on-scene time was significantly longer than that of BLS (p<0.01), total prehospital time was not (p=0.98) despite these prehospital interventions (1.8 ± 1.0 per ALS patient vs. 0.2 ± 0.5 per BLS patient; p<0.01). Overall, 69.5% ALS patients and 88.4% of BLS patients (p<0.01) survived to hospital discharge. Prehospital resuscitative interventions by ALS units performed on penetrating trauma patients may lengthen on-scene time but do not significantly increase total prehospital time. Regardless, these interventions did not appear to benefit our rapidly transported, urban penetrating trauma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Use of Intranasal Naloxone by Basic Life Support Providers.

    Science.gov (United States)

    Weiner, Scott G; Mitchell, Patricia M; Temin, Elizabeth S; Langlois, Breanne K; Dyer, K Sophia

    2017-01-01

    Intranasal delivery of naloxone to reverse the effects of opioid overdose by Advanced Life Support (ALS) providers has been studied in several prehospital settings. In 2006, in response to the increase in opioid-related overdoses, a special waiver from the state allowed administration of intranasal naloxone by Basic Life Support (BLS) providers in our city. This study aimed to determine: 1) if patients who received a 2-mg dose of nasal naloxone administered by BLS required repeat dosing while in the emergency department (ED), and 2) the disposition of these patients. This was a retrospective review of patients transported by an inner-city municipal ambulance service to one of three academic medical centers. We included patients aged 18 and older that were transported by ambulance between 1/1/2006 and 12/12/2012 and who received intranasal naloxone by BLS providers as per a state approved protocol. Site investigators matched EMS run data to patients from each hospital's EMR and performed a chart review to confirm that the patient was correctly identified and to record the outcomes of interest. Descriptive statistics were then generated. A total of 793 patients received nasal naloxone by BLS and were transported to three hospitals. ALS intervened and transported 116 (14.6%) patients, and 11 (1.4%) were intubated in the field. There were 724 (91.3%) patients successfully matched to an ED chart. Hospital A received 336 (46.4%) patients, Hospital B received 210 (29.0%) patients, and Hospital C received 178 (24.6%) patients. Mean age was 36.2 (SD 10.5) years and 522 (72.1%) were male; 702 (97.1%) were reported to have abused heroin while 21 (2.9%) used other opioids. Nasal naloxone had an effect per the prehospital record in 689 (95.2%) patients. An additional naloxone dose was given in the ED to 64 (8.8%) patients. ED dispositions were: 507 (70.0%) discharged, 105 (14.5%) admitted, and 112 (15.5%) other (e.g., left against medical advice, left without being seen, or

  2. Don't Trust a Management Metric, Especially in Life Support

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    Goodhart's law states that metrics do not work. Metrics become distorted when used and they deflect effort away from more important goals. These well-known and unavoidable problems occurred when the closure and system mass metrics were used to manage life support research. The intent of life support research should be to develop flyable, operable, reliable systems, not merely to increase life support system closure or to reduce its total mass. It would be better to design life support systems to meet the anticipated mission requirements and user needs. Substituting the metrics of closure and total mass for these goals seems to have led life support research to solve the wrong problems.

  3. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  4. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    Science.gov (United States)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  5. Impact of a web based interactive simulation game (PULSE) on nursing students' experience and performance in life support training--a pilot study.

    Science.gov (United States)

    Cook, Neal F; McAloon, Toni; O'Neill, Philip; Beggs, Richard

    2012-08-01

    The delivery of effective life support measures is highly associated with the quality, design and implementation of the education that underpins it. Effectively responding to a critical event is a requirement for all nurses illustrating the need for effective educational approaches from pre-registration training through to enhancing and maintaining life support skills after qualification. This paper reports the findings of utilising a web-based multimedia simulation game PULSE (Platform for Undergraduate Life Support Education). The platform was developed to enhance the student experience of life support education, to motivate on-going learning and engagement and to improve psychomotor skills associated with the provision of Intermediate Life Support (ILS) training. Pre training participants played PULSE and during life support training data was collected from an intervention and a control group of final year undergraduate nursing students (N=34). Quantitative analysis of performance took place and qualitative data was generated from a questionnaire assessing the learning experience. A statistically significant difference was found between the competence the groups displayed in the three skills sets of checking equipment, airway assessment and the safe/effective use of defibrillator at ILS level, and PULSE was positively evaluated as an educational tool when used alongside traditional life support training. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    Science.gov (United States)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  7. Life support and euthanasia, a perspective on Shaw's new perspective.

    Science.gov (United States)

    Busch, Jacob; Rodogno, Raffaele

    2011-02-01

    It has recently been suggested by Shaw (2007) that the distinction between voluntary active euthanasia, such as giving a patient a lethal overdose with the intention of ending that patient's life, and voluntary passive euthanasia, such as removing a patient from a ventilator, is much less obvious than is commonly acknowledged in the literature. This is argued by suggesting a new perspective that more accurately reflects the moral features of end-of-life situations. The argument is simply that if we consider the body of a mentally competent patient who wants to die, a kind of 'unwarranted' life support, then the distinction collapses. We argue that all Shaw has provided is a perspective that makes the conclusion that there is little distinction between voluntary active euthanasia and voluntary passive euthanasia only seemingly more palatable. In doing so he has yet to convince us that this perspective is superior to other perspectives and thus more accurately reflects the moral features of the situations pertaining to this issue.

  8. Economics and ethics of paediatric respiratory extra corporeal life support.

    Science.gov (United States)

    Callaghan, M; Doyle, Y; O'Hare, B; Healy, M; Nölke, L

    2013-09-01

    Extra corporeal membrane oxygenation (ECMO) is a form of life support, which facilitates gas exchange outside the body via an oxygenator and a centrifugal pumping system. A paediatric cardiac ECMO programme was established in 2005 at Our Lady's Children's Hospital, Crumlin (OLCHC) and to date 75 patients have received ECMO, the majority being post operative cardiac patients. The outcome data compares favourably with international figures. ECMO has been most successful in the treatment of newborn infants with life threatening respiratory failure from conditions such as meconium aspiration, respiratory distress syndrome and respiratory infections. There is no formal paediatric respiratory ECMO programme at OLCHC, or anywhere else in Ireland. Currently, neonates requiring respiratory ECMO are transferred to centres in Sweden or the UK at an average cost of 133,000 Euros/infant, funded by the Health Service Executive E112 treatment abroad scheme. There is considerable morbidity associated with the transfer of critically ill infants, as well as significant psycho-social impact on families. OLCHC is not funded to provide respiratory ECMO, although the equipment and expertise required are similar to cardiac ECMO and are currently in place. The average cost of an ECMO run at OLCHC is 65,000 Euros. There is now a strong argument for a fully funded single national cardiac and respiratory paediatric ECMO centre, similar to that for adult patients.

  9. Sustainable life support on Mars - the potential roles of cyanobacteria

    Science.gov (United States)

    Verseux, Cyprien; Baqué, Mickael; Lehto, Kirsi; de Vera, Jean-Pierre P.; Rothschild, Lynn J.; Billi, Daniela

    2016-01-01

    Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.

  10. Awareness of basic life support among dental practitioners.

    Science.gov (United States)

    Baduni, Neha; Prakash, Prem; Srivastava, Dhirendra; Sanwal, Manoj Kumar; Singh, Bijender Pal

    2014-01-01

    It is important that every member of our community should be trained in effective BLS technique to save lives. At least doctors including dental practitioners, and medical and paramedical staff should be trained in high quality CPR, as it is a basic medical skill which can save many lives if implemented timely. Our aim was to study the awareness of Basic Life Support (BLS) among dental students and practitioners in New Delhi. This cross sectional study was conducted by assessing responses to 20 selected questions pertaining to BLS among dental students, resident doctors/tutors, faculty members and private practitioners in New Delhi. All participants were given a printed questionnaire where they had to mention their qualifications and clinical experience, apart from answering 20 questions. Data was collected and evaluated using commercially available statistical package for social sciences (SPSS version 12). One hundred and four responders were included. Sadly, none of our responders had complete knowledge about BLS. The maximum mean score (9.19 ± 1.23) was obtained by dentists with clinical experience between 1-5 years. To ensure better and safer healthcare, it is essential for all dental practitioners to be well versed with BLS.

  11. Ecological Interface Design : Sensor Failure Diagnosis in Air Traffic Control

    NARCIS (Netherlands)

    Bijsterbosch, V.A.; Borst, C.; Mulder, M.; van Paassen, M.M.

    2016-01-01

    Future air traffic control will have to rely on more advanced automation in order to support controllers in their job of safely controlling increased traffic volumes. A prerequisite for the success of such automation is that the underlying data driving it is reliable. Current technology, however,

  12. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  13. [Characteristics of the proteins of unicellular organisms as potential components of ecological life-support systems].

    Science.gov (United States)

    Barashkov, V A; Trubachev, I N; Gitel'zon, I I

    1979-01-01

    A comparative characterization of the biological value of proteins from green and blue-green algae, bacteria, and microbial coenosis of straw mineralizing active sludge is given with respect to the fractional composition of total protein, its amino acid composition, and affinity for proteolytic enzymes in vitro. The above microorganisms have an adequate amino acid composition, a high content of essential amino acids, and differ in their content of readily soluble proteins. The presence of protein complexes with other cellular components, for instance lipids and carbohydrates, seems to be responsible for a poor digestibility of these proteins.

  14. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  15. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  16. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  17. Effect of chest compressions only during experimental basic life support on alveolar collapse and recruitment.

    Science.gov (United States)

    Markstaller, Klaus; Rudolph, Annette; Karmrodt, Jens; Gervais, Hendrik W; Goetz, Rolf; Becher, Anja; David, Matthias; Kempski, Oliver S; Kauczor, Hans-Ulrich; Dick, Wolfgang F; Eberle, Balthasar

    2008-10-01

    The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a pbasic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

  18. Integration of lessons from recent research for "Earth to Mars" life support systems

    Science.gov (United States)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  19. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  20. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    Science.gov (United States)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild

  1. study on trace contaminants control assembly for sealed environment chamber

    Science.gov (United States)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  2. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  3. Life Support and Environmental Monitoring International System Maturation Team Considerations

    Science.gov (United States)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies

  4. Basic life support knowledge of secondary school students in cardiopulmonary resuscitation training using a song.

    Science.gov (United States)

    Fonseca Del Pozo, Francisco Javier; Valle Alonso, Joaquin; Canales Velis, Nancy Beatriz; Andrade Barahona, Mario Miguel; Siggers, Aidan; Lopera, Elisa

    2016-07-20

    To examine the effectiveness of a "cardiopulmonary resuscitation song" in improving the basic life support skills of secondary school students. This pre-test/post-test control design study enrolled secondary school students from two middle schools randomly chosen in Córdoba, Andalucia, Spain. The study included 608 teenagers. A random sample of 87 students in the intervention group and 35 in the control group, aged 12-14 years were selected. The intervention included a cardiopulmonary resuscitation song and video. A questionnaire was conducted at three-time points: pre-intervention, one month and eight months post-intervention. On global knowledge of cardiopulmonary resuscitation, there were no significant differences between the intervention group and the control group in the trial pre-intervention and at the month post-intervention. However, at 8 months there were significant differences with a p-value = 0.000 (intervention group, 95% CI: 6.39 to 7.13 vs. control group, 95% CI: 4.75 to 5.92), F(1,120)=16.644, p=0.000). In addition, significant differences about students' basic life support knowledge about chest compressions at eight months post-intervention (F(1,120)=15.561, p=0.000) were found. Our study showed that incorporating the song component in the cardiopulmonary resuscitation teaching increased its effectiveness and the ability to remember the cardiopulmonary resuscitation algorithm. Our study highlights the need for different methods in the cardiopulmonary resuscitation teaching to facilitate knowledge retention and increase the number of positive outcomes after sudden cardiac arrest.

  5. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  6. Generic Modeling of a Life Support System for Process Technology Comparison

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  7. Biological life-support systems for Mars mission.

    Science.gov (United States)

    Gitelson, J I

    1992-01-01

    Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.

  8. Ecologically sustainable chemical recommendations for agricultural pest control?

    Science.gov (United States)

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  9. Ecology and control of Dickeya spp. in potato

    NARCIS (Netherlands)

    Czajkowski, Robert

    2011-01-01

    Potato blackleg caused by pectinolytic Pectobacterium and Dickeya species is a bacterial disease creating serious economic losses in (seed)potato production worldwide. Effective management to control blackleg is absent and validated, cost-effective detection protocols for blackleg bacteria do not

  10. Modeling snail breeding in Bioregenerative Life Support System

    Science.gov (United States)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally

  11. Controlling chaos (OGY) implemented on a reconstructed ecological two-dimensional map

    International Nuclear Information System (INIS)

    Sakai, Kenshi; Noguchi, Yuko

    2009-01-01

    We numerically demonstrate a way to stabilize an unstable equilibrium in the ecological dynamics reconstructed from real-world time series data, namely, alternate bearing of citrus trees. The reconstruction of deterministic dynamics from short and noisy ecological time series has been a crucial issue since May's historical work [May RM. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 1974;186:645-7; Hassell MP, Lawton JH, May RM. Patterns of dynamical behavior in single species populations. J Anim Ecol 1976;45:471-86]. Response surface methodology, followed by the differential equation approach is recognized as a promising method of reconstruction [Turchin P. Rarity of density dependence or population with lags? Nature 1990;344:660-3; Turchin P, Taylor AD. Complex dynamics in ecological time series. Ecology 1992;73:289-305; Ellner S, Turchin P. Chaos in a noisy world: new method and evidence from time series analysis. Am Nat 1995;145(3):343-75; Turchin P, Ellner S. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 2000;8(11):3116]. Here, the reconstructed ecological dynamics was described by a two-dimensional map derived from the response surface created by the data. The response surface created was experimentally validated in four one-year forward predictions in 2001, 2002, 2003 and 2004. Controlling chaos is very important when applying chaos theory to solving real-world problems. The OGY method is the first and most popular methodology for controlling chaos and can be used as an algorithm to stabilize an unstable fixed point by putting the state on a stable manifold [Ott E, Grebogi C, York JA. Controlling chaos. Phys Rev Lett 1990;64:1996-9]. We applied the OGY method to our reconstructed two-dimensional map and as a result were able to control alternate bearing in numerical simulations.

  12. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  13. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  14. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    Science.gov (United States)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  15. Adult vector control, mosquito ecology and malaria transmission.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  16. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories

    DEFF Research Database (Denmark)

    Wigneswaran, Vinoth; Amador Hierro, Cristina Isabel; Jelsbak, Lotte

    2016-01-01

    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial co...

  17. Control and ecology of the black-backed jackal Canis mesomelas in ...

    African Journals Online (AJOL)

    Van Rensburg (1962) described the use of the "Humane Coyote Getter" in the control of jackal in the Transvaal. The present report deals with the results of further experiments undertaken in various parts of the Transvaal between February 1962 and September 1969 with this device and adds ecological information derived ...

  18. Ecology and control of dengue vector mosquitoes in Taiwan.

    Science.gov (United States)

    Chen, Y R; Hwang, J S; Guo, Y J

    1994-12-01

    Due to rapid urbanization, industrialization and social changes in recent years, the use of packing materials and tires has dramatically increased in the Taiwan area. What is more is that some parts of southern Taiwan are short of water resources and water preservation with huge containers becomes part of custom in those areas. Storage water containers, waste vessels and tires are good habitats for Aedes. Meanwhile, some persons traveling to dengue endemic countries bring the dengue disease back to Taiwan. Surveys taken since 1988 show that dengue occurs mainly in the urban and coastal areas where Aedes aegypti is prevalent. This species is the most important, if not the only, vector of dengue in Taiwan. It appears that the types of Aedes breeding have changed quickly. In dengue fever epidemic areas, the most popular breeding sites are ornamental containers (38.8%), storage water containers (30.1%), discarded containers (25.4%), receptacles (3.3%) and water collection in the basement (2.2%). In dengue fever epidemic areas, those building basements, huge water containers, waste vessels and waste tires in open fields are most difficult to clean up and manage and become the most popular Aedes habitats. We established a waste recycling system and promoted a breeding site reduction campaign for waste management, including the application of Temephos in containers to kill larvae. For the drinking water management, fish were released in water containers to prevent larval breeding. It should be mentioned that with the integrated pest control and regular inspections of Aedes larvae in Taiwan the density figures 1, 2-5, and 6 or above for Aedes aegypti were 38.7%, 42.9%, and 18.4%, respectively, in 1988, and in 1993 were 90.8%, 9.2% and 0%. The incidence of dengue fever cases has 98% decreased since 1988. In 1990 and 1993, there was no indigenous cases. We have concluded that integrated pest control is the best and most effective method for dengue fever control, including

  19. Integration of lessons from recent research for “Earth to Mars” life support systems

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally

  20. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  1. First aid and basic life support of junior doctors: A prospective study in Nijmegen, the Netherlands.

    NARCIS (Netherlands)

    Tan, E.C.T.H.; Severien, I.; Metz, J.C.; Berden, H.J.J.M.; Biert, J.

    2006-01-01

    According to the Dutch medical education guidelines junior doctors are expected to be able to perform first aid and basic life support. A prospective study was undertaken to assess the level of first aid and basic life support (BLS) competence of junior doctors at the Radboud University Nijmegen

  2. [The level of first aid and basic life support for the next generation of physicians

    NARCIS (Netherlands)

    Severien, I.; Tan, E.C.T.H.; Metz, J.C.; Biert, J.; Berden, H.J.J.M.

    2005-01-01

    According to Dutch medical-education guidelines junior doctors are expected to be able to carry out first aid and basic life support. We determined the level of first aid and basic life support of junior doctors at the Radboud University Nijmegen Medical Centre, The Netherlands. Of the 300 junior

  3. Influences on Employee Perceptions of Organizational Work-Life Support: Signals and Resources

    Science.gov (United States)

    Valcour, Monique; Ollier-Malaterre, Ariane; Matz-Costa, Christina; Pitt-Catsouphes, Marcie; Brown, Melissa

    2011-01-01

    This study examined predictors of employee perceptions of organizational work-life support. Using organizational support theory and conservation of resources theory, we reasoned that workplace demands and resources shape employees' perceptions of work-life support through two mechanisms: signaling that the organization cares about their work-life…

  4. ECOLOGICAL CONTROL EQUIPMENT AND TECHNOLOGY OF UNDERWATER VEGETATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. TITINSCHNEIDER

    2008-10-01

    Full Text Available The excess of aquatic submerse vegetation development carries to the reduction of the real rearing area for the piscicultural material from the production farms and allow nestling of the ichthyophages bird species that decrease the fish production. Aquatic submerse vegetation stumble the utilization of aquatic zones for recreation and also wright function of basins utilized for the electric energy production, of micro electricity works through obstruction of the dams grid. The control of the aquatic submerse vegetation development, for Myriophyllum verticillatum, Ceratophyllum submersum, Urticularia vulgaris, Potamogeton natans, Nimphoides peltata species it is accomplish through the removing of some parts of these, preferably with all the stump system. Usually, these its accomplish with the floating equipments fit up with the thermic engines and the propulsion and governating elements who have harm over the fish and some others aquatic organisms through the noise, the displacing a large quality of water caused of propulsion systems and through the noxes elimination (flue, carburant trails, etc.. These technologies reside from the evacuation of the aquatic submerse vegetation and the stump systems of these with the help of an adjustable rake, hang up from the coast by a rope, wrapped to a drummer, who is trained by a motto-propeller group with a small installed power.

  5. Technical assessment of Mir-1 life support hardware for the international space station

    Science.gov (United States)

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  6. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  7. From innovation to application: social-ecological context, diagnostics, drugs and integrated control of schistosomiasis.

    Science.gov (United States)

    Utzinger, Jürg; N'goran, Eliézer K; Caffrey, Conor R; Keiser, Jennifer

    2011-09-01

    Compared to malaria, tuberculosis and HIV/AIDS, schistosomiasis remains a truly neglected tropical disease. Schistosomiasis, perhaps more than any other disease, is entrenched in prevailing social-ecological systems, since transmission is governed by human behaviour (e.g. open defecation and patterns of unprotected surface water contacts) and ecological features (e.g. living in close proximity to suitable freshwater bodies in which intermediate host snails proliferate). Moreover, schistosomiasis is intimately linked with poverty and the disease has spread to previously non-endemic areas as a result of demographic, ecological and engineering transformations. Importantly though, thanks to increased advocacy there is growing awareness, financial and technical support to control and eventually eliminate schistosomiasis as a public health problem at local, regional and global scales. The purpose of this review is to highlight recent progress made in innovation, validation and application of new tools and strategies for research and integrated control of schistosomiasis. First, we explain that schistosomiasis is deeply embedded in social-ecological systems and explore linkages with poverty. We then summarize and challenge global statistics, risk maps and burden estimates of human schistosomiasis. Discovery and development research pertaining to novel diagnostics and drugs forms the centrepiece of our review. We discuss unresolved issues and emerging opportunities for integrated and sustainable control of schistosomiasis and conclude with a series of research needs. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. An Ecological Approach to the Design of UAV Ground Control Station (GCS) Status Displays

    Science.gov (United States)

    Dowell, Susan; Morphew, Ephimia; Shively, Jay

    2003-01-01

    Use of UAVs in military and commercial applications will continue to increase. However, there has been limited research devoted to UAV GCS design. The current study employed an ecological approach to interfac e design. Ecological Interface Design (EID) can be characterized as r epresenting the properties of a system, such that an operator is enco uraged to use skill-based behavior when problem solving. When more ef fortful cognitive processes become necessary due to unfamiliar situations, the application of EID philosophy supports the application of kn owledge-based behavior. With advances toward multiple UAV command and control, operators need GCS interfaces designed to support understan ding of complex systems. We hypothesized that use of EID principles f or the display of UAV status information would result in better opera tor performance and situational awareness, while decreasing workload. Pilots flew a series of missions with three UAV GCS displays of statu s information (Alphanumeric, Ecological, and Hybrid display format). Measures of task performance, Situational Awareness, and workload dem onstrated the benefits of using an ecological approach to designing U AV GCS displays. The application of ecological principles to the design of UAV GCSs is a promising area for improving UAV operations.

  9. Ecological basis for the control of Gunnera tinctoria in São Miguel Island

    OpenAIRE

    Silva, Luís; Tavares, João; Pena, Armando

    1996-01-01

    Proceedings Second International Weed Control Congress Copenhagen, Denmark, 25-28 June 1996. Gunnera tinctoria, an herbaceous plant from South America, is naturalised in São Miguel island (Azores). In this research an ecologically based strategy for G. tinctoria control is suggested. Infestation structure, altitudinal range, associated plants, phenology and natural enemies were studied. G. tinctoria was found from 100 to 900 m of altitude, in plane or highly sloped terrain, on rich soil or...

