Quantum state sharing against the controller's cheating
Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng
2013-08-01
Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.
Controlled teleportation of a 3-dimensional bipartite quantum state
Energy Technology Data Exchange (ETDEWEB)
Cao Haijing; Chen Zhonghua [Physics Department, Shanghai University of Electric Power, Shanghai 201300 (China); Song Heshan [Physics Department, Dalian University of Technology, Dalian 116024 (China)], E-mail: 2007000084@shiep.edu.cn
2008-07-15
A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.
Control aspects of quantum computing using pure and mixed states.
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J
2012-10-13
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.
Controlling the quantum state of trapped ions
Roos, C
2000-01-01
brace quadrupole transition enables the transfer of the ion's motional state into the ground state with up to 99.9 % probability. Different aspects of the cooling process are investigated. In particular, a measurement of the length of time that the ion spends on average in the final state after switching off the cooling lasers (heating time) is made. In contrast to prior experiments, this time is found to be orders of magnitude longer than the time required to manipulate the ion's quantum state. By coherently exciting the ion after preparing it in Fock states of motion, the coherence time is probed and found to be on the order of a millisecond, thus allowing the realization of a few quantum gates. Coherence-limiting processes have been investigated, as well as first steps towards extending the experiments to the case of two trapped ions. In addition to the experiments mentioned above, the possibility of performing cavity-QED experiments with trapped ions is explored. How to efficiently couple the quadrupole t...
Blind Quantum Signature with Controlled Four-Particle Cluster States
Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying
2017-08-01
A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.
Photodissociation of ultracold diatomic strontium molecules with quantum state control.
McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T
2016-07-07
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
Controlling the Quantum State with a time varying potential.
Carrasco, Sebastián; Rogan, José; Valdivia, Juan Alejandro
2017-10-16
The problem of controlling the quantum state of a system is investigated using a time varying potential. As a concrete example we study the problem of a particle in a box with a periodically oscillating infinite square-well potential, from which we obtain results that can be applied to systems with periodically oscillating boundary conditions. We derive an analytic expression for the frequencies of resonance between states, and against standard intuition, we show how to use this behavior to control the quantum state of the system at will. In particular, we offer as an example the transition from the ground state to the first excited state of the square well potential. At first sight, it may be counter intuitive that we can control the state of such a quantum Hamiltonian, as the Schrödinger equation conserves the norm of the wave function. In this manuscript, we show how that can be achieved.
Quantum Harmonic Oscillator State Control in a Squeezed Fock Basis.
Kienzler, D; Lo, H-Y; Negnevitsky, V; Flühmann, C; Marinelli, M; Home, J P
2017-07-21
We demonstrate control of a trapped-ion quantum harmonic oscillator in a squeezed Fock state basis, using engineered Hamiltonians analogous to the Jaynes-Cummings and anti-Jaynes-Cummings forms. We demonstrate that for squeezed Fock states with low n the engineered Hamiltonians reproduce the sqrt[n] scaling of the matrix elements which is typical of Jaynes-Cummings physics, and also examine deviations due to the finite wavelength of our control fields. Starting from a squeezed vacuum state, we apply sequences of alternating transfer pulses which allow us to climb the squeezed Fock state ladder, creating states up to excitations of n=6 with up to 8.7 dB of squeezing, as well as demonstrating superpositions of these states. These techniques offer access to new sets of states of the harmonic oscillator which may be applicable for precision metrology or quantum information science.
Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan; Zheng, Shi-Biao
2017-10-01
In this paper, we propose an approach to accelerate the dissipation dynamics for quantum state generation with Lyapunov control. The strategy is to add target-state-related coherent control fields into the dissipation process to intuitively improve the evolution speed. By applying the current approach, without losing the advantages of dissipation dynamics, the target stationary states can be generated in a much shorter time as compared to that via traditional dissipation dynamics. As a result, the current approach containing the advantages of coherent unitary dynamics and dissipation dynamics allows for a significant improvement in quantum state generation.
High-fidelity quantum state preparation using neighboring optimal control
Peng, Yuchen; Gaitan, Frank
2017-10-01
We present an approach to single-shot high-fidelity preparation of an n-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two-qubit Bell state |β _{01}\\rangle = (1/√{2})[ |01\\rangle + |10\\rangle ] with an error probability ɛ ˜ 10^{-6} (10^{-5}) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state |\\overline{β }_{01}\\rangle.
Protecting a Diamond Quantum Memory by Charge State Control.
Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg
2017-10-11
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and VSi-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.
Protecting a Diamond Quantum Memory by Charge State Control
Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A.; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg
2017-10-01
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing (QIP). Prominent examples are the Nitrogen-Vacancy (NV) center in diamond, phosphorous dopants in silicon (Si:P), rare-earth ions in solids and V$_{\\text{Si}}$-centers in Silicon-carbide (SiC). The Si:P system has demonstrated, that by eliminating the electron spin of the dopant, its nuclear spins can yield exceedingly long spin coherence times. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 20. Surprisingly, the new charge state allows switching the optical response of single nodes facilitating full individual addressability.
Hu, Juju; Ji, Yinghua; Ke, Qiang
2017-10-01
Utilizing model reference adaptive control theory and Lyapunov stability theorem, we derive the adaptive law for the model reference adaptive system. Then we design the Lyapunov control law by double control functions and investigate the orbit tracking of quantum state for non-Markovian quantum system with phase relaxation and energy dissipative relaxation. The influence of Ohmic reservoir with Lorentz-Drude regularization is numerically studied for a two-level system. The simulations show that the controlled quantum system will track the target orbit with a small oscillation due to the non-Markovian environmental memory effect, which indicates the orbit tracking of non-Markovian quantum system is incomplete.
Controlled release of multiphoton quantum states from a microwave cavity memory
Pfaff, Wolfgang; Axline, Christopher J.; Burkhart, Luke D.; Vool, Uri; Reinhold, Philip; Frunzio, Luigi; Jiang, Liang; Devoret, Michel H.; Schoelkopf, Robert J.
2017-09-01
Signal transmission loss in a quantum network can be overcome by encoding quantum states in complex multiphoton fields. But transmitting quantum information encoded in this way requires that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, such as Schrödinger cat states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in ~500 ns, about three orders of magnitude faster than its intrinsic lifetime. This mechanism--which we dub Schrödinger’s catapult--faithfully converts arbitrary cavity fields to travelling signals with an estimated efficiency of >90%, enabling the on-demand generation of complex itinerant quantum states. Importantly, the release process can be precisely controlled on fast timescales, allowing us to generate entanglement between the cavity and the travelling mode by partial conversion.
Quantum control theory for state transformations: Dark states and their enlightenment
Pemberton-Ross, Peter J.; Kay, Alastair; Schirmer, Sophie G.
2010-10-01
For many quantum information protocols such as state transfer, entanglement transfer, and entanglement generation, standard notions of controllability for quantum systems are too strong. We introduce the weaker notion of accessible pairs and prove an upper bound on the achievable fidelity of a transformation between a pair of states based on the symmetries of the system. A large class of spin networks is presented for which this bound can be saturated. In this context, we show how the inaccessible dark states for a given excitation-preserving evolution can be calculated and illustrate how some of these can be accessed using extra catalytic excitations. This emphasizes that it is not sufficient for analyses of state transfer in spin networks to restrict to the single excitation subspace. One class of symmetries in these spin networks is exactly characterized in terms of the underlying graph properties.
All-electrical coherent control of the exciton states in a single quantum dot
Boyer de La Giroday, A.; Bennett, A. J.; Pooley, M. A.; Stevenson, R. M.; Sköld, N.; Patel, R. B.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2010-12-01
We demonstrate high-fidelity reversible transfer of quantum information from the polarization of photons into the spin state of an electron-hole pair in a semiconductor quantum dot. Moreover, spins are electrically manipulated on a subnanosecond time scale, allowing us to coherently control their evolution. By varying the area of the electrical pulse, we demonstrate phase-shift and spin-flip gate operations with near-unity fidelities. Our system constitutes a controllable quantum interface between flying and stationary qubits, an enabling technology for quantum logic in the solid state.
Integrated generation of complex optical quantum states and their coherent control
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-01-01
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.
On-chip generation of high-dimensional entangled quantum states and their coherent control.
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-28
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
On-chip generation of high-dimensional entangled quantum states and their coherent control
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-01
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Controlling Quantum Information
Landahl, A J
2002-01-01
Quantum information science explores ways in which quantum physical laws can be harnessed to control the acquisition, transmission, protection, and processing of information. This field has seen explosive growth in the past several years from progress on both theoretical and experimental fronts. Essential to this endeavor are methods for controlling quantum information. In this thesis, I present three new approaches for controlling quantum information. First, I present a new protocol for continuously protecting unknown quantum states from noise. This protocol combines and expands ideas from the theories of quantum error correction and quantum feedback control. The result can outperform either approach by itself. I generalize this protocol to all known quantum stabilizer codes, and study its application to the three-qubit repetition code in detail via Monte Carlo simulations. Next, I present several new protocols for controlling quantum information that are fault-tolerant. These protocols require only local qu...
Controllable gaussian-qubit interface for extremal quantum state engineering.
Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro
2010-06-18
We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.
Nonadiabatic quantum state control of many bosons in few wells
DEFF Research Database (Denmark)
Tichy, Malte C.; Kock Pedersen, Mads; Mølmer, Klaus
2013-01-01
We present a fast scheme for arbitrary unitary control of interacting bosonic atoms in a double well. Assuming fixed interwell tunneling rate and intrawell interaction strength, we control the many-atom state by a discrete sequence of shifts of the single-well energies. For strong interactions......, resonant tunneling transitions implement beam-splitter U(2) rotations among atom number eigenstates, which can be combined and, thus, permit full controllability. By numerically optimizing such sequences of couplings at avoided level crossings, we extend the realm of full controllability to a wide range...... of realistic interaction parameters, while we remain in the simple control space. We demonstrate the efficiency and the high achievable fidelity of our proposal with nonadiabatic population transfer, NOON-state creation, a cnot gate, and a transistorlike, conditional evolution of several atoms....
Sang, Ming-huang; Nie, Li-ping
2017-11-01
We demonstrate that a seven-particle entangled state can be used to realize the deterministic asymmetric bidirectional controlled quantum information transmission by performing only Bell-state measurement and two-particle projective measurement and single-particle measurement. In our protocol, Alice can teleport an arbitrary unknown single-particle state to Bob and at the same time Bob can remotely prepare an arbitrary known two-particle state for Alice via the control of the supervisor Charlie.
Bidirectional Controlled Quantum Information Transmission by Using a Five-Qubit Cluster State
Sang, Zhi-wen
2017-11-01
We demonstrate that an entangled five-qubit cluster state can be used to realize the deterministic bidirectional controlled quantum information transmission by performing only Bell-state measurement and single-qubit measurements. In our protocol, Alice can teleport an arbitrary unknown single-qubit state to Bob and at the same time Bob can remotely prepare an arbitrary known single-qubit state for Alice via the control of the supervisor Charlie.
Quantum metamaterial without local control
Shvetsov, A.; Satanin, A. M.; Nori, Franco; Savel'ev, S.; Zagoskin, A. M.
2013-01-01
A quantum metamaterial can be implemented as a quantum coherent 1D array of qubits placed in a transmission line. The properties of quantum metamaterials are determined by the local quantum state of the system. Here we show that a spatially-periodic quantum state of such a system can be realized without direct control of the constituent qubits, by their interaction with the initializing ("priming") pulses sent through the system in opposite directions. The properties of the resulting quantum ...
Phase space dynamics and control of the quantum particles associated to hypergraph states
Directory of Open Access Journals (Sweden)
Berec Vesna
2015-01-01
Full Text Available As today’s nanotechnology focus becomes primarily oriented toward production and manipulation of materials at the subatomic level, allowing the performance and complexity of interconnects where the device density accepts more than hundreds devices on a single chip, the manipulation of semiconductor nanostructures at the subatomic level sets its prime tasks on preserving and adequate transmission of information encoded in specified (quantum states. The presented study employs the quantum communication protocol based on the hypergraph network model where the numerical solutions of equations of motion of quantum particles are associated to vertices (assembled with device chip, which follow specific controllable paths in the phase space. We address these findings towards ultimate quest for prediction and selective control of quantum particle trajectories. In addition, presented protocols could represent valuable tool for reducing background noise and uncertainty in low-dimensional and operationally meaningful, scalable complex systems.
Edge state preparation in a one-dimensional lattice by quantum Lyapunov control
Zhao, X. L.; Shi, Z. C.; Qin, M.; Yi, X. X.
2017-01-01
Quantum Lyapunov control uses a feedback control methodology to determine control fields applied to control quantum systems in an open-loop way. In this work, we employ two Lyapunov control schemes to prepare an edge state for a fermionic chain consisting of cold atoms loaded in an optical lattice. Such a chain can be described by the Harper model. Corresponding to the two schemes, two types of quantum Lyapunov functions are considered. The results show that both the schemes are effective at preparing the edge state within a wide range of parameters. We found that the edge state can be prepared with high fidelity even if there are moderate fluctuations of on-site or hopping potentials. Both control schemes can be extended to similar chains (3m + d, d = 2) of different lengths. Since a regular amplitude control field is easier to apply in practice, an amplitude-modulated control field is used to replace the unmodulated one. Such control approaches provide tools to explore the edge states of one-dimensional topological materials.
Controlling the bound states in a quantum-dot hybrid nanowire
Ptok, Andrzej; Kobiałka, Aksel; Domański, Tadeusz
2017-11-01
Recent experiments using the quantum dot coupled to the topological superconducting nanowire [Deng et al., Science 354, 1557 (2016), 10.1126/science.aaf3961] revealed that the zero-energy bound state coalesces from the Andreev bound states. Such quasiparticle states, present in the quantum dot, can be controlled by magnetic and electrostatic means. We use a microscopic model of the quantum-dot-nanowire structure to reproduce the experimental results, applying the Bogoliubov-de Gennes technique. This is done by studying the gate voltage dependence of the various types of bound states and mutual influence between them. We show that the zero-energy bound states can emerge from the Andreev bound states in the topologically trivial phase and can be controlled using various means. In the nontrivial topological phase we show the possible resonance between these zero-energy levels with Majorana bound states. We discuss and explain this phenomenon as a result of dominant spin character of discussed bound states. Presented results can be applied in experimental studies by using the proposed nanodevice.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
Quantum state selection of polar molecules: Alignment, orientation and conformational control
Stapelfeldt, Henrik
2009-05-01
Building on ideas that go back to Stern in the 1920s we use an inhomogeneous static electric field to deflect a cold beam of polar molecules. The deflection spatially disperses the rotational quantum states of the molecules. We show that the molecules residing in the lowest-lying rotational states can be selected and used as targets for further experiments. In particular, the quantum-state-selected molecules enable unprecedented strong alignment, induced by a moderately intense laser pulse, as well as strong orientation induced by a mixed laser and static electric field. Here, alignment refers to confinement of one or more molecule-fixed axes along laboratory-fixed axes, and orientation refers to the molecular dipole moments pointing in a specific direction. Also, it is shown that the deflection enables separation of the different conformers of a single molecule. We discuss new opportunities offered by the enhanced degree of orientational control, made possibly by quantum state selection, including time resolved studies of torsion, and eventually enantiomeric conversion, of axially chiral molecules. Collaborators: J. Küpper, G. Meijer, L. B. Madsen. [4pt] [1] Laser-Induced Alignment and Orientation of Quantum-State-Selected Large Molecules, L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, Phys. Rev. Lett. 102. 023001 (2009).
Quantum metamaterial without local control
Shvetsov, A.; Satanin, A. M.; Nori, Franco; Savel'ev, S.; Zagoskin, A. M.
2013-06-01
A quantum metamaterial can be implemented as a quantum coherent one-dimensional array of qubits placed in a transmission line. The properties of quantum metamaterials are determined by the local quantum state of the system. Here we show that a spatially periodic quantum state of such a system can be realized without direct control of the constituent qubits, by their interaction with the initializing (“priming”) pulses sent through the system in opposite directions. The properties of the resulting quantum photonic crystal are determined by the choice of the priming pulses. This proposal can be readily generalized to other implementations of quantum metamaterials.
Quantum correlations and distinguishability of quantum states
Energy Technology Data Exchange (ETDEWEB)
Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)
2014-07-15
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Nanvakenari, Milad; Houshmand, Monireh
In this paper, a three-party controlled quantum secure direct communication and authentication (QSDCA) protocol is proposed by using four particle cluster states via a quantum one-time pad and local unitary operations. In the present scheme, only under the permission of the controller, the sender and the receiver can implement secure direct communication successfully. But under any circumstances, Charlie cannot obtain the secret message. Eavesdropping detection and identity authentication are achieved with the help of the previously shared reusable base identity strings of users. This protocol is unconditionally secure in both ideal and practical noisy cases. In one transmission, a qubit of each four particle cluster state is used as controller’s permission and the same qubit with another qubit are used to recover two classical bits of information. In the proposed scheme, the efficiency is improved compared with the previous works.
Hardy, Lucien
2013-01-01
In this paper we consider theories in which reality is described by some underlying variables, λ. Each value these variables can take represents an ontic state (a particular state of reality). The preparation of a quantum state corresponds to a distribution over the ontic states, λ. If we make three basic assumptions, we can show that the distributions over ontic states corresponding to distinct pure states are nonoverlapping. This means that we can deduce the quantum state from a knowledge of the ontic state. Hence, if these assumptions are correct, we can claim that the quantum state is a real thing (it is written into the underlying variables that describe reality). The key assumption we use in this proof is ontic indifference — that quantum transformations that do not affect a given pure quantum state can be implemented in such a way that they do not affect the ontic states in the support of that state. In fact this assumption is violated in the Spekkens toy model (which captures many aspects of quantum theory and in which different pure states of the model have overlapping distributions over ontic states). This paper proves that ontic indifference must be violated in any model reproducing quantum theory in which the quantum state is not a real thing. The argument presented in this paper is different from that given in a recent paper by Pusey, Barrett and Rudolph. It uses a different key assumption and it pertains to a single copy of the system in question.
Energy Technology Data Exchange (ETDEWEB)
Hauer, Juergen; Buckup, Tiago [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany); Motzkus, Marcus [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany)], E-mail: motzkus@staff.uni-marburg.de
2008-06-23
Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S{sub 0}) and lowest lying excited state (S{sub 1}) of {beta}-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.
Fast holonomic quantum computation based on solid-state spins with all-optical control
Zhou, Jian; Liu, BaoJie; Hong, ZhuoPing; Xue, ZhengYuan
2018-01-01
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.
Furusawa, Akira
2015-01-01
This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.
Popov, A. K.; Kimberg, V. V.; George, Thomas F.
2004-04-01
A theory of quantum control of short-wavelength sum-frequency generation, which employs the continuum states, is developed. The proposed scheme employs all-resonant coupling and trade-off optimization of the accompanying constructive and destructive quantum interference effects in the lower-order and higher-order polarizations controlled by the overlap of two autoionizinglike laser-induced continuum structures. The scheme does not rely on adiabatic passage, coherent population trapping or maximum atomic coherence as a means to facilitate maximum output. The opportunities for manipulating transparency of the medium and refractive index for the fundamental and generated radiations, as well as nonlinear polarization in the multiple-resonant medium, are shown. This opens the feasibility of creating frequency-tunable narrowband filters, polarization rotators, and dispersive elements for vacuum ultraviolet radiation. The features specific for quantum interference in Doppler-broadened media are investigated. The feasibility of almost complete conversion of long-wavelength fundamental radiation into generated short-wavelength radiation, and of a dramatic decrease in the intensity of required fundamental radiations, is shown.
Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M.A.
2016-01-01
Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. Remarkably, a recent proposal has shown that, in principle, such low-noise detection is not a necessary requirement. Here, we experimentally demonstrate a widely applicable method for enta...
Quantum-State Controlled Chemical Reactions of Ultracold Potassium-Rubidium Molecules
National Research Council Canada - National Science Library
S. Ospelkaus; K.-K. Ni; D. Wang; M. H. G. de Miranda; B. Neyenhuis; G. Queméméner; P. S. Julienne; J. L. Bohn; D. S. Jin; J. Ye
2010-01-01
...? Starting with an optically trapped near-quantum-degenerate gas of polar 40 K 87 Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions...
Bădescu, Costin; O'Donnell, Ryan; Wright, John
2017-01-01
We consider the problem of quantum state certification, where one is given $n$ copies of an unknown $d$-dimensional quantum mixed state $\\rho$, and one wants to test whether $\\rho$ is equal to some known mixed state $\\sigma$ or else is $\\epsilon$-far from $\\sigma$. The goal is to use notably fewer copies than the $\\Omega(d^2)$ needed for full tomography on $\\rho$ (i.e., density estimation). We give two robust state certification algorithms: one with respect to fidelity using $n = O(d/\\epsilon...
Lockhart, Joshua; Guillén, Carlos E. González
2017-01-01
We consider a problem we call StateIsomorphism: given two quantum states of n qubits, can one be obtained from the other by rearranging the qubit subsystems? Our main goal is to study the complexity of this problem, which is a natural quantum generalisation of the problem StringIsomorphism. We show that StateIsomorphism is at least as hard as GraphIsomorphism, and show that these problems have a similar structure by presenting evidence to suggest that StateIsomorphism is an intermediate probl...
Quantum feedback control and classical control theory
Doherty, Andrew C.; Habib, Salman; Jacobs, Kurt; Mabuchi, Hideo; Tan, Sze M.
2000-01-01
We introduce and discuss the problem of quantum feedback control in the context of established formulations of classical control theory, examining conceptual analogies and essential differences. We describe the application of state-observer based control laws, familiar in classical control theory, to quantum systems and apply our methods to the particular case of switching the state of a particle in a double-well potential.
Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping
2018-01-01
We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver's quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)
2016-12-15
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.
Directory of Open Access Journals (Sweden)
Moskalenko ES
2010-01-01
Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.
Controlled quantum evolutions and transitions
Energy Technology Data Exchange (ETDEWEB)
Petroni, Nicola Cufaro [INFN Sezione di Bari, INFM Unitadi Bari and Dipartimento Interateneo di Fisica dell' Universitae del Politecnico di Bari, Bari (Italy); De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [INFM Unitadi Salerno, INFN Sezione di Napoli - Gruppo collegato di Salerno and Dipartimento di Fisica dell' Universitadi Salerno, Baronissi, Salerno (Italy)
1999-10-29
We study the nonstationary solutions of Fokker-Planck equations associated to either stationary or non stationary quantum states. In particular, we discuss the stationary states of quantum systems with singular velocity fields. We introduce a technique that allows arbitrary evolutions ruled by these equations to account for controlled quantum transitions. As a first significant application we present a detailed treatment of the transition probabilities and of the controlling time-dependent potentials associated to the transitions between the stationary, the coherent, and the squeezed states of the harmonic oscillator. (author)
Assessments of macroscopicity for quantum optical states
DEFF Research Database (Denmark)
Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund
2015-01-01
With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....
Xiao, Xianbo; Yang, Shengyuan A; Liu, Zhengfang; Li, Huili; Zhou, Guanghui
2015-01-20
The recent discovery of Dirac semimetals represents a new achievement in our fundamental understanding of topological states of matter. Due to their topological surface states, high mobility, and exotic properties associated with bulk Dirac points, these new materials have attracted significant attention and are believed to hold great promise for fabricating novel topological devices. For nanoscale device applications, effects from finite size usually play an important role. In this report, we theoretically investigate the electronic properties of Dirac semimetal nanostructures. Quantum confinement generally opens a bulk band gap at the Dirac points. We find that confinement along different directions shows strong anisotropic effects. In particular, the gap due to confinement along vertical c-axis shows a periodic modulation, which is absent for confinement along horizontal directions. We demonstrate that the topological surface states could be controlled by lateral electrostatic gating. It is possible to generate Rashba-like spin splitting for the surface states and to shift them relative to the confinement-induced bulk gap. These results will not only facilitate our fundamental understanding of Dirac semimetal nanostructures, but also provide useful guidance for designing all-electrical topological spintronics devices.