  10. Future directions for resuscitation research. V. Ultra-advanced life support.

    Science.gov (United States)

    Tisherman, S A; Vandevelde, K; Safar, P; Morioka, T; Obrist, W; Corne, L; Buckman, R F; Rubertsson, S; Stephenson, H E; Grenvik, A; White, R J

    1997-06-01

    Standard external cardiopulmonary resuscitation (SECPR) frequently produces very low perfusion pressures, which are inadequate to achieve restoration of spontaneous circulation (ROSC) and intact survival, particularly when the heart is diseased. Ultra-advanced life support (UALS) techniques may allow support of vital organ systems until either the heart recovers or cardiac repair or replacement is performed. Closed-chest emergency cardiopulmonary bypass (CPB) provides control of blood flow, pressure, composition and temperature, but has so far been applied relatively late. This additional low-flow time may preclude conscious survival. An easy, quick method for vessel access and a small preprimed system that could be taken into the field are needed. Open-chest CPR (OCCPR) is physiologically superior to SECPR, but has also been initiated too late in prior studies. Its application in the field has recently proven feasible. Variations of OCCPR, which deserve clinical trials inside and outside hospitals, include 'minimally invasive direct cardiac massage' (MIDCM), using a pocket-size plunger-like device inserted via a small incision and 'direct mechanical ventricular actuation' (DMVA), using a machine that pneumatically drives a cup placed around the heart. Other novel UALS approaches for further research include the use of an aortic balloon catheter to improve coronary and cerebral blood flow during SECPR, aortic flush techniques and a double-balloon aortic catheter that could allow separate perfusion (and cooling) of the heart, brain and viscera for optimal resuscitation of each. Decision-making, initiation of UALS methods and diagnostic evaluations must be rapid to maximize the potential for ROSC and facilitate decision-making regarding long-term circulatory support versus withdrawal of life support for hopeless cases. Research and development of UALS techniques needs to be coordinated with cerebral resuscitation research.

  11. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  12. Peer-assisted learning to train high-school students to perform basic life-support.

    Science.gov (United States)

    Choi, Hyung Soo; Lee, Dong Hoon; Kim, Chan Woong; Kim, Sung Eun; Oh, Je Hyeok

    2015-01-01

    The inclusion of cardiopulmonary resuscitation (CPR) in formal education has been a useful approach to providing basic life support (BLS) services. However, because not all students have been able to learn directly from certified instructors, we studied the educational efficacy of the use of peer-assisted learning (PAL) to train high-school students to perform BLS services. This study consisted of 187 high-school students: 68 participants served as a control group and received a 1-hour BLS training from a school nurse, and 119 were included in a PAL group and received a 1-hour CPR training from a PAL leader. Participants' BLS training was preceded by the completion of questionnaires regarding their background. Three months after the training, the participants were asked to respond to questionnaires about their willingness to perform CPR on bystander CPR and their retention of knowledge of BLS. We found no statistically significant difference between the control and PAL groups in their willingness to perform CPR on bystanders (control: 55.2%, PAL: 64.7%, P=0.202). The PAL group was not significantly different from the control group (control: 60.78±39.77, PAL: 61.76±17.80, P=0.848) in retention of knowledge about BLS services. In educating high school students about BLS, there was no significant difference between PAL and traditional education in increasing the willingness to provide CPR to bystanders or the ability to retain knowledge about BLS.

  13. Nanostructured Humidity Sensor for Spacecraft Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Humidity is a critical variable for monitoring and control on extended duration missions because it can affect the operation and efficiency of closed loop life...

  14. Next Generation Life Support (NGLS): Variable Oxygen Regulator

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit pressure with a...

  15. Effect of socioemotional stress on the quality of cardiopulmonary resuscitation during advanced life support in a randomized manikin study.

    Science.gov (United States)

    Bjørshol, Conrad Arnfinn; Myklebust, Helge; Nilsen, Kjetil Lønne; Hoff, Thomas; Bjørkli, Cato; Illguth, Eirik; Søreide, Eldar; Sunde, Kjetil

    2011-02-01

    The aim of this study was to evaluate whether socioemotional stress affects the quality of cardiopulmonary resuscitation during advanced life support in a simulated manikin model. A randomized crossover trial with advanced life support performed in two different conditions, with and without exposure to socioemotional stress. The study was conducted at the Stavanger Acute Medicine Foundation for Education and Research simulation center, Stavanger, Norway. Paramedic teams, each consisting of two paramedics and one assistant, employed at Stavanger University Hospital, Stavanger, Norway. A total of 19 paramedic teams performed advanced life support twice in a randomized fashion, one control condition without socioemotional stress and one experimental condition with exposure to socioemotional stress. The socioemotional stress consisted of an upset friend of the simulated patient who was a physician, spoke a foreign language, was unfamiliar with current Norwegian resuscitation guidelines, supplied irrelevant clinical information, and repeatedly made doubts about the paramedics' resuscitation efforts. Aural distractions were supplied by television and cell telephone. The primary outcome was the quality of cardiopulmonary resuscitation: chest compression depth, chest compression rate, time without chest compressions (no-flow ratio), and ventilation rate after endotracheal intubation. As a secondary outcome, the socioemotional stress impact was evaluated through the paramedics' subjective workload, frustration, and feeling of realism. There were no significant differences in chest compression depth (39 vs. 38 mm, p = .214), compression rate (113 vs. 116 min⁻¹, p = .065), no-flow ratio (0.15 vs. 0.15, p = .618), or ventilation rate (8.2 vs. 7.7 min⁻¹, p = .120) between the two conditions. There was a significant increase in the subjective workload, frustration, and feeling of realism when the paramedics were exposed to socioemotional stress. In this advanced life

  16. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  17. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  18. Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Directory of Open Access Journals (Sweden)

    Thomas Bøhn

    2017-09-01

    Full Text Available Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii the ecological changes generated by Bt-cotton landscapes in China, and (iii the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality.

  19. LOGIC SIMULATION OF LIFE SUPPORT SYSTEM COMPONENT IN REAL TIME

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Abstract. The article proposed the use of simulation methods for evaluating the effectiveness of a stepped fan engine speed control while maintaining the air flow volume in the set boundaries of the «fan-filter» system. A detailed algorithm of the program made on the basis of an Any Logic software package. Is analyzed the possibility of using the proposed method in the design of ventilation systems.The proposed method allows at the design stage to determine the maximum replacement intervals of the systems filter elements, as well as to predict the time to switch the fan motor speeds. Using of the technique allows to refuse the complex air flow systems and maximize the life of the filter elements set.Methods of logical processes modeling allows to reduce construction costs and improve energy efficiency of buildings. 

  20. The Incorporation of Basic Life-Support Training in the Pharmacy Curriculum

    Science.gov (United States)

    Masoud, Asaad N.

    1976-01-01

    Pharmacists have a unique role to play in providing basic life-support since they are the health professionals who are most available and who enjoy the greatest contact with the public. Training procedures are described. (LBH)

  1. National Institute of Occupational Safety and Health (NIOSH) Partnered Development of Cryogenic Life Support Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic life support technology, used by NASA to protect crews working around hazardous gases soon could be called on for a number of life-saving applications as...

  2. [Current recommendations for basic/advanced life support : Addressing unanswered questions and future prospects].

    Science.gov (United States)

    Fink, K; Schmid, B; Busch, H-J

    2016-11-01

    The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.

  3. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    Science.gov (United States)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  4. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control

    Science.gov (United States)

    Ransom, Jason I.; Powers, Jenny G.; Hobbs, N. Thompson; Baker, Dan L.

    2014-01-01

    1. Anthropogenic stress on natural systems, particularly the fragmentation of landscapes and the extirpation of predators from food webs, has intensified the need to regulate abundance of wildlife populations with management. Controlling population growth using fertility control has been considered for almost four decades, but nearly all research has focused on understanding effects of fertility control agents on individual animals. Questions about the efficacy of fertility control as a way to control populations remain largely unanswered. 2. Collateral consequences of contraception can produce unexpected changes in birth rates, survival, immigration and emigration that may reduce the effectiveness of regulating animal abundance. The magnitude and frequency of such effects vary with species-specific social and reproductive systems, as well as connectivity of populations. Developing models that incorporate static demographic parameters from populations not controlled by contraception may bias predictions of fertility control efficacy. 3. Many population-level studies demonstrate that changes in survival and immigration induced by fertility control can compensate for the reduction in births caused by contraception. The most successful cases of regulating populations using fertility control come from applications of contraceptives to small, closed populations of gregarious and easily accessed species. 4. Fertility control can result in artificial selection pressures on the population and may lead to long-term unintentional genetic consequences. The magnitude of such selection is dependent on individual heritability and behavioural traits, as well as environmental variation. 5. Synthesis and applications. Understanding species' life-history strategies, biology, behavioural ecology and ecological context is critical to developing realistic expectations of regulating populations using fertility control. Before time, effort and funding are invested in wildlife

  5. Pediatric Basic Life Support Self-training is Comparable to Instructor-led Training: A randomized manikin study

    DEFF Research Database (Denmark)

    Vestergaard, L. D.; Løfgren, Bo; Jessen, C.

    2011-01-01

    Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study.......Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study....

  6. Some ways of plants wastes utilization in bioregenerative life support systems

    Science.gov (United States)

    Kovaleva, N. P.; Tikhomirov, A. A.; Tirranen, L. S.; Ushakova, S. A.; Zolotukhin, I. G.; Anischenko, O. V.

    In works on experimental modeling of bioregenerative life support systems BLSS carried out at Institute of Biophysics Russian Academy of Science Siberian Branch SB RAS the possibility of increase of a system closure degree under the condition of inedible plant biomass return into the organic matter turnover was demonstrated At the same time when radish inedible biomass was subjected to biological oxidation in soil-like substrate SLS after its drying then wheat straw was subjected to stepwise processing including mushrooms growing stage Mushrooms cultivation facilitated to lignin destruction and quicker straw decomposition On the other hand mushrooms growing required additional technological procedures leading to complication of a technological chain of straw processing The purpose of this work is to study the possibility of exclusion of mushrooms growing stage under straw pretreatment for its further use as an equivalent of radish edible biomass grown on SLS To solve the problem put by the radish cenosis in a conveyer regime was grown The conveyer included radish four ages with the conveyer step equal to 7 days The experiment consisted of two successive stages On the first stage radish was grown without straw addition into SLS control To return mineral elements into SLS the biomass grown was restored in SLS On the second stage inedible radish biomass and wheat straw were returned into SLS in the quantity equivalent to edible biomass The possibility of the method described was estimated according to plant productivity microbiological

  7. The effectiveness of ERC advanced life support (ALS) provider courses for the retention of ALS knowledge.

    Science.gov (United States)

    Fischer, Henrik; Strunk, Guido; Neuhold, Stephanie; Kiblböck, Daniel; Trimmel, Helmut; Baubin, Michael; Domanovits, Hans; Maurer, Claudia; Greif, Robert

    2012-02-01

    Out-of-hospital emergency physicians in Austria need mandatory emergency physician training, followed by biennial refresher courses. Currently, both standardized ERC advanced life support (ALS) provider courses and conventional refresher courses are offered. This study aimed to compare the retention of ALS-knowledge of out-of-hospital emergency physicians depending on whether they had or had not participated in an ERC-ALS provider course since 2005. Participants (n=807) from 19 refresher courses for out-of-hospital emergency physicians answered eight multiple-choice questions (MCQ) about ALS based on the 2005 ERC guidelines. The pass score was 75% correct answers. A multivariate logistic regression analyzed differences in passing scores between those who had previously participated in an ERC-ALS provider course and those who had not. Age, gender, regularity of working as an out-of-hospital emergency physician and the self-reported number of real resuscitation efforts within the last 6months were entered as control variables. Out-of-hospital emergency physicians who had previously attended an ERC-ALS provider course had a significantly higher chance of passing the MCQ test (OR=1.60, p=0.015). Younger age (OR=0.95, pERC-ALS provider course since 2005 had a higher retention of ALS knowledge compared to non-ERC-ALS course participants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Testing fungistatic properties of soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Enzhu, Hu; Nesterenko, Elena; Liu, Professor Hong; Manukovsky, N. S.; Kovalev, Vladimir; Gurevich, Yu.; Kozlov, Vladimir; Khizhnyak, Serge; Xing, Yidong; Hu, Enzhu; Enzhu, Hu

    There are two ways of getting vegetable food in BLSS: in hydroponic culture and on soil substrates. In any case there is a chance that the plants will be affected by plant pathogenic microorganisms. The subject of the research was a soil-like substrate (SLS) for growing plants in a Bioregenerative Life Support System (BLSS). We estimated the fungistatic properties of SLS using test cultures of Bipolaris and Alternaria plant pathogenic fungi. Experiments were made with the samples of SLS, natural soil and sand (as control). We tested 2 samples of SLS produced by way of bioconversion of wheat and rice straw. We measured the disease severity of wheat seedlings and the incidence of common root rot in natural (non-infectious) background and man-made (infectious) conditions. The severity of disease on the SLS was considerably smaller both in non-infectious and infectious background conditions (8 and 12%) than on the natural soil (18 and 32%) and sand. It was the soil-like substrate that had the minimal value among the variants being compared (20% in non-infectious and 40% in infectious background conditions). This index in respect of the soil was 55 and 78%, correspondingly, and in respect of the sand - 60%, regardless of the background. It was found that SLS significantly suppressed conidia germination of Bipolaris soroikiniana (pwheat and rice straw.

  9. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  10. Effectiveness of basic life support instruction in physical education students--a pilot study.

    Science.gov (United States)

    Bielec, Grzegorz; Klajman, Paweł; Pęczak-Graczyk, Alicja

    2014-01-01

    According to the literature, 40% of injuries affecting school-age children are sports related. The role of physical education students, as future teachers, seems to be of high importance in terms of protecting children's safety during sports classes. The aim is to evaluate the level of basic life support (BLS) knowledge and skills in physical education students instructed with the use of different methods. Second-year physical education students (n=104, M age=20±0.6 years) were randomly assigned to three groups: experimental 1 (E1), experimental 2 (E2), and control (C). Group E1 students participated in a 2-hour BLS course based on computer-assisted presentations. Group E2 trainees practiced BLS algorithm in pairs during a 2-hour course. No manikins were used in both intervention groups. Students of Group C were asked to learn BLS algorithm on their own. All groups fulfilled a 10-question multiple-choice test on BLS at the beginning and the end of the experiment. After completing the course participants performed BLS on a manikin. The results of knowledge test were not significant before an experiment but differed essentially among the groups afterward (analysis of variance contrast analysis, peducation students. Moreover, permanent consultation on instructional methods with emergency medicine experts is recommended for university teachers.

  11. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  12. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  13. Connecting scales: achieving in-field pest control from areawide and landscape ecology studies.

    Science.gov (United States)

    Schellhorn, Nancy A; Parry, Hazel R; Macfadyen, Sarina; Wang, Yongmo; Zalucki, Myron P

    2015-02-01

    Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  14. Biology, ecology and control of the Penthaleus species complex (Acari: Penthaleidae).

    Science.gov (United States)

    Umina, Paul A; Hoffmann, Ary A; Weeks, Andrew R

    2004-01-01

    Blue oat mites, Penthaleus spp. (Acari: Penthaleidae), are major agricultural pests in southern Australia and other parts of the world, attacking various pasture, vegetable and crop plants. Management of these mites has been complicated by the recent discovery of three cryptic pest species of Penthaleus, whereas prior research had assumed a single species. The taxonomy, population genetics, ecology, biology and control of the Penthaleus spp. complex are reviewed. Adult Penthaleus have a dark blue-black body approximately 1 mm in length, and eight red-orange legs. Within Australia, they are winter pests completing two or three generations a season, depending on conditions. The summer is passed as diapausing eggs, when long-distance dispersal is thought to occur. The Penthaleus spp. reproduce by thelytokous parthenogenesis, with populations comprising clones that differ ecologically. The three pest Penthaleus spp. differ markedly in their distributions, plant hosts, timing of diapause egg production and response to pesticides, highlighting the need to develop control strategies that consider each species separately. Chemicals are the main weapons used in current control programs, however research continues into alternative more sustainable management options. Host plant resistance, crop rotations, conservation of natural enemies, and improved timing of pesticide application would improve the management of these pests. The most cost-effective and environmentally acceptable means of control will result from the integration of these practices combined with the development of a simple field-based kit to distinguish the different mite species.

  15. An Innovation in Learning and Teaching Basic Life Support: A Community Based Educational Intervention

    Directory of Open Access Journals (Sweden)

    Anne D Souza

    2018-01-01

    Full Text Available Background: Out of hospital deaths due to cardiac arrest would commonly occur because of the lack of awareness about the quick and right action to be taken. In this context the healthcare students undergo training in basic life support. However the lay persons are not exposed to such training. The present study was intended to train the auto drivers, the basic skills of basic life support by the medical and nursing students. Students got an opportunity to learn and teach the skills under the supervision of faculty. Methods: A total of fourteen students, 20 auto drivers of Manipal were included in the study population. The session on one and two rescuer cardio pulmonary resuscitation and relieving foreign body airway obstruction was conducted by the trained students for the auto drivers under the observation of the faculty. Prior knowledge of the study population was assessed by the pre-session questionnaire followed by a post-session questionnaire at the end of the session. The skill evaluation was carried out using a checklist. Results: The auto drivers participated in the session, gained required skills of providing basic life support. The students who trained the study population opined that they got an opportunity to teach basic life support which would help them build their teaching skills and confidence. Conclusion: The lay persons attaining basic life support skills have a high impact on the management of out of hospital cardiac arrest victims. Involving the healthcare students as instructors makes an innovation in learning.

  16. Educational tool for modeling and simulation of a closed regenerative life support system

    Science.gov (United States)

    Arai, Tatsuya; Fanchiang, Christine; Aoki, Hirofumi; Newman, Dava J.

    For long term missions on the moon and Mars, regenerative life support systems emerge as a promising key technology for sustaining successful explorations with reduced re-supply logistics and cost. The purpose of this study was to create a simple model of a regenerative life support system which allows preliminary investigation of system responses. A simplified regenerative life support system was made with MATLAB Simulink ™. Mass flows in the system were simplified to carbon, water, oxygen and carbon dioxide. The subsystems included crew members, animals, a plant module, and a waste processor, which exchanged mass into and out of mass reservoirs. Preliminary numerical simulations were carried out to observe system responses. The simplified life support system model allowed preliminary investigation of the system response to perturbations such as increased or decreased number of crew members. The model is simple and flexible enough to add new components, and also possible to numerically predict non-linear subsystem functions and responses. Future work includes practical issues such as energy efficiency, air leakage, nutrition, and plant growth modeling. The model functions as an effective teaching tool about how a regenerative advanced life support system works.

  17. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  18. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories.

    Science.gov (United States)

    Wigneswaran, Vinoth; Amador, Cristina Isabel; Jelsbak, Lotte; Sternberg, Claus; Jelsbak, Lars

    2016-01-01

    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.

  19. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    Science.gov (United States)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  20. Language control in different contexts: the behavioural ecology of bilingual speakers

    Directory of Open Access Journals (Sweden)

    David William Green

    2011-05-01

    Full Text Available This paper proposes that different experimental contexts (single or dual language contexts permit different neural loci at which words in the target language can be selected. However, in order to develop a fuller understanding of the neural circuit mediating language control we need to consider the community context in which bilingual speakers typically use their two languages (the behavioural ecology of bilingual speakers. The contrast between speakers from code-switching and non-code switching communities offers a way to increase our understanding of the cortical, subcortical and, in particular, cerebellar structures involved in language control. It will also help us identify the non-verbal behavioural correlates associated with these control processes.

  1. Basic life support and children with profound and multiple learning disabilities.

    Science.gov (United States)

    Cash, Stefan; Shinnick-Page, Andrea

    2008-10-01

    Nurses and other carers of people with learning disabilities must be able to manage choking events and perform basic life support effectively. UK guidelines for assessment of airway obstruction and for resuscitation do not take account of the specific needs of people with profound multiple learning disability. For example, they fail to account for inhibited gag and coughing reflexes, limited body movements or chest deformity. There are no national guidelines to assist in clinical decisions and training for nurses and carers. Basic life support training for students of learning disability nursing at Birmingham City University is supplemented to address these issues. The authors ask whether such training should be provided for all nurses including those caring for children and young people. They also invite comment and discussion on questions related to chest compression and training in basic life support for a person in a seated position.

  2. Model implementation for dynamic computation of system cost for advanced life support

    Science.gov (United States)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    Science.gov (United States)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  4. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Science.gov (United States)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  5. Pre-training evaluation and feedback improved skills retention of basic life support in medical students.

    Science.gov (United States)

    Li, Qi; Zhou, Rong-hua; Liu, Jin; Lin, Jing; Ma, Er-Li; Liang, Peng; Shi, Ting-wei; Fang, Li-qun; Xiao, Hong

    2013-09-01

    Pre-training evaluation and feedback have been shown to improve medical students' skills acquisition of basic life support (BLS) immediately following training. The impact of such training on BLS skills retention is unknown. This study was conducted to investigate effects of pre-training evaluation and feedback on BLS skills retention in medical students. Three hundred and thirty 3rd year medical students were randomized to two groups, the control group (C group) and pre-training evaluation and feedback group (EF group). Each group was subdivided into four subgroups according to the time of retention-test (at 1-, 3-, 6-, 12-month following the initial training). After a 45-min BLS lecture, BLS skills were assessed (pre-training evaluation) in both groups before training. Following this, the C group received 45 min training. 15 min of group feedback corresponding to students' performance in pre-training evaluation was given only in the EF group that was followed by 30 min of BLS training. BLS skills were assessed immediately after training (post-test) and at follow up (retention-test). No skills difference was observed between the two groups in pre-training evaluation. Better skills acquisition was observed in the EF group (85.3 ± 7.3 vs. 68.1 ± 12.2 in C group) at post-test (p<0.001). In all retention-test, better skills retention was observed in each EF subgroup, compared with its paired C subgroup. Pre-training evaluation and feedback improved skills retention in the EF group for 12 months after the initial training, compared with the control group. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  7. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  8. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences

    Science.gov (United States)

    Parsons, Thomas D.

    2015-01-01

    An essential tension can be found between researchers interested in ecological validity and those concerned with maintaining experimental control. Research in the human neurosciences often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and interactions. While this research is valuable, there is a growing interest in the human neurosciences to use cues about target states in the real world via multimodal scenarios that involve visual, semantic, and prosodic information. These scenarios should include dynamic stimuli presented concurrently or serially in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Furthermore, there is growing interest in contextually embedded stimuli that can constrain participant interpretations of cues about a target’s internal states. Virtual reality environments proffer assessment paradigms that combine the experimental control of laboratory measures with emotionally engaging background narratives to enhance affective experience and social interactions. The present review highlights the potential of virtual reality environments for enhanced ecological validity in the clinical, affective, and social neurosciences. PMID:26696869

  9. Hyporheic Interfaces Serve as Ecological Control Points for Mountainous Landscape Biological Productivity

    Science.gov (United States)

    Newcomer, M. E.; Dwivedi, D.; Raberg, J.; Fox, P. M.; Nico, P. S.; Wainwright, H. M.; Conrad, M. E.; Bill, M.; Bouskill, N.; Williams, K. H.; Hubbard, S.; Steefel, C. I.

    2017-12-01

    Riverine systems in snow-dominated mountainous regions often express complex biogeochemistry and river nutrient indicators as a function of hydrologic variability. In early spring, meltwater infiltration from a ripened snowpack creates a hydrological gradient through hillslopes, floodplains, and hyporheic zones. During this time, these systems are more-or-less a passive filter that allows the rising limb of the hydrograph to display chemo-dynamic relationships (inversely proportional) with solutes and nutrients. During the growing season, temperatures, plants, microbes, and hydrologic gradients shift dramatically and activate hyporheic-zone biogeochemistry as a major control on water nutrient degradation. Hyporheic biogeochemical reliance on the timing of meltwater infiltration and the possibility of a longer vernal window under future climate change indicates the importance of hyporheic cycling as the dominant ecological control point on carbon and nitrogen fluxes and transformations. The objective of our study is to develop a predictive understanding of the subsurface and surface controls on hyporheic biogeochemical behavior through data-model integration. Data from our 2017 field campaign in the East River, Colorado, a pristine, mountainous watershed, were taken at key times during the rising, peak, falling, and dry limb of the hydrograph. Throughout multiple locations across this spatial and temporal gradient, we measured surface and subsurface gases, geochemistry, isotopes, and hydrological flow conditions and used this data to constrain a numerical flow and reactive transport model of the hyporheic zone that included microbial and flow feedback dynamics. Our data coupled with the predictive power of our numerical model reveal that the hyporheic zone serves dual roles throughout the year—as a net source of nutrients and solutes during the early vernal phase, shifting to a net sink of nutrients during the summer dry season. The possibility of a future

  10. Neither Basic Life Support knowledge nor self-efficacy are predictive of skills among dental students.

    Science.gov (United States)

    Mac Giolla Phadraig, C; Ho, J D; Guerin, S; Yeoh, Y L; Mohamed Medhat, M; Doody, K; Hwang, S; Hania, M; Boggs, S; Nolan, A; Nunn, J

    2017-08-01

    Basic life support (BLS) is considered a core competence for the graduating dentist. This study aimed to measure BLS knowledge, self-efficacy and skills of undergraduate dental students in Dublin. This study consisted of a cross-sectional survey measuring BLS knowledge and self-efficacy, accompanied by a directly observed BLS skills assessment in a subsample of respondents. Data were collected in January 2014. Bivariate correlations between descriptive and outcome variables (knowledge, self-efficacy and skills) were tested using Pearson's chi-square. We included knowledge and self-efficacy as predictor variables, along with other variables showing association, into a binary logistic regression model with BLS skills as the outcome measure. One hundred and thirty-five students participated. Almost all (n = 133, 98.5%) participants had BLS training within the last 2 years. One hundred and four (77%) felt that they were capable of providing effective BLS (self-efficacy), whilst only 46 (34.1%) scored >80% of knowledge items correct. Amongst the skills (n = 85) subsample, 38.8% (n = 33) were found to pass the BLS skills assessment. Controlling for gender, age and skills assessor, the regression model did not identify a predictive relationship between knowledge or self-efficacy and BLS skills. Neither knowledge nor self-efficacy was predictive of BLS skills. Dental students had low levels of knowledge and skills in BLS. Despite this, their confidence in their ability to perform BLS was high and did not predict actual competence. There is a need for additional hands-on training, focusing on self-efficacy and BLS skills, particularly the use of AED. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Maintenance, reliability and policies for orbital space station life support systems

    International Nuclear Information System (INIS)

    Russell, James F.; Klaus, David M.

    2007-01-01

    The performance of productive work on space missions is critical to sustaining a human presence on orbital space stations (OSS), the Moon, or Mars. Available time for productive work has potentially been impacted on past OSS missions by underestimating the crew time needed to maintain systems, such as the Environmental Control and Life Support System (ECLSS). To determine the cause of this apparent disconnect between the design and operation of an OSS, documented crew time for maintenance was collected from the three Skylab missions and Increments 4-8 on the International Space Station (ISS), and the data was contrasted to terrestrial facility maintenance norms. The results of the ISS analysis showed that for four operational and seven functional categories, the largest deviation of 60.4% over the design time was caused by three of the four operational categories not being quantitatively included in the design documents. In a cross category analysis, 35.3% of the crew time was found to have been used to repair air and waste handling systems. The air system required additional crew time for maintenance due to a greater than expected failure rate and resultant increased time needed for repairs. Therefore, it appears that the disconnect between the design time and actual operations for ECLSS maintenance on ISS was caused by excluding non-repair activities from the estimates and experiencing greater than expected technology maintenance requirements. Based on these ISS and Skylab analyses, future OSS designs (and possibly lunar and Martian missions as well) should consider 3.0-3.3 h/day for crews of 2 to 3 as a baseline of crew time needed for ECLSS maintenance

  12. [A first step to teaching basic life support in schools: Training the teachers].

    Science.gov (United States)

    Pichel López, María; Martínez-Isasi, Santiago; Barcala-Furelos, Roberto; Fernández-Méndez, Felipe; Vázquez Santamariña, David; Sánchez-Santos, Luis; Rodríguez-Nuñez, Antonio

    2017-12-07

    Teachers may have an essential role in basic life support (BLS) training in schoolchildren. However, few data are available about their BLS learning abilities. To quantitatively assess the quality of BLS when performed by school teachers after a brief and simple training program. A quasi-experimental study with no control group, and involving primary and secondary education teachers from four privately managed and public funded schools was conducted in 3 stages: 1st. A knowledge test, 2nd: BLS training, and 3rd: Performance test. Training included a 40minutes lecture and 80minutes hands-on session with the help feedback on the quality of the chest compressions. A total of 81 teachers were included, of which 60.5% were women. After training, the percentage of subjects able to perform the BLS sequence rose from 1.2% to 46% (P<.001). Chest compression quality also improved significantly in terms of: correct hands position (97.6 vs. 72.3%; P<.001), mean depth (48.1 vs. 38.8mm; P<.001), percentage that reached recommended depth (46.5 vs. 21.5%; P<.001), percentage of adequate decompression (78.7 vs. 61.2%; P<.05), and percentage of compressions delivered at recommended rate (64.2 vs. 26.9%; P<.001). After and brief and simple training program, teachers of privately managed public funded schools were able to perform the BLS sequence and to produce chest compressions with a quality similar to that obtained by staff with a duty to assist cardiac arrest victims. The ability of schoolteachers to deliver good-quality BLS is a pre-requisite to be engaged in BLS training for schoolchildren. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  13. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  14. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  15. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    Science.gov (United States)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  16. Ecological Challenges for Closed Systems

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  17. Comparison of Two Modes of Delivery of First Aid Training Including Basic Life Support

    Science.gov (United States)

    Lippmann, John; Livingston, Patricia; Craike, Melinda J.

    2011-01-01

    Aims: Flexible-learning first aid courses are increasingly common due to reduced classroom contact time. This study compared retention of first aid knowledge and basic life support (BLS) skills three months after a two-day, classroom-based first aid course (STD) to one utilizing on-line theory learning at home followed by one day of classroom…

  18. First aid and basic life support: a questionnaire survey of medical schools in the Netherlands.

    NARCIS (Netherlands)

    Tan, E.C.T.H.; Hekkert, K.D.; Vugt, A.B. van; Biert, J.

    2010-01-01

    PURPOSE: Adequate education in first aid and basic life support (BLS) should be considered as an essential aspect of the medical curriculum. The objective of this study was to investigate the current medical training in first aid and BLS at all 8 medical schools in the Netherlands. SUMMARY: An

  19. Retention of first aid and basic life support skills in undergraduate medical students

    NARCIS (Netherlands)

    Ruijter, P.A. de; Biersteker, H.A.; Biert, J.; Goor, H. van; Tan, E.C.T.H.

    2014-01-01

    BACKGROUND: Undergraduate medical students follow a compulsory first aid (FA) and basic life support (BLS) course. Retention of BLS seems poor and only little information is provided on the retention of FA skills. This study aims at evaluating 1- and 2-year retention of FA and BLS training in

  20. Evaluation of the effects of the Advanced Paediatric Life-Support course

    NARCIS (Netherlands)

    Turner, N.M.

    2008-01-01

    Doctors are generally unacceptably poor at resuscitation and this has been shown to lead to unnecessary mortality. This problem has led to the development of structured resuscitation training in the form of life-support courses, which have become very popular and are widely advocated, but which are

  1. Long-term intended and unintended experiences after Advanced Life Support training

    DEFF Research Database (Denmark)

    Rasmussen, M.B.; Dieckmann, Peter; Issenberg, Berry

    2012-01-01

    Highly structured simulation-based training (SBT) on managing emergency situations can have a significant effect on immediate satisfaction and learning. However, there are some indications of problems when applying learned skills to practice. The aim of this study was to identify long-term intended...... and unintended learner reactions, experiences and reflections after attending a simulation based Advanced Life Support (ALS) course....

  2. Advanced medical life support procedures in vitally compromised children by a helicopter emergency medical service.

    NARCIS (Netherlands)

    Gerritse, B.M.; Schalkwijk, A.; Pelzer, B.J.; Scheffer, G.J.; Draaisma, J.M.T.

    2010-01-01

    BACKGROUND: To determine the advanced life support procedures provided by an Emergency Medical Service (EMS) and a Helicopter Emergency Medical Service (HEMS) for vitally compromised children. Incidence and success rate of several procedures were studied, with a distinction made between procedures

  3. Design of an Instructional Module on Basic Life Support for Homeschooled Children

    Science.gov (United States)

    Awang, Sakinah; Ahmad, Shamsuria; Alias, Norlidah; DeWitt, Dorothy

    2016-01-01

    Basic Life Support (BLS) can increase a victim's chances of survival when administered promptly and correctly. Cardiac and respiratory arrests occur more frequently when the victim is at home far from clinical support. Hence, prompt action by family members trained in BLS can save the victim's life. In this study, the requirements for the design…

  4. Effects of Game Design Patterns on Basic Life Support Training Content

    Science.gov (United States)

    Kelle, Sebastian; Klemke, Roland; Specht, Marcus

    2013-01-01

    Based on a previous analysis of game design patterns and related effects in an educational scenario, the following paper presents an experimental study. In the study a course for Basic Life Support training has been evaluated and two game design patterns have been applied to the course. The hypotheses evaluated in this paper relate to game design…

  5. Withholding and withdrawing of life support from patients with severe head injury.

    Science.gov (United States)

    O'Callahan, J G; Fink, C; Pitts, L H; Luce, J M

    1995-09-01

    To characterize the withholding or withdrawing of life support from patients with severe head injury. San Francisco General Hospital, a city and county hospital with a Level I trauma center. A standardized questionnaire was used to collect data on demographics and functional outcome of severely head-injured (Glasgow Coma Score of family members. Forty-seven patients who were admitted to a medical-surgical intensive care unit over a 1-yr period. Twenty-four patients had life support withheld or withdrawn, and 23 patients did not. Physician and family separately assessed patient's probable functional outcome, degree of communication between them, reasons important in recommending or deciding on discontinuation of life support, and the result of action taken. Six months later, the families reviewed the process of their decision, how well physician(s) had communicated, and what might have improved communication. Of 24 patients with life support discontinued, 22 died; two were discharged from the hospital. Twenty-three of the 24 patients had a poor prognosis on admission. Of the 23 patients who were continued on life support for the duration of their hospitalization, ten had a poor (p Family's assessment of prognosis agreed with physician's assessment in 22 of the 24 patients from whom life support was discontinued (p families' assessments. Physicians' considerations in recommending limitation of care and families' considerations in making decisions were the same, primarily an inevitably poor prognosis. Neither physician nor families cited cost or availability of care as a deciding factor. Two families disagreed with the recommendation to limit care after initial agreement because the patients' prognosis improved from "likely death" to "vegetative." Care was therefore continued, and both patients remained vegetative 6 months after admission to the hospital and discharge to chronic care facilities. Life support is commonly withheld or withdrawn from patients with severe

  6. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles.

    Science.gov (United States)

    Khanal, Prabal; Vankipuram, Akshay; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; Drumm-Gurnee, Denise; Josey, Karen; Tinker, Linda; Smith, Marshall

    2014-10-01

    Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and

  7. Effects of advanced life support versus basic life support on the mortality rates of patients with trauma in prehospital settings: a study protocol for a systematic review and meta-analysis.

    Science.gov (United States)

    Kondo, Yutaka; Fukuda, Tatsuma; Uchimido, Ryo; Hifumi, Toru; Hayashida, Kei

    2017-10-22

    Advanced life support (ALS) is thought to be associated with improved survival in prehospital trauma care when compared with basic life support (BLS). However, evidence on the benefits of prehospital ALS for patients with trauma is controversial. Therefore, we aim to clarify if ALS improves mortality in patients with trauma when compared with BLS by conducting a systematic review and meta-analysis of the recent literature. We will perform searches in PubMed, Embase and the Cochrane Central Register of Controlled Trials for published observational studies, controlled before-and-after studies, randomised controlled trials and other controlled trials conducted in humans and published until March 2017. We will screen search results, assess study selection, extract data and assess the risk of bias in duplicate; disagreements will be resolved through discussions. Data from clinically homogeneous studies will be pooled using a random-effects meta-analysis, heterogeneity of effects will be assessed using the χ 2 test of homogeneity, and any observed heterogeneity will be quantified using the I 2 statistic. Last, the Grading of Recommendations Assessment, Development and Evaluation approach will be used to rate the quality of the evidence. Our study does not require ethical approval as it is based on findings of previously published articles. Results will be disseminated through publication in a peer-reviewed journal, presentations at relevant conferences and publications for patient information. PROSPERO (International Prospective Register of Systematic Reviews) registration number CRD42017054389. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  9. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    Science.gov (United States)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv

  10. Insight into the radiotolerance of the life support bacterium Rhodospirillum rubrum S1H by means of phenotypic and transcriptomic methods

    Science.gov (United States)

    Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie

    this particular aspect of R. rubrum S1H metabolism should be carefully monitored and possibly countermeasure could be taken in order to avoid potential malfunctioning of the continuous culture bioreactor. Hendrickx L., De Wever H., Hermans V., Mastroleo F., Morin N., Wilmotte A., Janssen P. and Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Sup-port System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regenera-tion system for long-haul space exploration missions. Res Microbiol 2006;157:77-86. Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R.A. `MELiSSA'—A micro-organisms-based model for `CELSS' development. Proceedings at the 3rd European Symposium on Space Thermal Control Life Support Systems Noordwijk, The Netherlands (1988) pp 65-68. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.

  11. Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control.

    Science.gov (United States)

    Michael, Edwin; Madon, Shirin

    2017-02-06

    The current global attempts to control the so-called "Neglected Tropical Diseases (NTDs)" have the potential to significantly reduce the morbidity suffered by some of the world's poorest communities. However, the governance of these control programmes is driven by a managerial rationality that assumes predictability of proposed interventions, and which thus primarily seeks to improve the cost-effectiveness of implementation by measuring performance in terms of pre-determined outputs. Here, we argue that this approach has reinforced the narrow normal-science model for controlling parasitic diseases, and in doing so fails to address the complex dynamics, uncertainty and socio-ecological context-specificity that invariably underlie parasite transmission. We suggest that a new governance approach is required that draws on a combination of non-equilibrium thinking about the operation of complex, adaptive, systems from the natural sciences and constructivist social science perspectives that view the accumulation of scientific knowledge as contingent on historical interests and norms, if more effective control approaches sufficiently sensitive to local disease contexts are to be devised, applied and managed. At the core of this approach is an emphasis on the need for a process that assists with the inclusion of diverse perspectives, social learning and deliberation, and a reflexive approach to addressing system complexity and incertitude, while balancing this flexibility with stability-focused structures. We derive and discuss a possible governance framework and outline an organizational structure that could be used to effectively deal with the complexity of accomplishing global NTD control. We also point to examples of complexity-based management structures that have been used in parasite control previously, which could serve as practical templates for developing similar governance structures to better manage global NTD control. Our results hold important wider

  12. Selection and hydroponic growth of potato cultivars for bioregenerative life support systems

    Science.gov (United States)

    Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Dulière, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; Van Der Straeten, D.

    2012-07-01

    As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases

  13. An assessment of ecological and case-control methods for estimating lung cancer risk due to indoor radon

    International Nuclear Information System (INIS)

    Stidley, C.A.; Samet, J.M.

    1992-01-01

    Studies of underground miners indicate that indoor radon is an important cause of lung cancer. This finding has raised concern that exposure to radon also causes lung cancer in the general population. Epidemiological studies, including both case-control and ecological approaches, have directly addressed the risks of indoor residential radon; many more case-control studies are in progress. Ecological studies that associate lung-cancer rates with typical indoor radon levels in various geographic areas have not consistently shown positive associations. The results of purportedly negative ecological studies have been used as a basis for questioning the hazards of indoor radon exposure. Because of potentially serious methodologic flaws for testing hypotheses, we examined the ecological method as a tool for assessing lung-cancer risk from indoor radon exposure. We developed a simulation approach that utilizes the Environmental Protection Agency (EPA) radon survey data to assign exposures to individuals within counties. Using the computer-generated data, we compared risk estimates obtained by ecological regression methods with those obtained from other regression methods and with the open-quotes trueclose quotes risks used to generate the data. For many of these simulations, the ecological models, while fitting the summary data well, gave risk estimates that differed considerably from the true risks. For some models, the risk estimates were negatively correlated with exposure, although the assumed relationship was positive. Attempts to improve the ecological models by adding smoking variables, including interaction terms, did not always improve the estimates of risk, which are easily affected by model misspecification. Because exposure situations used in the simulations are realistic, our results show that ecological methods may not accurately estimate the lung-cancer risk associated with indoor radon exposure

  14. INCREASING OF ECOLOGICAL EFFICIENCY OF WORN EQUIPMENT BY PARTIAL UPDATES. ANALYTICAL AND CONTROL ASPECT

    Directory of Open Access Journals (Sweden)

    S. Voinova

    2017-12-01

    Full Text Available The current state of worn industrial equipment and the resulting low performance indicators of its functioning, in particular, low environmental friendliness, are considered. It is shown that the normalization of the complex situation that has developed in production is an acute problem, the solution of which should begin with the implementation of a program for the partial renewal of worn equipment. It is pointed out that there is a high potential for improving the technological, including ecological, efficiency of functioning of the upgraded equipment. It is pointed out that the partial renewal is highly efficient, because of the small specific investments in it. The significant influence of the quality of control of the setting and implementation of the renewal program on its effectiveness was noted. It is shown that the process of renewal of worn-out equipment, ultimately, has an environmental focus, increases the environmental friendliness of the updated technical facility.

  15. Population ecology of feral horses in an era of fertility control management

    Science.gov (United States)

    Ransom, J.I.

    2012-01-01

    treatment at the population-level. This was partially offset by increased survival in adults, including a 300% increase in presence of horses ≥20 years old during the post-treatment period. In closed populations of feral horses, the positive feedbacks appear to outweigh the negative feedbacks and generate a larger contraceptive effect than the sum of individual treatments. The role of fertility control is uncertain for open populations of many wildlife species, with broad consensus across a synthesis of research that negative feedbacks on fertility control performance are occurring, and in many cases increased survival and increased immigration can compensate entirely for the reduction in births attributed to treatment. Understanding species‘ life-history strategies, biology, behavioral ecology, and ecological context is critical to developing realistic expectations of regulating wildlife populations using fertility control.

  16. Controls of growth phenology vary in seedlings of three, co-occurring ecologically distinct northern conifers.

    Science.gov (United States)

    Green, D Scott

    2007-08-01

    The objective of this study was to investigate the effects of temperature and seed-source elevation on height-growth phenology of three co-occurring and ecologically distinct northern conifers (Pinus contorta Dougl. ex Loud. var. latifolia (lodgepole pine), Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm. (interior spruce) and Abies lasiocarpa (Hook.) Nutt. (subalpine fir)). Seed from populations of the three indigenous and co-occurring species was collected across an elevational transect on the southwestern slope of McBride Peak, near Prince George, BC. Collection sites were at elevations of 750 to 1850 m, the latter being close to the tree line. In 2003, seeds were germinated and seedlings raised under favorable growing conditions in a temperature-controlled glasshouse. In 2004, seedlings of each population were grown in natural daylengths at a location within 50 km of the seed collection site both in a temperature-controlled glasshouse and at a nearby field site, and height growth was recorded twice a week throughout the growing season. Species differed in both the date and the accumulated heat sum above 5 degrees C for the initiation and cessation of shoot extension. Growth durations (which integrate growth initiation and growth cessation) were more similar among species in the field than in the glasshouse. This suggests that different mechanisms of phenological control among co-occurring species can result in adaptive "equivalence" under a particular set of climatic conditions.

  17. Lessons from applied ecology: cancer control using an evolutionary double bind.

    Science.gov (United States)

    Gatenby, Robert A; Brown, Joel; Vincent, Thomas

    2009-10-01

    Because the metastatic cascade is largely governed by the ability of malignant cells to adapt and proliferate at the distant tissue site, we propose that disseminated cancers are analogous in many important ways to the evolutionary and ecological dynamics of exotic species. Although pests can be decimated through the application of chemical toxins, this strategy virtually never achieves robust control as evolution of resistant phenotypes typically permits population recovery to pretreatment levels. In general, biological strategies that introduce predators, parasitoids, or pathogens have achieved more durable control of pest populations even after emergence of resistant phenotypes. From this we propose that long term outcome from any treatment strategy for invasive pests, including cancer, is not limited by evolution of resistance, but rather by the phenotypic cost of that resistance. If a cancerous cell's adaptation to therapy is achieved by upregulating xenobiotic metabolism or a redundant signaling pathway, the required investment in resources is small, and the original malignant phenotype remains essentially intact. As a result, the cancer cells' initial high level of fitness is little changed and unconstrained proliferation will resume once resistance evolves. Robust population control is possible if resistance to therapy requires a substantial and costly phenotypic adaptation that also significantly reduces the organism's fitness in its original niche: an evolutionary double bind.