Brody, DC; Hughston, LP
2016-01-01
We propose an energy-driven stochastic master equation for the density matrix as a dynamical model for quantum state reduction. In contrast, most previous studies of state reduction have considered stochastic extensions of the Schr¨odinger equation, and have introduced the density matrix as the expectation of the random pure projection operator associated with the evolving state vector. After working out properties of the reduction process we construct a general solution to the energy- driven...
Rudolph, Terry; Spekkens, Robert W.
2004-11-01
We introduce a primitive for quantum cryptography that we term “state targeting.” We show that increasing one’s probability of success in this task above a minimum amount implies an unavoidable increase in the probability of a particular kind of failure. This is analogous to the unavoidable disturbance to a quantum state that results from gaining information about its identity, and can be shown to be a purely quantum effect. We solve various optimization problems for state targeting that are useful for the security analysis of two-party cryptographic tasks implemented between remote antagonistic parties. Although we focus on weak coin flipping, the results are significant for other two-party protocols, such as strong coin flipping, partially binding and concealing bit commitment, and bit escrow. Furthermore, the results have significance not only for the traditional notion of security in cryptography, that of restricting a cheater’s ability to bias the outcome of the protocol, but also for a different notion of security that arises only in the quantum context, that of cheat sensitivity. Finally, our analysis leads to some interesting secondary results, namely, a generalization of Uhlmann’s theorem and an operational interpretation of the fidelity between two mixed states.
Zhou, Yi; Kanoda, Kazushi; Ng, Tai-Kai
2017-04-01
This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of semiclassical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semiclassical approaches fail once quantum mechanics become important and then describe the alternative approaches for addressing the problem. Mainly spin-1 /2 systems are discussed, and most of the time is spent in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called S U (2 ), U (1 ), or Z2 spin liquid states. A review is given of the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin (S >1 /2 ) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular-lattice systems [κ -(ET )2Cu2(CN )3 and EtMe3Sb [Pd (dmit )2]2 ], kagome-lattice system [ZnCu3(OH )6Cl2 ], and hyperkagome lattice system (Na4 Ir3 O8 ), is reviewed and compared against the corresponding theories.
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Desbuquois, Rémi; Messer, Michael; Görg, Frederik; Sandholzer, Kilian; Jotzu, Gregor; Esslinger, Tilman
2017-11-01
Near-resonant periodic driving of quantum systems promises the implementation of a large variety of novel quantum states, though their preparation and measurement remains challenging. We address these aspects in a model system consisting of interacting fermions in a periodically driven array of double wells created by an optical lattice. The singlet and triplet fractions and the double occupancy of the Floquet states are measured and their behavior as a function of the interaction strength is analyzed in the high- and low-frequency regimes. We demonstrate full control of the Floquet state population and find suitable ramping protocols and time scales that adiabatically connect the initial ground state to different targeted Floquet states. The micromotion that exactly describes the time evolution of the system within one driving cycle is observed. Additionally, we provide an analytic description of the model and compare it to numerical simulations.
Quantum cobwebs: Universal entangling of quantum states
Indian Academy of Sciences (India)
Center for Philosophy and Foundation of Science, New Delhi, India ... Introduction. Quantum entanglement is generally regarded as a very useful resource for quantum infor- mation processing [1]. It can be used for teleportation [2], ... To achieve this, we introduce a class of entangled states calledzero sum amplitude(ZSA).
Multiphoton quantum optics and quantum state engineering
Energy Technology Data Exchange (ETDEWEB)
Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it
2006-05-15
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
Mapping quantum state dynamics in spontaneous emission
Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.
2016-01-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Afa, I. J.; Font, J. L.; Serrat, C.
2017-11-01
We propose an ultrafast femtosecond time scale trichromatic π -pulse illumination scheme for coherent excitation and manipulation of low-lying Rydberg states in rubidium. Selective population of nP 3 /2 levels with principal quantum numbers n ≲12 using 75-fs laser pulses is achieved. The density-matrix equations of a four-level ladder system beyond the rotating-wave approximation have to be solved to clarify the balance between the principal quantum numbers, the duration of the laser pulses, and the associated ac-Stark effects for the fastest optimal excitation. The mechanism is robust for femtosecond control using different level configurations for applications in ultrafast quantum information processing and spectroscopy.
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu
2017-04-14
A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.
Entangled states in quantum mechanics
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Directory of Open Access Journals (Sweden)
Erlin Sun
2014-01-01
Full Text Available Under a degenerate two-photon resonant excitation, the Rabi oscillation of the four-level biexciton system in a semiconductor quantum dot is theoretically investigated. The influence of the laser phases on the state manipulation is modeled and numerically calculated. Due to the interference between different excitation paths, the laser phase plays an important role and can be utilized as an alternate control knob to coherently manipulate the biexciton state. The phase control can be facilely implemented by changing the light polarization via a quarter-wave plate.
Solid-state quantum metamaterials
Wilson, Richard; Everitt, Mark; Saveliev, Sergey; Zagoskin, Alexandre
2013-03-01
Quantum metamaterials provide a promising potential test bed for probing the quantum-classical transition. We propose a scalable and feasible architecture for a solid-state quantum metamaterial. This consists of an ensemble of superconducting flux qubits inductively coupled to a superconducting transmission line. We make use of fully quantum mechanical models which account for decoherence, input and readout to study the behaviour of prototypical 1D and 2D quantum metamaterials. In addition to demonstrating some of the novel phenomena that arise in these systems, such as ``quantum birefringence,'' we will also discuss potential applications.
Preparation of quantum state (review)
Ali, N.; Yusof, N. R.; Soekardjo, S.; Saharudin, S.; Endut, R.
2017-11-01
We reviewed experimental results and publications prepared by the Quantum Laboratory, Mimos Berhad. The complexity of the setups lies mainly in preparing the quantum states. Optics is chosen as the medium of this quantum system. The two methods - fiber based and free space systems are different from each other in terms of experimental setups, components configuration, and selections.
Feedback control of superconducting quantum circuits
Ristè, D.
2014-01-01
Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback
Quantum pump in quantum spin Hall edge states
Cheng, Fang
2016-09-01
We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the shannon entropy of quantum systems.
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Controlling the Shannon Entropy of Quantum Systems
Directory of Open Access Journals (Sweden)
Yifan Xing
2013-01-01
Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Whither the Future of Controlling Quantum Phenomena?
Rabitz, Herschel; de Vivie-Riedle, Regina; Motzkus, Marcus; Kompa, Karl
2000-05-01
This review puts into perspective the present state and prospects for controlling quantum phenomena in atoms and molecules. The topics considered include the nature of physical and chemical control objectives, the development of possible quantum control rules of thumb, the theoretical design of controls and their laboratory realization, quantum learning and feedback control in the laboratory, bulk media influences, and the ability to utilize coherent quantum manipulation as a means for extracting microscopic information. The preview of the field presented here suggests that important advances in the control of molecules and the capability of learning about molecular interactions may be reached through the application of emerging theoretical concepts and laboratory technologies.
Stoichiometric control of the density of states in PbS colloidal quantum dot solids.
Balazs, Daniel M; Bijlsma, Klaas I; Fang, Hong-Hua; Dirin, Dmitry N; Döbeli, Max; Kovalenko, Maksym V; Loi, Maria A
2017-09-01
Colloidal quantum dots, and nanostructured semiconductors in general, carry the promise of overcoming the limitations of classical materials in chemical and physical properties and in processability. However, sufficient control of electronic properties, such as carrier concentration and carrier mobility, has not been achieved until now, limiting their application. In bulk semiconductors, modifications of electronic properties are obtained by alloying or doping, an approach that is not viable for structures in which the surface is dominant. The electronic properties of PbS colloidal quantum dot films are fine-tuned by adjusting their stoichiometry, using the large surface area of the nanoscale building blocks. We achieve an improvement of more than two orders of magnitude in the hole mobility, from below 10(-3) to above 0.1 cm(2)/V⋅s, by substituting the iodide ligands with sulfide while keeping the electron mobility stable (~1 cm(2)/V⋅s). This approach is not possible in bulk semiconductors, and the developed method will likely contribute to the improvement of solar cell efficiencies through better carrier extraction and to the realization of complex (opto)electronic devices.
Automating quantum experiment control
Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.
2017-03-01
The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.
Controlled Alternate Quantum Walks based Quantum Hash Function.
Li, Dan; Yang, Yu-Guang; Bi, Jing-Lin; Yuan, Jia-Bin; Xu, Juan
2018-01-09
Through introducing controlled alternate quantum walks, we present controlled alternate quantum walks (CAQW) based quantum hash function. CAQW based quantum hash function have excellent security, outstanding statistical performance and splendid expansibility. Furthermore, due to the structure of alternate quantum walks, implementing CAQW based quantum hash function significantly reduces the resources necessary for its feasible experimental realization than implementing other quantum hash functions.
Liu, Zhihao; Chen, Hanwu; Liu, Wenjie
2016-10-01
A new attack strategy, the so-called intercept-selectively-measure-resend attack is put forward. It shows that there are some security issues in the controlled quantum secure direct communication (CQSDC) and authentication protocol based on five-particle cluster states and quantum one-time pad. Firstly, an eavesdropper (Eve) can use this attack to eavesdrop on 0.656 bit of every bit of the identity string of the receiver and 1.406 bits of every couple of the corresponding bits of the secret message without being detected. Also, she can eavesdrop on 0.311 bit of every bit of the identity string of the controller. Secondly, the receiver can also take this attack to obtain 1.311 bits of every couple of the corresponding bits of the secret message without the permission of the controller, which is not allowed in the CQSDC protocols. In fact, there is another security issue in this protocol, that is, one half of the information about the secret is leaked out unconsciously. In addition, an alternative attack strategy which is called as the selective-CNOT-operation attack strategy to attack this protocol is discussed.
Quantum-polarization state tomography
Bayraktar, Ömer; Swillo, Marcin; Canalias, Carlota; Björk, Gunnar
2016-01-01
We propose and demonstrate a method for quantum-state tomography of qudits encoded in the quantum polarization of $N$-photon states. This is achieved by distributing $N$ photons nondeterministically into three paths and their subsequent projection, which for $N=1$ is equivalent to measuring the Stokes (or Pauli) operators. The statistics of the recorded $N$-fold coincidences determines the unknown $N$-photon polarization state uniquely. The proposed, fixed setup manifestly rules out any syste...
Quantum States as Ordinary Information
Directory of Open Access Journals (Sweden)
Ken Wharton
2014-03-01
Full Text Available Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge about. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time. By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed “all-at-once” (as in classical action principles. From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.
Formation of "Steady Size" State for Accurate Size Control of CdSe and CdS Quantum Dots.
Liu, Xinyue; Liu, Yixuan; Xu, Shu; Geng, Chong; Xie, Yangyang; Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang
2017-08-03
We report on the formation of a "steady size" state for the growth of CdSe and CdS quantum dots (QDs), in which the size of the QDs remains constant and independent of reaction time. Kinetic study reveals that this state exists only when certain coordinating ligands are within a range between NS and NV + NS. NS and NV represent the number of atoms on the surface of the QDs and the total amount of atoms in the QDs, respectively. Under this condition, the size R of the QDs can be controlled solely by the reaction temperature T with a relationship of 1/R2 ∼ T. More importantly, a highly reproducible and accurate linear control of the emission wavelength of QDs on a subnanometer scale by the reaction temperature is achieved. The discovery enables large-scale synthesis of QDs with minimum size variation that meets critical demands on wavelength accuracy for QD-based optoelectronic applications.
Superadiabatic Controlled Evolutions and Universal Quantum Computation
Santos, Alan C.; Sarandy, Marcelo S.
2015-01-01
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064
All-optical quantum control operations for a solid-state spin using a lambda (Λ) system
Yale, C. G.; Buckley, B. B.; Christle, D. J.; Heremans, F. J.; Bassett, L. C.; Awschalom, D. D.; Burkard, G.
2013-05-01
The nitrogen-vacancy (NV) center in diamond is a promising solid-state spin qubit due to its spin-selective intersystem crossing (ISC) enabling initialization and readout of its spin state, while the use of microwave magnetic fields typically provides unitary control. Here, we demonstrate an alternate, fully optical technique to initialize, readout, and unitarily manipulate the NV center's spin below 10 K. To do so, we investigate optically-driven processes within an NV-center-based Λ system using time-resolved methods and quantum state tomography. We initialize our qubit into any selectable superposition, or dark state, through coherent population trapping (CPT). Complementary spin-state readout along any basis is realized by measuring the transient photoluminescence emitted during CPT. We achieve unitary rotations of the spin state about any axis by driving stimulated Raman transitions. With these three protocols, we perform all-optical measures of single-spin coherence. Since these techniques do not rely on the NV center's specialized ISC or require on-chip microwave control, they provide a method for probing other potential solid-state qubits, not only those with NV-like structures. This work is funded by AFOSR, ARO, and DARPA.
Delgado, Francisco
2017-12-01
Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.
Dark states in quantum photosynthesis
Kozyrev, S V
2016-01-01
We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.
Quantum fidelity and quantum phase transitions in matrix product states
Cozzini, Marco; Ionicioiu, Radu; Zanardi, Paolo
2007-09-01
Matrix product states, a key ingredient of numerical algorithms widely employed in the simulation of quantum spin chains, provide an intriguing tool for quantum phase transition engineering. At critical values of the control parameters on which their constituent matrices depend, singularities in the expectation values of certain observables can appear, in spite of the analyticity of the ground state energy. For this class of generalized quantum phase transitions, we test the validity of the recently introduced fidelity approach, where the overlap modulus of ground states corresponding to slightly different parameters is considered. We discuss several examples, successfully identifying all the present transitions. We also study the finite size scaling of fidelity derivatives, pointing out its relevance in extracting critical exponents.
Quantum state revivals in quantum walks on cycles
Directory of Open Access Journals (Sweden)
Phillip R. Dukes
2014-01-01
Full Text Available Recurrence in the classical random walk is well known and described by the Pólya number. For quantum walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin operators which are constant in time and uniform across the path have been described before but only incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.
Cluster State Quantum Computation
2014-02-01
important result is called the threshold theorem of quantum computation [Aliferis06]. Fault-tolerant schemes for OWQC using photons have recently...defined in terms of the standard Fubini -Study distance Approved for Public Release; Distribution Unlimited. 25 ( ) ( ) 1
Nearly optimal quantum control: an analytical approach
Sun, Chen; Saxena, Avadh; Sinitsyn, Nikolai A.
2017-09-01
We propose nearly optimal control strategies for changing the states of a quantum system. We argue that quantum control optimization can be studied analytically within some protocol families that depend on a small set of parameters for optimization. This optimization strategy can be preferred in practice because it is physically transparent and does not lead to combinatorial complexity in multistate problems. As a demonstration, we design optimized control protocols that achieve switching between orthogonal states of a naturally biased quantum two-level system.
Criteria for reachability of quantum states
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S.G.; Solomon, A.I. [Quantum Processes Group and Department of Applied Maths, Open University, Milton Keynes (United Kingdom)]. E-mails: S.G.Schirmer@open.ac.uk; A.I.Solomon@open.ac.uk; Leahy, J.V. [Department of Mathematics and Institute of Theoretical Science, University of Oregon, Eugene, OR (United States)]. E-mail: leahy@math.uoregon.edu
2002-10-11
We address the question of which quantum states can be inter-converted under the action of a time-dependent Hamiltonian. In particular, we consider the problem as applied to mixed states, and investigate the difference between pure- and mixed-state controllabilities introduced in previous work. We provide a complete characterization of the eigenvalue spectrum for which the state is controllable under the action of the symplectic group. We also address the problem of which states can be prepared if the dynamical Lie group is not sufficiently large to allow the system to be controllable. (author)
Cluster State Quantum Computing
2012-12-01
discuss the potential advantages of such a system and the difficulties of the design. When an incident photon strikes a Niobium nitride ( NbN ...counted. Present superconducting nanowire systems, such as NbN , have reasonably good counting efficiency [Dauler10], [Marsili11], by which we mean...L. O’Brein, A. Furusawa, J. Vuchovic, “Photonic quantum technologies ,” Nat. Photonics 3 Dec. (2009) doi:10.1038/nphoton.2009.229. [Pawlowski09
Quantum state transfer via Bloch oscillations
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G. A.
2016-01-01
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware. PMID:27189630
Theory of controlled quantum dynamics
Energy Technology Data Exchange (ETDEWEB)
De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Fisica, Universita di Salerno, and INFN, Sezione di Napoli, Gruppo collegato di Salerno, Baronissi (Italy)
1997-06-07
We introduce a general formalism to obtain localized quantum wavepackets as dynamically controlled systems, in the framework of Nelson stochastic quantization. We show that in general the control is linear, and it amounts to introducing additional time-dependent terms in the potential. In this way one can construct for general systems either coherent packets following classical motion with constant dispersion, or coherent packets following classical motion whose time-dependent dispersion remains bounded for all times. We show that in the operatorial language our scheme amounts to introducing a suitable generalization to arbitrary potentials of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator. (author)
Manipulation of quantum states in a memory cell: controllable Mach-Zehnder interferometer
Losev, A. S.; Golubeva, T. Yu; Golubev, Yu M.
2017-05-01
In this article, we consider the possibility of manipulation of quantum signals, ensured by the use of the tripod-type atomic memory cell. We show that depending on a configuration of driving fields at the writing and reading, such a cell allows the signal to both be stored and transformed. It is possible to provide the operation of the memory cell in a Mach-Zehnder interferometer mode passing two successive pulses at the input. We proposed a procedure of partial signal readout that provides entanglement between the retrieved light and the atomic ensemble. Thus, we have shown that a tripod atomic cell is a promising candidate to implement quantum logical operations, including two-qubit ones, which can be performed on the basis of only one cell.
Effect of Environment on the Fidelity of Control and Measurements of Solid-State Quantum Devices
2013-07-22
Xiang, C. M. Lieber, and C. M. Marcus, “A ge/si heterostructure nanowire -based double quantum dot with integrated charge sensor,” Nature Naotechnology...defects in the oxide tunnel barrier and amorphous dielectric of the circuit have been proposed to be the source of critical current noise [36, 37] and...level fluctuators in the amor- phous tunnel layer of the junction [40]. Similarly, the relaxation of paramagnetic spins located at the superconductor
Quantum Transduction with Adaptive Control.
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-12
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
Engineering quantum hyperentangled states in atomic systems
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger–Horne–Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
Coherent states in the quantum multiverse
Energy Technology Data Exchange (ETDEWEB)
Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)
2010-01-11
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
Coherent states in the quantum multiverse
Robles-Pérez, S.; Hassouni, Y.; González-Díaz, P. F.
2010-01-01
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
Quantum logic gates using coherent population trapping states
Indian Academy of Sciences (India)
Coherent population trap; quantum computation; controlled phase gate. PACS Nos 42.50.Ex; 32.80.Qk; 32.90+a; 03.67.Lx. Conventional computers handle information in the form of bits – which take up values 0 or. 1. Quantum computers on the other hand, use quantum bits (qubits), which can be prepared in states 0, 1 or ...
Entanglement for All Quantum States
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Inorganic passivation and doping control in colloidal quantum dot photovoltaics
Hoogland, Sjoerd H.
2012-01-01
We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.
BOOK REVIEW Quantum Measurement and Control Quantum Measurement and Control
Kiefer, Claus
2010-12-01
In the last two decades there has been an enormous progress in the experimental investigation of single quantum systems. This progress covers fields such as quantum optics, quantum computation, quantum cryptography, and quantum metrology, which are sometimes summarized as `quantum technologies'. A key issue there is entanglement, which can be considered as the characteristic feature of quantum theory. As disparate as these various fields maybe, they all have to deal with a quantum mechanical treatment of the measurement process and, in particular, the control process. Quantum control is, according to the authors, `control for which the design requires knowledge of quantum mechanics'. Quantum control situations in which measurements occur at important steps are called feedback (or feedforward) control of quantum systems and play a central role here. This book presents a comprehensive and accessible treatment of the theoretical tools that are needed to cope with these situations. It also provides the reader with the necessary background information about the experimental developments. The authors are both experts in this field to which they have made significant contributions. After an introduction to quantum measurement theory and a chapter on quantum parameter estimation, the central topic of open quantum systems is treated at some length. This chapter includes a derivation of master equations, the discussion of the Lindblad form, and decoherence - the irreversible emergence of classical properties through interaction with the environment. A separate chapter is devoted to the description of open systems by the method of quantum trajectories. Two chapters then deal with the central topic of quantum feedback control, while the last chapter gives a concise introduction to one of the central applications - quantum information. All sections contain a bunch of exercises which serve as a useful tool in learning the material. Especially helpful are also various separate
Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua
2015-03-01
A controlled deterministic secure quantum communication (CDSQC) protocol is proposed based on three-particle GHZ state in X-basis. Only X-basis and Z1Z2X3-basis (composed of Z-basis and X-basis) measurement are required, which makes the scheme more convenient than others in practical applications. By distributing a random key between both sides of the communication and performing classical XOR operation, we realize a one-time-pad scheme, therefore our protocol achieves unconditional secure. Because only user with legitimate identity string can decrypt the secret, our protocol can resist man-in-the middle attack. The three-particle GHZ state in X-basis is used as decoy photons to detect eavesdropping. The detection rate reaches 75% per qubit. Supported by the National Natural Science Foundation of China under Grant No. 61402058, Science and Technology, Sichuan Province of China under Grant No. 2013GZX0137, Fund for Young Persons Project of Sichuan Province of China under Grant No. 12ZB017, and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions under Grant No. szjj2014-074
Quantum Contextuality with Stabilizer States
Directory of Open Access Journals (Sweden)
Jiri Vala
2013-06-01
Full Text Available The Pauli groups are ubiquitous in quantum information theory because of their usefulness in describing quantum states and operations and their readily understood symmetry properties. In addition, the most well-understood quantum error correcting codes—stabilizer codes—are built using Pauli operators. The eigenstates of these operators—stabilizer states—display a structure (e.g., mutual orthogonality relationships that has made them useful in examples of multi-qubit non-locality and contextuality. Here, we apply the graph-theoretical contextuality formalism of Cabello, Severini and Winter to sets of stabilizer states, with particular attention to the effect of generalizing two-level qubit systems to odd prime d-level qudit systems. While state-independent contextuality using two-qubit states does not generalize to qudits, we show explicitly how state-dependent contextuality associated with a Bell inequality does generalize. Along the way we note various structural properties of stabilizer states, with respect to their orthogonality relationships, which may be of independent interest.
The Metric of Quantum States Revisited
Pandya, Aalok; Nagawat, Ashok K.
2002-01-01
A generalised definition of the metric of quantum states is proposed by using the techniques of differential geometry. The metric of quantum state space derived earlier by Anandan, is reproduced and verified here by this generalised definition. The metric of quantum states in the configuration space and its possible geometrical framework is explored. Also, invariance of the metric of quantum states under local gauge transformations, coordinate transformations, and the relativistic transformat...
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
Investigating Quantum Modulation States
2016-03-01
process incurs ambiguity in the interpretation of measurement results. When the average photon number per transmission of a message bit grows...estimates to gain the information conveyed therein. Is the message bit sent a one or zero? That eavesdropper’s minimum probability of error converges...to ½, a coin toss, when the average photon number and the number of possible states satisfy the aforementioned conditions. The eavesdropper
Quantum State Transfer on Coronas
Ackelsberg, Ethan; Brehm, Zachary; Chan, Ada; Mundinger, Joshua; Tamon, Christino
2016-01-01
We study state transfer in quantum walk on graphs relative to the adjacency matrix. Our motivation is to understand how the addition of pendant subgraphs affect state transfer. For two graphs $G$ and $H$, the Frucht-Harary corona product $G \\circ H$ is obtained by taking $|G|$ copies of the cone $K_{1} + H$ and by connecting the conical vertices according to $G$. Our work explores conditions under which the corona $G \\circ H$ exhibits state transfer. We also describe new families of graphs wi...