  18. An ecologically-controlled exoskeleton can improve balance recovery after slippage

    Science.gov (United States)

    Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino-Lova, R.; Vitiello, N.; Micera, S.

    2017-05-01

    The evolution to bipedalism forced humans to develop suitable strategies for dynamically controlling their balance, ensuring stability, and preventing falling. The natural aging process and traumatic events such as lower-limb loss can alter the human ability to control stability significantly increasing the risk of fall and reducing the overall autonomy. Accordingly, there is an urgent need, from both end-users and society, for novel solutions that can counteract the lack of balance, thus preventing falls among older and fragile citizens. In this study, we show a novel ecological approach relying on a wearable robotic device (the Active Pelvis Orthosis, APO) aimed at facilitating balance recovery after unexpected slippages. Specifically, if the APO detects signs of balance loss, then it supplies counteracting torques at the hips to assist balance recovery. Experimental tests conducted on eight elderly persons and two transfemoral amputees revealed that stability against falls improved due to the “assisting when needed” behavior of the APO. Interestingly, our approach required a very limited personalization for each subject, and this makes it promising for real-life applications. Our findings demonstrate the potential of closed-loop controlled wearable robots to assist elderly and disabled subjects and to improve their quality of life.

  19. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control

    Science.gov (United States)

    Kilpatrick, A. Marm; Dobson, Andrew D.M.; Levi, Taal; Salkeld, Daniel J.; Swei, Andrea; Ginsberg, Howard; Kjemtrup, Anne; Padgett, Kerry A.; Jensen, Per A.; Fish, Durland; Ogden, Nick H.; Diuk-Wasser, Maria A.

    2017-01-01

    Lyme disease is the most common tick-borne disease in temperate regions of North America, Europe and Asia, and the number of reported cases has increased in many regions as landscapes have been altered. Although there has been extensive work on the ecology and epidemiology of this disease in both Europe and North America, substantial uncertainty exists about fundamental aspects that determine spatial and temporal variation in both disease risk and human incidence, which hamper effective and efficient prevention and control. Here we describe areas of consensus that can be built on, identify areas of uncertainty and outline research needed to fill these gaps to facilitate predictive models of disease risk and the development of novel disease control strategies. Key areas of uncertainty include: (i) the precise influence of deer abundance on tick abundance, (ii) how tick populations are regulated, (iii) assembly of host communities and tick-feeding patterns across different habitats, (iv) reservoir competence of host species, and (v) pathogenicity for humans of different genotypes of Borrelia burgdorferi. Filling these knowledge gaps will improve Lyme disease prevention and control and provide general insights into the drivers and dynamics of this emblematic multi-host–vector-borne zoonotic disease.

  20. MAXILLOFACIAL TRAUMA MANAGEMENT IN POLYTRAUMATIZED PATIENTS – THE USE OF ADVANCED TRAUMA LIFE SUPPORT (ATLS PRINCIPLES.

    Directory of Open Access Journals (Sweden)

    Elitsa G. Deliverska

    2013-03-01

    Full Text Available Management of the multiply injured patient requires a co-ordinated multi-disciplinary approach in order to optimise patients’ outcome. A working knowledge of the sort of problems these patients encounter is therefore vital to ensure that life-threatening injuries are recognised and treated in a timely pattern and that more minor associated injuries are not omitted. This article outlines the management of polytraumatized patients using the Advanced Trauma Life Support (ATLS principles and highlights the areas of specific involvement of the engaged medical team. Advanced Trauma Life Support is generally regarded as the gold standard and is founded on a number of well known principles, but strict adherence to protocols may have its drawbacks when facial trauma co-exists. These can arise in the presence of either major or minor facial injuries, and oral and maxillofacial surgeons need to be aware of the potential problems.

  1. [Organization of anesthesia management and advanced life support at military medical evacuation levels].

    Science.gov (United States)

    Shchegolev, A V; Petrakov, V A; Savchenko, I F

    2014-07-01

    Anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels in armed conflict (local war) is time-consuming and resource-requiring task. One of the mathematical modeling methods was used to evaluate capabilities of anesthesia and intensive care units at tactical level. Obtained result allows us to tell that there is a need to make several system changes of the existing system of anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels. In addition to increasing number of staff of anesthesiology-critical care during the given period of time another solution should be the creation of an early evacuation to a specialized medical care level by special means while conducting intensive monitoring and treatment.

  2. Retention of Knowledge following training of students in Basic Trauma Life Support.

    Science.gov (United States)

    Lim, K G; Lum, S K; Burud, I A S

    2016-12-01

    In the course of their undergraduate training at the International Medical University, students receive a Basic Trauma Life Support course. We wanted to test the long-term retention of knowledge (after 16 months) of third year medical students who had received training in Basic Trauma Life Support Method: To assess the retention of knowledge one cohort of students who received the training course were tested again 16 months later using the same 30 question One Best Answer quiz. Seventy-three students who underwent the course sat for the Retention test. The number of students who passed the Retention test was not significantly different from the test taken immediately after the course. The mean scores, 62.5% and 59.5% respectively, were however significantly different. Our study involves a relatively long interval between the course and retention of knowledge test shows encouraging results.

  3. [The development of a portable life support device for transporting pre-hospital critically ill patients].

    Science.gov (United States)

    Song, Zhen-xing; Wu, Tai-hu; Meng, Xing-ju; Lu, Heng-zhi; Zheng, Jie-wen; Wang, Hai-tao

    2012-06-01

    To describe a portable life support device for transportation of pre-hospital patients with critical illness. The characteristics and requirements for urgent management during transportation of critically ill patients to a hospital were analyzed. With adoption of the original equipment, with the aid of staple of the art soft ware, the overall structure, its installation, fixation, freedom from interference, operational function were studied, and the whole system of life support and resuscitation was designed. The system was composed by different modules, including mechanical ventilation, transfusion, aspiration, critical care, oxygen supply and power supply parts. The system could be fastened quickly to a stretcher to form portable intensive care unit (ICU), and it could be carried by different size vehicles to provide nonstop treatment by using power supply of the vehicle, thus raising the efficiency of urgent care. With characteristics of its small size, lightweight and portable, the device is particularly suitable for narrow space and extreme environment.

  4. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    Science.gov (United States)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  5. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    Science.gov (United States)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  6. Retention of first aid and basic life support skills in undergraduate medical students

    OpenAIRE

    Pim A. de Ruijter; Heleen A. Biersteker; Jan Biert; Harry van Goor; Edward C. Tan

    2014-01-01

    Background: Undergraduate medical students follow a compulsory first aid (FA) and basic life support (BLS) course. Retention of BLS seems poor and only little information is provided on the retention of FA skills. This study aims at evaluating 1- and 2-year retention of FA and BLS training in undergraduate medical students.Methods: One hundred and twenty students were randomly selected from first year (n=349) medical students who successfully followed a compulsory FA and BLS course. From thes...

  7. Epidemiology of Pediatric Prehospital Basic Life Support Care in the United States.

    Science.gov (United States)

    Diggs, Leigh Ann; Sheth-Chandra, Manasi; De Leo, Gianluca

    2016-01-01

    Children have unique medical needs compared to adults. Emergency medical services personnel need proper equipment and training to care for children. The purpose of this study is to characterize emergency medical services pediatric basic life support to help better understand the needs of children transported by ambulance. Pediatric basic life support patients were identified in this retrospective descriptive study. Descriptive statistics were used to examine incident location, possible injury, cardiac arrest, resuscitation attempted, chief complaint, primary symptom, provider's primary impression, cause of injury, and procedures performed during pediatric basic life support calls using the largest aggregate of emergency medical services data available, the 2013 National Emergency Medical Services Information System (NEMSIS) Public Release Research Data Set. Pediatric calls represented 7.4% of emergency medical services activations. Most pediatric patients were male (49.8%), White (40.0%), and of non-Hispanic origin (56.5%). Most incidents occurred in the home. Injury, cardiac arrest, and resuscitation attempts were highest in the 15 to 19 year old age group. Global complaints (37.1%) predominated by anatomic location and musculoskeletal complaints (26.9%) by organ system. The most common primary symptom was pain (30.3%) followed by mental/psychiatric (13.4%). Provider's top primary impression was traumatic injury (35.7%). The most common cause of injury was motor vehicle accident (32.3%). The most common procedure performed was patient assessment (27.4%). Median EMS system response time was 7 minutes (IQR: 5-12). Median EMS scene time was 12 minutes (IQR: 8-19). Median transport time was 14 minutes (IQR: 8-24). Median EMS total call time was 51 minutes (IQR: 33-77). The epidemiology of pediatric basic life support can help to guide efforts in both emergency medical services operations and training.

  8. Development of Pediatric Neurologic Emergency Life Support Course: A Preliminary Report.

    Science.gov (United States)

    Haque, Anwarul; Arif, Fehmina; Abass, Qalab; Ahmed, Khalid

    2017-11-01

    Acute neurological emergencies (ANEs) in children are common life-threatening illnesses and are associated with high mortality and severe neurological disability in survivors, if not recognized early and treated appropriately. We describe our experience of teaching a short, novel course "Pediatric Neurologic Emergency Life Support" to pediatricians and trainees in a resource-limited country. This course was conducted at 5 academic hospitals from November 2013 to December 2014. It is a hybrid of pediatric advance life support and emergency neurologic life support. This course is designed to increase knowledge and impart practical training on early recognition and timely appropriate treatment in the first hour of children with ANEs. Neuroresuscitation and neuroprotective strategies are key components of this course to prevent and treat secondary injuries. Four cases of ANEs (status epilepticus, nontraumatic coma, raised intracranial pressure, and severe traumatic brain injury) were taught as a case simulation in a stepped-care, protocolized approach based on best clinical practices with emphasis on key points of managements in the first hour. Eleven courses were conducted during the study period. One hundred ninety-six physicians including 19 consultants and 171 residents participated in these courses. The mean (SD) score was 65.15 (13.87%). Seventy percent (132) of participants were passed (passing score > 60%). The overall satisfaction rate was 85%. Pediatric Neurologic Emergency Life Support was the first-time delivered educational tool to improve outcome of children with ANEs with good achievement and high satisfaction rate of participants. Large number courses are required for future validation.

  9. Daily life support for older adults evaluated by commissioned welfare volunteers

    OpenAIRE

    Onishi, Joji

    2016-01-01

    Japan has a unique system of commissioned welfare volunteers who are familiar with neighborhoods and can identify the households requiring assistance and connect them to public support. In the present study, an anonymous self-rated questionnaire was delivered to commissioned welfare volunteers to clarify the daily life supports provided for elderly households requiring assistance, and 2270 data were collected. The questionnaires included information about elderly households requiring assistan...

  10. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  11. Electrolyser and fuel cells, key elements for energy and life support

    Science.gov (United States)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  12. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    Science.gov (United States)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  13. Assessing basic life support skills without an instructor: is it possible?

    Directory of Open Access Journals (Sweden)

    Mpotos Nicolas

    2012-07-01

    Full Text Available Abstract Background Current methods to assess Basic Life Support skills (BLS; chest compressions and ventilations require the presence of an instructor. This is time-consuming and comports instructor bias. Since BLS skills testing is a routine activity, it is potentially suitable for automation. We developed a fully automated BLS testing station without instructor by using innovative software linked to a training manikin. The goal of our study was to investigate the feasibility of adequate testing (effectiveness within the shortest period of time (efficiency. Methods As part of a randomised controlled trial investigating different compression depth training strategies, 184 medicine students received an individual appointment for a retention test six months after training. An interactive FlashTM (Adobe Systems Inc., USA user interface was developed, to guide the students through the testing procedure after login, while Skills StationTM software (Laerdal Medical, Norway automatically recorded compressions and ventilations and their duration (“time on task”. In a subgroup of 29 students the room entrance and exit time was registered to assess efficiency. To obtain a qualitative insight of the effectiveness, student’s perceptions about the instructional organisation and about the usability of the fully automated testing station were surveyed. Results During testing there was incomplete data registration in two students and one student performed compressions only. The average time on task for the remaining 181 students was three minutes (SD 0.5. In the subgroup, the average overall time spent in the testing station was 7.5 minutes (SD 1.4. Mean scores were 5.3/6 (SD 0.5, range 4.0-6.0 for instructional organisation and 5.0/6 (SD 0.61, range 3.1-6.0 for usability. Students highly appreciated the automated testing procedure. Conclusions Our automated testing station was an effective and efficient method to assess BLS skills in medicine students

  14. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  15. Advanced Life Support Research and Technology Transfer at the University of Guelph

    Directory of Open Access Journals (Sweden)

    Dixon M.

    2017-02-01

    Full Text Available Research and technology developments surrounding Advanced Life-Support (ALS began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of life-support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and advanced light emitting diode (LED lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.

  16. Life support systems analysis and technical trades for a lunar outpost

    Science.gov (United States)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  17. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  18. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    , economically and ecologically. Based on the knowledge of the screen printing sensor production a complete solid state electrolyte oxygen sensor could be produced using Inkjet technology. First measurements in oxygen environment already show promising results. A defined oxygen concentration could be seen during exposition of the Inkjet sensors in an oxygen environment. The obtained results demonstrate the potential to use the technology development in other applications such as in situ respiratory gas analysis systems for human spaceflight. Further approaches at the Institute of Space Systems include the implementation of Inkjet printed solid state electrolyte sensors for the use as redundant safety sensors for the Institute's hybrid life support test beds including fuel cells and algal photo bioreactor elements.

  19. Effective ecological half-lives of Cs-137 for fishes controlled by their surrounding sea-waters

    International Nuclear Information System (INIS)

    Morita, T.; Yoshida, K.

    2004-01-01

    National Research Institute of Fisheries Science (NRIFS) has carried out the long term monitoring program for radioactive pollution in marine organisms caught around Japan in order to confirm the safety of marine organisms as food source. Main radionuclide in our monitoring program is Cs-137 because it has the relatively high radiotoxicity and the long term physical half-life (about 30.1 y), and tends to accumulate in the muscle. Recently, the effective ecological half-lives have been introduced to estimate the recovery time from radioactive pollution, and been applicable to various ecosystems. In this study, effective ecological half-lives of Cs-137 for some fishes were calculated from our long term monitoring data. It is known that fish species have each effective ecological half-lives. However, it has been unclear what change the effective ecological half-lives of Cs-137 for fishes. Fishes intake Cs-137 through food chain and directly from their surrounding sea-waters. Accordingly, the effective ecological half-lives of Cs-137 for some fishes would be controlled by the effective environment half-lives of Cs-137 for their surrounding sea-waters. There is difference in effective environment half-lives of Cs-137 between the open ocean and the coastal sea-waters because they have the different input sources of Cs-137. Some fishes move between the open ocean and the coastal areas, and therefore their effective ecological half-lives of Cs-137 are influenced by the effective environment half-lives of Cs-137 for sea-waters of both areas. Consequently, the differences in effective ecological half-lives of Cs-137 among fish species would depend the rate of coastal area in their lives. (author)

  20. A comparison of pediatric basic life support self-led and instructor-led training among nurses.

    Science.gov (United States)

    Vestergaard, Lone D; Løfgren, Bo; Jessen, Casper L; Petersen, Christina B; Wolff, Anne; Nielsen, Henrik V; Krarup, Niels H V

    2017-02-01

    Pediatric cardiac arrest carries a poor prognosis. Basic life support improves survival. Studies on pediatric basic life support (PBLS) training are sparse. The aim of our study was to investigate the effect of self-training in PBLS. We conducted a prospective controlled trial enrolling nurses from pediatric and maternity wards (n=29 in each group). Self-training, including a manikin and access to a web-based video on PBLS, was compared with a 2-h instructor-led course. Two weeks after training, all participants were tested in a mock scenario of pediatric cardiac arrest. Fifteen parameters equivalent to the steps in the PBLS algorithm - for example, effective ventilations, effective chest compressions, calling for help, and correct sequence of actions, were evaluated and rated dichotomously (1=approved or 0=not approved). No difference was observed in the baseline demographics between the self-training group and the instructor-led group. The participants in the self-training group accessed the website 2±1.5 times (mean±SD) and spent 41±25 min on the site. There was no significant difference between the two groups in the overall average score (10.5 in the self-training group vs. 10.0 in the instructor-led group, P=0.51) or in any of the 15 parameters. After the study, all participants felt that they had improved their skills and felt capable of performing PBLS. Self-training is not statistically different to instructor-led training in teaching PBLS. Self-evaluated confidence improved, but showed no difference between groups. PBLS may be disseminated through self-training.

  1. Investigation of Bio-Regenerative Life Support and Trash-to-Gas Experiment on a 4-Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.

  2. Investigation of Bio-Regenerative Life Support and Trash-To-Gas Experiment on a 4 Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.

  3. Self-learning basic life support: A randomised controlled trial on learning conditions.

    Science.gov (United States)

    Pedersen, Tina Heidi; Kasper, Nina; Roman, Hari; Egloff, Mike; Marx, David; Abegglen, Sandra; Greif, Robert

    2018-05-01

    To investigate whether pure self-learning without instructor support, resulted in the same BLS-competencies as facilitator-led learning, when using the same commercially available video BLS teaching kit. First-year medical students were randomised to either BLS self-learning without supervision or facilitator-led BLS-teaching. Both groups used the MiniAnne kit (Laerdal Medical, Stavanger, Norway) in the students' local language. Directly after the teaching and three months later, all participants were tested on their BLS-competencies in a simulated scenario, using the Resusci Anne SkillReporter™ (Laerdal Medical, Stavanger, Norway). The primary outcome was percentage of correct cardiac compressions three months after the teaching. Secondary outcomes were all other BLS parameters recorded by the SkillReporter and parameters from a BLS-competence rating form. 240 students were assessed at baseline and 152 students participated in the 3-month follow-up. For our primary outcome, the percentage of correct compressions, we found a median of 48% (interquartile range (IQR) 10-83) for facilitator-led learning vs. 42% (IQR 14-81) for self-learning (p = 0.770) directly after the teaching. In the 3-month follow-up, the rate of correct compressions dropped to 28% (IQR 6-59) for facilitator-led learning (p = 0.043) and did not change significantly in the self-learning group (47% (IQR 12-78), p = 0.729). Self-learning is not inferior to facilitator-led learning in the short term. Self-learning resulted in a better retention of BLS-skills three months after training compared to facilitator-led training. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Withholding and withdrawing life-support therapy in an Emergency Department: prospective survey.

    Science.gov (United States)

    Le Conte, Philippe; Baron, Denis; Trewick, David; Touzé, Marie Dominique; Longo, Céline; Vial, Irshaad; Yatim, Danielle; Potel, Gille

    2004-12-01

    Few studies have focused on decisions to withdraw or withhold life-support therapies in the emergency department. Our objectives were to identify clinical situations where life-support was withheld or withdrawn, the criteria used by physicians to justify their decisions, the modalities necessary to implement these decisions, patient disposition, and outcome. Prospective unicenter survey in an Emergency Department of a tertiary care teaching hospital. All non-trauma patients (n=119) for whom a decision to withhold or withdraw life-sustaining treatments was taken between January and September 1998. Choice of criteria justifying the decision to withhold or withdraw life-sustaining treatments, time interval from ED admission to the decision; type of decision implemented, outcome. Fourteen thousand eight hundred and seventy-five non-trauma patients were admitted during the study period, 119 were included, mean age 75+/-13 years. Resuscitation procedures were instituted for 96 (80%) patients before a subsequent decision was taken. Physicians chose on average 6+/-2 items to justify their decision; the principal acute medical disorder and futility of care were the two criteria most often used. Median time interval to reach the decision was 187 min. Withdrawal involved 37% of patients and withholding 63% of patients. The family was involved in the decision-making process in 72% of patients. The median time interval from the decision to death was 16 h (5 min to 140 days). Withdrawing and withholding life-support therapy involved elderly patients with underlying chronic cardiopulmonary disease or metastatic cancer or patients with acute non-treatable illness.

  5. Conceptual design of a bioregenerative life support system containing crops and silkworms

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong

    2010-04-01

    This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.

  6. Quality of Basic Life Support - A Comparison between Medical Students and Paramedics.

    Science.gov (United States)

    Körber, Maria Isabel; Köhler, Thomas; Weiss, Verena; Pfister, Roman; Michels, Guido

    2016-07-01

    Poor survival rates after cardiac arrest can partly be explained by poor basic life support skills in medical professionals. This study aimed to assess quality of basic life support in medical students and paramedics. We conducted a prospective observational study with 100 early medical students (group A), 100 late medical students (group B) and 100 paramedics (group C), performing a 20-minute basic life support simulation in teams of two. Average frequency and absolute number of chest compressions per minute (mean (±SD)), chest decompression (millimetres of compression remaining, mean (±SD)), hands-off-time (seconds/minute, mean (±SD)), frequency of switching positions between ventilation and chest compression (per 20 minutes) and rate of sufficient compressions (depth ≥50mm) were assessed as quality parameters of CPR. In groups A, B and C the rates of sufficiently deep chest compressions were 56%, 42% and 52%, respectively, without significant differences. Male gender and real-life CPR experience were significantly associated with deeper chest compression. Frequency and number of chest compressions were within recommended goals in at least 96% of all groups. Remaining chest compressions were 6 mm (±2), 6 mm (±2) and 5 mm (±2) with a significant difference between group A and C (p=0.017). Hands-off times were 6s/min (±1), 5s/min (±1) and 4s/min (±1), which was significantly different across all three groups. Overall, paramedics tended to show better quality of CPR compared to medical students. Though, chest compression depth as an important quality characteristic of CPR was insufficient in almost 50% of participants, even in well trained paramedics. Therefore, we suggest that an effort should be made to find better ways to educate health care professionals in BLS.

  7. Outcomes after out-of-hospital cardiac arrest treated by basic vs advanced life support.

    Science.gov (United States)

    Sanghavi, Prachi; Jena, Anupam B; Newhouse, Joseph P; Zaslavsky, Alan M

    2015-02-01

    Most out-of-hospital cardiac arrests receiving emergency medical services in the United States are treated by ambulance service providers trained in advanced life support (ALS), but supporting evidence for the use of ALS over basic life support (BLS) is limited. To compare the effects of BLS and ALS on outcomes after out-of-hospital cardiac arrest. Observational cohort study of a nationally representative sample of traditional Medicare beneficiaries from nonrural counties who experienced out-of-hospital cardiac arrest between January 1, 2009, and October 2, 2011, and for whom ALS or BLS ambulance services were billed to Medicare (31,292 ALS cases and 1643 BLS cases). Propensity score methods were used to compare the effects of ALS and BLS on patient survival, neurological performance, and medical spending after cardiac arrest. Survival to hospital discharge, to 30 days, and to 90 days; neurological performance; and incremental medical spending per additional survivor to 1 year. Survival to hospital discharge was greater among patients receiving BLS (13.1% vs 9.2% for ALS; 4.0 [95% CI, 2.3-5.7] percentage point difference), as was survival to 90 days (8.0% vs 5.4% for ALS; 2.6 [95% CI, 1.2-4.0] percentage point difference). Basic life support was associated with better neurological functioning among hospitalized patients (21.8% vs 44.8% with poor neurological functioning for ALS; 23.0 [95% CI, 18.6-27.4] percentage point difference). Incremental medical spending per additional survivor to 1 year for BLS relative to ALS was $154,333. Patients with out-of-hospital cardiac arrest who received BLS had higher survival at hospital discharge and at 90 days compared with those who received ALS and were less likely to experience poor neurological functioning.

  8. Basic life support: evaluation of learning using simulation and immediate feedback devices1.

    Science.gov (United States)

    Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Tomazini, Edenir Aparecida Sartorelli; Teodoro, Simone Valentim; Ramos, Meire Bruna; Polastri, Thatiane Facholi

    2017-10-30

    to evaluate students' learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immediate feedback devices was used. there were 62 participants, 87% female, 90% in the first and second year of college, with a mean age of 21.47 (standard deviation 2.39). With a 95% confidence level, the mean scores in the pre-test were 6.4 (standard deviation 1.61), and 9.3 in the post-test (standard deviation 0.82, p basic cardiopulmonary resuscitation, according to the feedback device; 43.7 (standard deviation 26.86) mean duration of the compression cycle by second of 20.5 (standard deviation 9.47); number of compressions 167.2 (standard deviation 57.06); depth of compressions of 48.1 millimeter (standard deviation 10.49); volume of ventilation 742.7 (standard deviation 301.12); flow fraction percentage of 40.3 (standard deviation 10.03). the online course contributed to learning of basic life support. In view of the need for technological innovations in teaching and systematization of cardiopulmonary resuscitation, simulation and feedback devices are resources that favor learning and performance awareness in performing the maneuvers.

  9. Perceptions of basic, advanced, and pediatric life support training in a United States medical school.

    Science.gov (United States)

    Pillow, Malford Tyson; Stader, Donald; Nguyen, Matthew; Cao, Dazhe; McArthur, Robert; Hoxhaj, Shkelzen

    2014-05-01

    Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), and Pediatric Advanced Life Support (PALS) are integral parts of emergency resuscitative care. Although this training is usually reserved for residents, introducing the training in the medical student curriculum may enhance acquisition and retention of these skills. We developed a survey to characterize the perceptions and needs of graduating medical students regarding BLS, ACLS, and PALS training. This was a study of graduating 4th-year medical students at a U.S. medical school. The students were surveyed prior to participating in an ACLS course in March of their final year. Of 152 students, 109 (71.7%) completed the survey; 48.6% of students entered medical school without any prior training and 47.7% started clinics without training; 83.4% of students reported witnessing an average of 3.0 in-hospital cardiac arrests during training (range of 0-20). Overall, students rated their preparedness 2.0 (SD 1.0) for adult resuscitations and 1.7 (SD 0.9) for pediatric resuscitations on a 1-5 Likert scale, with 1 being unprepared. A total of 36.8% of students avoided participating in resuscitations due to lack of training; 98.2%, 91.7%, and 64.2% of students believe that BLS, ACLS, and PALS, respectively, should be included in the medical student curriculum. As per previous studies that have examined this topic, students feel unprepared to respond to cardiac arrests and resuscitations. They feel that training is needed in their curriculum and would possibly enhance perceived comfort levels and willingness to participate in resuscitations. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Outcomes of Basic Versus Advanced Life Support for Out-of-Hospital Medical Emergencies.

    Science.gov (United States)

    Sanghavi, Prachi; Jena, Anupam B; Newhouse, Joseph P; Zaslavsky, Alan M

    2015-11-03

    Most Medicare patients seeking emergency medical transport are treated by ambulance providers trained in advanced life support (ALS). Evidence supporting the superiority of ALS over basic life support (BLS) is limited, but some studies suggest ALS may harm patients. To compare outcomes after ALS and BLS in out-of-hospital medical emergencies. Observational study with adjustment for propensity score weights and instrumental variable analyses based on county-level variations in ALS use. Traditional Medicare. 20% random sample of Medicare beneficiaries from nonrural counties between 2006 and 2011 with major trauma, stroke, acute myocardial infarction (AMI), or respiratory failure. Neurologic functioning and survival to 30 days, 90 days, 1 year, and 2 years. Except in cases of AMI, patients showed superior unadjusted outcomes with BLS despite being older and having more comorbidities. In propensity score analyses, survival to 90 days among patients with trauma, stroke, and respiratory failure was higher with BLS than ALS (6.1 percentage points [95% CI, 5.4 to 6.8 percentage points] for trauma; 7.0 percentage points [CI, 6.2 to 7.7 percentage points] for stroke; and 3.7 percentage points [CI, 2.5 to 4.8 percentage points] for respiratory failure). Patients with AMI did not exhibit differences in survival at 30 days but had better survival at 90 days with ALS (1.0 percentage point [CI, 0.1 to 1.9 percentage points]). Neurologic functioning favored BLS for all diagnoses. Results from instrumental variable analyses were broadly consistent with propensity score analyses for trauma and stroke, showed no survival differences between BLS and ALS for respiratory failure, and showed better survival at all time points with BLS than ALS for patients with AMI. Only Medicare beneficiaries from nonrural counties were studied. Advanced life support is associated with substantially higher mortality for several acute medical emergencies than BLS. National Science Foundation, Agency for

  11. Life support decision making in critical care: Identifying and appraising the qualitative research evidence.

    Science.gov (United States)

    Giacomini, Mita; Cook, Deborah; DeJean, Deirdre

    2009-04-01

    The objective of this study is to identify and appraise qualitative research evidence on the experience of making life-support decisions in critical care. In six databases and supplementary sources, we sought original research published from January 1990 through June 2008 reporting qualitative empirical studies of the experience of life-support decision making in critical care settings. Fifty-three journal articles and monographs were included. Of these, 25 reported prospective studies and 28 reported retrospective studies. We abstracted methodologic characteristics relevant to the basic critical appraisal of qualitative research (prospective data collection, ethics approval, purposive sampling, iterative data collection and analysis, and any method to corroborate findings). Qualitative research traditions represented include grounded theory (n = 15, 28%), ethnography or naturalistic methods (n = 15, 28%), phenomenology (n = 9, 17%), and other or unspecified approaches (n = 14, 26%). All 53 documents describe the research setting; 97% indicate purposive sampling of participants. Studies vary in their capture of multidisciplinary clinician and family perspectives. Thirty-one (58%) report research ethics board review. Only 49% report iterative data collection and analysis, and eight documents (15%) describe an analytically driven stopping point for data collection. Thirty-two documents (60%) indicated a method for corroborating findings. Qualitative evidence often appears outside of clinical journals, with most research from the United States. Prospective, observation-based studies follow life-support decision making directly. These involve a variety of participants and yield important insights into interactions, communication, and dynamics. Retrospective, interview-based studies lack this direct engagement, but focus on the recollections of fewer types of participants (particularly patients and physicians), and typically address specific issues (communication and

  12. Basic life support: evaluation of learning using simulation and immediate feedback devices

    Directory of Open Access Journals (Sweden)

    Lucia Tobase

    2017-10-01

    Full Text Available ABSTRACT Objective: to evaluate students’ learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. Method: a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immediate feedback devices was used. Results: there were 62 participants, 87% female, 90% in the first and second year of college, with a mean age of 21.47 (standard deviation 2.39. With a 95% confidence level, the mean scores in the pre-test were 6.4 (standard deviation 1.61, and 9.3 in the post-test (standard deviation 0.82, p <0.001; in practice, 9.1 (standard deviation 0.95 with performance equivalent to basic cardiopulmonary resuscitation, according to the feedback device; 43.7 (standard deviation 26.86 mean duration of the compression cycle by second of 20.5 (standard deviation 9.47; number of compressions 167.2 (standard deviation 57.06; depth of compressions of 48.1 millimeter (standard deviation 10.49; volume of ventilation 742.7 (standard deviation 301.12; flow fraction percentage of 40.3 (standard deviation 10.03. Conclusion: the online course contributed to learning of basic life support. In view of the need for technological innovations in teaching and systematization of cardiopulmonary resuscitation, simulation and feedback devices are resources that favor learning and performance awareness in performing the maneuvers.

  13. A new microcomputer-based safety and life support system for solitary-living elderly people.

    Science.gov (United States)

    Miyauchi, Kosuke; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A new safety and life support system has been developed to detect emergency situations of solitary-living elderly persons. The system employs a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a personal handy phone. Body movements due to walking, running and posture changes are detected by the dual axis accelerometer and sent to the microcomputer. If the patient is in an inactive state for 5 minutes after falling, or for 64 minutes without previously falling, then the system automatically alarms the emergency situation, via the personal handy phone, to the patient's family, the fire station or the hospital.

  14. Advanced Life Support in Obstetrics (ALSO) and postpartum hemorrhage: A prospective intervention study in Tanzania

    DEFF Research Database (Denmark)

    Sorensen, Bjarke Lund; Rasch, Vibeke; Massawe, Siriel

    2011-01-01

    Objective. To evaluate the impact of Advanced Life Support in Obstetrics (ALSO) training on staff performance and the incidences of postpartum hemorrhage (PPH) at a regional hospital in Tanzania. Design. Prospective intervention study. Setting. A regional, referral hospital. Population. A total...... of 510 delivered women before and 505 after the intervention. Methods. All high- and midlevel providers involved in childbirth at the hospital attended a two day ALSO provider course. Staff management was observed and postpartum bleeding assessed at all vaginal deliveries for seven weeks before and seven...

  15. Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study

    Science.gov (United States)

    Rohatgi, Naresh K.; Ferrall, Joseph F.; Seshan, P. K.

    1991-01-01

    Results of trading processing technologies in a closed-loop configuration, in terms of power and weight for the Mars Expedition Mission, are presented. The technologies were traded and compared to a baseline set for functional elements that include CO2 removal, H2O electrolysis, potable H2O cleanup, and hygiene H2O cleanup. These technologies were selected from those being considered for Space Station Freedom and represent only chemical/physical technologies. Attention is given to the technology trade calculation scheme, technology data and selection, the generic modular flow schematic, and life support system specifications.

  16. Lunar Surface Scenarios: Habitation and Life Support Systems for a Pressurized Rover

    Science.gov (United States)

    Anderson, Molly; Hanford, Anthony; Howard, Robert; Toups, Larry

    2006-01-01

    Pressurized rovers will be a critical component of successful lunar exploration to enable safe investigation of sites distant from the outpost location. A pressurized rover is a complex system with the same functions as any other crewed vehicle. Designs for a pressurized rover need to take into account significant constraints, a multitude of tasks to be performed inside and out, and the complexity of life support systems to support the crew. In future studies, pressurized rovers should be given the same level of consideration as any other vehicle occupied by the crew.

  17. Basics in advanced life support: a role for download audit and metronomes.

    Science.gov (United States)

    Fletcher, David; Galloway, Robert; Chamberlain, Douglas; Pateman, Jane; Bryant, Geoffrey; Newcombe, Robert G

    2008-08-01

    An intention in 2003 to undertake a multicentre trial in the United Kingdom of compressions before and after defibrillation could not be realized because of concerns at the time in relation to informed consent. Instead, the new protocol was introduced in one ambulance service, ahead of the 2005 Guidelines, with greater emphasis on compressions. The results were monitored by analysis of electronic ECG downloads. Deficiencies in the standard of basic life support were identified but were not unique to our service. The introduction of metronomes and the provision of feedback to crews led to major improvements in performance. Our experience has implications for the emergency pre-hospital care of cardiac arrest.

  18. A home away from home. [life support system design for Space Station

    Science.gov (United States)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  19. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting.

    Science.gov (United States)

    Matthys, Barbara; Sherkanov, Tohir; Karimov, Saifudin S; Khabirov, Zamonidin; Mostowlansky, Till; Utzinger, Jürg; Wyss, Kaspar

    2008-10-26

    Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007) in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. One case of P. vivax was detected among the 363 schoolchildren examined (0.28%). The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%). Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against malaria in the face of population movements and inadequate

  20. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting

    Directory of Open Access Journals (Sweden)

    Utzinger Jürg

    2008-10-01

    Full Text Available Abstract Background Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. Methods The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007 in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. Results One case of P. vivax was detected among the 363 schoolchildren examined (0.28%. The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%. Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. Conclusion The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against

  1. Effects of obligatory training and prior training experience on attitudes towards performing basic life support: a questionnaire survey.

    Science.gov (United States)

    Matsubara, Hiroki; Enami, Miki; Hirose, Keiko; Kamikura, Takahisa; Nishi, Taiki; Takei, Yutaka; Inaba, Hideo

    2015-04-01

    To determine the effect of Japanese obligatory basic life support training for new driver's license applicants on their willingness to carry out basic life support. We distributed a questionnaire to 9,807 participants of basic life support courses in authorized driving schools from May 2007 to April 2008 after the release of the 2006 Japanese guidelines. The questionnaire explored the participants' willingness to perform basic life support in four hypothetical scenarios: cardiopulmonary resuscitation on one's own initiative; compression-only cardiopulmonary resuscitation following telephone cardiopulmonary resuscitation; early emergency call; and use of an automated external defibrillator. The questionnaire was given at the beginning of the basic life support course in the first 6-month term and at the end in the second 6-month term. The 9,011 fully completed answer sheets were analyzed. The training significantly increased the proportion of respondents willing to use an automated external defibrillator and to perform cardiopulmonary resuscitation on their own initiative in those with and without prior basic life support training experience. It significantly increased the proportion of respondents willing to carry out favorable actions in all four scenarios. In multiple logistic regression analysis, basic life support training and prior training experiences within 3 years were associated with the attitude. The analysis of reasons for unwillingness suggested that the training reduced the lack of confidence in their skill but did not attenuate the lack of confidence in detection of arrest or clinical judgment to initiate a basic life support action. Obligatory basic life support training should be carried out periodically and modified to ensure that participants gain confidence in judging and detecting cardiac arrest.

  2. Successful Use of Extracorporeal Life Support after Double Traumatic Tracheobronchial Injury in a Patient with Severe Acute Asthma

    Directory of Open Access Journals (Sweden)

    Xavier Valette

    2011-01-01

    Full Text Available We report the case of an asthmatic patient with blunt trachea and left main bronchus injuries who developed acute severe asthma after surgical repair. Despite medical treatment and ventilatory support, asthma persisted with high airway pressures and severe respiratory acidosis. We proposed venovenous extracorporeal life support for CO2 removal which allowed arterial blood gas normalization and airway pressures decrease. Extracorporeal life support was removed on day five after medical treatment of acute severe asthma. So we report the successful use of extracorporeal life support for operated double blunt tracheobronchial injury with acute severe asthma.

  3. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  4. Awareness of basic life support among medical, dental, nursing students and doctors

    Directory of Open Access Journals (Sweden)

    Shanta Chandrasekaran

    2010-01-01

    Full Text Available To study the awareness of Basic Life Support (BLS among students, doctors and nurses of medical, dental, homeopathy and nursing colleges. A cross-sectional study was conducted by assessing responses to 20 selected basic questions regarding BLS among students, doctors and nurses of medical, dental, homeopathy and nursing colleges. After excluding the incomplete response forms the data was analysed on 1,054 responders. The results were analysed using an answer key prepared with the use of the Advanced Cardiac Life Support manual. Out of 1,054 responders 345 were medical students, 75 were medical interns, 19 were dental students, 59 were dental interns, 105 were homeopathy interns, 319 were nursing students, 72 were doctors, 29 were dentists, 25 were nursing faculty and six were homeopathy doctors. No one among them had complete knowledge of BLS. Only two out of 1054 (0.19% had secured 80 - 89% marks, 10 out of 1054 (0.95% had secured 70 - 79% marks, 40 of 1054 (4.08% had secured 60 - 69% marks and 105 of 1054 (9.96% had secured 50 - 59% marks. A majority of them, that is, 894 (84.82% had secured less than 50% marks. Awareness of BLS among students, doctors and nurses of medical, dental, homeopathy and nursing colleges is very poor.

  5. Improving advanced cardiovascular life support skills in medical students: simulation-based education approach

    Directory of Open Access Journals (Sweden)

    Hamidreza Reihani

    2015-01-01

    Full Text Available Objective: In this trial, we intend to assess the effect of simulation-based education approach on advanced cardiovascular life support skills among medical students. Methods: Through convenient sampling method, 40 interns of Mashhad University of Medical Sciences in their emergency medicine rotation (from September to December 2012 participated in this study. Advanced Cardiovascular Life Support (ACLS workshops with pretest and post-test exams were performed. Workshops and checklists for pretest and post-test exams were designed according to the latest American Heart Association (AHA guidelines. Results: The total score of the students increased significantly after workshops (24.6 out of 100 to 78.6 out of 100. This demonstrates 53.9% improvement in the skills after the simulation-based education (P< 0.001. Also the mean score of each station had a significant improvement (P< 0.001. Conclusion: Pretests showed that interns had poor performance in practical clinical matters while their scientific knowledge, such as ECG interpretation was acceptable. The overall results of the study highlights that Simulation based-education approach is highly effective in Improving ACLS skills among medical students.

  6. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  7. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  8. Extracorporeal life support for critical enterovirus 71 rhombencephalomyelitis: long-term neurologic follow-up.

    Science.gov (United States)

    Lee, Hsiu-Fen; Chi, Ching-Shiang; Jan, Sheng-Ling; Fu, Yun-Ching; Huang, Fang-Liang; Chen, Po-Yen; Wang, Chung-Chi; Wei, Hao-Ji

    2012-04-01

    Enterovirus 71 rhombencephalomyelitis with cardiopulmonary dysfunction has become an endemic problem in Taiwan since an epidemic outbreak in 1998. Such cases frequently involve significant morbidity and mortality. From October 2000-June 2008, we collected 10 consecutive patients diagnosed with enterovirus 71 rhombencephalomyelitis complicated by left heart failure, with or without pulmonary edema, and surviving more than 3 months after receiving extracorporeal life support. Follow-up neurologic outcomes were analyzed prospectively. The median duration of neurologic follow-up was 7 years and 2 months. Significant morbidities included bulbar dysfunction, respiratory failure, and flaccid quadriparesis. Eight patients exhibited bulbar dysfunction, and feeding tubes could be removed from four patients (median, 15.5 months). Respiratory failure was observed in seven patients. Three patients were gradually withdrawn from their tracheostomy tube (median period, 30 months). Intelligence tests revealed four patients with normal cognitive function, one with borderline cognitive function, and one with mild mental retardation. Four were bedridden survivors. Extracorporeal life support for critical enterovirus 71 rhombencephalomyelitis demonstrated decreased neurologic sequelae during long-term follow-up, allowing for decannulation of feeding and tracheostomy tubes, and resulting in improved cognitive function. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Implementation Of Conservation Policy Through The Protection Of Life Support System In The Karimunjawa National Park

    Science.gov (United States)

    Ariyani, Nur Anisa Eka; Kismartini

    2018-02-01

    The Karimunjawa National Park as the only one marine protected area in Central Java, managed by zonation system has decreased natural resources in the form of decreasing mangrove forest area, coral cover, sea biota population such as clams and sea cucumbers. Conservation has been done by Karimunjawa National Park Authority through protection of life support system activities in order to protect the area from degradation. The objective of the research is to know the implementation of protection and security activities of Karimunjawa National Park Authority for the period of 2012 - 2016. The research was conducted by qualitative method, processing secondary data from Karimunjawa National Park Authority and interview with key informants. The results showed that protection and security activities in The Karimunjawa National Park were held with three activities: pre-emptive activities, preventive activities and repressive activities. Implementation of conservation policy through protection of life support system is influenced by factors of policy characteristic, resource factor and environmental policy factor. Implementation of conservation policy need support from various parties, not only Karimunjawa National Park Authority as the manager of the area, but also need participation of Jepara Regency, Central Java Provinces, communities, NGOs, researchers, developers and tourism actors to maintain and preserve existing biodiversity. Improving the quality of implementors through education and training activities, the availability of the state budget annually and the support of stakeholders is essential for conservation.

  10. Instructional design in the development of an online course on Basic Life Support.

    Science.gov (United States)

    Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Almeida, Denise Maria de; Tomazini, Edenir Aparecida Sartorelli; Ramos, Meire Bruna; Polastri, Thatiane Facholi

    2018-03-26

    To develop and evaluate an online course on Basic Life Support. Technological production research of online course guided by the ADDIE (Analysis, Design, Development, Implementation, Evaluation) instructional design model based on Andragogy and the Meaningful Learning Theory. The online course was constructed in the platform Moodle, previously assessed by a group of experts, and then presented to the students of the Nursing School of the University of São Paulo, who assessed it at the end of the course. The course was evaluated by the experts and obtained a mean score of 0.92 (SD 0.15), considered as good quality (between 0.90-0.94), and by the students, with a mean score of 0.95 (SD 0.03), considered as high quality (0.95-1.00). The instructional design used was found to be appropriate to the development of the online course. As an active educational strategy, it contributed to the learning on Basic Life Support during cardiac arrest-related procedures in adults. In view of the need for technological innovations in education and systematization of care in cardiopulmonary resuscitation, the online course allows the establishment of continuous improvement processes in the quality of resuscitation in the care provided by students and professionals.

  11. Instructional design in the development of an online course on Basic Life Support

    Directory of Open Access Journals (Sweden)

    Lucia Tobase

    2018-03-01

    Full Text Available ABSTRACT Objective To develop and evaluate an online course on Basic Life Support. Method Technological production research of online course guided by the ADDIE (Analysis, Design, Development, Implementation, Evaluation instructional design model based on Andragogy and the Meaningful Learning Theory. The online course was constructed in the platform Moodle, previously assessed by a group of experts, and then presented to the students of the Nursing School of the University of São Paulo, who assessed it at the end of the course. Results The course was evaluated by the experts and obtained a mean score of 0.92 (SD 0.15, considered as good quality (between 0.90-0.94, and by the students, with a mean score of 0.95 (SD 0.03, considered as high quality (0.95-1.00. Conclusion The instructional design used was found to be appropriate to the development of the online course. As an active educational strategy, it contributed to the learning on Basic Life Support during cardiac arrest-related procedures in adults. In view of the need for technological innovations in education and systematization of care in cardiopulmonary resuscitation, the online course allows the establishment of continuous improvement processes in the quality of resuscitation in the care provided by students and professionals.