A class of symmetric controlled quantum operations
Energy Technology Data Exchange (ETDEWEB)
Vaccaro, John A.; Steuernagel, O.; Huelga, S.F. [Division of Physics and Astronomy, Department of Physical Sciences, University of Hertfordshire, Hatfield (United Kingdom)
2001-09-07
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric. (author)
Quantum state atomic force microscopy
Passian, Ali; Siopsis, George
2017-01-01
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the paramete...
Quantum State Engineering Via Coherent-State Superpositions
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
2016-09-01
collected ....................... 5 7. Experimentally measured noise figure and gain for several low- noise amplifiers , including COTF and cryogenically...frequency domain of the two cryogenically cooled low noise amplifiers in comparison with the ideal simulation when all the data is normalized...resonance). Both of these procedures require microwave and RF pulses, respectively, at various phase shifts, power , and duration to control the spin. An I/Q
A noise immunity controlled quantum teleportation protocol
Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi
2016-11-01
With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.
The Roles of a Quantum Channel on a Quantum State
Wang, Lin; Yu, Chang-shui
2013-10-01
When a quantum state undergoes a quantum channel, the state will be inevitably influenced. In general, the fidelity of the state is reduced, so is the entanglement if the subsystems go through the channel. However, the influence on the coherence of the state is quite different. Here we present some state-independent quantities to describe to what degree the fidelity, the entanglement and the coherence of the state are influenced. As applications, we consider some quantum channels on a qubit and find that the infidelity ability monotonically depends on the decay rate, but in usual the decoherence ability is not the case and strongly depends on the channel.
DECOY STATE QUANTUM KEY DISTRIBUTION
Directory of Open Access Journals (Sweden)
Sellami Ali
2010-03-01
Full Text Available Experimental weak + vacuum protocol has been demonstrated using commercial QKD system based on a standard bi-directional ‘Plug & Play’ set-up. By making simple modifications to a commercial quantum key distribution system, decoy state QKD allows us to achieve much better performance than QKD system without decoy state in terms of key generation rate and distance. We demonstrate an unconditionally secure key rate of 6.2931 x 10-4per pulse for a 25 km fiber length.
Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.
Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel
2017-06-01
Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.
Distinguishability of quantum states and shannon complexity in quantum cryptography
Arbekov, I. M.; Molotkov, S. N.
2017-07-01
The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.
Quantum State Tomography via Reduced Density Matrices.
Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond
2017-01-13
Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.
Thermodynamics of quantum-jump-conditioned feedback control.
Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano
2013-12-01
We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.
Past Quantum States of a Monitored System
DEFF Research Database (Denmark)
Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus
2013-01-01
A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times t
Quantum processing by remote quantum control
Qiang, Xiaogang; Zhou, Xiaoqi; Aungskunsiri, Kanin; Cable, Hugo; O’Brien, Jeremy L.
2017-12-01
Client-server models enable computations to be hosted remotely on quantum servers. We present a novel protocol for realizing this task, with practical advantages when using technology feasible in the near term. Client tasks are realized as linear combinations of operations implemented by the server, where the linear coefficients are hidden from the server. We report on an experimental demonstration of our protocol using linear optics, which realizes linear combination of two single-qubit operations by a remote single-qubit control. In addition, we explain when our protocol can remain efficient for larger computations, as well as some ways in which privacy can be maintained using our protocol.
Coherent control of quantum dots
DEFF Research Database (Denmark)
Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher
In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...
Nuclear quantum state engineering in ion channeling regime
Directory of Open Access Journals (Sweden)
Berec Vesna
2015-01-01
Full Text Available A key challenge in quantum state engineering is to identify coherent quantum mechanical systems that can be precisely manipulated and scaled, but at the same time to allow decoupling from unwanted interactions. Such systems, once realized, would represent an efficient tool for characterization of quantum behavior reflected in the properties of matter with prerequisites for meeting dissipation constraints imposed in the nuclear physics as well in the quantum information theory. Using the pure29Si nanocrystal system we present a novel high resolution method for initialization of single electron polarized spin interaction and control of nuclear spin qubits. The presented study fuses field of particle channeling in MeV energy regime with quantum state engineering utilized via entanglement as an essential quantum property. Its aim is to bring focus on new theoretical proposals testing the quantum mechanical models for systems producible at particle accelerator facilities.
A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation
Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang
2015-04-01
Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.
An Approach to Quantum State Pooling from Quantum Conditional Independence
Leifer, Matthew
2008-03-01
In approaches to quantum theory in which the quantum state is taken to represent an agent's belief, knowledge or information about a physical system, it is legitimate for different agents to assign different states to one and the same physical system. The question then arises of what state they should assign if they get together and share their information about the system. This is the problem of quantum state pooling. The classical counterpart of this problem for probability distributions only has a unique solution under additional assumptions about how the data are collected, such as conditional independence constraints. Recently, Spekkens and Wiseman found a quantum pooling rule analogous to the classical one, which is valid if the differing state assignments arise from making indirect measurements on special classes of tripartite quantum state. We show that this pooling rule applies to a much wider class of tripartite states, and that its validity rests on quantum analogs of conditional independence recently studied by one of the authors, as well as a generalization of the notion of a sufficient statistic to the quantum case. Work done in collaboration with Robert Spekkens, University of Cambridge.
DEFF Research Database (Denmark)
Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.
2009-01-01
, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...
Tuned Transition from Quantum to Classical for Macroscopic Quantum States
Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.
2011-01-01
The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1???A carried by a
Generation of Exotic Quantum States of a Cold Atomic Ensemble
DEFF Research Database (Denmark)
Christensen, Stefan Lund
Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....
PT-symmetric quantum state discrimination.
Bender, Carl M; Brody, Dorje C; Caldeira, João; Günther, Uwe; Meister, Bernhard K; Samsonov, Boris F
2013-04-28
The objective of this paper is to explain and elucidate the formalism of PT quantum mechanics by applying it to a well-known problem in conventional Hermitian quantum mechanics, namely the problem of state discrimination. Suppose that a system is known to be in one of two quantum states, |ψ(1)> or |ψ(2)>. If these states are not orthogonal, then the requirement of unitarity forbids the possibility of discriminating between these two states with one measurement; that is, determining with one measurement what state the system is in. In conventional quantum mechanics, there is a strategy in which successful state discrimination can be achieved with a single measurement but only with a success probability p that is less than unity. In this paper, the state-discrimination problem is examined in the context of PT quantum mechanics and the approach is based on the fact that a non-Hermitian PT-symmetric Hamiltonian determines the inner product that is appropriate for the Hilbert space of physical states. It is shown that it is always possible to choose this inner product so that the two states |ψ(1)> and |ψ(2)> are orthogonal. Using PT quantum mechanics, one cannot achieve a better state discrimination than in ordinary quantum mechanics, but one can instead perform a simulated quantum state discrimination, in which with a single measurement a perfect state discrimination is realized with probability p.
Quantum cryptography with 3-state systems.
Bechmann-Pasquinucci, H; Peres, A
2000-10-09
We consider quantum cryptographic schemes where the carriers of information are 3-state particles. One protocol uses four mutually unbiased bases and appears to provide better security than obtainable with 2-state carriers. Another possible method allows quantum states to belong to more than one basis. Security is not better, but many curious features arise.
Coherent states in quantum physics
Gazeau, Jean-Pierre
2009-01-01
This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:
Quantum state transfer between hybrid qubits in a circuit QED
Feng, Zhi-Bo
2012-01-01
In this Brief Report, we propose a theoretical scheme to transfer quantum states between superconducting charge qubits and semiconductor spin qubits in a circuit QED device. Under dispersive conditions, resonator-assisted state transfer between qubits can be performed controllably only by addressing the flux bias applied to the charge qubits. The low infidelity and existing advantages show that the proposal may provide an effective route toward scalable quantum-information transfer with solid-state hybrid qubits.
Kobayashi, Masaki; Yoshimatsu, Kohei; Mitsuhashi, Taichi; Kitamura, Miho; Sakai, Enju; Yukawa, Ryu; Minohara, Makoto; Fujimori, Atsushi; Horiba, Koji; Kumigashira, Hiroshi
2017-11-30
Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the delicate balance between long-range order and its quantum fluctuation. So far, the nature of quantum phase transitions has been investigated by changing a limited number of external parameters such as pressure and magnetic field. We propose a new approach for investigating quantum criticality by changing the strength of quantum fluctuation that is controlled by the dimensional crossover in metallic quantum well (QW) structures of strongly correlated oxides. With reducing layer thickness to the critical thickness of metal-insulator transition, crossover from a Fermi liquid to a non-Fermi liquid has clearly been observed in the metallic QW of SrVO3 by in situ angle-resolved photoemission spectroscopy. Non-Fermi liquid behavior with the critical exponent α = 1 is found to emerge in the two-dimensional limit of the metallic QW states, indicating that a quantum critical point exists in the neighborhood of the thickness-dependent Mott transition. These results suggest that artificial QW structures provide a unique platform for investigating novel quantum phenomena in strongly correlated oxides in a controllable fashion.
Introduction to quantum-state estimation
Teo, Yong Siah
2016-01-01
Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...
Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution.
Brandão, Fernando G S L; Harrow, Aram W; Oppenheim, Jonathan; Strelchuk, Sergii
2015-07-31
We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely, we show that the conditional mutual information is an upper bound on the regularized relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy distance of the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional mutual information is the optimal quantum communication rate in the task of state redistribution.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Quantum state transfer and network engineering
Nikolopoulos, Georgios M
2013-01-01
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the en
Quantum cobwebs: Universal entangling of quantum states
Indian Academy of Sciences (India)
ZSA) multipartite, pure entangled states for qubits and study their salient features. ... Institute of Physics, Bhubaneswar 751 005, India; Center for Philosophy and Foundation of Science, New Delhi, India; School of Informatics, University of Wales, ...
Quantum information processing with mesoscopic photonic states
DEFF Research Database (Denmark)
Madsen, Lars Skovgaard
2012-01-01
The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current...
Quantum Control of Molecular Processes
Shapiro, Moshe
2012-01-01
Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry.This fully updated second edition is enhanced by 80% and covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described.Indispensable for atomic, molecular and chemical
Quantum tele-amplification with a continuous-variable superposition state
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo
2013-01-01
Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum...
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.
Classical topology and quantum states
Indian Academy of Sciences (India)
Classical topology is in this manner incorporated in conventional quantum physics by formulating it using ... touches both on issues of relevance to quantum gravity such as the meaning of 'quantized topology' and the ..... thus is equivalent to a classical probability measure for an instantaneous measurement. (which any way ...
Quantum key distribution using three basis states
Indian Academy of Sciences (India)
This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum method of Bennett and Brassard (BB84) where the transmission states have been decreased from 4 to 3 and ...
Sending Quantum Information with Gaussian States
Holevo, Alexander S.
Quantum information characteristics, such as quantum mutual information, loss, noise and coherent information are explicitly calculated for Bosonic attenuation/amplification channel with input Gaussian state. The coherent information is shown to be negative for the values of the attenuation coefficient k < 1sqrt 2.
Sending Quantum Information with Gaussian States
Holevo, Alexander S.
1998-01-01
Quantum information characteristics, such as quantum mutual information, loss, noise and coherent information are explicitly calculated for Bosonic attenuation/amplification channel with input Gaussian state. The coherent information is shown to be negative for the values of the attenuation coefficient $k
Invariant measures on multimode quantum Gaussian states
Energy Technology Data Exchange (ETDEWEB)
Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Solid-State Quantum Refrigeration
2013-03-01
are generated. It has been shown that in strained quantum wells grown on (111B) substrates, the direction of the piezoelectric field is toward...compressively strained quantum well . So that the heavy hole band are pushed upwards in the band diagram and consequently the interband transition with...fifth layer 6 InP 2.5 undoped Quantum well sixth layer In this structure (VE1889) we put the InAlAs layer inside the InGaAs layer to see if
Quantum state transfer and network engineering
Energy Technology Data Exchange (ETDEWEB)
Nikolopoulos, Georgios M. [Institute of Electronic Structure and Laser Foundation for Research and Technology, Hellas (Greece); Jex, Igor (ed.) [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering
2014-03-01
Presents the basics of large-scale quantum information processing and networking. Covers most aspects of the problems of state transfer and quantum network engineering. Reflects the interdisciplinary nature of the field. Presents various theoretical approaches as well as possible implementations and related experiments. Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
Quantum teleportation from light beams to vibrational states of a macroscopic diamond
Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.
2016-01-01
With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Optimal control and quantum simulations in superconducting quantum devices
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel J.
2014-10-31
Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-05
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Quantum filtering of optical coherent states
DEFF Research Database (Denmark)
Wittmann, C.; Elser, D.; Andersen, Ulrik Lund
2008-01-01
We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis...
Classical and Quantum-Mechanical State Reconstruction
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Single-Atom Gating of Quantum State Superpositions
Energy Technology Data Exchange (ETDEWEB)
Moon, Christopher
2010-04-28
The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States
Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You
2016-02-01
In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.
Lattice Gauge Quantum Simulation via State-Dependent Hopping
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin
2017-01-01
We develop a quantum simulator architecture that is suitable for the simulation of U(1) Abelian gauge theories such as quantum electrodynamics. Our approach relies on the ability to control the hopping of a particle through a barrier by means of the internal quantum states of a neutral or charged...... impurity-particle sitting at the barrier. This scheme is highly experimentally feasible, as the correlated hopping does not require fine-tuning of the intra- and inter-species interactions. We investigate the applicability of the scheme in a double well potential, which is the basic building block...
Singly and Doubly Occupied Higher Quantum States in Nanocrystals.
Jeong, Juyeon; Yoon, Bitna; Kwon, Young-Wan; Choi, Dongsun; Jeong, Kwang Seob
2017-02-08
Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin.
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-11
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796±0.020. Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Quantum entanglement and spin control in silicon nanocrystal.
Directory of Open Access Journals (Sweden)
Vesna Berec
Full Text Available Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29Si axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29Si. Quantum discretization of density of states (DOS was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.
Controlling quantum interference in phase space with amplitude.
Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun
2017-05-23
We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.
Manipulating collective quantum states of ultracold atoms by probing
DEFF Research Database (Denmark)
Wade, Andrew Christopher James
2015-01-01
nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...... and quantum technologies. By probing, the production of squeezed and entangled states of collective variables in a Bose-Einstein condensate is investigated. Thereafter, an atomic probe using the strong interactions between highly excited atomic states, manipulates the light-matter dynamics of an ultracold gas...
Quenched dynamics of entangled states in correlated quantum dots
Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.
2017-10-01
The time evolution of an initially prepared entangled state in the system of coupled quantum dots has been analyzed by means of two different theoretical approaches: equations of motion for all orders localized electron correlation functions, considering interference effects, and kinetic equations for the pseudoparticle occupation numbers with constraint on the possible physical states. Results obtained by means of different approaches were carefully analyzed and compared to each other. Revealing a direct link between concurrence (degree of entanglement) and quantum dots pair correlation functions allowed us to follow the changes of entanglement during the time evolution of the coupled quantum dots system. It was demonstrated that the degree of entanglement can be controllably tuned during the time evolution of quantum dots system.
Graph state-based quantum authentication scheme
Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying
2017-04-01
Inspired by the special properties of the graph state, a quantum authentication scheme is proposed in this paper, which is implemented with the utilization of the graph state. Two entities, a reliable party, Trent, as a verifier and Alice as prover are included. Trent is responsible for registering Alice in the beginning and confirming Alice in the end. The proposed scheme is simple in structure and convenient to realize in the realistic physical system due to the use of the graph state in a one-way quantum channel. In addition, the security of the scheme is extensively analyzed and accordingly can resist the general individual attack strategies.
Classical codes in quantum state space
Howard, Mark
2015-12-01
We present a construction of Hermitian operators and quantum states labelled by strings from a finite field. The distance between these operators or states is then simply related (typically, proportional) to the Hamming distance between their corresponding strings. This allows a straightforward application of classical coding theory to find arrangements of operators or states with a given distance distribution. Using the simplex or extended Reed-Solomon code in our construction recovers the discrete Wigner function, which has important applications in quantum information theory.
Song, Yi; Ni, Jiang-Li; Wang, Zhang-Yin; Lu, Yan; Han, Lian-Fang
2017-10-01
We present a new scheme for deterministically realizing the mutual interchange of quantum information between two distant parties via selected quantum states as the shared entangled resource. We first show the symmetric bidirectional remote state preparation (BRSP), where two single-qubit quantum states will be simultaneously exchanged in a deterministic manner provided that each of the users performs single-qubit von Neumann measurements with proper measurement bases as well as appropriate unitary operations, depending essentially on the outcomes of the prior measurements. Then we consider to extend the symmetric protocol to an asymmetric case, in which BRSP of a general single-qubit state and an arbitrary two-qubit state is investigated successfully. The necessary quantum operations and the employed quantum resources are feasible according to the present technology, resulting in that this protocol may be realizable in the realm of current physical experiment.
Quantum communication with coherent states of light
Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd
2017-06-01
Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.
Quantum communication with coherent states of light.
Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd
2017-08-06
Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Quantum state engineering with single atom laser
Stefanov, V. P.
2017-11-01
On the basis of quantum stochastic trajectories approach it is shown that a single atom laser with coherent pumping can generate not only coherent states, but squeezed and Fock states, when different schemes of detection are followed by coherent feedback pulses or feedforward actions.
Local Unitary Invariants of Quantum States
Cui, Meiyu; Chang, Jingmei; Zhao, Ming-Jing; Huang, Xiaofen; Zhang, Tinggui
2017-11-01
We study the equivalence of mixed states under local unitary transformations. First we express quantum states in Bloch representation. Then based on the coefficient matrices, some invariants are constructed. This method and results can be extended to multipartite high dimensional system.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond
Energy Technology Data Exchange (ETDEWEB)
Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.
2017-10-01
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond
Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.
2017-10-01
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
Extracting Entanglement Geometry from Quantum States
Hyatt, Katharine; Garrison, James R.; Bauer, Bela
2017-10-01
Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network—and hence the geometry—is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.
Quantum Correlations in Mixed-State Metrology
Directory of Open Access Journals (Sweden)
Kavan Modi
2011-12-01
Full Text Available We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits and time (number of gates requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.
Quantum physics: Atomic envoy enables molecular control
Campbell, Wes
2017-05-01
A technique for manipulating molecules uses an intermediary atom to query a nearby molecule's energy state and produces 'quantum superpositions' of these states, a prerequisite for extremely high-precision spectroscopy. See Letter p.203
Storing quantum states in bosonic dissipative networks
Energy Technology Data Exchange (ETDEWEB)
De Ponte, M A; Mizrahi, S S [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, 13565-905, Sao Paulo (Brazil); Moussa, M H Y [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil)
2008-11-14
By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.
Exotic states in quantum nanostructures
2002-01-01
Mesoscopic physics has made great strides in the last few years It is an area of research that is attractive to many graduate students of theoretical condensed matter physics The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students Even when the non-perturbative techniques are presented, they often are presented within an abstract context It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear It is an apt time to have such a volume since the field has reached a level of maturity The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical me...
Directory of Open Access Journals (Sweden)
Alessandro Seri
2017-05-01
Full Text Available Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr^{3+}:Y_{2}SiO_{5} crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.
Seri, Alessandro; Lenhard, Andreas; Rieländer, Daniel; Gündoǧan, Mustafa; Ledingham, Patrick M.; Mazzera, Margherita; de Riedmatten, Hugues
2017-04-01
Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr3 +:Y2SiO5 crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Optimal convex approximations of quantum states
Sacchi, Massimiliano F.
2017-10-01
We consider the problem of optimally approximating an unavailable quantum state ρ by the convex mixing of states drawn from a set of available states {νi} . The problem is recast to look for the least distinguishable state from ρ among the convex set ∑ipiνi , and the corresponding optimal weights {pi} provide the optimal convex mixing. We present the complete solution for the optimal convex approximation of a qubit mixed state when the set of available states comprises the three bases of the Pauli matrices.
Statistical tests for quantum state reconstruction II: Experiment
Energy Technology Data Exchange (ETDEWEB)
Schindler, Philipp; Monz, Thomas [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Kleinmann, Matthias; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen (Germany); Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Blatt, Rainer [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria)
2012-07-01
Quantum state tomography is nowadays routinely used in many experiments, for instance to characterize entangled quantum states or to determine input and output states of a quantum processor. Tomography reconstruction algorithms are designed to restrict the results onto physical states. These methods will always return a valid quantum state for any data and therefore it seems necessary to test the recorded data prior to reconstructing the quantum state. We directly apply statistical tests on our experimental data taken in an ion trap quantum computer. In particular, we analyze the sensitivity of these tests to various experimental imperfections like crosstalk and rotated bases.
Quantum Entanglement in Neural Network States
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-04-01
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the
Quantum Entanglement in Neural Network States
Directory of Open Access Journals (Sweden)
Dong-Ling Deng
2017-05-01
Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
quantum mechanics . Non-classical quantum states. Gaussian distributions play a fundamental role in classical (non-quantum) linear systems theory, and...quantum systems, we will consider perturbed quantum linear systems described by coupling and Hamiltonian operators with components that depend on a... Hamiltonian . The case of a nominal linear quantum system is considered with quadratic perturbations to the system Hamiltonian . A robust stability
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Quantum metrology with full and fast quantum control
Directory of Open Access Journals (Sweden)
Pavel Sekatski
2017-09-01
Full Text Available We establish general limits on how precise a parameter, e.g. frequency or the strength of a magnetic field, can be estimated with the aid of full and fast quantum control. We consider uncorrelated noisy evolutions of N qubits and show that fast control allows to fully restore the Heisenberg scaling (~1/N^2 for all rank-one Pauli noise except dephasing. For all other types of noise the asymptotic quantum enhancement is unavoidably limited to a constant-factor improvement over the standard quantum limit (~1/N even when allowing for the full power of fast control. The latter holds both in the single-shot and infinitely-many repetitions scenarios. However, even in this case allowing for fast quantum control helps to increase the improvement factor. Furthermore, for frequency estimation with finite resource we show how a parallel scheme utilizing any fixed number of entangled qubits but no fast quantum control can be outperformed by a simple, easily implementable, sequential scheme which only requires entanglement between one sensing and one auxiliary qubit.
Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control
Deffner, Sebastian; Campbell, Steve
2017-11-01
One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.
Mixed quantum states with variable Planck constant
de Gosson, Maurice A.
2017-09-01
Recent cosmological measurements tend to confirm that the fine structure constant α is not immutable and has undergone a tiny variation since the Big Bang. Choosing adequate units, this could also reflect a variation of Planck's constant h. The aim of this Letter is to explore some consequences of such a possible change of h for the pure and mixed states of quantum mechanics. Surprisingly enough it is found that not only is the purity of a state extremely sensitive to such changes, but that quantum states can evolve into classical states, and vice versa. A complete classification of such transitions is however not possible for the moment being because of yet unsolved mathematical difficulties related to the study of positivity properties of trace class operators.
Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang
2017-03-08
Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.
Efficient quantum optical state engineering and applications
McCusker, Kevin T.
Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.
Continuous variable quantum cryptography using coherent states.
Grosshans, Frédéric; Grangier, Philippe
2002-02-04
We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.
Coherent control of diamond defects for quantum information science and quantum sensing
Maurer, Peter
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells
Adaptive Quantum State Tomography Improves Accuracy Quadratically
Mahler, D. H.; Rozema, Lee A.; Darabi, Ardavan; Ferrie, Christopher; Blume-Kohout, Robin; Steinberg, A. M.
2013-11-01
We introduce a simple protocol for adaptive quantum state tomography, which reduces the worst-case infidelity [1-F(ρ^,ρ)] between the estimate and the true state from O(1/N) to O(1/N). It uses a single adaptation step and just one extra measurement setting. In a linear optical qubit experiment, we demonstrate a full order of magnitude reduction in infidelity (from 0.1% to 0.01%) for a modest number of samples (N≈3×104).
Quantum marginals from pure doubly excited states
Maciążek, Tomasz; Tsanov, Valdemar
2017-11-01
The possible spectra of one-particle reduced density matrices that are compatible with a pure multipartite quantum system of finite dimension form a convex polytope. We introduce a new construction of inner- and outer-bounding polytopes that constrain the polytope for the entire quantum system. The outer bound is sharp. The inner polytope stems only from doubly excited states. We find all quantum systems, where the bounds coincide giving the entire polytope. We show, that those systems are: (i) any system of two particles (ii) L qubits, (iii) three fermions on N≤slant 7 levels, (iv) any number of bosons on any number of levels and (v) fermionic Fock space on N≤slant 5 levels. The methods we use come from symplectic geometry and representation theory of compact Lie groups. In particular, we study the images of proper momentum maps, where our method describes momentum images for all representations that are spherical.
A Quantum Proxy Blind Signature Scheme Based on Genuine Five-Qubit Entangled State
Zeng, Chuan; Zhang, Jian-Zhong; Xie, Shu-Cui
2017-06-01
In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.
Siegert State Approach to Quantum Defect Theory
Hategan, C.; Ionescu, R. A.; Wolter, H. H.
2016-01-01
The Siegert states are approached in framework of Bloch-Lane-Robson formalism for quantum collisions. The Siegert state is not described by a pole of Wigner R- matrix but rather by the equation $1- R_{nn}L_n = 0$, relating R- matrix element $R_{nn}$ to decay channel logarithmic derivative $L_n$. Extension of Siegert state equation to multichannel system results into replacement of channel R- matrix element $R_{nn}$ by its reduced counterpart ${\\cal R}_{nn}$. One proves the Siegert state is a ...
Entanglement-assisted quantum feedback control
Yamamoto, Naoki; Mikami, Tomoaki
2017-07-01
The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.
Wang, Qian; Quan, H. T.
2017-09-01
By analyzing the probability distributions of the Loschmidt echo (LE) and quantum work, we examine the nonequilibrium effects of a quantum many-body system, which exhibits an excited-state quantum phase transition (ESQPT). We find that depending on the value of the controlling parameter the distribution of the LE displays different patterns. At the critical point of the ESQPT, both the averaged LE and the averaged work show a cusplike shape. Furthermore, by employing the finite-size scaling analysis of the averaged work, we obtain the critical exponent of the ESQPT. Finally, we show that at the critical point of ESQPT the eigenstate is a highly localized state, further highlighting the influence of the ESQPT on the properties of the many-body system.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Quantum Nonadiabatic Cloning of Entangled Coherent States.
Izmaylov, Artur F; Joubert-Doriol, Loïc
2017-04-20
We propose a systematic approach to the basis set extension for nonadiabatic dynamics of entangled combination of nuclear coherent states (CSs) evolving according to the time-dependent variational principle (TDVP). The TDVP provides a rigorous framework for fully quantum nonadiabatic dynamics of closed systems; however, the quality of results strongly depends on available basis functions. Starting with a single nuclear CS replicated vertically on all electronic states, our approach clones this function when replicas of the CS on different electronic states experience increasingly different forces. Created clones move away from each other (decohere), extending the basis set. To determine a moment for cloning, we introduce generalized forces based on derivatives that maximally contribute to a variation of the total quantum action and thus account for entanglement of all basis functions.
Quantum coherence generated by interference-induced state selectiveness
Garreau, Jean Claude
2001-01-01
The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
A quantum proxy group signature scheme based on an entangled five-qubit state
Wang, Meiling; Ma, Wenping; Wang, Lili; Yin, Xunru
2015-09-01
A quantum proxy group signature (QPGS) scheme based on controlled teleportation is presented, by using the entangled five-qubit quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security of the scheme is guaranteed by the entanglement correlations of the entangled five-qubit state, the secret keys based on the quantum key distribution (QKD) and the one-time pad algorithm, all of which have been proven to be unconditionally secure and the signature anonymity.
Quantum demolition filtering and optimal control of unstable systems.
Belavkin, V P
2012-11-28
A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
Extreme Violation of Local Realism in Quantum Hypergraph States.
Gachechiladze, Mariami; Budroni, Costantino; Gühne, Otfried
2016-02-19
Hypergraph states form a family of multiparticle quantum states that generalizes the well-known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal properties of quantum hypergraph states. We demonstrate that the correlations in hypergraph states can be used to derive various types of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially increasing violation of local realism which is robust against loss of particles. Our results suggest that certain classes of hypergraph states are novel resources for quantum metrology and measurement-based quantum computation.
Quantum correlations support probabilistic pure state cloning
Energy Technology Data Exchange (ETDEWEB)
Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)
2014-02-01
The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.
Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban
2017-12-01
An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.
Extremal quantum correlations: Experimental study with two-qubit states
Energy Technology Data Exchange (ETDEWEB)
Chiuri, A.; Mataloni, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica (INO-CNR), L.go E. Fermi 6, I-50125 Firenze (Italy); Vallone, G. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, Compendio del Viminale, I-00184 Roma (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)
2011-08-15
We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.
Heralded amplification of path entangled quantum states
Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.
2017-06-01
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.
Quantum Darwinism for mixed-state environment
Quan, Haitao; Zwolak, Michael; Zurek, Wojciech
2009-03-01
We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.
Solid State Quantum Computer in Silicon
2008-09-30
focused microprobe of 2 MeV alpha particles, produced by the 5U Pelletron accelerator at the University of Melbourne and the MP2 nuclear microprobe...Kotthaus and S. Ludwig, “ Electrostatically defined serial triple quantum dot charged with few electrons”, Physical Review B 76, 075306 (2007). M.Y...ESR line to induce Rabi oscillation of the spin state. In addition, the electrostatic potential on the ESR line is used to shift the Zeeman-split
Spectral coherent-state quantum cryptography.
Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi
2008-11-01
A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.
Extracting Entanglement Geometry from Quantum States.
Hyatt, Katharine; Garrison, James R; Bauer, Bela
2017-10-06
Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network-and hence the geometry-is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.
Controlling the quantum world with light
CSIR Research Space (South Africa)
Uys, H
2012-10-01
Full Text Available In this presentation the authors discuss the technological relevance of quantum mechanics, and describe how researchers use light to control the atomic and molecular world at its most fundamental level....
Enhancing quantum control by bootstrapping a quantum processor of 12 qubits
Lu, Dawei; Li, Keren; Li, Jun; Katiyar, Hemant; Park, Annie Jihyun; Feng, Guanru; Xin, Tao; Li, Hang; Long, Guilu; Brodutch, Aharon; Baugh, Jonathan; Zeng, Bei; Laflamme, Raymond
2017-10-01
Accurate and efficient control of quantum systems is one of the central challenges for quantum information processing. Current state-of-the-art experiments rarely go beyond 10 qubits and in most cases demonstrate only limited control. Here we demonstrate control of a 12-qubit system, and show that the system can be employed as a quantum processor to optimize its own control sequence by using measurement-based feedback control (MQFC). The final product is a control sequence for a complex 12-qubit task: preparation of a 12-coherent state. The control sequence is about 10% more accurate than the one generated by the standard (classical) technique, showing that MQFC can correct for unknown imperfections. Apart from demonstrating a high level of control over a relatively large system, our results show that even at the 12-qubit level, a quantum processor can be a useful lab instrument. As an extension of our work, we propose a method for combining the MQFC technique with a twirling protocol, to optimize the control sequence that produces a desired Clifford gate.
Fast coherent manipulation of three-electron states in a double quantum dot.
Shi, Zhan; Simmons, C B; Ward, Daniel R; Prance, J R; Wu, Xian; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A
2014-01-01
An important goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2(*). Most manipulations of electron spins in quantum dots have focused on the construction and control of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron. Here we perform quantum manipulations on a system with three electrons per double quantum dot. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between three-electron quantum states. Certain pulse sequences yield coherent oscillations fast enough that more than 100 oscillations are visible within a T2(*) time. The minimum oscillation frequency we observe is faster than 5 GHz. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow.
State preparation for quantum information science and metrology
Energy Technology Data Exchange (ETDEWEB)
Samblowski, Aiko
2012-06-08
The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed
Statistical constraints on state preparation for a quantum computer
Indian Academy of Sciences (India)
Quantum computing algorithms require that the quantum register be initially present in a superposition state. To achieve this, we consider the practical problem of creating a coherent superposition state of several qubits. We show that the constraints of quantum statistics require that the entropy of the system be brought ...
A Quantum Version of Wigner’s Transition State Theory
Schubert, R.; Waalkens, H.; Wiggins, S.
2009-01-01
A quantum version of a recent realization of Wigner’s transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in ħ. This leads to an explicit algorithm to
A Quantum Version of Wigner's Transition State Theory
Schubert, R.; Waalkens, H.; Wiggins, S.
A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit
Mutual influence of locality and chaotic dynamics on quantum controllability
Kallush, S.; Kosloff, R.
2012-07-01
Quantum control tasks are classified either as classical-like or as quantum requiring interference of pathways. We study the generation of interference pathways and relate them to the fidelity of the control target at a fixed time for various tasks. The model drift Hamiltonian studied is the two-dimensional Henon-Heiles (HH) potential. This system shows regular classical dynamics for low energies and chaotic dynamics for higher energies. A control operator supported by the whole momentum space and therefore connecting the entire Hilbert phase space is a random spiky potential. The other extreme is a smooth control potential. Intermediate cases are obtained by filtering the random spiky potential in momentum space. The fidelity of achieving a control task was related to the connectivity in phase space of the control operators. Typical quantum tasks such as generating a superposition of generalized coherent states rely on interfering pathways. For these cases the nonlinearity in the drift or control Hamiltonian is a necessary requirement for creating interferences. Control over rapidly diverging components of the wave function is achieved by the use of highly nonlocal control operators. Quantum control under chaotic drift was found to give a better yield than control under regular dynamics for such cases. For classical tasks we study the transformation of an initial generalized coherent state to another one. The best fidelity is obtained for regular or harmonic regions of the potential and smooth control operators. The approach to the classical limit is checked by decreasing the effective value of ℏ. Control under both quantum and classical tasks suffered from the decrease of ℏ and the approach to classical proximity. Classical control tasks which rely heavily on maintaining a generalized coherent state throughout the evolution were found to be dysfunctional and lead to a completely uncontrolled situation once the classical chaos starts to appear.
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
Directory of Open Access Journals (Sweden)
Ivan Glasser
2018-01-01
Full Text Available Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Coherent states in quantum mechanics; Estados coerentes em mecanica quantica
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica
2001-12-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)
Tuning quantum measurements to control chaos
Eastman, Jessica K.; Hope, Joseph J.; Carvalho, André R. R.
2017-01-01
Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes. PMID:28317933
Generating quantum states through spin chain dynamics
Kay, Alastair
2017-04-01
The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.
Quantum state transfer between light and matter via teleportation
DEFF Research Database (Denmark)
Krauter, Hanna; Sherson, Jacob; Polzik, Eugene Simon
2010-01-01
Quantum teleportation is an interesting feature of quantum mechanics. Entanglement is used as a link between two remote locations to transfer a quantum state without physically sending it - a process that cannot be realized utilizing merely classical tools. Furthermore it has become evident...... that teleportation is also an important element of future quantum networks and it can be an ingredient for quantum computation. This article reports for the first time the teleportation from light to atoms. In the experiment discussed, the quantum state of a light beam is transferred to an atomic ensemble. The key...
Mixed state dynamical quantum phase transitions
Bhattacharya, Utso; Bandyopadhyay, Souvik; Dutta, Amit
2017-11-01
Preparing an integrable system in a mixed state described by a thermal density matrix, we subject it to a sudden quench and explore the subsequent unitary dynamics. To address the question of whether the nonanalyticities, namely, the dynamical quantum phase transitions (DQPTs), persist when the initial state is mixed, we consider two versions of the generalized Loschmidt overlap amplitude (GLOA). Our study shows that the GLOA constructed using the Uhlmann approach does not show any signature of DQPTs at any nonzero initial temperature. On the other hand, a GLOA defined in the interferometric phase approach through the purifications of the time-evolved density matrix, indeed shows that nonanalyiticies in the corresponding "dynamical free-energy density" persist, thereby establishing the existence of mixed state dynamical quantum phase transitions (MSDQPTs). Our work provides a framework that perfectly reproduces both the nonanalyticities and also the emergent topological structure in the pure state limit. These claims are corroborated by analyzing the nonequilibrium dynamics of a transverse Ising chain initially prepared in a thermal state and subjected to a sudden quench of the transverse field.
Bipartite quantum states and random complex networks
Garnerone, Silvano; Giorda, Paolo; Zanardi, Paolo
2012-01-01
We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy \\bar S while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling \\bar {S} \\sim c log n +g_{ {e}} where both the prefactor c and the sub-leading O(1) term ge are characteristic of the different classes of complex networks. In particular, ge encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties.
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
Quantum Information Protocols with Gaussian States of Light
DEFF Research Database (Denmark)
Jacobsen, Christian Scheffmann
Quantum cryptography is widely regarded as the most mature field within the context of quantum information in the sense that its application and development has produced companies that base their products on genuine quantum mechanical principles. Examples include quantum random number generators...... and hardware for secure quantum key distribution. These technologies directly exploit quantum effects, and indeed this is where they offer advantages to classical products. This thesis deals with the development and implementation of quantum information protocols that utilize the rather inexpensive resource...... of Gaussian states. A quantum information protocol is essentially a sequence of state exchanges between some number of parties and a certain ordering of quantum mechanical unitary operators performed by these parties. An example of this is the famous BB84 protocol for secret key generation, where photons...
Plasmon-assisted quantum control of distant emitters
Energy Technology Data Exchange (ETDEWEB)
Susa, Cristian E. [Departamento de Física, Universidad del Valle, A.A. 25360, Cali (Colombia); Reina, John H., E-mail: john.reina@correounivalle.edu.co [Departamento de Física, Universidad del Valle, A.A. 25360, Cali (Colombia); Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid (Spain); Hildner, Richard [Experimentalphysik IV, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth (Germany)
2014-06-27
We show how to generate and control the correlations in a set of two distant quantum emitters coupled to a one-dimensional dissipative plasmonic waveguide. An external laser field enhances the dimer's steady-state correlations and allows an active control (switching on/off) of nonclassical correlations. The plasmon-assisted dipolar-interacting qubits exhibit persistent correlations, which in turn can be decoupled and made to evolve independently from each other. The setup enables long-distance (∼1 μm) qubit control that works for both resonant and detuned emitters. For suitable emitter initialization, we also show that the quantum correlation is always greater than the classical one. - Highlights: • Experimentally realistic setup: single emitters coupled to plasmon waveguide. • Conditional dynamics and qubit control of quantum emitters at long (>μm) distance. • Quantum mechanism: plasmon-assisted qubit coupling and driving by laser field. • Quantum discord dominates induced conditional dynamics. • Long-range quantum mechanism effective for both resonant and detuned emitters.
Simple scheme for expanding photonic cluster states for quantum information
Energy Technology Data Exchange (ETDEWEB)
Kalasuwan, P.; Laing, A.; Coggins, J.; Callaway, M.; O' Brien, J. L. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB (United Kingdom); Mendoza, G. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB (United Kingdom); California Institute of Technology, Pasadena, California 91125 (United States); Nagata, T.; Takeuchi, S. [Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812 (Japan); Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 (Japan); Stefanov, A. [Federal Office of Metrology METAS, Laboratory Time and Frequency, Lindenweg 50, 3084 Wabern (Switzerland)
2010-06-15
We show how an entangled cluster state encoded in the polarization of single photons can be straightforwardly expanded by deterministically entangling additional qubits encoded in the path degree of freedom of the constituent photons. This can be achieved using a polarization-path controlled-phase gate. We experimentally demonstrate a practical and stable realization of this approach by using a Sagnac interferometer to entangle a path qubit and polarization qubit on a single photon. We demonstrate precise control over phase of the path qubit to change the measurement basis and experimentally demonstrate properties of measurement-based quantum computing using a two-photon, three-qubit cluster state.
Optimal estimation of parameters of an entangled quantum state
Virzì, S.; Avella, A.; Piacentini, F.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Genovese, M.
2017-05-01
Two-photon entangled quantum states are a fundamental tool for quantum information and quantum cryptography. A complete description of a generic quantum state is provided by its density matrix: the technique allowing experimental reconstruction of the density matrix is called quantum state tomography. Entangled states density matrix reconstruction requires a large number of measurements on many identical copies of the quantum state. An alternative way of certifying the amount of entanglement in two-photon states is represented by the estimation of specific parameters, e.g., negativity and concurrence. If we have a priori partial knowledge of our state, it’s possible to develop several estimators for these parameters that require lower amount of measurements with respect to full density matrix reconstruction. The aim of this work is to introduce and test different estimators for negativity and concurrence for a specific class of two-photon states.
Self-calibrating quantum state tomography
Brańczyk, A. M.; Mahler, D. H.; Rozema, L. A.; Darabi, A.; Steinberg, A. M.; James, D. F. V.
2012-08-01
We introduce and experimentally demonstrate a technique for performing quantum state tomography (QST) on multiple-qubit states despite incomplete knowledge about the unitary operations used to change the measurement basis. Given unitary operations with unknown rotation angles, our method can be used to reconstruct the density matrix of the state up to local \\hat \\sigma _z rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet—an inexpensive smartphone screen protector—or alternatively a liquid crystal wave plate with a tuneable retardance. We explore how our technique may be adapted for QST of systems such as biological molecules where the magnitude and orientation of the transition dipole moment is not known with high accuracy.
Advantages of Unfair Quantum Ground-State Sampling.
Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay
2017-04-21
The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.
Effective quantum state reconstruction using compressed sensing in NMR quantum computing
Yang, J.; Cong, S.; Liu, X.; Li, Z.; Li, K.
2017-11-01
Compressed sensing (CS) has been verified as an effective technique in the reconstruction of quantum state; however, it is still unknown if CS can reconstruct quantum states given the incomplete data measured by nuclear magnetic resonance (NMR). In this paper, we propose an effective NMR quantum state reconstruction method based on CS. Different from the conventional CS-based quantum state reconstruction, our method uses the actual observation data from NMR experiments rather than the data measured by the Pauli operators. We implement measurements on quantum states in practical NMR computing experiments and reconstruct states of two, three, and four qubits using fewer number of measurement settings, respectively. The proposed method is easy to implement and performs more efficiently with the increase of the system dimension size. The performance reveals both efficiency and accuracy, which provides an alternative for the quantum state reconstruction in practical NMR.
Quantum optimal control theory applied to transitions in diatomic molecules
Lysebo, Marius; Veseth, Leif
2014-12-01
Quantum optimal control theory is applied to control electric dipole transitions in a real multilevel system. The specific system studied in the present work is comprised of a multitude of hyperfine levels in the electronic ground state of the OH molecule. Spectroscopic constants are used to obtain accurate energy eigenstates and electric dipole matrix elements. The goal is to calculate the optimal time-dependent electric field that yields a maximum of the transition probability for a specified initial and final state. A further important objective was to study the detailed quantum processes that take place during such a prescribed transition in a multilevel system. Two specific transitions are studied in detail. The computed optimal electric fields as well as the paths taken through the multitude of levels reveal quite interesting quantum phenomena.
How to spell out the epistemic conception of quantum states
Friederich, Simon
The paper investigates the epistemic conception of quantum states-the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and relativity theory arises. Here it is argued that the main challenge for proponents of this idea is to make sense of the notion of a state assignment being performed correctly without thereby acknowledging the notion of a true state of a quantum system-a state it is in. An account based on the epistemic conception of states is proposed that fulfills this requirement by interpreting the rules governing state assignment as constitutive rules in the sense of John Searle.
Quantum Ground States as Equilibrium Particle-Vacuum Interaction States
Puthoff, Harold E
2012-01-01
A remarkable feature of atomic ground states is that they are observed to be radiationless in nature, despite (from a classical viewpoint) typically involving charged particles in accelerated motions. The simple hydrogen atom is a case in point. This universal groundstate characteristic is shown to derive from particle-vacuum interactions in which a dynamic equilibrium is established between radiation emission due to particle acceleration, and compensatory absorption from the zero-point fluctuations of the vacuum electromagnetic field. The result is a net radiationless ground state. This principle constitutes an overarching constraint that delineates an important feature of quantum ground states.
Generating nonclassical quantum input field states with modulating filters
Energy Technology Data Exchange (ETDEWEB)
Gough, John E. [Aberystwyth University, Department of Physics, Aberystwyth, Wales (United Kingdom); Zhang, Guofeng [The Hong Kong Polytechnic University, Department of Applied Mathematics, Hong Kong (China)
2015-12-15
We give explicit constructions of quantum dynamical filters which generate nonclassical states (coherent states, cat states, shaped single and multi-photon states) of quantum optical fields as inputs to general quantum Markov systems. The filters will be quantum harmonic oscillators damped by the input fields, and we exploit the fact that the cascaded filter and system will have a Lindbladian that is naturally Wick-ordered in the filter modes. In particular the initialization of the modulating filter will determine the signal state generated. (orig.)
Spatial evolution of quantum mechanical states
Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.
2018-02-01
The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.
Quantum hydrodynamic description of collective nuclear states
Energy Technology Data Exchange (ETDEWEB)
Sapershtein, E.E.; Fayans, S.A.; Khodel' , V.A.
1978-03-01
The nature of low-lying collective nuclear states is analyzed in the framework of the Fermi-liquid approach. It is shown that in a drop of Fermi liquid one has not only the ordinary zero-sound branch but also a new collective mode resulting from the spontaneous breaking of the translational invariance. These are quantum capillary waves that have much in common with ordinary surface excitations of a classical drop. Numerical calculations show that the first collective levels of nuclei belong to this branch.
Semiconductor Nanostructures Quantum States and Electronic Transport
Ihn, Thomas
2009-01-01
This textbook describes the physics of semiconductor nanostructures with emphasis on their electronic transport properties. At its heart are five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect, and the Coulomb blockade effect. The book starts out with the basics of solid state and semiconductor physics, such as crystal structure, band structure, and effective mass approximation, including spin-orbit interaction effects important for research in semiconductor spintronics. It contains material aspects such as band e
Quantum correlation control for two semiconductor microcavities connected by an optical fiber
Mohamed, A.-B. A.; Eleuch, H.
2017-06-01
We explore the quantum correlations for two coupled quantum wells. Each quantum well is inside a semiconductor microcavity. The two cavities are connected by an optical fiber. The study of quantum correlations, namely the geometric quantum discord, measurement-induced non-locality and negativity, reveals sudden death and sudden birth phenomena. These effects depend not only on the initial states, coupling strengths of the cavity-fiber and cavity-exciton constants, but also on the dissipation rates of the semiconductor microcavities. We show that the coupling constants control the quantum correlations.
Optical generation and control of quantum coherence in semiconductor nanostructures
Slavcheva, Gabriela
2010-01-01
The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal
Can a quantum state over time resemble a quantum state at a single time?
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F; Barrett, Jonathan; Spekkens, Robert W
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
Protected State Transfer via an Approximate Quantum Adder.
Gatti, G; Barberena, D; Sanz, M; Solano, E
2017-07-31
We propose a decoherence protected protocol for sending single photon quantum states through depolarizing channels. This protocol is implemented via an approximate quantum adder engineered through spontaneous parametric down converters, and shows higher success probability than distilled quantum teleportation protocols for distances below a threshold depending on the properties of the channel.
Erratum to "Quantum Limits of Eisenstein Series and Scattering States''
DEFF Research Database (Denmark)
Petridis, Y.N.; Raulf, N.; Risager, Morten S.
2013-01-01
We identify the quantum limits of scattering states for the modular surface. This is obtained through the study of quantum measures of non-holomorphic Eisenstein series away from the critical line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak. © Cana....... © Canadian Mathematical Society 2012....
Quantum limits of Eisenstein series and scattering states
DEFF Research Database (Denmark)
Petridis, Y.N.; Raulf, N.; Risager, Morten S.
2013-01-01
We identify the quantum limits of scattering states for the modular surface. This is obtained through the study of quantum measures of non-holomorphic Eisenstein series away from the critical line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak....