  12. Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases.

    Science.gov (United States)

    Garchitorena, A; Sokolow, S H; Roche, B; Ngonghala, C N; Jocque, M; Lund, A; Barry, M; Mordecai, E A; Daily, G C; Jones, J H; Andrews, J R; Bendavid, E; Luby, S P; LaBeaud, A D; Seetah, K; Guégan, J F; Bonds, M H; De Leo, G A

    2017-06-05

    Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).

  13. Dog Ecology and Barriers to Canine Rabies Control in the Republic of Haiti, 2014-2015.

    Science.gov (United States)

    Schildecker, S; Millien, M; Blanton, J D; Boone, J; Emery, A; Ludder, F; Fenelon, N; Crowdis, K; Destine, A; Etheart, M; Wallace, R M

    2017-10-01

    An estimated 59 000 persons die annually of infection with the rabies virus worldwide, and dog bites are responsible for 95% of these deaths. Haiti has the highest rate of animal and human rabies in the Western Hemisphere. This study describes the status of animal welfare, animal vaccination, human bite treatment, and canine morbidity and mortality in Haiti in order to identify barriers to rabies prevention and control. An epidemiologic survey was used for data collection among dog owners during government-sponsored vaccination clinics at fourteen randomly selected sites from July 2014 to April 2015. A total of 2005 surveys were collected and data were analysed using parametric methods. Over 50% of owned dogs were allowed to roam freely, a factor associated with rabies transmission. More than 80% of dog owners reported experiencing barriers to accessing rabies vaccination for their dogs. Nearly one-third of the dog population evaluated in this study died in the year preceding the survey (32%) and 18% of these deaths were clinically consistent with rabies. Dog bites were commonly reported, with more than 3% of the study population bitten within the year preceding the survey. The incidence of canine rabies in Haiti is high and is exacerbated by low access to veterinary care, free-roaming dog populations and substandard animal welfare practices. Programmes to better understand the dog ecology and development of methods to improve access to vaccines are needed. Rabies deaths are at historical lows in the Western Hemisphere, but Haiti and the remaining canine rabies endemic countries still present a significant challenge to the goal of rabies elimination in the region. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Ecological Intensification Through Pesticide Reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming.

    Science.gov (United States)

    Petit, Sandrine; Munier-Jolain, Nicolas; Bretagnolle, Vincent; Bockstaller, Christian; Gaba, Sabrina; Cordeau, Stéphane; Lechenet, Martin; Mézière, Delphine; Colbach, Nathalie

    2015-11-01

    Amongst the biodiversity components of agriculture, weeds are an interesting model for exploring management options relying on the principle of ecological intensification in arable farming. Weeds can cause severe crop yield losses, contribute to farmland functional biodiversity and are strongly associated with the generic issue of pesticide use. In this paper, we address the impacts of herbicide reduction following a causal framework starting with herbicide reduction and triggering changes in (i) the management options required to control weeds, (ii) the weed communities and functions they provide and (iii) the overall performance and sustainability of the implemented land management options. The three components of this framework were analysed in a multidisciplinary project that was conducted on 55 experimental and farmer's fields that included conventional, integrated and organic cropping systems. Our results indicate that the reduction of herbicide use is not antagonistic with crop production, provided that alternative practices are put into place. Herbicide reduction and associated land management modified the composition of in-field weed communities and thus the functions of weeds related to biodiversity and production. Through a long-term simulation of weed communities based on alternative (?) cropping systems, some specific management pathways were identified that delivered high biodiversity gains and limited the negative impacts of weeds on crop production. Finally, the multi-criteria assessment of the environmental, economic and societal sustainability of the 55 systems suggests that integrated weed management systems fared better than their conventional and organic counterparts. These outcomes suggest that sustainable management could possibly be achieved through changes in weed management, along a pathway starting with herbicide reduction.

  15. Extracorporeal life support for cardiac arrest in a 13-year-old girl caused by Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Song, Kyoung Hwan; Lee, Byung Kook; Jeung, Kyung Woon; Lee, Dong Hun

    2015-10-01

    Generally, Wolff-Parkinson-White (WPW) syndrome presents good prognosis. However, several case reports demonstrated malignant arrhythmia or sudden cardiac death as WPW syndrome's first presentation. Cardiopulmonary resuscitation using extracorporeal life support is a therapeutic option in refractory cardiac arrest. We present a WPW syndrome patient who had sudden cardiac arrest as the first presentation of the disease and treated it using extracorporeal life support with good neurologic outcome.

  16. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  17. A socio-ecological adaptive approach to contaminated mega-site management: From 'control and correct' to 'coping with change'

    Science.gov (United States)

    Schirmer, Mario; Lyon, Ken; Armstrong, James E.; Farrell, Katharine N.

    2012-01-01

    Mega-sites have a notable impact on surrounding ecological systems. At such sites there are substantial risks associated with complex socio-ecological interactions that are hard to characterize, let alone model and predict. While the urge to control and clean-up mega-sites (control and correct) is understandable, rather than setting a goal of cleaning up such sites, we suggest a more realistic response strategy is to address these massive and persistent sources of contamination by acknowledging their position as new features of the socio-ecological landscapes within which they are located. As it seems nearly impossible to clean up such sites, we argue for consideration of a 'coping with change' rather than a 'control and correct' approach. This strategy recognizes that the current management option for a mega-site, in light of its physical complexities and due to changing societal preferences, geochemical transformations, hydrogeology knowledge and remedial technology options may not remain optimal in future, and therefore needs to be continuously adapted, as community, ecology, technology and understanding change over time. This approach creates an opportunity to consider the relationship between a mega-site and its human and ecological environments in a different and more dynamic way. Our proposed approach relies on iterative adaptive management to incorporate mega-site management into the overall socio-ecological systems of the site's context. This approach effectively embeds mega-site management planning in a triple bottom line and environmental sustainability structure, rather than simply using single measures of success, such as contaminant-based guidelines. Recognizing that there is probably no best solution for managing a mega-site, we present a starting point for engaging constructively with this seemingly intractable issue. Therefore, we aim to initiate discussion about a new approach to mega-site management, in which the complexity of the problems posed

  18. [Ecology and ecologies].

    Science.gov (United States)

    Valera, Luca

    2011-01-01

    Ecology (from the Greek words οιχοσ, "house" and λογια "study of") is the science of the "house", since it studies the environments where we live. There are three main ways of thinking about Ecology: Ecology as the study of interactions (between humans and the environment, between humans and living beings, between all living beings, etc.), Ecology as the statistical study of interactions, Ecology as a faith, or rather as a science that requires a metaphysical view. The history of Ecology shows us how this view was released by the label of "folk sense" to gain the epistemological status of science, a science that strives to be interdisciplinary. So, the aim of Ecology is to study, through a scientific methodology, the whole natural world, answering to very different questions, that arise from several fields (Economics, Biology, Sociology, Philosophy, etc.). The plurality of issues that Ecology has to face led, during the Twentieth-century, to branch off in several different "ecologies". As a result, each one of these new approaches chose as its own field a more limited and specific portion of reality.

  19. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  20. Major Differences in Advanced Life Support Training Strategies Among Danish Hospitals - A Nationwide Study

    DEFF Research Database (Denmark)

    Glerup Lauridsen, Kasper; Mygind-Klausen, Troels; Stærk, Mathilde

    2017-01-01

    Introduction: Advanced life support (ALS) training may increase survival from in-hospital cardiac arrest. Efficient ALS training includes practice of both technical and non-technical skills in a realistic setting with frequent retraining to avoid decay in ALS skills. ALS training strategies among...... hospitals are currently unknown. This study aimed to investigate ALS training strategies in Danish hospitals.Methods: We included all public, somatic hospitals in Denmark with a cardiac arrest team (n=46). Online questionnaires were distributed to resuscitation officers in each hospital. Questionnaires...... inquired information on: A) Course duration and retraining interval, B) Training methods and setting, C) Scenario training and practicing non-technical skills.Results: In total, 44 hospitals replied (response rate: 96%). ALS training was conducted in 43 hospitals (98%). Median (range) ALS course duration...

  1. Community gardens as sites of solace and end-of-life support: a literature review.

    Science.gov (United States)

    Marsh, Pauline; Spinaze, Anna

    2016-05-01

    In a pilot project, members of a community garden explored how they might provide better end-of-life support for their regional community. As part of the project, a literature review was undertaken to investigate the nexus between community gardens and end-of-life experiences (including grief and bereavement) in academic research. This article documents the findings of that review. The authors discovered there is little academic material that focuses specifically on community gardens and end-of-life experiences, but nonetheless the two subjects were seen to intersect. The authors found three points of commonality: both share a need and capacity for a) social/informal support, b) therapeutic space, and c) opportunities for solace.

  2. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  3. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  4. The 2015 Resuscitation Council of Asia (RCA) guidelines on adult basic life support for lay rescuers.

    Science.gov (United States)

    Chung, Sung Phil; Sakamoto, Tetsuya; Lim, Swee Han; Ma, Mathew Huei-Ming; Wang, Tzong-Luen; Lavapie, Francis; Krisanarungson, Sopon; Nonogi, Hiroshi; Hwang, Sung Oh

    2016-08-01

    This paper introduces adult basic life support (BLS) guidelines for lay rescuers of the resuscitation council of Asia (RCA) developed for the first time. The RCA BLS guidelines for lay rescuers have been established by expert consensus among BLS Guidelines Taskforce of the RCA on the basis of the 2015 International Consensus on Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care Science with Treatment Recommendations. The RCA recommends compression-only CPR for lay rescuers and emphasizes high-quality CPR with chest compression depth of approximately 5cm and chest compression rate of 100-120min(-1). Role of emergency medical dispatchers in helping lay rescuers recognize cardiac arrest and perform CPR is also emphasized. The RCA guidelines will contribute to help Asian countries establish and implement their own CPR guidelines in the context of their domestic circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Material balance and diets in biological life support systems: a relationship with a coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.

    Biological life support systems (BLSS) of various coefficients of closure were considered The basic coefficient of closure was accepted equal to 66%. With increase in coefficient of closure food requirements for the greater degree should be satisfied due to the manufacture of food inside the BLSS. In this connection food values were estimated both in the basic variant, and in those with increased coefficients of closure. Metabolic massflow rates were estimated at the input and output of the BLSS as well as inside it. Human massflow rates were submitted on the basis of characteristics of the 'reference man'. Stoichiometric synthesis - degradation equations of organic substances in the BLSS were obtained. A problem of nitrogen imbalance was shown to occur under an incomplete BLSS closure. To compensate losses of nitrogen with urine and feces, food and nitrogen-containing additives should be introduced into the BLSS.

  6. Human life support during interplanetary travel and domicile. III - Mars expedition system trade study

    Science.gov (United States)

    Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1991-01-01

    Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.

  7. Impact of an Advanced Cardiac Life Support Simulation Laboratory Experience on Pharmacy Student Confidence and Knowledge.

    Science.gov (United States)

    Maxwell, Whitney D; Mohorn, Phillip L; Haney, Jason S; Phillips, Cynthia M; Lu, Z Kevin; Clark, Kimberly; Corboy, Alex; Ragucci, Kelly R

    2016-10-25

    Objective. To assess the impact of an advanced cardiac life support (ACLS) simulation on pharmacy student confidence and knowledge. Design. Third-year pharmacy students participated in a simulation experience that consisted of team roles training, high-fidelity ACLS simulations, and debriefing. Students completed a pre/postsimulation confidence and knowledge assessment. Assessment. Overall, student knowledge assessment scores and student confidence scores improved significantly. Student confidence and knowledge changes from baseline were not significantly correlated. Conversely, a significant, weak positive correlation between presimulation studying and both presimulation confidence and presimulation knowledge was discovered. Conclusions. Overall, student confidence and knowledge assessment scores in ACLS significantly improved from baseline; however, student confidence and knowledge were not significantly correlated.

  8. What should be included in the assessment of laypersons' paediatric basic life support skills?

    DEFF Research Database (Denmark)

    Hasselager, Asbjørn Børch; Lauritsen, Torsten; Kristensen, Tim

    2018-01-01

    BACKGROUND: Assessment of laypersons' Paediatric Basic Life Support (PBLS) skills is important to ensure acquisition of effective PBLS competencies. However limited evidence exists on which PBLS skills are essential for laypersons. The same challenges exist with respect to the assessment of foreign...... body airway obstruction management (FBAOM) skills. We aimed to establish international consensus on how to assess laypersons' PBLS and FBAOM skills. METHODS: A Delphi consensus survey was conducted. Out of a total of 84 invited experts, 28 agreed to participate. During the first Delphi round experts...... suggested items to assess laypersons' PBLS and FBAOM skills. In the second round, the suggested items received comments from and were rated by 26 experts (93%) on a 5-point scale (1 = not relevant to 5 = essential). Revised items were anonymously presented in a third round for comments and 23 (82%) experts...

  9. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  10. Development of the electrochemically regenerable carbon dioxide absorber for portable life support system application

    Science.gov (United States)

    Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.

    1979-01-01

    As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.

  11. Multispectral televisional measuring control of the ecological state of waterbodies on the characteristics macrophytes

    Science.gov (United States)

    Petruk, Vasil; Kvaternyuk, Sergii; Kozachuk, Anastasia; Sailarbek, Saltanat; Gromaszek, Konrad

    2015-12-01

    Improved methods for multispectral measuring television monitoring of the ecological state of water bodies on the characteristics of macrophytes groups to assess complex human impact on their environment. Integral assessment of water pollution is based on research products of higher aquatic plants and their communities by optical methods.

  12. The Ecological Controls on the Prevalence of Candidate Division TM7 in Polar Regions

    Directory of Open Access Journals (Sweden)

    Tristrom eWinsley

    2014-07-01

    Full Text Available The candidate division TM7 is ubiquitous and yet uncultured phylum of the Bacteria that encompasses a commonly environmental associated clade, TM7-1, and a ‘host-associated’ clade, TM7-3. However, as members of the TM7 phylum have not been cultured, little is known about what differs between these two clades. We hypothesized that these clades would have different environmental niches. To test this, we used a large-scale global soil dataset, encompassing 223 soil samples, their environmental parameters and associated bacterial 16S rRNA gene sequence data. We correlated chemical, physical and biological parameters of each soil with the relative abundance of the two major classes of the phylum to deduce factors that influence the groups’ seemingly ubiquitous nature. The two classes of the phylum (TM7-1 and TM7-3 were indeed distinct from each other in their habitat requirements. A key determinant of each class’ prevalence appears to be the pH of the soil. The class TM7-1 displays a facultative anaerobic nature with correlations to more acidic soils with total iron, silicon, titanium and copper indicating a potential for siderophore production. However, the TM7-3 class shows a more classical oligotrophic, heterotroph nature with a preference for more alkaline soils, and a probable pathogenic role with correlations to extractable iron, sodium and phosphate. In addition, the TM7-3 was abundant in diesel contaminated soils highlighting a resilient nature along with a possible carbon source. In addition to this both classes had unique co-occurrence relationships with other bacterial phyla. In particular, both groups had opposing correlations to the Gemmatimonadetes phylum, with the TM7-3 class seemingly being outcompeted by this phylum to result in a negative correlation. These ecological controls allow the characteristics of a TM7 phylum preferred niche to be defined and give insight into possible avenues for cultivation of this previously

  13. Availability of Life Support Equipment and its Utilization by Ambulance Drivers.

    Science.gov (United States)

    Acharya, Rija; Badhu, Angur; Shah, Tara; Shrestha, Sharmila

    2017-09-08

    An effective ambulance is a vital requirement for providing an emergency medical service. Well-equipped ambulances with trained paramedics can save many lives during the golden hours of trauma care. The objective was to document the availability and utilization of basic life support equipment in the ambulances and to assess knowledge on first aid among the drivers. Descriptive design was used. Total of 109 ambulances linked to B.P. Koirala Institute of Health Sciences were enrolled using purposive sampling method. Self- constructed observation checklist and semi structured interview schedule was used for data collection. More than half of the respondents had less than five years of experience and were not trained in first aid. About two-third of the respondents had adequate knowledge on first aid. About 90% of the ambulance had oxygen cylinder and adult oxygen mask which was 'usually' used equipment. More than half of ambulance had equipment less than 23% as compared to that of national guidelines. There was significant association of knowledge with the experience (p = 0.004) and training (p = 0.001). Availability of equipment was associated with training received (p = 0.007),organization (p= 0.032)and district (p = 0.023) in which the ambulance is registered. The study concludes that maximum ambulance linked to BPKIHS, Nepal did not have even one fourth of the equipment for basic life support. Equipment usually used was oxygen cylinder and oxygen mask. Majority of driver had adequate knowledge on first aid and it was associated with training and experience.

  14. Bioregenerative Life Support Experiment for 90-days in a Closed Integrative Experimental Facility LUNAR PALACE 1

    Science.gov (United States)

    Liu, Hong

    A 90-day bioregenerative life support experiment with three-member crew was carried out in the closed integrative experimental facility, LUNAR PALACE 1 regenerating basic living necessities and disposing wastes to provide life support for crew. It was composed of higher plant module, animal module, and waste treatment module. The higher plant module included wheat, chufa, pea, carrot and green leafy vegetables, with aim to satisfy requirement of 60% plant food and 100% O2 and water for crew. The yellow mealworm was selected as animal module to provide partial animal protein for crew, and reared on plant inedible biomass. The higher plant and yellow mealworm were both cultivated and harvested in the conveyor-type manner. The partial plant inedible biomass and human feces were mixed and co- fermented in the waste treatment module for preparation of soil-like substrate by bioconversion, maintaining gas balance and increasing closure degree. Meanwhile, in the waste treatment module, the water and partial nitrogen from human urine were recovered by physical-chemical means. Circulation of O2 and water as well as food supply from crops cultivated in the LUNAR PALACE 1 were investigated and calculated, and simultaneously gas exchange, mass flow among different components and system closure degree were also analyzed, respectively. Furthermore, the system robustness with respect to internal variation was tested and evaluated by sensitivity analysis of the aggregative index consisting of key performance indicators like crop yield, gaseous equilibrium concentration, microbial community composition, biogenic elements dynamics, etc., and comprehensively evaluating the operating state, to number change of crew from 2 to 4 during the 90-day closed experiment period.

  15. IMPROVEMENT OF LIFE SUPPORT SYSTEMS OF PASSENGER ROLLING STOCK: PATENT REVIEW

    Directory of Open Access Journals (Sweden)

    S. R. Kolesnykov

    2018-02-01

    Full Text Available Purpose. Inventors and researchers of the world are focused on improvements of basic life support systems including provision of quality microclimate parameters in a car of the rolling stock. The research is aimed at reviewing and analyzing patents in the field of climate comfort, heating, ventilation and air conditioning (CCHVAC of railway passenger cars (the chronological framework: 2011-2017 from the date of publication. Мethodology. During the study there were reviewed patents (foreign and domestic ones in the field of CCHVAC in passenger vehicles, in particular railway cars, their optimization and ways of managing them. Patent search was carried out according to certain search criteria: keywords, time frames and in various patent systems of the world. An interdisciplinary approach was used. Findings. Based on the search results, 157 patents were found, 21 documents of which were selected for analysis. Patents are systematized into three groups: "New technical and technological solutions in systems and functioning facilities of HVAC ", "New and improved solutions for HVAC system management in a vehicle", "Air ozonation in passenger cars". It is established that all patents have one of the aspects that have solutions to the issues of more environmentally friendly, energy efficient and safe application of CCHVAC systems in railway transport. Originality. It was proved a high level of link penetration in various technical fields, which include patents with CCHVAC. It is established that it is characteristic for them to designate the majority of patent solutions for use not in the purely railway industry, but in transport in general. Practical value. Confirmation of the high level of link penetration in various technical fields will make it possible to reflect technical problems with CCHVAC and technologies for their solution throughout the world. This will contribute to a more intensive technological upgrade in the improvement of life support

  16. The Reliability of Turkish "Basic Life Support" and "Cardiac Massage" Videos Uploaded to Websites.

    Science.gov (United States)

    Elicabuk, Hayri; Yaylacı, Serpil; Yilmaz, Atakan; Hatipoglu, Celile; Kaya, F Gokhan; Serinken, Mustafa

    2016-02-01

    In this study, the reliability of Turkish cardiac massage and Basic Life Support (BLS) videos, which have already been downloaded from three website such as YouTube, Google, Yahoo following the publication of 2010 cardiopulmonary resuscitation (CPR) guideline and their suitability to the same guideline were researched. The videos uploaded to the three web-site to search videos on internet were queried by using the keywords "cardiac massage" and "basic life support". Videos that had been uploaded between January 2011 and July 2014 were analyzed and scored by two experienced emergency specialists. A total of 1126 videos were obtained. 1029 of the videos (91.4%) were excluded by researchers. 97 videos were detected to accord with study criteria. Despite most of the videos were found on Google website by keywords, the enormous part of videos proper to criteria were sourced from YouTube website (n=65, 67.0%). One fourth of the videos (24.7%) were observed to not be suitable for 2010 CPR guideline. AED usage was mentioned slightly in the videos (14.4%). Median score of the videos is 5 (IQR: 4-6). The rate and scores of the videos uploaded by official institution or association were significantly higher than others (p=0.007 and 0.006, respectively). Moreover, scores of the videos compatible with guidelines uploaded by official institution or association and medical personal were also found higher (p=0.001). Eventually, all the data obtained in this study support that Turkish videos were not reliable on the subject of BLS and cardiac massage. It is promising that videos with high follow-up rates also have been scored higher.