Finding resource states of measurement-based quantum computing is harder than quantum computing
Morimae, Tomoyuki
2017-11-01
Measurement-based quantum computing enables universal quantum computing with only adaptive single-qubit measurements on certain many-qubit states, such as the graph state, the Affleck-Kennedy-Lieb-Tasaki (AKLT) state, and several tensor-network states. Finding new resource states of measurement-based quantum computing is a hard task, since for a given state there are exponentially many possible measurement patterns on the state. In this paper, we consider the problem of deciding, for a given state and a set of unitary operators, whether there exists a way of measurement-based quantum computing on the state that can realize all unitaries in the set, or not. We show that the decision problem is QCMA-hard (where QCMA stands for quantum classical Merlin Arthur), which means that finding new resource states of measurement-based quantum computing is harder than quantum computing itself [unless BQP (bounded-error quantum polynomial time) is equal to QCMA]. We also derive an upper bound of the decision problem: the problem is in a quantum version of the second level of the polynomial hierarchy.
Quantum Entanglement in Random Physical States
Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo
2012-07-01
Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate—among other things—the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many-body system are not physically accessible. We define physical ensembles of states acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1), the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.
Engineering two-photon high-dimensional states through quantum interference.
Zhang, Yingwen; Roux, Filippus S; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew
2016-02-01
Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits.
Equivalence of Quantum Resource Measures for X States
Huang, Zhiming; Zhang, Cai; Zhang, Wei; Zhao, Lianghui
2017-11-01
In this paper, we investigate some X states, quantum resource measures of which are equivalent. We find that for a class of X states, trace norm geometric quantum discord (TGQD), trace norm measurement-induced nonlocality (TMIN) and l 1 norm quantum coherence (L1QC) are all equal, and for some special states, therein two measures are equal. We also exemplify relative application of the equivalent relations.
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-01
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Information Divergence and Distance Measures for Quantum States
Jiang, Nan; Zhang, Zhaozhi
2015-02-01
Both information divergence and distance are measures of closeness of two quantum states which are widely used in the theory of information processing and quantum cryptography. For example, the quantum relative entropy and trace distance are well known. Here we introduce a number of new quantum information divergence and distance measures into the literature and discuss their relations and properties. We also propose a method to analyze the properties and relations of various distance and pseudo-distance measures.
Simulating quantum systems on classical computers with matrix product states
Energy Technology Data Exchange (ETDEWEB)
Kleine, Adrian
2010-11-08
In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of
Crystal Phase Quantum Well Emission with Digital Control.
Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M
2017-10-11
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.
A molecular quantum spin network controlled by a single qubit.
Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit
2017-08-01
Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.
Controlled Photon Switch Assisted by Coupled Quantum Dots
Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun
2015-01-01
Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049
Kerckhoff, Joseph; Nurdin, Hendra I; Pavlichin, Dmitri S; Mabuchi, Hideo
2010-07-23
We propose an approach to quantum error correction based on coding and continuous syndrome readout via scattering of coherent probe fields, in which the usual steps of measurement and discrete restoration are replaced by direct physical processing of the probe beams and coherent feedback to the register qubits. Our approach is well matched to physical implementations that feature solid-state qubits embedded in planar electromagnetic circuits, providing an autonomous and "on-chip" quantum memory design requiring no external clocking or control logic.
Demonstration of a quantum controlled-NOT gate in the telecommunications band.
Chen, Jun; Altepeter, Joseph B; Medic, Milja; Lee, Kim Fook; Gokden, Burc; Hadfield, Robert H; Nam, Sae Woo; Kumar, Prem
2008-04-04
We present the first quantum controlled-not (cnot) gate realized using a fiber-based indistinguishable photon-pair source in the 1.55 microm telecommunications band. Using this free-space cnot gate, all four Bell states are produced and fully characterized by performing quantum-state tomography, demonstrating the gate's unambiguous entangling capability and high fidelity. Telecom-band operation makes this cnot gate particularly suitable for quantum-information-processing tasks that are at the interface of quantum communication and linear optical quantum computing.
An Improved Quantum Proxy Blind Signature Scheme Based on Genuine Seven-Qubit Entangled State
Yang, Yuan-Yuan; Xie, Shu-Cui; Zhang, Jian-Zhong
2017-07-01
An improved quantum proxy blind signature scheme based on controlled teleportation is proposed in this paper. Genuine seven-qubit entangled state functions as quantum channel. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is unforgeability, undeniability, blind and unconditionally secure. Meanwhile, we propose a trust party to provide higher security, the trust party is costless.
Non-classical state engineering for quantum networks
Energy Technology Data Exchange (ETDEWEB)
Vollmer, Christina E.
2014-01-24
The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With
Random Bosonic States for Robust Quantum Metrology
Directory of Open Access Journals (Sweden)
M. Oszmaniec
2016-12-01
Full Text Available We study how useful random states are for quantum metrology, i.e., whether they surpass the classical limits imposed on precision in the canonical phase sensing scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable particles typically do not lead to superclassical scaling of precision even when allowing for local unitary optimization. Conversely, we show that random pure states from the symmetric subspace typically achieve the optimal Heisenberg scaling without the need for local unitary optimization. Surprisingly, the Heisenberg scaling is observed for random isospectral states of arbitrarily low purity and preserved under loss of a fixed number of particles. Moreover, we prove that for pure states, a standard photon-counting interferometric measurement suffices to typically achieve resolution following the Heisenberg scaling for all values of the phase at the same time. Finally, we demonstrate that metrologically useful states can be prepared with short random optical circuits generated from three types of beam splitters and a single nonlinear (Kerr-like transformation.
Group Theoretical Approach for Controlled Quantum Mechanical Systems
National Research Council Canada - National Science Library
Tarn, Tzyh-Jong
2007-01-01
The aim of this research is the study of controllability of quantum mechanical systems and feedback control of de-coherence in order to gain an insight on the structure of control of quantum systems...
Security enhanced memory for quantum state.
Mukai, Tetsuya
2017-07-27
Security enhancement is important in terms of both classical and quantum information. The recent development of a quantum storage device is noteworthy, and a coherence time of one second or longer has been demonstrated. On the other hand, although the encryption of a quantum bit or quantum memory has been proposed theoretically, no experiment has yet been carried out. Here we report the demonstration of a quantum memory with an encryption function that is realized by scrambling and retrieving the recorded quantum phase. We developed two independent Ramsey interferometers on an atomic ensemble trapped below a persistent supercurrent atom chip. By operating the two interferometers with random phases, the quantum phase recorded by a pulse of the first interferometer was modulated by the second interferometer pulse. The scrambled quantum phase was restored by employing another pulse of the second interferometer with a specific time delay. This technique paves way for improving the security of quantum information technology.
Energy Technology Data Exchange (ETDEWEB)
Moldaschl, Thomas; Mueller, Thomas; Golka, Sebastian; Parz, Wolfgang; Strasser, Gottfried; Unterrainer, Karl [Photonics Institute and Center for Micro- and Nanostructures, Vienna University of Technology (Austria)
2009-04-15
In this work femtosecond spectral hole burning spectroscopy is used to resonantly excite ground state excitons in an ensemble of self-assembled InAs/GaAs quantum dots with a strong pump pulse. Two fundamental coherent nonlinear effects are observed with the aid of the intrinsic time- and frequency resolution of the setup: The low temperature Rabi oscillation of the two-level system associated with the excitonic ground state transition and the observation of two-photon absorption in the surrounding GaAs crystal matrix. The emergence of the latter effect also infers the existence of charged excitons in the nominally undoped QD sample, backed up by the observation of additional spectral holes next to the excitonic transitions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum Entanglement Swapping between Two Multipartite Entangled States.
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-09
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm.
Godfrin, C; Ferhat, A; Ballou, R; Klyatskaya, S; Ruben, M; Wernsdorfer, W; Balestro, F
2017-11-03
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm
Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.
2017-11-01
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
Optimal discrimination of multiple quantum systems: controllability analysis
Energy Technology Data Exchange (ETDEWEB)
Turinici, Gabriel [INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France); Ramakhrishna, Viswanath [Department of Mathematical Sciences and Center for Signals, Systems and Communications, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States); Li Baiqing [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)
2004-01-09
A theoretical study is presented concerning the ability to dynamically discriminate between members of a set of different (but possibly similar) quantum systems. This discrimination is analysed in terms of independently and simultaneously steering about the wavefunction of each component system to a target state of interest using a tailored control (i.e. laser) field. Controllability criteria are revealed and their applicability is demonstrated in simple cases. Discussion is also presented in some uncontrollable cases.
Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States
Hirota, Osamu
2017-12-01
Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.
Quantum Control of Open Systems and Dense Atomic Ensembles
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
Bound Electron States in Skew-symmetric Quantum Wire Intersections
2014-01-01
for electronic transport studies was to confine resonant- tunneling heterostructures laterally with a fabrication-imposed po- tential. This approach...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Quantum Wires, Crossed Nanowires , Trapped Electron States, Quantum Dots REPORT...realistic systems such as semiconductor nanowire films and carbon nanotube bundles. Bound electron states in skew-symmetric quantum wire intersections by
Relativistic quantum correlations in bipartite fermionic states
Indian Academy of Sciences (India)
2016-09-21
Sep 21, 2016 ... quantum information brought to fore the relative beha- viour of entanglement. It is an observer-dependent quantity which degrades with acceleration from the perspective of accelerated observer. On the other hand, correlations other than entanglement exist in quantum system whose benefits in quantum ...
Quantum nonlinear lattices and coherent state vectors
DEFF Research Database (Denmark)
Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth
1999-01-01
for the CSV parameters. The so obtained evolution equations are intimately related to the respective evolution equations for the classical lattices, provided we account for the ordering rules (normal, symmetric) adopted for their quantization. Analysing the geometrical content of the factorization ansatz made......Quantized nonlinear lattice models are considered for two different classes, boson and fermionic ones. The quantum discrete nonlinear Schrodinger model (DNLS) is our main objective, but its so called modified discrete nonlinear (MDNLS) version is also included, together with the fermionic polaron...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...
Phase-controlled integrated photonic quantum circuits.
Smith, Brian J; Kundys, Dmytro; Thomas-Peter, Nicholas; Smith, P G R; Walmsley, I A
2009-08-03
Scalable photonic quantum technologies are based on multiple nested interferometers. To realize this architecture, integrated optical structures are needed to ensure stable, controllable, and repeatable operation. Here we show a key proof-of-principle demonstration of an externallycontrolled photonic quantum circuit based upon UV-written waveguide technology. In particular, we present non-classical interference of photon pairs in a Mach-Zehnder interferometer constructed with X couplers in an integrated optical circuit with a thermo-optic phase shifter in one of the interferometer arms.
The structure of states and maps in quantum theory
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. The structure of states and maps in quantum theory ... Quantum state spaces and maps on them have rich convex structures arising from the superposition principle and consequent entanglement. Communication channels (physical processes) in the ...
Quantum State Generation and Entanglement Manipulation Using Linear Optics
ÖZDEMİR, Şahin Kaya; Yamamoto, Takashi; Koashi, Masato
2014-01-01
Quantum information processing (QIP) requires unitary operations, measurements and synthesis, manipulation and characterization of arbitrary quantum states. Linear optics provides efficient tools for these purposes. In this review paper, we introduce the elements of linear optics toolbox, and briefly discuss some experimental and theoretical investigations using this toolbox. Our main focus will be the qubit state generation and entanglement extraction using linear optics toolbox.
From Shannon to Quantum Information Science-Mixed States
Indian Academy of Sciences (India)
... Journals; Resonance – Journal of Science Education; Volume 7; Issue 5. From Shannon to Quantum Information Science - Mixed States. Rajiah Simon. General Article Volume 7 Issue 5 May 2002 pp 16-33 ... Keywords. Mixed states; entanglement witnesses; partial transpose; quantum computers; von Neumann entropy ...
Quantum teleportation via entangled states generated by the Jaynes-Cummings model
Energy Technology Data Exchange (ETDEWEB)
Metwally, N.; Abdelaty, M.; Obada, A.-S.F. E-mail: asobada@yahoo.com
2004-11-01
In this contribution, quantum channels induced from an atom-field interaction (JCM), are used to teleport one and two qubit states. The initial state of the filed is taken to be in a coherent state while the atom starts from its excited state. The field parameters could be used as control parameters. It is shown that the fidelity of the teleported state depends on the fidelity of the input state, the degree of entanglement and the mixedness of the quantum channels. Finally, we find that a higher entangled channel is needed for a higher entangled state to be teleported.
Quantum State Transfer via Noisy Photonic and Phononic Waveguides.
Vermersch, B; Guimond, P-O; Pichler, H; Zoller, P
2017-03-31
We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.
Quantum State Transfer via Noisy Photonic and Phononic Waveguides
Vermersch, B.; Guimond, P.-O.; Pichler, H.; Zoller, P.
2017-03-01
We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.
Multi-bit dark state memory: Double quantum dot as an electronic quantum memory
Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri
2016-12-01
Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.
DEFF Research Database (Denmark)
Johansen, Jeppe; Stobbe, Søren; Nikolaev, I.S.
2007-01-01
We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics.......We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics....
Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state
Yu, Yan; Zha, Xin Wei; Li, Wei
2017-02-01
In this paper, two theoretical schemes of the arbitrary single-qubit states via four-qubit cluster state are proposed. One is three-party quantum broadcast scheme, which realizes the broadcast among three participants. The other is multi-output quantum teleportation. Both allow two distant receivers to simultaneously and deterministically obtain the arbitrary single-qubit states, respectively. Compared with former schemes of an arbitrary single-qubit state, the proposed schemes realize quantum multi-cast communication efficiently, which enables Bob and Charlie to obtain the states simultaneously in the case of just knowing Alice's measurement results. The proposed schemes play an important role in quantum information, specially in secret sharing and quantum teleportation.
Fractional quantum Hall states of bosons on cones
Wu, Ying-Hai; Tu, Hong-Hao; Sreejith, G. J.
2017-09-01
Motivated by a recent experiment, which synthesizes Landau levels for photons on cones [Schine et al., Nature (London) 534, 671 (2016), 10.1038/nature17943], and more generally the interest in understanding gravitational responses of quantum Hall states, we study fractional quantum Hall states of bosons on cones. A variety of trial wave functions for conical systems are constructed and compared with exact diagonalization results. The tip of a cone is a localized geometrical defect with singular curvature, which can modify the density profiles of quantum Hall states. The density profiles on cones can be used to extract some universal information about quantum Hall states. The values of certain quantities are computed numerically using the density profiles of some quantum Hall states and they agree with analytical predictions.
Bimetric Theory of Fractional Quantum Hall States
Gromov, Andrey; Son, Dam Thanh
2017-10-01
We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k6 order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.
Bimetric Theory of Fractional Quantum Hall States
Directory of Open Access Journals (Sweden)
Andrey Gromov
2017-11-01
Full Text Available We present a bimetric low-energy effective theory of fractional quantum Hall (FQH states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k^{6} order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.
Energy Technology Data Exchange (ETDEWEB)
Ramírez-Porras, A., E-mail: aramirez@fisica.ucr.ac.cr [Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); García, O. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Vargas, C. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Corrales, A. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Solís, J.D. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica)
2015-08-30
Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models.
A Novel Scheme for Bidirectional and Hybrid Quantum Information Transmission via a Seven-Qubit State
Fang, Sheng-hui; Jiang, Min
2018-02-01
In this paper, we present a novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. We demonstrate that under the control of the supervisor two distant participants can simultaneously and deterministically exchange their states with each other no matter whether they know the states or not. In our scheme, Alice can teleport an arbitrary single-qubit state (two-qubit state) to Bob and Bob can prepare a known two-qubit state (single-qubit state) for Alice simultaneously via the control of the supervisor Charlie. Compared with previous studies for single bidirectional quantum teleportation or single bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach for quantum information transmission. Furthermore, it achieves success with unit probability. Notably, since only pauli operations and two-qubit and single-qubit measurements are used in our schemes, it is flexible in physical experiments.
A Novel Scheme for Bidirectional and Hybrid Quantum Information Transmission via a Seven-Qubit State
Fang, Sheng-hui; Jiang, Min
2017-11-01
In this paper, we present a novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. We demonstrate that under the control of the supervisor two distant participants can simultaneously and deterministically exchange their states with each other no matter whether they know the states or not. In our scheme, Alice can teleport an arbitrary single-qubit state (two-qubit state) to Bob and Bob can prepare a known two-qubit state (single-qubit state) for Alice simultaneously via the control of the supervisor Charlie. Compared with previous studies for single bidirectional quantum teleportation or single bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach for quantum information transmission. Furthermore, it achieves success with unit probability. Notably, since only pauli operations and two-qubit and single-qubit measurements are used in our schemes, it is flexible in physical experiments.
Coherence properties and quantum state transportation in an optical conveyor belt.
Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D
2003-11-21
We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.
Controlled interactions in superconducting quantum circuits
Energy Technology Data Exchange (ETDEWEB)
Wulschner, Karl Friedrich
2016-09-14
This thesis deals with controlled interactions between superconducting circuit elements for quantum computation and simulation applications. First, the electrical design and measurements of transmon type qubits, which are coupled to superconducting resonators, are presented. Secondly the controllable coupling of superconducting microwave resonators via an rf SQUID is experimentally investigated. Thirdly, a theoretical discussion about interaction and entanglement of a microwave resonator with a nanomechanical beam via an rf SQUID is discussed.
Generation and storage of quantum states using cold atoms
DEFF Research Database (Denmark)
Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean
2006-01-01
Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing......, polarization squeezing and entanglement have been demonstrated. Quantum state storage is made possible by the presence of long-lived angular momentum in the ground state. Cold atoms are thus a promising resource in quantum information....
Concrete Quantum Logics and Δ -Logics, States and Δ -States
Hroch, Michal; Pták, Pavel
2017-12-01
By a concrete quantum logic (in short, by a logic) we mean the orthomodular poset that is set-representable. If L=({Ω },L) is a logic and L is closed under the formation of symmetric difference, Δ , we call L a Δ -logic. In the first part we situate the known results on logics and states to the context of Δ -logics and Δ -states (the Δ -states are the states that are subadditive with respect to the symmetric difference). Moreover, we observe that the rather prominent logic E^{ {even}}_{Ω } of all even-coeven subsets of the countable set Ω possesses only Δ -states. Then we show when a state on the logics given by the divisibility relation allows for an extension as a state. In the next paragraph we consider the so called density logic and its Δ -closure. We find that the Δ -closure coincides with the power set. Then we investigate other properties of the density logic and its factor.
Quantum state engineering using one-dimensional discrete-time quantum walks
Innocenti, Luca; Majury, Helena; Giordani, Taira; Spagnolo, Nicolò; Sciarrino, Fabio; Paternostro, Mauro; Ferraro, Alessandro
2017-12-01
Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology.
Quantum state majorization at the output of bosonic Gaussian channels
Mari, A.; Giovannetti, V.; Holevo, A. S.
2014-05-01
Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). Here we prove this conjecture. Specifically we show that every output state of a phase-insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers.
Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots
DEFF Research Database (Denmark)
Albert, F.; Schneider, C.; Stobbe, Søren
2010-01-01
We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...
Quantum efficiency and oscillator strength of site-controlled InAs quantum dots
DEFF Research Database (Denmark)
Albert, F.; Stobbe, Søren; Schneider, C.
2010-01-01
We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled InAs quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...
Quantum synchronization and quantum state sharing in an irregular complex network.
Li, Wenlin; Li, Chong; Song, Heshan
2017-02-01
We investigate the quantum synchronization phenomenon of the complex network constituted by coupled optomechanical systems and prove that the unknown identical quantum states can be shared or distributed in the quantum network even though the topology is varying. Considering a channel constructed by quantum correlation, we show that quantum synchronization can sustain and maintain high levels in Markovian dissipation for a long time. We also analyze the state-sharing process between two typical complex networks, and the results predict that linked nodes can be directly synchronized, but the whole network will be synchronized only if some specific synchronization conditions are satisfied. Furthermore, we give the synchronization conditions analytically through analyzing network dynamics. This proposal paves the way for studying multi-interaction synchronization and achieving effective quantum information processing in a complex network.
Quantum key distribution based on orthogonal states allows secure quantum bit commitment
He, Guang Ping
2011-11-01
For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But based on a previously proposed quantum key distribution scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the no-go proofs of QBC are based. Thus, the no-go proofs could be evaded. Our protocol is fault-tolerant and very feasible with currently available technology. It reopens the venue for other ‘post-cold-war’ multi-party cryptographic protocols, e.g. quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.
Efficient state initialization by a quantum spectral filtering algorithm
Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond
2017-04-01
An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.
Open quantum dots in graphene: Scaling relativistic pointer states
Energy Technology Data Exchange (ETDEWEB)
Ferry, D K; Huang, L; Yang, R; Lai, Y-C; Akis, R, E-mail: ferry@asu.ed [School of Electrical, Computer, and Energy Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706 (United States)
2010-04-01
Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not 'ashed out' through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.
Quantum light and topological surface states
Dai, C. M.; Wang, W.; Yi, X. X.
2017-12-01
We demonstrate theoretically that, when quantum light interacts with massless Dirac fermions on the surface of a three-dimensional topological insulator, the elementary excitation spectrum depends on the polarizations of quantum light. Linear-polarized light cannot open a gap and leads to an anisotropic Dirac cone, but circular-polarized light can induce a mass term and the sign of mass is determined by the helicity of light. The effects due to quantum fluctuations are also discussed.
Control of magnetotransport in quantum billiards theory, computation and applications
Morfonios, Christian V
2017-01-01
In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation of the elements of mesoscopic devices and transport theory, a computational technique which treats multiterminal structures of arbitrary geometry and topology is developed. The method relies on the modular assembly of the electronic propagators of subsystems which are inter- or intra-connected providing large flexibility in system setups combined with high computational efficiency. Conductance control is first demonstrated for elongated quantum billiards and arrays thereof where a weak magnetic field tunes the current by phase modulation of interfering lead-coupled states geometrically separated from confined states. Soft-wall potentials are then employed for efficient and robust conductance switching by isolating...
Statistical constraints on state preparation for a quantum computer ∑
Indian Academy of Sciences (India)
tation on a quantum computer. How do we load information on the quantum register if the information-carrying particles in the cells of the register are indistinguishable? Quantum computing algorithms as visualized now [1,2] proceed with the register of n cells in a pure state. Each cell is seen to store a qubit αeiθ1 0 +βeiθ2 1 ...
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2015-03-30
Final 3. DATES COVERED (From - To) 14 Aug 13 to 13 Feb 15 4. TITLE AND SUBTITLE Nano Electronics on Atomically Controlled van der Waals ...dimensional (2D) van der Waals (vdW) materials for the realization of novel quantum electronic states. We employed molecular beam epitaxy (MBE) combined with...junctions that allowed to study transport across the van der Waals interface between the conductor and superconductor. Our observation of gate tunable
Steady state quantum discord for circularly accelerated atoms
Energy Technology Data Exchange (ETDEWEB)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Quantum metrology with spin cat states under dissipation
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-12-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.
Comment on "Observer dependence of quantum states in relativistic quantum field theories"
Bloch, I.
1984-04-01
In response to Malin's recent paper it is suggested that the important aspect of timing in relativistic descriptions of position determinations is the timing with which a pure state is converted to a mixture, rather than the timing of the mixture's reduction to a new pure state; this suggestion removes some of the subjectivism that Malin finds in quantum states. It is suggested also that viewing quantum mechanics as a branch of psychology raises more questions than it answers.
Xiao, Hailin; Zhang, Zhongshan
2017-01-01
Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, current QKD technique restricts quantum secure communication to a low bit rate. To improve the QKD bit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase {log _2}(N^2+1) times than that of single-photon QKD system.
Dynamics of quantum observables in entangled states
Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.
2009-08-01
We examine the dynamics of a radiation field propagating through a nonlinear medium. A time series analysis of the mean photon number illustrates how an open quantum system interacting with a quantum environment can exhibit remarkably diverse ergodicity properties, both nonlinearity and departure from coherence playing a crucial role.
Imperfect state preparation in continuous-variable quantum key distribution
Liu, Wenyuan; Wang, Xuyang; Wang, Ning; Du, Shanna; Li, Yongmin
2017-10-01
In continuous-variable quantum key distribution, the loss and excess noise of the quantum channel are key parameters that determine the secure key rate and the maximal distribution distance. We investigate the imperfect quantum state preparation in Gaussian modulation coherent-state protocol both theoretically and experimentally. We show that the Gaussian distribution characteristic of the prepared states in phase space is broken due to the incorrect calibration of the working parameters for the amplitude modulator and phase modulator. This further causes a significant increase of the excess noise and misestimate of the channel loss. To ensure an accurate estimate of the quantum channel parameters and achieve a reliable quantum key distribution, we propose and demonstrate two effective schemes to calibrate the working parameters of the modulators.
Entanglement distillation between solid-state quantum network nodes.
Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R
2017-06-02
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.
Entanglement distillation between solid-state quantum network nodes
Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.
2017-06-01
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.
Optimal eavesdropping in cryptography with three-dimensional quantum states.
Bruss, D; Macchiavello, C
2002-03-25
We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.
Experimental Study of Optimal Measurements for Quantum State Tomography
Sosa-Martinez, H.; Lysne, N. K.; Baldwin, C. H.; Kalev, A.; Deutsch, I. H.; Jessen, P. S.
2017-10-01
Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Those that are informationally complete for all states are found to be accurate and reliable even in the presence of errors in the measurements themselves, while those designed to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results highlight the unavoidable trade-offs inherent in quantum tomography.
Extending SDL and LMC complexity measures to quantum states
Piqueira, José Roberto C.; Campbell-Borges, Yuri Cássio
2013-10-01
An extension of SDL (Shiner, Davison, Landsberg) and LMC (López-Ruiz, Mancini, Calbet) complexity measures is proposed for the quantum information context, considering that Von Neumann entropy is a natural disorder quantifier for quantum states. As a first example of application, the simple qubit was studied, presenting results similar to that obtained by applying SDL and LMC measures to a classical probability distribution. Then, for the Werner state, a mixture of Bell states, SDL and LMC measures were calculated, depending on the mixing factor γ, providing some conjectures concerning quantum systems.
Topological quantum computing with Read-Rezayi states.
Hormozi, L; Bonesteel, N E; Simon, S H
2009-10-16
Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which, in principle, can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with k>2, k not equal 4. This work extends previous results which only applied to the case k=3 (Fibonacci) and clarifies why, in that case, gate constructions are simpler than for a generic Read-Rezayi state.
Bound states in Galilean-invariant quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Corley, S.R.; Greenberg, O.W. [Center for Theoretical Physics, Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)
1997-02-01
We consider the nonrelativistic quantum mechanics of a model of two spinless fermions interacting via a two-body potential. We introduce quantum fields associated with the two particles as well as the expansion of these fields in asymptotic {open_quotes}in{close_quotes} and {open_quotes}out{close_quotes} fields, including such fields for bound states, in principle. We limit our explicit discussion to a two-body bound state. In this context we discuss the implications of the Galilean invariance of the model and, in particular, show how to include bound states in a strictly Galilean-invariant quantum field theory. {copyright} {ital 1997 American Institute of Physics.}
Quantum reciprocity conjecture for the non-equilibrium steady state
Energy Technology Data Exchange (ETDEWEB)
Coleman, P; Mao, W [Center for Materials Theory, Rutgers University, Piscataway, NJ 08854 (United States)
2004-05-26
A consideration of the lack of history dependence in the non-equilibrium steady state of a quantum system leads us to conjecture that in such a system there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analogue of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot. (letter to the editor)
A secure quantum group signature scheme based on Bell states
Zhang, Kejia; Song, Tingting; Zuo, Huijuan; Zhang, Weiwei
2013-04-01
In this paper, we propose a new secure quantum group signature with Bell states, which may have applications in e-payment system, e-government, e-business, etc. Compared with the recent quantum group signature protocols, our scheme is focused on the most general situation in practice, i.e. only the arbitrator is trusted and no intermediate information needs to be stored in the signing phase to ensure the security. Furthermore, our scheme has achieved all the characteristics of group signature—anonymity, verifiability, traceability, unforgetability and undeniability, by using some current developed quantum and classical technologies. Finally, a feasible security analysis model for quantum group signature is presented.
Quantum-classical correspondence in steady states of nonadiabatic systems
Energy Technology Data Exchange (ETDEWEB)
Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Coherent Quantum Dynamics in Steady-State Manifolds of Strongly Dissipative Systems
Zanardi, Paolo; Campos Venuti, Lorenzo
2014-12-01
Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.
Zounia, M.; Shamirzaie, M.; Ashouri, A.
2017-09-01
In this paper quantum teleportation of an unknown quantum state via noisy maximally bipartite (Bell) and maximally tripartite (Greenberger-Horne-Zeilinger (GHZ)) entangled states are investigated. We suppose that one of the observers who would receive the sent state accelerates uniformly with respect to the sender. The interactions of the quantum system with its environment during the teleportation process impose noises. These (unital and nonunital) noises are: phase damping, phase flip, amplitude damping and bit flip. In expressing the modes of the Dirac field used as qubits, in the accelerating frame, the so-called single mode approximation is not imposed. We calculate the fidelities of teleportation, and discuss their behaviors using suitable plots. The effects of noise, acceleration and going beyond the single mode approximation are discussed. Although the Bell states bring higher fidelities than GHZ states, the global behaviors of the two quantum systems with respect to some noise types, and therefore their fidelities, are different.
Viola, Lorenza; Tannor, David
2011-08-01
Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance
Experimental demonstration of efficient quantum state tomography of matrix product states.
Zhao, Yuan-Yuan; Hou, Zhibo; Xiang, Guo-Yong; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2017-04-17
Quantum state tomography is a key technology for fully determining a quantum state. Unfortunately, standard quantum state tomography is intractable for general many-body quantum states, because the number of measurements and the post-processing time increase exponentially with the size of the system. However, for the matrix product states (MPSs), there exists an efficient method using linearly scaled local measurements and polynomially scaled post-processing times. In this study, we demonstrate the validity of the method in practice by reconstructing a four-photon MPS from its local two- or three-photon reduced-density matrices with the presence of statistical errors and systematical errors in experiment.
Wu, Q. Q.; Tan, Q. S.; Kuang, L. M.
2011-10-01
We propose a theoretical scheme to generate a controllable and switchable coupling between two double-quantum-dot (DQD) spin qubits by using a transmission line resonator (TLR) as a bus system. We study dynamical behaviors of quantum correlations described by entanglement correlation (EC) and discord correlation (DC) between two DQD spin qubits when the two spin qubits and the TLR are initially prepared in X-type quantum states and a coherent state, respectively. We demonstrate that in the EC death regions there exist DC stationary states in which the stable DC amplification or degradation can be generated during the dynamical evolution. It is shown that these DC stationary states can be controlled by initial-state parameters, the coupling, and detuning between qubits and the TLR. We reveal the full synchronization and anti-synchronization phenomena in the EC and DC time evolution, and show that the EC and DC synchronization and anti-synchronization depends on the initial-state parameters of the two DQD spin qubits. It is shown that the initial quantum correlation may be suppressed completely when the evolution time approaches to the infinity in the presence of dissipation. These results shed new light on dynamics of quantum correlations.
Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence
Directory of Open Access Journals (Sweden)
P. Campagne-Ibarcq
2016-01-01
Full Text Available A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.
Single quantum dot controls a plasmonic cavity's scattering and anisotropy.
Hartsfield, Thomas; Chang, Wei-Shun; Yang, Seung-Cheol; Ma, Tzuhsuan; Shi, Jinwei; Sun, Liuyang; Shvets, Gennady; Link, Stephan; Li, Xiaoqin
2015-10-06
Plasmonic cavities represent a promising platform for controlling light-matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light's coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices.
Fluctuation Theorem for Many-Body Pure Quantum States
Iyoda, Eiki; Kaneko, Kazuya; Sagawa, Takahiro
2017-09-01
We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can be experimentally tested by artificial isolated quantum systems such as ultracold atoms.
Fluctuation Theorem for Many-Body Pure Quantum States.
Iyoda, Eiki; Kaneko, Kazuya; Sagawa, Takahiro
2017-09-08
We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can be experimentally tested by artificial isolated quantum systems such as ultracold atoms.
Energy Technology Data Exchange (ETDEWEB)
Zhang Zhanjun [School of Physics and Material Science, Anhui University, Hefei 230039 (China)]. E-mail: zjzhang@ahu.edu.cn
2006-03-20
I present a scheme which allows an arbitrary 2-qubit quantum state teleportation between two remote parties with control of many agents in a network. Comparisons between the present scheme and the existing scheme proposed recently [F.G. Deng, et al., Phys. Rev. A 72 (2005) 022338] are made. It seems that the present scheme is much simpler and more economic. Then I generalize the scheme to teleport an arbitrary n-qubit quantum state between two remote parties with control of agents in a network.
Quantum State-Resolved Studies of Chemisorption Reactions.
Chadwick, Helen; Beck, Rainer D
2017-05-05
Chemical reactions at the gas-surface interface are ubiquitous in the chemical industry as well as in nature. Investigating these processes at a microscopic, quantum state-resolved level helps develop a predictive understanding of this important class of reactions. In this review, we present an overview of the field of quantum state-resolved gas-surface reactivity measurements that explore the role of the initial quantum state on the dissociative chemisorption of a gas-phase reactant incident on a solid surface. Using molecular beams and either quantum state-specific reactant preparation or product detection by laser excitation, these studies have observed mode specificity and bond selectivity as well as steric effects in chemisorption reactions, highlighting the nonstatistical and complex nature of gas-surface reaction dynamics.
Data processing inequality and open quantum systems: Beyond Markov states
Türkmen, A.; Verçin, A.; Yılmaz, S.
2017-10-01
Using a tripartite framework consisting of an open quantum system, its environment, and a passive reference system, in this study we discuss quantum mutual information (QMI) and data processing inequality (DPI). Without any restriction on the initial correlations, the necessary and sufficient conditions for the decrease or increase as well as for the conservation of QMI are obtained for any joint unitary evolution of the open quantum system and its environment. In the special case of the input Markov states, it has been shown that as long as the tripartite input state is a Markov state then DPI holds for every joint unitary evolution even in the presence of initial correlations encoded in the input. We also point out that the converse of the last statement, that is, sufficiency of the existence of a local quantum channel or of the fulfillment of DPI for the input Markov state does not hold in general and this fact is exhibited by counterexamples.
Theoretically extensible quantum digital signature with starlike cluster states
Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min
2017-01-01
Chen et al. (Phys Rev A 73:012303, 2006) constructed this "starlike cluster" state, which involves one qubit located at the center and n neighboring two-qubit arms. This genuine entangled state has been used for the construction of 2D and 3D cluster states, topological one-way computation, and dynamical quantum secret sharing. In this paper, we investigate the usefulness of this starlike cluster state and propose a theoretically extensible quantum digital signature scheme. The proposed scheme can be theoretically generalized to more than three participants. Moreover, it retains the merits of no requirements such as authenticated quantum channels and long-term quantum memory. We also give a security proof for the proposed scheme against repudiation and forgery.
Photon-echo-based quantum memory for optical squeezed states
Wu, Miao-Xin; Wang, Ming-Feng; Zheng, Yi-Zhuang
2015-08-01
The ability to efficiently realize storage and readout of optical squeezed states plays a key roll in continuous-variables quantum information processing. Here we study the quantum memory for squeezed state of propagating light in atoms based on the hybrid photon echo re-phasing. The optical quantum state is recorded in two sublevels of the ground state of an atomic ensemble to realize long-lived quantum memory. Taking into account the noise effect due to atomic decay, our estimation indicates that high fidelities larger than the classical fidelity threshold 81.5% are obtainable even with currently available techniques. Moreover, our result shows that the decay rate of atoms restricts the maximal fidelity. Our work provides some practical guidance for the realization of efficient and faithful photon-echo-based memory for squeezed light.
Absence of quantum states corresponding to unstable classical channels
DEFF Research Database (Denmark)
Herbst, Ira; Skibsted, Erik
2008-01-01
We develop a general theory of absence of quantum states corresponding to unstable classical scattering channels. We treat in detail Hamiltonians arising from symbols of degree zero in x and outline a generalization in an Appendix.......We develop a general theory of absence of quantum states corresponding to unstable classical scattering channels. We treat in detail Hamiltonians arising from symbols of degree zero in x and outline a generalization in an Appendix....
Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger
2013-01-01
We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...
Heralded atomic-ensemble quantum memory for photon polarization states
Energy Technology Data Exchange (ETDEWEB)
Tanji, Haruka; Simon, Jonathan [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Ghosh, Saikat; Bloom, Benjamin; Vuletic, Vladan [Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: vuletic@mit.edu
2009-07-15
We describe the mapping of quantum states between single photons and an atomic ensemble. In particular, we demonstrate a heralded quantum memory based on the mapping of a photon polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles. The polarization fidelity above 90(2)% for any input polarization far exceeds the classical limit of 2/3. The process also constitutes a quantum non-destructive probe that detects and regenerates a photon without measuring its polarization.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Quantum Hall states observed in thin films of Dirac semimetal Cd3As2.
Uchida, Masaki; Nakazawa, Yusuke; Nishihaya, Shinichi; Akiba, Kazuto; Kriener, Markus; Kozuka, Yusuke; Miyake, Atsushi; Taguchi, Yasujiro; Tokunaga, Masashi; Nagaosa, Naoto; Tokura, Yoshinori; Kawasaki, Masashi
2017-12-22
A well known semiconductor Cd3As2 has reentered the spotlight due to its unique electronic structure and quantum transport phenomena as a topological Dirac semimetal. For elucidating and controlling its topological quantum state, high-quality Cd3As2 thin films have been highly desired. Here we report the development of an elaborate growth technique of high-crystallinity and high-mobility Cd3As2 films with controlled thicknesses and the observation of quantum Hall effect dependent on the film thickness. With decreasing the film thickness to 10 nm, the quantum Hall states exhibit variations such as a change in the spin degeneracy reflecting the Dirac dispersion with a large Fermi velocity. Details of the electronic structure including subband splitting and gap opening are identified from the quantum transport depending on the confinement thickness, suggesting the presence of a two-dimensional topological insulating phase. The demonstration of quantum Hall states in our high-quality Cd3As2 films paves a road to study quantum transport and device application in topological Dirac semimetal and its derivative phases.
Experimental demonstration of macroscopic quantum coherence in Gaussian states
DEFF Research Database (Denmark)
Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.
2007-01-01
We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
Wang, S M; Gong, Y X; Xu, P; Li, L; Li, T; Zhu, S N
2014-01-01
It has been proved that surface plasmon polariton (SPP) can well conserve and transmit the quantum nature of entangled photons. Therefore, further utilization and manipulation of such quantum nature of SPP in a plasmonic chip will be the next task for scientists in this field. In quantum logic circuits, the controlled-NOT (CNOT) gate is the key building block. Here, we implement the first plasmonic quantum CNOT gate with several-micrometer footprint by utilizing a single polarization-dependent beam-splitter (PDBS) fabricated on the dielectric-loaded SPP waveguide (DLSPPW). The quantum logic function of the CNOT gate is characterized by the truth table with an average fidelity of. Its entangling ability to transform a separable state into an entangled state is demonstrated with the visibilities of and for non-orthogonal bases. The DLSPPW based CNOT gate is considered to have good integratability and scalability, which will pave a new way for quantum information science.
Schoenfield, Joshua S; Freeman, Blake M; Jiang, HongWen
2017-07-05
Qubits based on silicon quantum dots are emerging as leading candidates for the solid-state implementation of quantum information processing. In silicon, valley states represent a degree of freedom in addition to spin and charge. Characterizing and controlling valley states is critical for the encoding and read-out of electrons-in-silicon-based qubits. Here, we report the coherent manipulation of a qubit, which is based on the two valley states of an electron confined in a silicon quantum dot. We carry out valley qubit operations at multiple charge configurations of the double quantum dot device. The dependence of coherent oscillations on pulse excitation level and duration allows us to map out the energy dispersion as a function of detuning as well as the phase coherence time of the valley qubit. The coherent manipulation also provides a method of measuring valley splittings that are too small to probe with conventional methods.Silicon quantum dots provide a promising platform for quantum computing based on manipulation of electron degrees of freedom in a well-characterized environment. Here, the authors demonstrate coherent control of electron valley states, yielding an accurate determination of the valley splitting.
Step-by-step magic state encoding for efficient fault-tolerant quantum computation.
Goto, Hayato
2014-12-16
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.
Coherent feedback control of multipartite quantum entanglement for optical fields
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)
2011-12-15
Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.
Extreme quantum nonequilibrium, nodes, vorticity, drift and relaxation retarding states
Underwood, Nicolas G.
2018-02-01
Consideration is given to the behaviour of de Broglie trajectories that are separated from the bulk of the Born distribution with a view to describing the quantum relaxation properties of more ‘extreme’ forms of quantum nonequilibrium. For the 2D isotropic harmonic oscillator, through the construction of what is termed the ‘drift field’, a description is given of a general mechanism that causes the relaxation of ‘extreme’ quantum nonequilibrium. Quantum states are found which do not feature this mechanism, so that relaxation may be severely delayed or possibly may not take place at all. A method by which these states may be identified, classified and calculated is given in terms of the properties of the nodes of the state. Properties of the nodes that enable this classification are described for the first time.
Quantum Public Key Cryptosystem Based on Bell States
Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan
2017-11-01
Classical public key cryptosystems ( P K C), such as R S A, E I G a m a l, E C C, are no longer secure in quantum algorithms, and quantum cryptography has become a novel research topic. In this paper we present a quantum asymmetrical cryptosystem i.e. quantum public key cryptosystem ( Q P K C) based on the Bell states. In particular, in the proposed QPKC the public key are given by the first n particles of Bell states and generalized Pauli operations. The corresponding secret key are the last n particles of Bell states and the inverse of generalized Pauli operations. The proposed QPKC encrypts the message using a public key and decrypts the ciphertext using a private key. By H o l e v o ' s theorem, we proved the security of the secret key and messages during the QPKC.
Decomposition of fractional quantum Hall states: New symmetries and approximations
Thomale, R.; Estienne, B.; Regnault, N.; Bernevig, B.A.
2010-01-01
Abstract: We provide a detailed description of a new symmetry structure of the monomial (Slater) expansion coefficients of bosonic (fermionic) fractional quantum Hall states first obtained in Ref. 1, which we now extend to spin-singlet states. We show that the Haldane-Rezayi spin-singlet state can
Coherent states of non-Hermitian quantum systems
Roy, B.; Roy, P.
2006-01-01
We use the Gazeau-Klauder formalism to construct coherent states of non-Hermitian quantum systems. In particular we use this formalism to construct coherent state of a PT symmetric system. We also discuss construction of coherent states following Klauder's minimal prescription.
Preparation and coherent manipulation of pure quantum states of a single molecular ion
Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich
2017-05-01
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
Preparation and coherent manipulation of pure quantum states of a single molecular ion.
Chou, Chin-Wen; Kurz, Christoph; Hume, David B; Plessow, Philipp N; Leibrandt, David R; Leibfried, Dietrich
2017-05-10
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
Delocalized Quantum States Enhance Photocell Efficiency
Zhang, Yiteng; Alharbi, Fahhad H; Engel, Greg; Kais, Sabre
2014-01-01
The high quantum efficiency of photosynthetic complexes has inspired researchers to explore new routes to utilize this process for photovoltaic devices. Quantum coherence has been demonstrated to play a crucial role within this process. Herein, we propose a three-dipole system as a model of a new photocell type which exploits the coherence among its three dipoles. We have proved that the efficiency of such a photocell is greatly enhanced by quantum coherence. We have also predicted that the photocurrents can be enhanced by about 49.5 % in such a coherent coupled dipole system compared with the uncoupled dipoles. These results suggest a promising novel design aspect of photosynthesis-mimicking photovoltaic devices.
Scalable architecture for a room temperature solid-state quantum information processor.
Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D
2012-04-24
The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.
High-NOON states by mixing quantum and classical light.
Afek, Itai; Ambar, Oron; Silberberg, Yaron
2010-05-14
Precision measurements can be brought to their ultimate limit by harnessing the principles of quantum mechanics. In optics, multiphoton entangled states, known as NOON states, can be used to obtain high-precision phase measurements, becoming more and more advantageous as the number of photons grows. We generated "high-NOON" states (N = 5) by multiphoton interference of quantum down-converted light with a classical coherent state in an approach that is inherently scalable. Super-resolving phase measurements with up to five entangled photons were produced with a visibility higher than that obtainable using classical light only.
Weak measurements, quantum-state collapse, and the Born rule
Patel, Apoorva; Kumar, Parveen
2017-08-01
Projective measurement is used as a fundamental axiom in quantum mechanics, even though it is discontinuous and cannot predict which measured operator eigenstate will be observed in which experimental run. The probabilistic Born rule gives it an ensemble interpretation, predicting proportions of various outcomes over many experimental runs. Understanding gradual weak measurements requires replacing this scenario with a dynamical evolution equation for the collapse of the quantum state in individual experimental runs. We revisit the quantum trajectory framework that models quantum measurement as a continuous nonlinear stochastic process. We describe the ensemble of quantum trajectories as noise fluctuations on top of geodesics that attract the quantum state towards the measured operator eigenstates. In this effective theory framework for the ensemble of quantum trajectories, the measurement interaction can be specific to each system-apparatus pair, a context necessary for understanding weak measurements. Also in this framework, the constraint to reproduce projective measurement as per the Born rule in the appropriate limit requires that the magnitudes of the noise and the attraction are precisely related, in a manner reminiscent of the fluctuation-dissipation relation. This relation implies that both the noise and the attraction have a common origin in the underlying measurement interaction between the system and the apparatus. We analyze the quantum trajectory ensemble for the scenarios of quantum diffusion and binary quantum jump, and show that the ensemble distribution is completely determined in terms of a single evolution parameter. This trajectory ensemble distribution can be tested in weak measurement experiments. We also comment on how the required noise may arise in the measuring apparatus.
Gaussian private quantum channel with squeezed coherent states
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-01-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893
Gaussian private quantum channel with squeezed coherent states
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-09-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.
Gaussian private quantum channel with squeezed coherent states.
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-09-14
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.
Disentanglement of source and target and the laser quantum state.
Noh, Changsuk; Carmichael, H J
2008-03-28
Disentanglement of a laser source from its target qubit is proposed as a criterion establishing the laser quantum state as a coherent state. It is shown that the source-target density operator has a unique factorization in coherent states when the environmental record monitoring laser pump quanta is ignored. The source-target state conditioned upon the complete environmental record is entangled, though, as a state of known total quanta number (source plus target).
Energy Technology Data Exchange (ETDEWEB)
Levy, James E; Carroll, Malcolm S; Ganti, Anand; Phillips, Cynthia A; Landahl, Andrew J; Gurrieri, Thomas M; Carr, Robert D; Stalford, Harold L; Nielsen, Erik, E-mail: jelevy@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87185 (United States)
2011-08-15
In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal timing and thermally aware placement of classical supporting electronics significantly affect the quantum error correction circuit's error rate (by a factor of {approx}3-4 in our specific analysis). We analyze one level of a quantum error correction circuit using nine data qubits in a Bacon-Shor code configured as a quantum memory. A hypothetical silicon double quantum dot quantum bit (qubit) is used as the fundamental element. A pessimistic estimate of the error probability of the quantum circuit is calculated using the total number of gates and idle time using a provably optimal schedule for the circuit operations obtained with an integer program methodology. The micro-architecture analysis provides insight about the different ways the electronics impact the circuit performance (e.g. extra idle time in the schedule), which can significantly limit the ultimate performance of any quantum circuit and therefore is a critical foundation for any future larger scale architecture analysis.
Reducing collective quantum state rotation errors with reversible dephasing
Energy Technology Data Exchange (ETDEWEB)
Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K. [JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States)
2014-12-29
We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.