  17. Basic life support knowledge of first-year university students from Brazil.

    Science.gov (United States)

    Santos, S V; Margarido, M R R A; Caires, I S; Santos, R A N; Souza, S G; Souza, J M A; Martimiano, R R; Dutra, C S K; Palha, P; Zanetti, A C G; Pazin-Filho, A

    2015-12-01

    We aimed to evaluate knowledge of first aid among new undergraduates and whether it is affected by their chosen course. A questionnaire was developed to assess knowledge of how to activate the Mobile Emergency Attendance Service - MEAS (Serviço de Atendimento Móvel de Urgência; SAMU), recognize a pre-hospital emergency situation and the first aid required for cardiac arrest. The students were also asked about enrolling in a first aid course. Responses were received from 1038 of 1365 (76.04%) new undergraduates. The questionnaires were completed in a 2-week period 1 month after the beginning of classes. Of the 1038 respondents (59.5% studying biological sciences, 11.6% physical sciences, and 28.6% humanities), 58.5% knew how to activate the MEAS/SAMU (54.3% non-biological vs 61.4% biological, P=0.02), with an odds ratio (OR)=1.39 (95%CI=1.07-1.81) regardless of age, sex, origin, having a previous degree or having a relative with cardiac disease. The majority could distinguish emergency from non-emergency situations. When faced with a possible cardiac arrest, 17.7% of the students would perform chest compressions (15.5% non-biological vs 19.1% biological first-year university students, P=0.16) and 65.2% would enroll in a first aid course (51.1% non-biological vs 74.7% biological, Pbasic life support skills to help with cardiac arrest. A significant proportion would not enroll in a first aid course. Biological first-year university students were more prone to enroll in a basic life support course.

  18. Basic life support: knowledge and attitude of medical/paramedical professionals.

    Science.gov (United States)

    Roshana, Shrestha; Kh, Batajoo; Rm, Piryani; Mw, Sharma

    2012-01-01

    Basic life support (BLS), a key component of the chain of survival decreases the arrest - cardiopulmonary resuscitation interval and increases the rate of hospital discharge. The study aimed to explore the knowledge of and attitude towards basic life support (BLS) among medical/paramedical professionals. An observational study was conducted by assessing response to self prepared questionnaire consisting of the demographic information of the medical/paramedical staff, their personnel experience/attitude and knowledge of BLS based on the 2005 BLS Guidelines of European Resuscitation Council. After excluding incomplete questionnaires, the data from 121 responders (27 clinical faculty members, 21 dental and basic sciences faculty members, 29 house officers and 44 nurses and health assistants) were analyzed. Only 9 (7.4%) of the 121 responders answered ≥11, 53 (43%) answered 7-10, and 58 (48%) answered basic sciences faculty members attained a least mean score of 4.52 ±2.13 (P<0.001). Those who had received cardiopulmonary resuscitation (CPR) training within 5 years obtained a highest mean score of 8.62±2.49, whereas those who had the training more than 5 years back or no training obtained a mean score of 5.54±2.38 and 6.1±2.29 respectively (P=0.001). Those who were involved in resuscitation frequently had a higher median score of 8 in comparison to those who were seldom involved or not involved at all (P<0.001). The average health personnel in our hospital lack adequate knowledge in CPR/BLS. Training and experience can enhance knowledge of CPR of these personnel. Thus standard of CPR/BLS training and assessment are recommended at our hospital.

  19. Are YouTube videos accurate and reliable on basic life support and cardiopulmonary resuscitation?

    Science.gov (United States)

    Yaylaci, Serpil; Serinken, Mustafa; Eken, Cenker; Karcioglu, Ozgur; Yilmaz, Atakan; Elicabuk, Hayri; Dal, Onur

    2014-10-01

    The objective of this study is to investigate reliability and accuracy of the information on YouTube videos related to CPR and BLS in accord with 2010 CPR guidelines. YouTube was queried using four search terms 'CPR', 'cardiopulmonary resuscitation', 'BLS' and 'basic life support' between 2011 and 2013. Sources that uploaded the videos, the record time, the number of viewers in the study period, inclusion of human or manikins were recorded. The videos were rated if they displayed the correct order of resuscitative efforts in full accord with 2010 CPR guidelines or not. Two hundred and nine videos meeting the inclusion criteria after the search in YouTube with four search terms ('CPR', 'cardiopulmonary resuscitation', 'BLS' and 'basic life support') comprised the study sample subjected to the analysis. Median score of the videos is 5 (IQR: 3.5-6). Only 11.5% (n = 24) of the videos were found to be compatible with 2010 CPR guidelines with regard to sequence of interventions. Videos uploaded by 'Guideline bodies' had significantly higher rates of download when compared with the videos uploaded by other sources. Sources of the videos and date of upload (year) were not shown to have any significant effect on the scores received (P = 0.615 and 0.513, respectively). The videos' number of downloads did not differ according to the videos compatible with the guidelines (P = 0.832). The videos downloaded more than 10,000 times had a higher score than the others (P = 0.001). The majority of You-Tube video clips purporting to be about CPR are not relevant educational material. Of those that are focused on teaching CPR, only a small minority optimally meet the 2010 Resucitation Guidelines. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  20. Retention of knowledge and skills in pediatric basic life support amongst pediatricians.

    Science.gov (United States)

    Binkhorst, Mathijs; Coopmans, Michelle; Draaisma, Jos M T; Bot, Petra; Hogeveen, Marije

    2018-05-07

    Retention of resuscitation skills is usually assessed at a predefined moment, which enables participants to prepare themselves, possibly introducing bias. In this multicenter study, we evaluated the retention of knowledge and skills in pediatric basic life support (PBLS) amongst 58 pediatricians and pediatric residents with an unannounced examination. Practical PBLS skills were assessed with a validated scoring instrument, theoretical knowledge with a 10-item multiple-choice test (MCQ). Participants self-assessed their PBLS capabilities using five-point Likert scales. Background data were collected with a questionnaire. Of our participants, 21% passed the practical PBLS exam: 29% failed on compressions/ventilations, 31% on other parts of the algorithm, 19% on both. Sixty-nine percent passed the theoretical test. Participants who more recently completed a PBLS course performed significantly better on the MCQ (p = 0.03). This association was less clear-cut for performance on the practical exam (p = 0.11). Older, attending pediatricians with more years of experience in pediatrics performed less well than their younger colleagues (p basic life support (PBLS) in daily practice. Poor retention of skills supposedly accounts for this incompetence. Without regular exposure, resuscitation skills usually deteriorate within 3 to 6 months after training. • Examination of resuscitation skills usually takes place after training. Also, in most studies evaluating retention of skills, participants are tested at a predefined moment. Inasmuch as participants are able to prepare themselves, these assessments do not reflect the ad hoc resuscitation capabilities of pediatricians and residents. What is New: • In this study, pediatricians and pediatric residents had to complete an unannounced PBLS exam at variable time intervals from last certification. Retention of PBLS skills was rather poor (pass rate 21%). • The PBLS skills of older, attending pediatricians with many

  1. Emergency feasibility in medical intensive care unit of extracorporeal life support for refractory cardiac arrest.

    Science.gov (United States)

    Mégarbane, Bruno; Leprince, Pascal; Deye, Nicolas; Résière, Dabor; Guerrier, Gilles; Rettab, Samia; Théodore, Jonathan; Karyo, Souheil; Gandjbakhch, Iradj; Baud, Frédéric J

    2007-05-01

    To report the feasibility, complications, and outcomes of emergency extracorporeal life support (ECLS) in refractory cardiac arrests in medical intensive care unit (ICU). Prospective cohort study in the medical ICU in a university hospital in collaboration with the cardiosurgical team of a neighboring hospital. Seventeen patients (poisonings: 12/17) admitted over a 2-year period for cardiac arrest unresponsive to cardiopulmonary resuscitation (CPR) and advanced cardiac life support, without return of spontaneous circulation. ECLS femoral implantation under continuous cardiac massage, using a centrifugal pump connected to a hollow-fiber membrane oxygenator. Stable ECLS was achieved in 14 of 17 patients. Early complications included massive transfusions (n=8) and the need for surgical revision at the cannulation site for bleeding (n=1). Four patients (24%) survived at medical ICU discharge. Deaths resulted from multiorgan failure (n=8), thoracic bleeding(n=2), severe sepsis (n=2), and brain death (n=1). Massive hemorrhagic pulmonary edema during CPR (n=5) and major capillary leak syndrome (n=6) were observed. Three cardiotoxic-poisoned patients (18%, CPR duration: 30, 100, and 180 min) were alive at 1-year follow-up without sequelae. Two of these patients survived despite elevated plasma lactate concentrations before cannulation (39.0 and 20.0 mmol/l). ECLS was associated with a significantly lower ICU mortality rate than that expected from the Simplified Acute Physiology Score II (91.9%) and lower than the maximum Sequential Organ Failure Assessment score (>90%). Emergency ECLS is feasible in medical ICU and should be considered as a resuscitative tool for selected patients suffering from refractory cardiac arrest.

  2. Advanced medical life support procedures in vitally compromised children by a helicopter emergency medical service

    Directory of Open Access Journals (Sweden)

    Scheffer Gert J

    2010-03-01

    Full Text Available Abstract Background To determine the advanced life support procedures provided by an Emergency Medical Service (EMS and a Helicopter Emergency Medical Service (HEMS for vitally compromised children. Incidence and success rate of several procedures were studied, with a distinction made between procedures restricted to the HEMS-physician and procedures for which the HEMS is more experienced than the EMS. Methods Prospective study of a consecutive group of children examined and treated by the HEMS of the eastern region of the Netherlands. Data regarding type of emergency, physiological parameters, NACA scores, treatment, and 24-hour survival were collected and subsequently analysed. Results Of the 558 children examined and treated by the HEMS on scene, 79% had a NACA score of IV-VII. 65% of the children had one or more advanced life support procedures restricted to the HEMS and 78% of the children had one or more procedures for which the HEMS is more experienced than the EMS. The HEMS intubated 38% of all children, and 23% of the children intubated and ventilated by the EMS needed emergency correction because of potentially lethal complications. The HEMS provided the greater part of intraosseous access, as the EMS paramedics almost exclusively reserved this procedure for children in cardiopulmonary resuscitation. The EMS provided pain management only to children older than four years of age, but a larger group was in need of analgesia upon arrival of the HEMS, and was subsequently treated by the HEMS. Conclusions The Helicopter Emergency Medical Service of the eastern region of the Netherlands brings essential medical expertise in the field not provided by the emergency medical service. The Emergency Medical Service does not provide a significant quantity of procedures obviously needed by the paediatric patient.

  3. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  4. e-Learning in Advanced Life Support-What factors influence assessment outcome?

    Science.gov (United States)

    Thorne, C J; Lockey, A S; Kimani, P K; Bullock, I; Hampshire, S; Begum-Ali, S; Perkins, G D

    2017-05-01

    To establish variables which are associated with favourable Advanced Life Support (ALS) course assessment outcomes, maximising learning effect. Between 1 January 2013 and 30 June 2014, 8218 individuals participated in a Resuscitation Council (UK) e-learning Advanced Life Support (e-ALS) course. Participants completed 5-8h of online e-learning prior to attending a one day face-to-face course. e-Learning access data were collected through the Learning Management System (LMS). All participants were assessed by a multiple choice questionnaire (MCQ) before and after the face-to-face aspect alongside a practical cardiac arrest simulation (CAS-Test). Participant demographics and assessment outcomes were analysed. The mean post e-learning MCQ score was 83.7 (SD 7.3) and the mean post-course MCQ score was 87.7 (SD 7.9). The first attempt CAS-Test pass rate was 84.6% and overall pass rate 96.6%. Participants with previous ALS experience, ILS experience, or who were a core member of the resuscitation team performed better in the post-course MCQ, CAS-Test and overall assessment. Median time spent on the e-learning was 5.2h (IQR 3.7-7.1). There was a large range in the degree of access to e-learning content. Increased time spent accessing e-learning had no effect on the overall result (OR 0.98, P=0.367) on simulated learning outcome. Clinical experience through membership of cardiac arrest teams and previous ILS or ALS training were independent predictors of performance on the ALS course whilst time spent accessing e-learning materials did not affect course outcomes. This supports the blended approach to e-ALS which allows participants to tailor their e-learning experience to their specific needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates.

    Science.gov (United States)

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea

    2016-06-07

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso's highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.

  6. Key ecological challenges for closed systems facilities

    Science.gov (United States)

    Nelson, Mark; Dempster, William F.; Allen, John P.

    2013-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.

  7. Comparison of basic life support (BLS video self-instructional system and traditional BLS training in first year nursing students

    Directory of Open Access Journals (Sweden)

    R Nikandish

    2009-03-01

    Full Text Available Background: For several years, educators have criticized the lecture-based  approach  to teaching and learning. Experts have rightly stressed on acquisition  of a number of critical  skills rather than focusing on lectures. Purpose. To compare students'  pe1jormance after self-education  with VCD and manikin,  with thei performance after standard BLS training.Methods: In this randomized controlled study, twenty first-year nursing students were divided into two groups randomly, and were provided with basic life support (BLS instruction either in the traditional format of lecturing or with VCD and manikin without tutor. The students’ Performance was evaluated on a manikin with a checklist including all steps in BLS.Results: With traditional  instruction,  students'  mean score was 42.2±3.91, while it was 46.3±3.86 with self-education,  showing no significant  difference.Conclusion: In nursing students with no previous BLS training, access to VCD and manikin facilitates immediate achievement of educational objectives similar to those  of a standard  BLS course.  Self­ learning BLS with VCD should be enhanced with a short period of hands-on practice.Keywords: cardiopulmonary resuscitation (CPR, nursing students, cpr skills, education

  8. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  9. Meta-analysis of thirty-two case-control and two ecological radon studies of lung cancer.

    Science.gov (United States)

    Dobrzynski, Ludwik; Fornalski, Krzysztof W; Reszczynska, Joanna

    2018-03-01

    A re-analysis has been carried out of thirty-two case-control and two ecological studies concerning the influence of radon, a radioactive gas, on the risk of lung cancer. Three mathematically simplest dose-response relationships (models) were tested: constant (zero health effect), linear, and parabolic (linear-quadratic). Health effect end-points reported in the analysed studies are odds ratios or relative risk ratios, related either to morbidity or mortality. In our preliminary analysis, we show that the results of dose-response fitting are qualitatively (within uncertainties, given as error bars) the same, whichever of these health effect end-points are applied. Therefore, we deemed it reasonable to aggregate all response data into the so-called Relative Health Factor and jointly analysed such mixed data, to obtain better statistical power. In the second part of our analysis, robust Bayesian and classical methods of analysis were applied to this combined dataset. In this part of our analysis, we selected different subranges of radon concentrations. In view of substantial differences between the methodology used by the authors of case-control and ecological studies, the mathematical relationships (models) were applied mainly to the thirty-two case-control studies. The degree to which the two ecological studies, analysed separately, affect the overall results when combined with the thirty-two case-control studies, has also been evaluated. In all, as a result of our meta-analysis of the combined cohort, we conclude that the analysed data concerning radon concentrations below ~1000 Bq/m3 (~20 mSv/year of effective dose to the whole body) do not support the thesis that radon may be a cause of any statistically significant increase in lung cancer incidence.

  10. Retention of basic life support knowledge, self-efficacy and chest compression performance in Thai undergraduate nursing students.

    Science.gov (United States)

    Partiprajak, Suphamas; Thongpo, Pichaya

    2016-01-01

    This study explored the retention of basic life support knowledge, self-efficacy, and chest compression performance among Thai nursing students at a university in Thailand. A one-group, pre-test and post-test design time series was used. Participants were 30 nursing students undertaking basic life support training as a care provider. Repeated measure analysis of variance was used to test the retention of knowledge and self-efficacy between pre-test, immediate post-test, and re-test after 3 months. A Wilcoxon signed-rank test was used to compare the difference in chest compression performance two times. Basic life support knowledge was measured using the Basic Life Support Standard Test for Cognitive Knowledge. Self-efficacy was measured using the Basic Life Support Self-Efficacy Questionnaire. Chest compression performance was evaluated using a data printout from Resusci Anne and Laerdal skillmeter within two cycles. The training had an immediate significant effect on the knowledge, self-efficacy, and skill of chest compression; however, the knowledge and self-efficacy significantly declined after post-training for 3 months. Chest compression performance after training for 3 months was positively retaining compared to the first post-test but was not significant. Therefore, a retraining program to maintain knowledge and self-efficacy for a longer period of time should be established after post-training for 3 months. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    Science.gov (United States)

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  12. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  13. Control Scheme of River-lake System from the View of Ecological Sponge Basin aiming at Sponge City Construction

    Science.gov (United States)

    Ding, X.; Liu, J.; Yang, Z.

    2017-12-01

    China is in the rapid advance of urbanization, and is promoting the Sponge City Construction (SCC) with the characteristics of natural accumulation, natural infiltration and natural purification. The Chinese government selected 16 and 14 cities as pilot cities in 2015 and 2016 respectively to carry out SCC taking Low Impact Development (LID) as the concept. However, in 2015 and 2016, water-logging occurred in 10 cities and 9 cities respectively during the pilot cities. Therefore, relying solely on LID can not solve the problem of urban flood and waterlogging. Except for a series of LID measures during the process of SCC, corresponding control scheme of river-lake system should be established to realize water-related targets. From the view of ecological sponge basin, this study presents the general idea of SCC both in and out of the unban built-up area and the corresponding control scheme of river-lake system: for the regions outside the built-up area, the main aim of SCC is to carry out the top-level design of urban flood control and waterlogging, establish the water security system outside the city for solving the problems including flood control, water resources, water environment and water ecology; for the built-up area, the main aim of SCC is to construct different kinds of urban sponge according to local conditions and develop multi-scale drainage system responding to different intensities of rainfall taking the river-lake system as the core. Taking Fenghuang County of Hunan Province as an example for the application research, the results indicate that, after the implementation of the control scheme of river-lake system: 1) together with other SCC measures including LID, the control rate of total annual runoff in Fenghuang County is expected to be 82.9% which meets the target requirement of 80%; 2) flood control and drainage standards in Fenghuang County can be increased from the current 10-year return to 20-year return; 3) urban and rural water supply

  14. Nutrient composition and respiration characteristics of silkworms in the Bioregenerative Life Support System

    Science.gov (United States)

    Tong, Ling; Yu, Xiaohui; Liu, Hong

    As the appropriate space animal candidate, silkworm(Bombyx Mori L.) can supply animal food for taikonauts and consume inedible parts of plants in Bioregenerative Life Support Sys-tem(BLSS). Due to the features of BLSS, the silkworm breeding method in the system differ-ent from the conventional one is feeding the silkworm in the first three developing stages with mulberry leaves and with lettuce leaves in the latter two developing stages. Therefore, it is nec-essary to investigate the biochemical components and respiration characteristics of silkworms raised with this method to supply data bases for the inclusion of silkworms in the system to conduct system experiments. The nutrient compositions of silkworm powder (SP) which are the grinded and freeze-dried silkworm on the 3rd day in the fifth developing stage containing protein, fat, vitamins, minerals and fatty acids were determined with international standard analyzing methods in this study. The results showed that SP was rich in protein and amino acids. There were twelve kinds of essential vitamins, nine kinds of minerals and twelve kinds of fatty acids in SP. In contrast, SP had much better nutrient components than snail, fish, chicken, beef and pork as animal food for crew members. Moreover, 359 kCal can be generated per 100g of SP (dry weight). The respirations of silkworm during its whole growing process under two main physiological statuses which were eating and non-eating leaves were studied. According to the results measured by the animal respiration measuring system, there were much difference among the respirations of silkworms under the two main physiological statuses. The amounts of O2 inhaled and CO2 exhaled by the silkworms when they were eating leaves were more than those under the non-eating status. Even under the same status, the respiration characteristics of silkworms in five different developing stages were also different from one an-other. The respiratory quotients of silkworms under two

  15. [Teaching basic life support to the general population. Alumni intervention analysis].

    Science.gov (United States)

    Díaz-Castellanos, M A; Fernández-Carmona, A; Díaz-Redondo, A; Cárdenas-Cruz, A; García-del Moral, R; Martín-Lopez, J; Díaz-Redondo, T

    2014-12-01

    The aim of this study was to investigate the rate at which the alumni of basic life support courses witnessed and intervened in out-of-hospital emergency situations, and to identify the variables characterizing those alumni associated with a greater number of witnessing events and interventions. An analysis of the efficiency of the courses was also carried out. A descriptive, cross-sectional study was made. A district in the province of Almería (Spain). Alumni of a mass basic life support training program targeted to the general population «Plan Salvavidas» conducted between 2003-2009. In 2010 the alumni were administered a telephone survey asking whether they had witnessed an emergency situation since attending the program, with the collection of information related to this emergency situation. Rate of out-of-hospital emergencies witnessed by the alumni. Rate of intervention of the alumni in emergency situations. Variables characterizing alumni with a greater likelihood of witnessing an emergency situation. A total of 3,864 trained alumni were contacted by telephone. Of 1,098 respondents, 63.9% were women, and the mean age was 26.61±10.6 years. Of these alumni, 11.75% had witnessed emergency situations, an average of three years after completing the course. Of these emergencies, 23.3% were identified as cardiac arrest. The alumni intervened in 98% of the possible cases. In 63% of the cases, there was no connection between the alumni and the victim. The majority of the emergency situations occurred in the street and in public spaces. A greater likelihood of witnessing an emergency situation was associated with being a healthcare worker and with being over 18 years of age. The rate of out-of-hospital emergencies witnessed by these alumni after the course was 11.75%. The level of intervention among the alumni was high. The most efficient target population consisted of healthcare workers. Copyright © 2013 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  16. Development Approach of the Advanced Life Support On-line Project Information System

    Science.gov (United States)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  17. Basic life support knowledge of first-year university students from Brazil

    Directory of Open Access Journals (Sweden)

    S. V. Santos

    2015-12-01

    Full Text Available We aimed to evaluate knowledge of first aid among new undergraduates and whether it is affected by their chosen course. A questionnaire was developed to assess knowledge of how to activate the Mobile Emergency Attendance Service - MEAS (Serviço de Atendimento Móvel de Urgência; SAMU, recognize a pre-hospital emergency situation and the first aid required for cardiac arrest. The students were also asked about enrolling in a first aid course. Responses were received from 1038 of 1365 (76.04% new undergraduates. The questionnaires were completed in a 2-week period 1 month after the beginning of classes. Of the 1038 respondents (59.5% studying biological sciences, 11.6% physical sciences, and 28.6% humanities, 58.5% knew how to activate the MEAS/SAMU (54.3% non-biological vs 61.4% biological, P=0.02, with an odds ratio (OR=1.39 (95%CI=1.07-1.81 regardless of age, sex, origin, having a previous degree or having a relative with cardiac disease. The majority could distinguish emergency from non-emergency situations. When faced with a possible cardiac arrest, 17.7% of the students would perform chest compressions (15.5% non-biological vs 19.1% biological first-year university students, P=0.16 and 65.2% would enroll in a first aid course (51.1% non-biological vs 74.7% biological, P<0.01, with an OR=2.61 (95%CI=1.98-3.44 adjusted for the same confounders. Even though a high percentage of the students recognized emergency situations, a significant proportion did not know the MEAS/SAMU number and only a minority had sufficient basic life support skills to help with cardiac arrest. A significant proportion would not enroll in a first aid course. Biological first-year university students were more prone to enroll in a basic life support course.