Quantum Communication Using Macroscopic Phase Entangled States
2015-12-10
realistic requirement. vi. List of patents • Patent application # 14/508,741, “Quantum key distribution over large distances using amplifiers...and unitary transformations”, James Franson, Todd Pittman, Brian Kirby, and Garrett Hickman 8 vii. List of publications • G. Jaeger, D. S
Quantum Averaging of Squeezed States of Light
DEFF Research Database (Denmark)
Squeezing has been recognized as the main resource for quantum information processing and an important resource for beating classical detection strategies. It is therefore of high importance to reliably generate stable squeezing over longer periods of time. The averaging procedure for a single...
Closed-Loop and Robust Control of Quantum Systems
Directory of Open Access Journals (Sweden)
Chunlin Chen
2013-01-01
Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Wigner function and the probability representation of quantum states
Directory of Open Access Journals (Sweden)
Man’ko Margarita A.
2014-01-01
Full Text Available The relation of theWigner function with the fair probability distribution called tomographic distribution or quantum tomogram associated with the quantum state is reviewed. The connection of the tomographic picture of quantum mechanics with the integral Radon transform of the Wigner quasidistribution is discussed. The Wigner–Moyal equation for the Wigner function is presented in the form of kinetic equation for the tomographic probability distribution both in quantum mechanics and in the classical limit of the Liouville equation. The calculation of moments of physical observables in terms of integrals with the state tomographic probability distributions is constructed having a standard form of averaging in the probability theory. New uncertainty relations for the position and momentum are written in terms of optical tomograms suitable for directexperimental check. Some recent experiments on checking the uncertainty relations including the entropic uncertainty relations are discussed.
Can a quantum critical state represent a blackbody?
Chakravarty, Sudip; Kraus, Per
2018-01-01
The blackbody theory of Planck played a seminal role in the development of quantum theory at the turn of the past century. A blackbody cavity is generally thought to be a collection of photons in thermal equilibrium; the radiation emitted is at all wavelengths, and the intensity follows a scaling law, which is Planck's characteristic distribution law. These photons arise from non-interacting normal modes. Here we suggest that certain quantum critical states when heated emit ;radiation; at all wavelengths and satisfy all the criteria of a blackbody. An important difference is that the ;radiation; does not necessarily consist of non-interacting photons, but also emergent relativistic bosons or fermions. The examples we provide include emergent relativistic fermions at a topological quantum critical point. This perspective on a quantum critical state may be illuminating in many unforeseen ways.
Can a quantum critical state represent a blackbody?
Chakravarty, Sudip
2016-01-01
The blackbody theory of Planck played a seminal role in the development of quantum theory at the turn of the past century. A blackbody cavity is generally thought to be a collection of photons in thermal equilibrium; the radiation emitted is at all wavelengths, and the intensity follows a scaling law, which is Planck's characteristic distribution law. These photons arise from non-interacting normal modes. Here we suggest that certain quantum critical states when heated emit "radiation" at all wavelengths and satisfy all the criteria of a blackbody. An important difference is that the "radiation" does not necessarily consist of non-interacting photons, but also emergent relativistic bosons or fermions. The examples we provide include emergent relativistic fermions at a topological quantum critical point. This perspective on a quantum critical state may be illuminating in many unforeseen ways.
Quantum localized states in photonic flat-band lattices
Rojas-Rojas, S.; Morales-Inostroza, L.; Vicencio, R. A.; Delgado, A.
2017-10-01
The localization of light in flat-band lattices has been recently proposed and experimentally demonstrated in several configurations, assuming a classical description of light. Here we study the problem of light localization in the quantum regime. We focus on quasi-one-dimensional and two-dimensional lattices which exhibit a perfect flat band inside their linear spectrum. Localized quantum states are constructed as eigenstates of the interaction Hamiltonian with a vanishing eigenvalue and a well defined total photon number. These are superpositions of Fock states with probability amplitudes given by positive as well as negative square roots of multinomial coefficients. The classical picture can be recovered by considering Poissonian superpositions of localized quantum states with different total photon number. We also study the separability properties of flat-band quantum states and apply them to the transmission of information via multicore fibers, where these states allow for the total passive suppression of photon crosstalk and exhibit robustness against photon losses. At the end, we propose an on-chip setup for the experimental preparation of localized quantum states of light for any number of photons.
Macroscopic superposition states and decoherence by quantum telegraph noise
Energy Technology Data Exchange (ETDEWEB)
Abel, Benjamin Simon
2008-12-19
In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)
Fast and robust quantum control based on Pauli blocking
Dowdall, Tom; Benseny, Albert; Busch, Thomas; Ruschhaupt, Andreas
2017-10-01
Coherent quantum control over many-particle quantum systems requires high-fidelity dynamics. One way of achieving this is to use adiabatic schemes where the system follows an instantaneous eigenstate of the Hamiltonian over time scales that do not allow transitions to other states. This, however, makes control dynamics very slow. Here we introduce another concept that takes advantage of preventing unwanted transitions in fermionic systems by using Pauli blocking: excitations from a protected ground state to higher-lying states are avoided by adding a layer of buffer fermions, such that the protected fermions cannot make a transition to higher-lying excited states because these are already occupied. This allows us to speed up adiabatic evolutions of the system. We do a thorough investigation of the technique, and demonstrate its power by applying it to high-fidelity transport, trap expansion, and splitting in ultracold-atom systems in anharmonic traps. Close analysis of these processes also leads to insights into the structure of the orthogonality catastrophe phenomenon.
Komnik, A; Saleur, H
2011-09-02
We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.
Continuous variables triple-photon states quantum entanglement
Gonzalez, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J.A.; Bencheikh, K
2017-01-01
We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show for example the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon gene...
On the density of states of circular graphene quantum dots
Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien
2017-10-01
We suggest a simple approach to calculate the local density of states that effectively applies to any structure created by an axially symmetric potential on a continuous graphene sheet such as circular graphene quantum dots or rings. Calculations performed for the graphene quantum dot studied in a recent scanning tunneling microscopy measurement (Gutierrez et al 2016 Nat. Phys. 12 1069-75) show an excellent experimental-theoretical agreement.
High-dimensional quantum state transfer through a quantum spin chain
Qin, Wei; Wang, Chuan; Long, Gui Lu
2013-01-01
In this paper, we investigate a high-dimensional quantum state transfer protocol. An arbitrary unknown high-dimensional state can be transferred with high fidelity between two remote registers through an XX coupling spin chain of arbitrary length. The evolution of the state transfer is determined by the natural dynamics of the chain without external modulation and coupling strength engineering. As a consequence, entanglement distribution with a high efficiency can be achieved. Also the strong field and high spin quantum number can partly counteract the effect of finite temperature to ensure the high fidelity of the protocol when the quantum data bus is in the thermal equilibrium state under an external magnetic field.
Network-based Arbitrated Quantum Signature Scheme with Graph State
Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying
2017-08-01
Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.
State hybridization shapes the photocurrent in triple quantum dot nanojunctions
Energy Technology Data Exchange (ETDEWEB)
Beltako, Katawoura; Cavassilas, Nicolas; Michelini, Fabienne [Universités Aix Marseille et Toulon, CNRS, IM2NP, UMR 7334, 13288 Marseille (France)
2016-08-15
We investigated a prototype of a quantum dot based photodetector made of a dot absorber interconnected with two lateral dot filters in contact with semiconducting leads. Using the nonequilibrium Green's function technique, we found that there are two opposite evolutions of the photocurrent in the vicinity of the tunnel resonance for such a kind of nanodevice. This evolution depends on where the strongest hybridization of states happens, and hence still reveals a quantum effect. If the filter states hybridize more with the absorber states than the ones of the leads, the photocurrent shows a maximum at the tunnel resonance, while it is minimized in the opposite case.
Continuous variable quantum key distribution with modulated entangled states
DEFF Research Database (Denmark)
Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael
2012-01-01
based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...
Single photon emission from site-controlled InGaN/GaN quantum dots
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei; Hill, Tyler A.; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109 (United States); Teng, Chu-Hsiang; Lee, Leung-Kway; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)
2013-11-04
Single photon emission was observed from site-controlled InGaN/GaN quantum dots. The single-photon nature of the emission was verified by the second-order correlation function up to 90 K, the highest temperature to date for site-controlled quantum dots. Micro-photoluminescence study on individual quantum dots showed linearly polarized single exciton emission with a lifetime of a few nanoseconds. The dimensions of these quantum dots were well controlled to the precision of state-of-the-art fabrication technologies, as reflected in the uniformity of their optical properties. The yield of optically active quantum dots was greater than 90%, among which 13%–25% exhibited single photon emission at 10 K.
Average subentropy, coherence and entanglement of random mixed quantum states
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)
2017-02-15
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.
Electron states in semiconductor quantum dots.
Dhayal, Suman S; Ramaniah, Lavanya M; Ruda, Harry E; Nair, Selvakumar V
2014-11-28
In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.
Ghazaryan, E M; Sarkisyan, H A
2002-01-01
Electron states in spherical quantum dots are studied, taking into account boundary conditions. The threshold habit of level appearance inside the quantum dots is revealed. The electron energy dependences on the quantum dots radius and confinement potential height
Projected gradient descent algorithms for quantum state tomography
Bolduc, Eliot; Knee, George C.; Gauger, Erik M.; Leach, Jonathan
2017-10-01
Accurate quantum tomography is a vital tool in both fundamental and applied quantum science. It is a task that involves processing a noisy measurement record in order to construct a reliable estimate of an unknown quantum state, and is central to quantum computing, metrology and communication. To date, many different approaches to quantum state estimation have been developed, yet no one method fits all applications, and all fail relatively quickly as the dimensionality of the unknown state grows. In this work, we suggest that projected gradient descent is a method that can evade some of these shortcomings. We present three tomography algorithms that use projected gradient descent and compare their performance with state-of-the-art alternatives, i.e., the diluted iterative algorithm and convex programming. Our results find in favour of the general class of projected gradient descent methods due to their speed, applicability to large states, and the range of conditions in which they perform as well as providing insight into which variant of projected gradient descent ought to be used in various measurement scenarios.
On the initial state of the Universe in quantum cosmology
Directory of Open Access Journals (Sweden)
N.N. Gorobey
2015-06-01
Full Text Available The paper discusses the problem of the initial state of a quantum inflationary Universe. Considering the dynamics of the inflation scalar field at the beginning of the inflation stage in the context of semi-classical approximation, we have identified this field with a cosmic time parameter. The early Universe state was defined as an initial value of the inflation field. Other degrees of the Universe freedom, including the scale factor, are treated within the framework of the quantum theory. The initial state of quantum degrees of freedom at the beginning of the inflation must be defined as well. A principle of the least excitation of physical degrees of freedom for the Universe has been proposed to determine the initial state of the quantum Universe. A uniform anisotropic model of the Universe was considered where its size and the anisotropic parameters were quantum dynamical variables. Assuming that the Universe size is a radial variable in the configuration space of the theory, the definition of the Hamiltonian of the Universe is rendered more precise. A simple exponential form of the initial state of the Universe is suggested and the Universe initial size is estimated for this form.
Li, Ao; Chen, Tian; Zhou, Yiheng; Wang, Xiangbin
2016-05-01
Quantum blockades as a nonlinear quantum optical process have been well studied in recent years. Using the quantum trajectory method, we calculate and discuss the output photon number distributions of a single-photon blockade process in a Kerr nonlinear dissipative resonator, revealing that the probability of the single-photon state can be optimized. Then we show through numerical simulations that such a quasi-single-photon source can drastically raise the key rate in the decoy-state quantum key distribution.
ierarchies of non-classical states in quantum optics
Indian Academy of Sciences (India)
states of the quantised electromagnetic ﬁeld, and drawing out the experimental implica- tions of such classiﬁcation. In particular it is interesting to see how one can bring out as sharply as possible those features that show the nonclassical properties of radiation. Given a quantum mechanical state of radiation produced in ...
The Capacity of Quantum Channel with General Signal States
Holevo, A. S.
1996-01-01
It is shown that the capacity of a classical-quantum channel with arbitrary (possibly mixed) states equals to the maximum of the entropy bound with respect to all apriori distributions. This completes the recent result of Hausladen, Jozsa, Schumacher, Westmoreland and Wooters, who proved the equality for the pure state channel.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors
Müller-Ebhardt, Helge; Rehbein, Henning; Li, Chao; Mino, Yasushi; Somiya, Kentaro; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei
2009-10-01
Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of ˜10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that Δf˜f ). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of ˜200 . This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM)—quantum mechanical behavior of objects in the realm of everyday experience—using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer’s classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.
Greca, Ileana Maria; Freire, Olival
Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.
Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State
Directory of Open Access Journals (Sweden)
A. M. Kaufman
2012-11-01
Full Text Available We report cooling of a single neutral atom to its three-dimensional vibrational ground state in an optical tweezer. After employing Raman sideband cooling for tens of milliseconds, we measure via sideband spectroscopy a three-dimensional ground-state occupation of about 90%. We further observe coherent control of the spin and motional state of the trapped atom. Our demonstration shows that an optical tweezer, formed simply by a tightly focused beam of light, creates sufficient confinement for efficient sideband cooling. This source of ground-state neutral atoms will be instrumental in numerous quantum simulation and logic applications that require a versatile platform for storing and manipulating ultracold single neutral atoms. For example, these results will improve current optical-tweezer experiments studying atom-photon coupling and Rydberg quantum logic gates, and could provide new opportunities such as rapid production of single dipolar molecules or quantum simulation in tweezer arrays.
Optimal secure quantum teleportation of coherent states of light
Liuzzo-Scorpo, Pietro; Adesso, Gerardo
2017-08-01
We investigate quantum teleportation of ensembles of coherent states of light with a Gaussian distributed displacement in phase space. Recently, the following general question has been addressed in [P. Liuzzo-Scorpo et al., arXiv:1705.03017]: Given a limited amount of entanglement and mean energy available as resources, what is the maximal fidelity that can be achieved on average in the teleportation of such an alphabet of states? Here, we consider a variation of this question, where Einstein-Podolsky-Rosen steering is used as a resource rather than plain entanglement. We provide a solution by means of an optimisation within the space of Gaussian quantum channels, which allows for an intuitive visualisation of the problem. We first show that not all channels are accessible with a finite degree of steering, and then prove that practical schemes relying on asymmetric two-mode Gaussian states enable one to reach the maximal fidelity at the border with the inaccessible region. Our results provide a rigorous quantitative assessment of steering as a resource for secure quantum teleportation beyond the so-called no-cloning threshold. The schemes we propose can be readily implemented experimentally by a conventional Braunstein-Kimble continuous variable teleportation protocol involving homodyne detections and corrective displacements with an optimally tuned gain. These protocols can be integrated as elementary building blocks in quantum networks, for reliable storage and transmission of quantum optical states.
Optimal quantum error correcting codes from absolutely maximally entangled states
Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio
2018-02-01
Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \
2017-05-05
mechanical resonators using a single quantum emitter in diamond. The work was a collaboration with the Department of Physics at University of California...AFRL-AFOSR-CL-TR-2017-0006 Diamond Quantum Nanoemitters 150113 Jeronimo Maze PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Final Report 05/05/2017...COVERED (From - To) 01 Mar 2015 to 31 Aug 2016 4. TITLE AND SUBTITLE Cross Discipline Research on Hyperbolic Optical Systems for Control of Quantum
Dynamical topological quantum phase transitions for mixed states
Heyl, M.; Budich, J. C.
2017-11-01
We introduce and study the dynamical probes of band-structure topology in the postquench time evolution of quantum many-body systems initialized in mixed states. Our construction generalizes the notion of dynamical quantum phase transitions (DQPTs), a real-time counterpart of conventional equilibrium phase transitions in quantum dynamics, to finite temperatures and generalized Gibbs ensembles. The nonanalytical signatures hallmarking these mixed-state DQPTs are found to be characterized by observable phase singularities manifesting in the dynamical formation of vortex-antivortex pairs in the interferometric phase of the density matrix. Studying quenches in Chern insulators, we find that changes in the topological properties of the Hamiltonian can be identified in this scenario, without ever preparing a topologically nontrivial or low-temperature initial state. Our observations are of immediate relevance for current experiments aimed at realizing topological phases in ultracold atomic gases.
Implementation of a quantum controlled-SWAP gate with photonic circuits.
Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F; Takeuchi, Shigeki
2017-03-31
Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.
Influence of scattering processes on electron quantum states in nanowires
Directory of Open Access Journals (Sweden)
Pozdnyakov Dmitry
2007-01-01
Full Text Available AbstractIn the framework of quantum perturbation theory the self-consistent method of calculation of electron scattering rates in nanowires with the one-dimensional electron gas in the quantum limit is worked out. The developed method allows both the collisional broadening and the quantum correlations between scattering events to be taken into account. It is an alternativeper seto the Fock approximation for the self-energy approach based on Green’s function formalism. However this approach is free of mathematical difficulties typical to the Fock approximation. Moreover, the developed method is simpler than the Fock approximation from the computational point of view. Using the approximation of stable one-particle quantum states it is proved that the electron scattering processes determine the dependence of electron energy versus its wave vector.
Radtke, T.; Fritzsche, S.
2008-11-01
Entanglement is known today as a key resource in many protocols from quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. The investigation of these and related questions often requires a search or optimization over the set of quantum states and, hence, a parametrization of them and various other objects. To facilitate this kind of studies in quantum information theory, here we present an extension of the FEYNMAN program that was developed during recent years as a toolbox for the simulation and analysis of quantum registers. In particular, we implement parameterizations of hermitian and unitary matrices (of arbitrary order), pure and mixed quantum states as well as separable states. In addition to being a prerequisite for the study of many optimization problems, these parameterizations also provide the necessary basis for heuristic studies which make use of random states, unitary matrices and other objects. Program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 231 No. of bytes in distributed program, including test data, etc.: 1 416 085 Distribution format: tar.gz Programming language: Maple 11 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; program has been tested under Microsoft Windows XP, Linux Classification: 4.15 Does the new version supersede the previous version?: Yes Nature of problem: During the last decades
Quantum theory of the solid state
Callaway, Joseph
1991-01-01
This new edition presents a comprehensive, up-to-date survey of the concepts and methods in contemporary condensed matter physics, emphasizing topics that can be treated by quantum mechanical methods. The book features tutorial discussions of a number of current research topics.Also included are updated treatments of topics that have developed significantly within the past several years, such as superconductivity, magnetic impurities in metals, methods for electronic structure calculations, magnetic ordering in insulators and metals, and linear response theory. Advanced level graduate students
TOPICAL REVIEW: Quantum well states and oscillatory magnetic interlayer coupling
Qiu, Z. Q.; Smith, N. V.
2002-03-01
Some interesting magnetic properties of artificially layered metallic materials are strongly connected with the existence of electron standing waves, or quantum well (QW) states. One such property is the oscillation in exchange coupling between two ferromagnetic materials separated by a nonmagnetic spacer layer of varying thicknesses. This article summarizes the findings of an extended investigation of QW states and their relation to oscillatory magnetic interlayer coupling carried out using angle-resolved photoemission with synchrotron radiation and auxiliary techniques such as magnetic x-ray linear dichroism and surface magnetic optical Kerr effect. A key feature of the measurements was the use of wedge-shaped samples, which, in combination with the small spot size of the synchrotron source, permitted investigation of the entire layer thickness range in a single experiment. Single-wedge samples were used as well as double-wedge samples tapered in orthogonal directions. The systematics of QW formation are well understood in terms of the elementary quantum mechanics of a particle in a box. We treat a single well, a double well and a corrugated well. The work on single wells focused on the elucidation of the long and short magnetic oscillatory periods for a Cu spacer layer, and their relation to the belly and neck regions of the Cu Fermi surface. The effects of interfacial roughness and interfacial mixing were investigated. The studies on double wells focused on the controllable degree of tunnelling between the wells and the avoided crossings that occur when the QW energies in one well are swept through those of the other. Finally, we consider the QW wavefunctions and their envelope modulation. The latter can be understood in terms of Bragg diffraction within a corrugated well. With use of a double-wedge-shaped sample it has proved possible to pass a thin probe across the well and to detect experimentally the envelope modulation.
Local decoherence-resistant quantum states of large systems
Energy Technology Data Exchange (ETDEWEB)
Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in
2015-02-06
We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.
Quantum non-Gaussian Depth of Single-Photon States.
Straka, Ivo; Predojević, Ana; Huber, Tobias; Lachman, Lukáš; Butschek, Lorenz; Miková, Martina; Mičuda, Michal; Solomon, Glenn S; Weihs, Gregor; Ježek, Miroslav; Filip, Radim
2014-11-28
We introduce and experimentally explore the concept of the non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quantum non-Gaussianity withstands significant attenuation, exhibiting a depth of 18 dB, while the nonclassicality remains unchanged. Quantum non-Gaussian depth is an experimentally approachable quantity that is much more robust than the negativity of the Wigner function. Furthermore, we use it to reveal significant differences between otherwise strongly nonclassical single-photon sources.
Quantum state transfer in a q-deformed chain
Energy Technology Data Exchange (ETDEWEB)
L' Innocente, Sonia [Dipartimento di Matematica ed Informatica, Universita di Camerino, 62032 Camerino (Italy); Lupo, Cosmo; Mancini, Stefano [Dipartimento di Fisica, Universita di Camerino, 62032 Camerino (Italy)], E-mail: sonia.linnocente@unicam.it, E-mail: cosmo.lupo@unicam.it, E-mail: stefano.mancini@unicam.it
2009-11-27
We investigate the quantum state transfer in a chain of particles satisfying the q-deformed oscillators algebra. This general algebraic setting includes the spin chain and the bosonic chain as limiting cases. We study conditions for perfect state transfer depending on the number of sites and excitations on the chain. They are formulated by means of irreducible representations of a quantum algebra realized through Jordan-Schwinger maps. Playing with deformation parameters, we can study the effects of nonlinear perturbations or interpolate between the spin and bosonic chains.
Storing quantum information in XXZ spin rings with periodically time-controlled interactions
Energy Technology Data Exchange (ETDEWEB)
Giampaolo, S M; Illuminati, F; Mazzarella, G [Dipartimento di Fisica ' E. R. Caianiello' , Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA (Italy)
2005-10-01
We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits.
Action-noise-assisted quantum control
Levy, Amikam; Torrontegui, E.; Kosloff, Ronnie
2017-09-01
We study the effect of action noise on state-to-state control protocols. Action noise creates dephasing in the instantaneous eigenbasis of the Hamiltonian and hampers the fidelity of the final state with respect to the target state. We find that for shorter protocols the noise more strongly influences the dynamics and degrades fidelity. We suggest improving the fidelity by inducing stronger dephasing rates along the process. The effects of action noise on the dynamics and its manipulation is described for a general Hamiltonian and is then studied by examples.
Exact stabilization of entangled states in finite time by dissipative quantum circuits
Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza
2017-07-01
Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly noncanonical) commuting parent Hamiltonian may be found. Aside from graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi [Quantum Inf. Comput. 5, 187 (2005)]. Extensions to representative classes of mixed graph-product and thermal states are also discussed.
Exotic quantum states for charmed baryons at finite temperature
Directory of Open Access Journals (Sweden)
Jiaxing Zhao
2017-12-01
Full Text Available The significantly screened heavy-quark potential in hot medium provides the possibility to study exotic quantum states of three-heavy-quark systems. By solving the Schrödinger equation for a three-charm-quark system at finite temperature, we found that, there exist Borromean states which might be realized in high energy nuclear collisions, and the binding energies of the system satisfy precisely the scaling law for Efimov states in the resonance limit.
Exotic quantum states for charmed baryons at finite temperature
Zhao, Jiaxing; Zhuang, Pengfei
2017-12-01
The significantly screened heavy-quark potential in hot medium provides the possibility to study exotic quantum states of three-heavy-quark systems. By solving the Schrödinger equation for a three-charm-quark system at finite temperature, we found that, there exist Borromean states which might be realized in high energy nuclear collisions, and the binding energies of the system satisfy precisely the scaling law for Efimov states in the resonance limit.