  18. The Effect of Instructional Method on Cardiopulmonary Resuscitation Skill Performance: A Comparison Between Instructor-Led Basic Life Support and Computer-Based Basic Life Support With Voice-Activated Manikin.

    Science.gov (United States)

    Wilson-Sands, Cathy; Brahn, Pamela; Graves, Kristal

    2015-01-01

    Validating participants' ability to correctly perform cardiopulmonary resuscitation (CPR) skills during basic life support courses can be a challenge for nursing professional development specialists. This study compares two methods of basic life support training, instructor-led and computer-based learning with voice-activated manikins, to identify if one method is more effective for performance of CPR skills. The findings suggest that a computer-based learning course with voice-activated manikins is a more effective method of training for improved CPR performance.

  19. [Applied ecology: retrospect and prospect].

    Science.gov (United States)

    He, Xingyuan; Zeng, Dehui

    2004-10-01

    Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.

  20. Design and development of a virtual reality simulator for advanced cardiac life support training.

    Science.gov (United States)

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.

  1. Retention of first aid and basic life support skills in undergraduate medical students

    Directory of Open Access Journals (Sweden)

    Pim A. de Ruijter

    2014-11-01

    Full Text Available Background: Undergraduate medical students follow a compulsory first aid (FA and basic life support (BLS course. Retention of BLS seems poor and only little information is provided on the retention of FA skills. This study aims at evaluating 1- and 2-year retention of FA and BLS training in undergraduate medical students. Methods: One hundred and twenty students were randomly selected from first year (n=349 medical students who successfully followed a compulsory FA and BLS course. From these 120 students, 94 (78% and 69 (58% participated in retention tests of FA and BLS skills after 1 and 2 years, respectively. The assessment consisted of two FA stations and one BLS station. Results: After 1 year, only 2% passed both FA and BLS stations and 68% failed both FA and BLS stations. After 2 years, 5% passed and 50% failed both FA and BLS stations. Despite the high failure rate at the stations, 90% adequately checked vital signs and started cardiopulmonary resuscitation appropriately. Conclusions: The long-term retention of FA and BLS skills after a compulsory course in the first year is poor. Adequate check of vital signs and commencing cardiopulmonary resuscitation retained longer.

  2. Retention of first aid and basic life support skills in undergraduate medical students.

    Science.gov (United States)

    de Ruijter, Pim A; Biersteker, Heleen A; Biert, Jan; van Goor, Harry; Tan, Edward C

    2014-01-01

    Undergraduate medical students follow a compulsory first aid (FA) and basic life support (BLS) course. Retention of BLS seems poor and only little information is provided on the retention of FA skills. This study aims at evaluating 1- and 2-year retention of FA and BLS training in undergraduate medical students. One hundred and twenty students were randomly selected from first year (n=349) medical students who successfully followed a compulsory FA and BLS course. From these 120 students, 94 (78%) and 69 (58%) participated in retention tests of FA and BLS skills after 1 and 2 years, respectively. The assessment consisted of two FA stations and one BLS station. After 1 year, only 2% passed both FA and BLS stations and 68% failed both FA and BLS stations. After 2 years, 5% passed and 50% failed both FA and BLS stations. Despite the high failure rate at the stations, 90% adequately checked vital signs and started cardiopulmonary resuscitation appropriately. The long-term retention of FA and BLS skills after a compulsory course in the first year is poor. Adequate check of vital signs and commencing cardiopulmonary resuscitation retained longer.

  3. Potential applications of the white rot fungus Pleurotus in bioregenerative life support systems

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Yu, Ch.; Gurevich, Yu. L.; Liu, H.

    Earlier we demonstrated the possibility of using soil-like substrate SLS for plant cultivation in bioregenerative life support systems BLSS We suggest dividing the process of SLS bioregeneration at BLSS conditions into two stages At the first stage plant residues should be used for growing of white rot fungus Pleurotus ostreatus Pleurotus florida etc The fruit bodies could be used as food Spent mushroom compost is carried in SLS and treated by microorganisms and worms at the second stage The possibility of extension of human food ration is only one of the reasons for realization of the suggested two-stage SLS regeneration scheme people s daily consumption of mushrooms is limited to 200 -250 g of wet weight or 20 -25 g of dry weight Multiple tests showed what is more important is that inclusion of mushrooms into the system cycle scheme contributes through various mechanisms to the more stable functioning of vegetative cenosis in general Taking into account the given experimental data we determined the scheme of mushroom module material balance The technological peculiarities of mushroom cultivation at BLSS conditions are being discussed

  4. Mobile phone-assisted basic life support augmented with a metronome.

    Science.gov (United States)

    Paal, Peter; Pircher, Iris; Baur, Thomas; Gruber, Elisabeth; Strasak, Alexander M; Herff, Holger; Brugger, Hermann; Wenzel, Volker; Mitterlechner, Thomas

    2012-09-01

    Basic life support (BLS) performed by lay rescuers is poor. We developed software for mobile phones augmented with a metronome to improve BLS. To assess BLS in lay rescuers with or without software assistance. Medically untrained volunteers were randomized to run through a cardiac arrest scenario with ("assisted BLS") or without ("non-assisted BLS") the aid of a BLS software program installed on a mobile phone. Sixty-four lay rescuers were enrolled in the "assisted BLS" and 77 in the "non-assisted BLS" group. The "assisted BLS" when compared to the "non-assisted BLS" group, achieved a higher overall score (19.2 ± 7.5 vs. 12.9 ± 5.7 credits; p metronome resulted in a higher overall score and a better chest compression rate when compared to "non-assisted BLS." However, in the "assisted BLS" group, time to call the dispatch center and to start chest compressions was longer. In both groups, lay persons did not ventilate satisfactorily during this cardiac arrest scenario. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Extracorporeal Life Support Bridge to Ventricular Assist Device: The Double Bridge Strategy.

    Science.gov (United States)

    Marasco, Silvana F; Lo, Casey; Murphy, Deirdre; Summerhayes, Robyn; Quayle, Margaret; Zimmet, Adam; Bailey, Michael

    2016-01-01

    In patients requiring left ventricular assist device (LVAD) support, it can be difficult to ascertain suitability for long-term mechanical support with LVAD and eventual transplantation. LVAD implantation in a shocked patient is associated with increased morbidity and mortality. Interest is growing in the utilization of extracorporeal life support (ECLS) as a bridge-to-bridge support for these critically unwell patients. Here, we reviewed our experience with ECLS double bridging. We hypothesized that ECLS double bridging would stabilize end-organ dysfunction and reduce ventricular assist device (VAD) implant perioperative mortality. We conducted a retrospective review of prospectively collected data for 58 consecutive patients implanted with a continuous-flow LVAD between January 2010 and December 2013 at The Alfred Hospital, Melbourne, Victoria, Australia. Twenty-three patients required ECLS support pre-LVAD while 35 patients underwent LVAD implantation without an ECLS bridge. Preoperative morbidity in the ECLS bridge group was reflected by increased postoperative intensive care duration, blood loss, blood product use, and postoperative renal failure, but without negative impact upon survival when compared with the no ECLS group. ECLS stabilization improved end-organ function pre-VAD implant with significant improvements in hepatic and renal dysfunction. This series demonstrates that the use of ECLS bridge to VAD stabilizes end-organ dysfunction and reduces VAD implant perioperative mortality from that traditionally reported in these "crash and burn" patients. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Effect of Advanced Trauma Life Support program on medical interns' performance in simulated trauma patient management.

    Science.gov (United States)

    Ahmadi, Koorosh; Sedaghat, Mohammad; Safdarian, Mahdi; Hashemian, Amir-Masoud; Nezamdoust, Zahra; Vaseie, Mohammad; Rahimi-Movaghar, Vafa

    2013-01-01

    Since appropriate and time-table methods in trauma care have an important impact on patients'outcome, we evaluated the effect of Advanced Trauma Life Support (ATLS) program on medical interns' performance in simulated trauma patient management. A descriptive and analytical study before and after the training was conducted on 24 randomly selected undergraduate medical interns from Imam Reza Hospital in Mashhad, Iran. On the first day, we assessed interns' clinical knowledge and their practical skill performance in confronting simulated trauma patients. After 2 days of ATLS training, we performed the same study and evaluated their score again on the fourth day. The two findings, pre- and post- ATLS periods, were compared through SPSS version 15.0 software. P values less than 0.05 were considered statistically significant. Our findings showed that interns'ability in all the three tasks improved after the training course. On the fourth day after training, there was a statistically significant increase in interns' clinical knowledge of ATLS procedures, the sequence of procedures and skill performance in trauma situations (P less than 0.001, P equal to 0.016 and P equal to 0.01 respectively). ATLS course has an important role in increasing clinical knowledge and practical skill performance of trauma care in medical interns.

  7. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  8. Impact of simulation training on Jordanian nurses' performance of basic life support skills: A pilot study.

    Science.gov (United States)

    Toubasi, Samar; Alosta, Mohammed R; Darawad, Muhammad W; Demeh, Waddah

    2015-09-01

    Providing efficient basic life support (BLS) training is crucial for practicing nurses who provide direct patient care. Nevertheless, data addressing the impact of BLS courses on the skills and performance of Jordanian nurses are scarce. This study aimed to assess the effectiveness of a BLS simulation training on Jordanian nurses' skill improvement in cardiopulmonary resuscitation. A prospective quasi-experimental, single group pretest-posttest design was used to study the effect of BLS simulation; using a 9-item checklist; on the spot training; American Heart Association, on a group of Jordanian nurses. A pre-test was conducted following a CPR scenario to test the skills using 9-item checklist extrapolated from the American Heart Association guidelines. After debriefing, an interactive on spot training was provided. Later, participants undertook an unscheduled post-test after four weeks that included the same nine items. Thirty registered nurses with a mean clinical experience of 6.1years participated in the study. Comparing pre-test (M=4.6, SD=2.9, range=0 to 9) with post-test results (M=7.5, SD=1.7, range=4 to 9) showed an overall improvement in skills and BLS scores after the simulation training program (t=7.4, df=29, pskills and performance among Jordanian nurses. A refreshment BLS training session for nurses is highly recommended to guarantee nurses' preparedness in actual CPR scenarios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    Science.gov (United States)

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  10. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  11. Comprehensive cardiopulmonary life support (CCLS for cardiopulmonary resuscitation by trained paramedics and medics inside the hospital

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2017-01-01

    Full Text Available The cardiopulmonary resuscitation (CPR guideline of comprehensive cardiopulmonary life support (CCLS for management of the patient with cardiopulmonary arrest in adults provides an algorithmic step-wise approach for optimal outcome of the patient inside the hospital by trained medics and paramedics. This guideline has been developed considering the infrastructure of healthcare delivery system in India. This is based on evidence in the international and national literature. In the absence of data from the Indian population, the extrapolation has been made from international data, discussed with Indian experts and modified accordingly to ensure their applicability in India. The CCLS guideline emphasise the need to recognise patients at risk for cardiac arrest and their timely management before a cardiac arrest occurs. The basic components of CPR include chest compressions for blood circulation; airway maintenance to ensure airway patency; lung ventilation to enable oxygenation and defibrillation to convert a pathologic 'shockable' cardiac rhythm to one capable to maintaining effective blood circulation. CCLS emphasises incorporation of airway management, drugs, and identification of the cause of arrest and its correction, while chest compression and ventilation are ongoing. It also emphasises the value of organised team approach and optimal post-resuscitation care.

  12. Association of bleeding and thrombosis with outcome in Extracorporeal Life Support

    Science.gov (United States)

    Dalton, Heidi J.; Garcia-Filion, Pamela; Holubkov, Richard; Moler, Frank W.; Shanley, Thomas; Heidemann, Sabrina; Meert, Kathy; Berg, Robert A.; Berger, John; Carcillo, Joseph; Newth, Christopher; Harrison, Richard; Doctor, Allan; Rycus, Peter; Dean, J Michael; Jenkins, Tammara; Nicholson, Carol

    2015-01-01

    Objective Changes in technology and increased reports of successful extracorporeal life support (ECLS) use in patient populations such as influenza, cardiac arrest and adults are leading to expansion of ECLS. Major limitations to ECLS expansion remain bleeding and thrombosis. These complications are the most frequent causes of death and morbidity. As a pilot project to provide baseline data for a detailed evaluation of bleeding and thrombosis in the current era, ECLS patients were analyzed from eight centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN). Study design Retrospective analysis of patients (50 mg/dL) (10%; n=177). Among patients with CDH, bleeding and thrombosis occurred in, respectively, 45% (n=118) and 60% (n=159), Bleeding events were associated with reduced survival (RR 0.62; 95%CI: 0.46, 0.86) although thrombotic events were not (RR 0.92; 95%CI: 0.67, 1.26). Conclusions Bleeding and thrombosis remain common complications in patients undergoing ECLS. Further research to reduce or eliminate bleeding and thrombosis is indicated to help improve patient outcome. PMID:25647124

  13. Knowledge and Attitudes Towards Basic Life Support Among Health Students at a Saudi Women's University.

    Science.gov (United States)

    Al-Mohaissen, Maha A

    2017-02-01

    Awareness of basic life support (BLS) is paramount to ensure the provision of essential life-saving medical care in emergency situations. This study aimed to measure knowledge of BLS and attitudes towards BLS training among female health students at a women's university in Saudi Arabia. This prospective cross-sectional study took place between January and April 2016 at five health colleges of the Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. All 2,955 students attending the health colleges were invited to participate in the study. Participants were subsequently asked to complete a validated English-language questionnaire which included 21 items assessing knowledge of BLS and six items gauging attitudes to BLS. A total of 1,349 students completed the questionnaire (response rate: 45.7%). The mean overall knowledge score was very low (32.7 ± 13.9) and 87.9% of the participants had very poor knowledge scores. A total of 32.5% of the participants had never received any BLS training. Students who had previously received BLS training had significantly higher knowledge scores ( P supported mandatory BLS training. Overall knowledge about BLS among the students was very poor; however, attitudes towards BLS training were positive. These findings call for an improvement in BLS education among Saudi female health students so as to ensure appropriate responses in cardiac arrest or other emergency situations.

  14. Basic cardiopulmonary life support (BCLS for cardiopulmonary resuscitation by trained paramedics and medics outside the hospital

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2017-01-01

    Full Text Available The cardiopulmonary resuscitation guideline of Basic Cardiopulmonary Life Support (BCLS for management of adult victims with cardiopulmonary arrest outside the hospital provides an algorithmic stepwise approach for optimal outcome of the victims by trained medics and paramedics. This guideline has been developed considering the need to have a universally acceptable practice guideline for India and keeping in mind the infrastructural limitations of some areas of the country. This guideline is based on evidence elicited in the international and national literature. In the absence of data from Indian population, the excerpts have been taken from international data, discussed with Indian experts and thereafter modified to make them practically applicable across India. The optimal outcome for a victim with cardiopulmonary arrest would depend on core links of early recognition and activation; early high-quality cardiopulmonary resuscitation, early defibrillation and early transfer to medical facility. These links are elaborated in a stepwise manner in the BCLS algorithm. The BCLS also emphasise on quality check for various steps of resuscitation.

  15. Awareness of basic life support among Saudi dental students and interns.

    Science.gov (United States)

    Al-Shamiri, Hashem Motahir; Al-Maweri, Sadeq Ali; Shugaa-Addin, Bassam; Alaizari, Nader Ahmed; Hunaish, Abdulrahman

    2017-01-01

    Fatal medical emergencies may occur at any time in the dental clinic. The present study assessed the level of awareness and attitudes toward basic life support (BLS) among Saudi dental students and interns. A self-administered questionnaire comprising 23 closed-ended questions was used in this survey. The first part of the questionnaire assessed the demographical profile of the students such as age, gender, and educational level. The second part investigated their knowledge and awareness about BLS. Data from 203 respondents were analyzed using Statistical Package for the Social Studies version 22.0. The response rate was 81.2%. Overall, the respondents showed a low level of knowledge with significant differences between males and females (<0.001). Surprisingly, final-year dental students showed relatively better knowledge than interns though the differences were not statistically significant. The present study demonstrates poor knowledge among dental students regarding BLS and showed the urgent need for continuous refreshing courses for this critical topic.

  16. Quality of basic life support education and automated external defibrillator setting in schools in Ishikawa, Japan.

    Science.gov (United States)

    Takamura, Akiteru; Ito, Sayori; Maruyama, Kaori; Ryo, Yusuke; Saito, Manami; Fujimura, Shuhei; Ishiura, Yuna; Hori, Ariyuki

    2017-03-01

    Automated external defibrillators (AED) have been installed in schools in Japan since 2004, and the government strongly recommends teaching basic life support (BLS). We therefore examined the quality of BLS education and AED installation in schools. We conducted a prefecture-wide questionnaire survey of all primary and junior high schools in 2016, to assess BLS education and AED installation against the recommendations of the Japan Circulation Society. The results were analyzed using descriptive statistics and chi-squared test. In total, 195 schools out of 315 (62%) responded, of which 38% have introduced BLS education for children. BLS training was held in a smaller proportion of primary schools (18%) than junior high schools (86%). More than 90% of primary school staff had undergone BLS training in the previous 2 years. The most common locations of AED were the gymnasium (32%) followed by entrance hall (28%), staffroom (25%), and infirmary (12%). The reasons given for location were that it was obvious (34%), convenient for staff (32%), could be used out of hours (17%), and the most likely location for a heart attack (15%). Approximately 18% of schools reported that it takes >5 min to reach the AED from the furthest point. BLS training, AED location, and understanding of both are not sufficient to save children's lives efficiently. Authorities should make recommendations about the correct number of AED, and their location, and provide more information to improve the quality of BLS training in schools. © 2016 Japan Pediatric Society.

  17. The evaluation of first aid and basic life support training for the first year university students.

    Science.gov (United States)

    Altintaş, Kerim Hakan; Aslan, Dilek; Yildiz, Ali Naci; Subaşi, Nüket; Elçin, Melih; Odabaşi, Orhan; Bilir, Nazmi; Sayek, Iskender

    2005-02-01

    In Turkey, the first aiders are few in quantity and yet they are required in many settings, such as earthquakes. It was thought that training first year university students in first aid and basic life support (FA-BLS) techniques would serve to increase the number of first aiders. It was also thought that another problem, the lack of first aid trainers, might be addressed by training medical students to perform this function. A project aimed at training first year university students in FA-BLS was conducted at Hacettepe University. In the first phase, medical student first aid trainers (MeSFAT) were trained in FA-BLS training techniques by academic trainers and in the second phase, first year university students were trained in FA-BLS techniques by these peer trainers under the academic trainers' supervision. The purpose of this study was to assess the participants' evaluation of this project and to propose a new program to increase the number of first aiders in the country. In total, 31 medical students were certified as MeSFATs and 12 of these trained 40 first year university students in FA-BLS. Various questionnaires were applied to the participants to determine their evaluation of the training program. Most of the participants and the authors considered the program to be successful and effective. This method may be used to increase the number of first aid trainers and first aiders in the community.

  18. First aid and basic life support training for first year medical students.

    Science.gov (United States)

    Altintaş, Kerim Hakan; Yildiz, Ali Naci; Aslan, Dilek; Ozvariş, Sevkat Bahar; Bilir, Nazmi

    2009-12-01

    We developed 24 and 12-h programs for first aid and basic life support (FA-BLS) training for first-year medical students and evaluated the opinions of both the trainers and trainees on the effectiveness of the programs. The trainees were the first-year students of academic years 2000-2001 (316 students) and 2001-2002 (366 students). The evaluations of the participants were collected from short questionnaires created specifically for the study. For the 24-h training program, most of the students stated that FA-BLS sessions met their expectations (85.9%) and they were satisfied with the training (91.1%). Of the participants, 75.6% stated that they could apply FA confidently in real situations simulating the topics they learned in the FA-BLS sessions. For the 12-h training program, 84.4% of the students felt themselves competent in FA-BLS applications. The trainers considered both of the programs as effective.

  19. Life support technology investment strategies for flight programs: An application of decision analysis

    Science.gov (United States)

    Schlater, Nelson J.; Simonds, Charles H.; Ballin, Mark G.

    1993-01-01

    Applied research and technology development (R&TD) is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Given the increased awareness of limitations in resources, effective R&TD today needs a method for up-front assessment of competing technologies to help guide technology investment decisions. Such an assessment approach must account for uncertainties in system performance parameters, mission requirements and architectures, and internal and external events influencing a development program. The methodology known as decision analysis has the potential to address these issues. It was evaluated by performing a case study assessment of alternative carbon dioxide removal technologies for NASA's proposed First Lunar Outpost program. An approach was developed that accounts for the uncertainties in each technology's cost and performance parameters as well as programmatic uncertainties such as mission architecture. Life cycle cost savings relative to a baseline, adjusted for the cost of money, was used as a figure of merit to evaluate each of the alternative carbon dioxide removal technology candidates. The methodology was found to provide a consistent decision-making strategy for development of new life support technology. The case study results provided insight that was not possible from more traditional analysis approaches.

  20. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    Science.gov (United States)

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  2. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  3. Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.; Gurevich, Yu. L.; Sadovsky, M. G.

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive.

  4. Perceptions of interprofessional education in the Australian Advanced Life Support in Obstetrics (ALSO) course.

    Science.gov (United States)

    Walker, Laura; Fetherston, Catherine; McMurray, Anne

    2015-06-01

    Interprofessional education (IPE) was investigated in the context of an evaluation of the Advanced Life Support in Obstetrics (ALSO) course in Australia. Our objectives were to examine doctors' and midwives' perceptions regarding interprofessional learning and measure changes in self-reported confidence in specific interprofessional clinical situations. A prospective, mixed methods design was used to survey 165 ALSO course participants before the course and 6 weeks after the course (n=101). Quantitative data were analysed using the Wilcoxon signed rank test, and all P levels lower than .05 were considered significant. Qualitative data were analyzed using content analysis. There were significant increases in midwives' confidence in all four aspects of interprofessional interaction measured 6 weeks following the course. However, the doctors only reported a significant increase in one aspect, the confidence that their clinical decisions were respected by the midwives with whom they worked. The qualitative data demonstrated an appreciation of different professional approaches to clinical situations and the importance of teamwork, communication, respect, and understanding. While most participants were positive about the advantages of IPE, just under half also believed there were some disadvantages, particularly due to the variable learning needs of individual professionals. Both doctors and midwives reported various benefits from IPE, and many believed that IPE assisted maternity team collaboration and communication in the workplace. However, educators need to skillfully manage IPE sessions to ensure a similar distribution of learning and that o