Quantum state generation via integrated frequency combs (Conference Presentation)
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Grazioso, Fabio; Little, Brent E.; Chu, Sai T.; Johnston, Tudor W.; Bromberg, Yaron; Caspani, Lucia; Moss, David J.; Morandotti, Roberto
2017-02-01
The on-chip generation of optical quantum states will enable accessible advances for quantum technologies. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high refractive-index doped-glass platform) can enable the generation of pure heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, with photon frequencies corresponding to standard telecommunication channels spaced by 200 GHz. Exploiting a self-locked, intra-cavity excitation configuration, a highly-stable source of multiplexed heralded single photons is demonstrated, operating continuously for several weeks with less than 5% fluctuations. The photon bandwidth of 110 MHz is compatible with quantum memories, and high photon purity was confirmed through single-photon auto-correlation measurements. In turn, by simultaneously exciting two orthogonal polarization mode resonances, we demonstrate the first realization of type-II spontaneous FWM (in analogy to type-II spontaneous parametric down-conversion), allowing the direct generation of orthogonally-polarized photon pairs on a chip. By using a double-pulse excitation, we demonstrate the generation of time-bin entangled photon pairs. We measure qubit entanglement with visibilities above 90%, enabling the implementation of quantum information processing protocols. Finally, the excitation field and the generated photons are intrinsically bandwidth-matched due to the resonant characteristics of the ring cavity, enabling the multiplication of Bell states and the generation of a four-photon time-bin entangled state. We confirm the generation of this four-photon entangled state through four-photon quantum interference.
Quantum teleportation and information splitting via four-qubit cluster state and a Bell state
Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai
2017-10-01
Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.
Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun
2017-12-01
As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.
Cybernetical Physics From Control of Chaos to Quantum Control
Fradkov, Alexander L
2007-01-01
The control of complex systems is one of the most important aspects in dealing with systems exhibiting nonlinear behaviour or similar features that defy traditional control techniques. This specific subject is gradually becoming known as cybernetical physics, borrowing methods from both theoretical physics and control engineering. This book is, perhaps, the first attempt to present a unified exposition of the subject and methodology of cybernetical physics as well as solutions to some of its problems. Emphasis of the book is on the examination of fundamental limits on energy transformation by means of control procedures in both conservative and dissipative systems. A survey of application in physics includes the control of chaos, synchronisation of coupled oscillators, pendulum chains, reactions in physical chemistry and of quantum systems such as the dissociation of diatomic molecules. This book has been written having researchers from various backgrounds in physics, mathematics and engineering in mind and i...
All-optical photonic band control in a quantum metamaterial
Energy Technology Data Exchange (ETDEWEB)
Felbacq, D.; Rousseau, E. [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)
2017-09-15
Metamaterials made of periodic collections of dielectric nanorods are considered theoretically. When quantum resonators are embedded within the nanorods, one obtains a quantum metamaterial, whose electromagnetic properties depend upon the state of the quantum resonators. The theoretical model predicts that when the resonators are pumped and reach the inversion regime, the quantum metamaterial exhibits an all-optical switchable conduction band. The phenomenon can be described by considering the pole stucture of the scattering matrix of the metamaterial. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonadiabatic quantum state engineering driven by fast quench dynamics
Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.
2014-02-01
There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.
On the Quantum Mechanical State of the Δ++ Baryon
Directory of Open Access Journals (Sweden)
Comay E.
2011-01-01
Full Text Available The ++ and the baryons have been used as the original reason for the construction of the Quantum Chromodynamics theory of Strong Interactions. The present analy- sis relies on the multiconfiguration structure of states which are made of several Dirac particles. It is shown that this property, together with the very strong spin-dependent interactions of quarks provide an acceptable explanation for the states of these baryons and remove the classical reason for the invention of color within Quantum Chromody- namics. This explanation is supported by several examples that show a Quantum Chro- modynamics’ inconsistency with experimental results. The same arguments provide an explanation for the problem called the proton spin crisis.
On the Quantum Mechanical State of the Delta++ Baryon
Directory of Open Access Journals (Sweden)
Comay E.
2011-01-01
Full Text Available The Delta++ and the Omega- baryons have been used as the original reason for the construction of the Quantum Chromodynamics theory of Strong Interactions. The present analysis relies on the multiconfiguration structure of states which are made of several Dirac particles. It is shown that this property, together with the very strong spin-dependent interactions of quarks provide an acceptable explanation for the states of these baryons and remove the classical reason for the invention of color within Quantum Chromodynamics. This explanation is supported by several examples that show a Quantum Chromodynamics' inconsistency with experimental results. The same arguments provide an explanation for the problem called the proton spin crisis.
Quantum phase fluctuations and density of states in superconducting nanowires
Radkevich, Alexey; Semenov, Andrew G.; Zaikin, Andrei D.
2017-08-01
We argue that quantum fluctuations of the phase of the order parameter may strongly affect the electron density of states (DOS) in ultrathin superconducting wires. We demonstrate that the effect of such fluctuations is equivalent to that of a quantum dissipative environment formed by soundlike plasma modes propagating along the wire. We derive a nonperturbative expression for the local electron DOS in superconducting nanowires which fully accounts for quantum phase fluctuations. At any nonzero temperature these fluctuations smear out the square-root singularity in DOS near the superconducting gap and generate quasiparticle states at subgap energies. Furthermore, at sufficiently large values of the wire impedance this singularity is suppressed down to T =0 in which case DOS tends to zero at subgap energies and exhibits the power-law behavior above the gap. Our predictions can be directly tested in tunneling experiments with superconducting nanowires.
Local Gate Control of a Carbon Nanotube Double Quantum Dot
2016-04-04
candidates for elu- cidating surface phenomena. Here, we used Car -Parrinello molecular dynamics (CPMD) (13, 14) to investigate the properties of the aqueous...This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum...fabricated in semiconductor heterostructures (21, 26). Such similarities suggest that more complex quantum devices formed from molecular conductors such as
Wavefunction controllability for finite-dimensional bilinear quantum systems
Energy Technology Data Exchange (ETDEWEB)
Turinici, Gabriel [INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France); Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544-1009 (United States)
2003-03-14
We present controllability results for quantum systems interacting with lasers. Exact controllability for the wavefunction in these bilinear systems is proved in the finite-dimensional case under very natural hypotheses.
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau-Zener-Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications.
Creating a bosonic fractional quantum Hall state by pairing fermions
Repellin, Cécile; Yefsah, Tarik; Sterdyniak, Antoine
2017-10-01
We numerically study the behavior of spin-1 /2 fermions on a two-dimensional square lattice subject to a uniform magnetic field, where opposite spins interact via an on-site attractive interaction. Starting from the noninteracting case where each spin population is prepared in a quantum Hall state with unity filling, we follow the evolution of the system as the interaction strength is increased. Above a critical value and for sufficiently low flux density, we observe the emergence of a twofold quasidegeneracy accompanied by the opening of an energy gap to the third level. Analysis of the entanglement spectra shows that the gapped ground state is the bosonic 1 /2 Laughlin state. Our work therefore provides compelling evidence of a topological phase transition from the fermionic quantum Hall state at unity filling to the bosonic Laughlin state at a critical attraction strength of the order of the one-body spectrum linewidth.
Quantifying non-Gaussianity of quantum-state correlation
Park, Jiyong; Lee, Jaehak; Ji, Se-Wan; Nha, Hyunchul
2017-11-01
We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using various measures such as relative entropy and geometric distances. We first show that an intuitive approach, i.e., subtracting the correlation of a reference Gaussian state from that of a target non-Gaussian state, fails to yield a non-negative measure with monotonicity under local Gaussian channels. Our finding clearly manifests that quantum-state correlations generally have no Gaussian extremality. We therefore propose a different approach by introducing relevantly averaged states to address correlation. This enables us to define a non-Gaussianity measure based on, e.g., the trace-distance and the fidelity, fulfilling all requirements as a measure of non-Gaussian correlation. For the case of the fidelity-based measure, we also present readily computable lower bounds of non-Gaussian correlation.
Bound on local unambiguous discrimination between multipartite quantum states
Yang, Ying-Hui; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Zuo, Hui-Juan; Wen, Qiao-Yan
2015-02-01
We investigate the upper bound on unambiguous discrimination by local operations and classical communication. We demonstrate that any set of linearly independent multipartite pure quantum states can be locally unambiguously discriminated if the number of states in the set is no more than , where the space spanned by the set can be expressed in the irreducible form and is the optimal local dimension of the party. That is, is an upper bound. We also show that it is tight, namely there exists a set of states, in which at least one of the states cannot be locally unambiguously discriminated. Our result gives the reason why the multiqubit system is the only exception when any three quantum states are locally unambiguously distinguished.
Memory-built-in quantum cloning in a hybrid solid-state spin register.
Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M
2015-07-16
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory.
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-26
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
Unified quantum no-go theorems and transforming of quantum pure states in a restricted set
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2017-12-01
The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.
Speedup of quantum evolution of multiqubit entanglement states.
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-06-10
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N.
Optical studies of current-induced magnetization switching and photonic quantum states
Lorenz, Virginia
2017-04-01
The ever-decreasing size of electronic components is leading to a fundamental change in the way computers operate, as at the few-nanometer scale, resistive heating and quantum mechanics prohibit efficient and stable operation. One of the most promising next-generation computing paradigms is Spintronics, which uses the spin of the electron to manipulate and store information in the form of magnetic thin films. I will present our optical studies of the fundamental mechanisms by which we can efficiently manipulate magnetization using electrical current. Although electron spin is a quantum-mechanical property, Spintronics relies on macroscopic magnetization and thus does not take advantage of quantum mechanics in the algorithms used to encode and transmit information. For the second part of my talk, I will present our work under the umbrella of new computing and communication technologies based on the quantum mechanical properties of photons. Quantum technologies often require the carriers of information, or qubits, to have specific properties. Photonic quantum states are good information carriers because they travel fast and are robust to environmental fluctuations, but characterizing and controlling photonic sources so the photons have just the right properties is still a challenge. I will describe our work towards enabling quantum-physics-based secure long-distance communication using photons.
Entanglement concentration of continuous variable quantum states
Fiurasek, Jaromir; Mista, Jr., Ladislav; Filip, Radim
2002-01-01
We propose two probabilistic entanglement concentration schemes for a single copy of two-mode squeezed vacuum state. The first scheme is based on the off-resonant interaction of a Rydberg atom with the cavity field while the second setup involves the cross Kerr interaction, auxiliary mode prepared in a strong coherent state and a homodyne detection. We show that the continuous-variable entanglement concentration allows us to improve the fidelity of teleportation of coherent states.
Single photon response in GaAs quantum transport devices for photon-spin quantum state transfer
Energy Technology Data Exchange (ETDEWEB)
Kutsuwa, T. [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012 (Japan); Arai, K. [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012 (Japan); ERATO-JST, Semiconductor Spintronics, Project, JST (Japan); Shigyo, H.; Kinjo, H.; Edamatsu, K. [Research Institute of Electrical Communication, Tohoku University, Sendai (Japan); Ono, K. [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012 (Japan); Low Temperature Physics Laboratory, RIKEN, Saitama (Japan); Mitsumori, Y.; Kosaka, H. [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012 (Japan); Research Institute of Electrical Communication, Tohoku University, Sendai (Japan)
2006-07-01
Quantum information can be stored and manipulated by an electron spin if its state was faithfully transferred from messenger photon qubit. Such a quantum state transfer needs to have a function of conversion from photon polarization to electron spin state and flagging the safe conversion without destroying the spin state. We have achieved single photon response by using a quantum dot as an electron trap and a quantum point contact as a charge sensor on GaAs/AlGaAs-based modulation doped structure. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Finite temperature quantum correlations in su(2)(c) quark states and quantum spin models
Hamieh, S; Tawfik, A
The entanglement at finite temperatures is analyzed by using thermal models for colored quarks making tip the hadron physical states. We have found that these quantum correlations entirely vanish at T-c >= m(q)/ln(1.5). For temperatures larger than T-c the correlations are classical. We have also
Quantum Separability Criteria for Arbitrary Dimensional Multipartite States
Li,Ming; Wang,Jing; Fei, Shao-Ming; Li-Jost, Xianqing
2014-01-01
We present separability criteria for both bipartite and multipartite quantum states. These criteria include the criteria based on the correlation matrix and its generalized form as special cases. We show by detailed examples that our criteria are more powerful than the positive partial transposition criterion, the realignment criterion and the criteria based on the correlation matrices.
Generation of optical coherent state superpositions for quantum information processing
DEFF Research Database (Denmark)
Tipsmark, Anders
2012-01-01
I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...
A quantum bound-state description of black holes
Energy Technology Data Exchange (ETDEWEB)
Hofmann, Stefan [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Rug, Tehseen, E-mail: Tehseen.Rug@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany)
2016-01-15
A relativistic framework for the description of bound states consisting of a large number of quantum constituents is presented, and applied to black-hole interiors. At the parton level, the constituent distribution, number and energy density inside black holes are calculated, and gauge corrections are discussed. A simple scaling relation between the black-hole mass and constituent number is established.
Quantum states with continuous spectrum for a general time ...
Indian Academy of Sciences (India)
The time-dependent oscillators whose spectra of the wave function are continuous are not oscillatory. The wave function for ω2 < 0 is expressed in terms of the parabolic cylinder function. We applied our theory to the driven harmonic oscillator with strongly pulsating mass. Keywords. Quantum states with continuous ...
Test-state approach to the quantum search problem
Sehrawat, Arun; Nguyen, Le Huy; Englert, Berthold-Georg
2011-05-01
The search for “a quantum needle in a quantum haystack” is a metaphor for the problem of finding out which one of a permissible set of unitary mappings—the oracles—is implemented by a given black box. Grover’s algorithm solves this problem with quadratic speedup as compared with the analogous search for “a classical needle in a classical haystack.” Since the outcome of Grover’s algorithm is probabilistic—it gives the correct answer with high probability, not with certainty—the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These test states can also be used to realize “a classical search for the quantum needle” which is deterministic—it always gives a definite answer after a finite number of steps—and 3.41 times as fast as the purely classical search. Since the test-state search and Grover’s algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover’s algorithm.
Experimental determination of the degree of polarization of quantum states
DEFF Research Database (Denmark)
Kothe-Termén, Christian; Madsen, Lars Skovgaard; Andersen, Ulrik Lund
2013-01-01
We demonstrate experimental excitation-manifold-resolved polarization characterization of quantum states of light ranging from the few-photon to the many-photon level. In contrast to the traditional characterization of polarization that is based on the Stokes parameters, we experimentally determi...
Quantum information processing using designed defect states in
DEFF Research Database (Denmark)
Pedersen, Jesper; Flindt, Christian; Mortensen, Niels Asger
2007-01-01
We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices de¯ned in the two-dimensional electron gas at a semiconductor heterostructure. Calculations of the band structure of the periodic antidot lattice are presented. A p...
Commensurate and incommensurate states of topological quantum matter
DEFF Research Database (Denmark)
Milsted, Ashley; Cobanera, Emilio; Burrello, Michele
2014-01-01
We prove numerically and by dualities the existence of modulated, commensurate and incommensurate states of topological quantum matter in systems of parafermions, motivated by recent proposals for the realization of such systems in mesoscopic arrays. In two space dimensions, we obtain the simplest...
DEFF Research Database (Denmark)
Kreutzfeldt, Jacob
2016-01-01
apparatus of state radio. One example of this is the Danish writer Emil Bønnelyckes collaboration with Danish radio on Vore Dages København i Radiofoniske Billeder (Contemporary Copenhagen in Radiophonic Images) – a 4 and a half hour show broadcast prime time on Sunday evening 7. December 1930. According...... to the program sheet from Danish Broadcasting Corporation (DBC) the program included transmission of music from the Radio Orchestra, sound film and transmissions from theatres and dance restaurants in Copenhage......State controlled radio developed in the Nordic countries by the middle of the 1920es. Danish Radio was established for a trial period in April 1925, and was permanently founded in April 1926. Swedish radio was founded in 1925 and Norwegian radio in 1933. The new and unquestionably powerful medium...
Quantum control approach to creating and detecting fractional quantum Hall puddles
Baur, Stefan; Hazzard, Kaden; Mueller, Erich
2009-05-01
We theoretically explore a novel approach to generating few-body analogs of bosonic fractional quantum Hall states [1]. We consider an array of identical few-atom clusters (n = 2, 3, 4), each cluster trapped at the node of an optical lattice. By temporally varying the amplitude and phase of the trapping lasers, one can introduce a rotating deformation at each site. This allows for coherently transferring atoms into highly correlated states. We study target state fidelities and experimental signatures by exactly solving the many-body time dependent Schrödinger equation within a truncated basis. In addition to bosonic quantum hall states our method provides a path to create fermionic quantum hall states and other exotic states. [1] SKB, KRAH, and EJM, Phys. Rev. A 78, 061608(R) (2008)
Multilevel distillation of magic states for quantum computing
Jones, Cody
2013-04-01
We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call multilevel distillation. When distilling in the asymptotic regime of infidelity ɛ→0 for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity O(ɛ2r) approaches 2r+1, which comes close to saturating the conjectured bound in another investigation [Bravyi and Haah, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.86.052329 86, 052329 (2012)]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate ɛin=0.01 to ɛout in the range 10-5-10-40 is about 14log10(1/ɛout)-40; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below 10-7. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing and provide insight into the limitations of nearly resource-optimal quantum error correction.
Regression relation for pure quantum states and its implications for efficient computing.
Elsayed, Tarek A; Fine, Boris V
2013-02-15
We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.
Quantum state tomography on long-coherent superconducting transmon qubit
Energy Technology Data Exchange (ETDEWEB)
Schneider, Andre; Braumueller, Jochen; Schloer, Steffen; Weides, Martin; Ustinov, Alexey [Physikalisches Institut, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)
2016-07-01
The state of a qubit is commonly measured by probing a readout resonator coupled to it with a readout tone and detecting the dispersive shift of the resonator. This measurement only gives access to the z-component of the qubit state. Quantum state tomography provides a measurement for all components of the Bloch vector by rotating the qubit state prior to the readout. We present a method of measuring the Bloch vector components. This method is demonstrated by measuring the time evolution for long-''living'' transmon qubits with T{sub 1} and T{sub 2} times in excess of 10 μs. By recording the decay trace of the qubit state after a slightly detuned ((π)/(2)){sup x} pulse, we detect decay and dephasing as well as Larmor precession of the qubit. Furthermore, we introduce a benchmark for measuring the qubit manipulation fidelity and optimize the envelopes of the qubit manipulation pulses. Quantum state tomography is a powerful tool to observe changes in the qubit quantum state under interactions with magnonic systems.
Superconducting Analogue of the Parafermion Fractional Quantum Hall States
Directory of Open Access Journals (Sweden)
Abolhassan Vaezi
2014-07-01
Full Text Available Read-Rezayi Z_{k} parafermion wave functions describe ν=2+(k/kM+2 fractional quantum Hall (FQH states. These states support non-Abelian excitations from which protected quantum gates can be designed. However, there is no experimental evidence for these non-Abelian anyons to date. In this paper, we study the ν=2/k FQH-superconductor heterostructure and find the superconducting analogue of the Z_{k} parafermion FQH state. Our main tool is the mapping of the FQH into coupled one-dimensional chains, each with a pair of counterpropagating modes. We show that by inducing intrachain pairing and charge preserving backscattering with identical couplings, the one-dimensional chains flow into gapless Z_{k} parafermions when k<4. By studying the effect of interchain coupling, we show that every parafermion mode becomes massive except for the two outermost ones. Thus, we achieve a fractional topological superconductor whose chiral edge state is described by a Z_{k} parafermion conformal field theory. For instance, we find that a ν=2/3 FQH in proximity to a superconductor produces a Z_{3} parafermion superconducting state. This state is topologically indistinguishable from the non-Abelian part of the ν=12/5 Read-Rezayi state. Both of these systems can host Fibonacci anyons capable of performing universal quantum computation through braiding operations.
Extremal properties of conditional entropy and quantum discord for XXZ, symmetric quantum states
Yurischev, M. A.
2017-10-01
For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy S_{cond} as a function of measurement angle θ \\in [0,π /2]. Numerical calculations show that the function S_{cond}(θ ) for X states can have at most one local extremum in the open interval from zero to π /2 (unimodality property). If the extremum is a minimum, the quantum discord displays region with variable (state-dependent) optimal measurement angle θ ^*. Such θ -regions (phases, fractions) are very tiny in the space of X-state parameters. We also discover the cases when the conditional entropy has a local maximum inside the interval (0,π /2). It is remarkable that the maxima exist in surprisingly wide regions, and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum.
Non-Markovian coherent feedback control of quantum dot systems
Xue, Shibei; Wu, Rebing; Hush, Michael R.; Tarn, Tzyh-Jong
2017-03-01
In this paper we present a non-Markovian coherent feedback scheme for decoherence suppression in single quantum dot systems. The feedback loop is closed via a quantum tunnelling junction between the natural source and drain baths of the quantum dot. The exact feedback-controlled non-Markovian Langevin equation is derived for describing the dynamics of the quantum dot. To deal with the nonlinear memory function in the Langevin equation, we analyse the Green’s function-based root locus, from which we show that the decoherence of the quantum dot can be suppressed via increasing the feedback coupling strength. The effectiveness of decoherence suppression induced by non-Markovian coherent feedback is demonstrated by a single quantum dot example bathed with Lorentzian noises.
Quantum-disordered state of magnetic and electric dipoles in an organic Mott system.
Shimozawa, M; Hashimoto, K; Ueda, A; Suzuki, Y; Sugii, K; Yamada, S; Imai, Y; Kobayashi, R; Itoh, K; Iguchi, S; Naka, M; Ishihara, S; Mori, H; Sasaki, T; Yamashita, M
2017-11-28
Strongly enhanced quantum fluctuations often lead to a rich variety of quantum-disordered states. Developing approaches to enhance quantum fluctuations may open paths to realize even more fascinating quantum states. Here, we demonstrate that a coupling of localized spins with the zero-point motion of hydrogen atoms, that is, proton fluctuations in a hydrogen-bonded organic Mott insulator provides a different class of quantum spin liquids (QSLs). We find that divergent dielectric behavior associated with the approach to hydrogen-bond order is suppressed by the quantum proton fluctuations, resulting in a quantum paraelectric (QPE) state. Furthermore, our thermal-transport measurements reveal that a QSL state with gapless spin excitations rapidly emerges upon entering the QPE state. These findings indicate that the quantum proton fluctuations give rise to a QSL-a quantum-disordered state of magnetic and electric dipoles-through the coupling between the electron and proton degrees of freedom.
Entanglement entropy in excited states of the quantum Lifshitz model
Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.
2017-06-01
We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2 + 1d field theory where the universal behavior of excited-state entanglement may be computed analytically.
Photoinduced blinking in a solid-state quantum system
Berhane, Amanuel M.; Bradac, Carlo; Aharonovich, Igor
2017-07-01
Solid-state single-photon emitters (SPEs) are one of the prime components of many quantum nanophotonics devices. In this work, we report on an unusual, photoinduced blinking phenomenon of SPEs in gallium nitride. This is shown to be due to the modification in the transition kinetics of the emitter, via the introduction of additional laser-activated states. We investigate and characterize the blinking effect on the brightness of the source and the statistics of the emitted photons. Combining second-order correlation and fluorescence trajectory measurements, we determine the photodynamics of the trap states and characterize power-dependent decay rates and characteristic "off"-time blinking. Our work sheds light into understanding solid-state quantum system dynamics and, specifically, power-induced blinking phenomena in SPEs.
Zhang, Long; Sun, Hong-Wei; Zhang, Ke-Jia; Jia, Heng-Yue
2017-03-01
In this paper, a new quantum encryption based on the key-controlled chained CNOT operations, which is named KCCC encryption, is proposed. With the KCCC encryption, an improved arbitrated quantum signature (AQS) protocol is presented. Compared with the existing protocols, our protocol can effectively prevent forgery attacks and disavowal attacks. Moreover, only single state is required in the protocol. We hope it is helpful to further research in the design of AQS protocols in future.
Hamilton-Jacobi-Bellman equations for quantum control | Ogundiran ...
African Journals Online (AJOL)
The aim of this work is to study Hamilton-Jacobi-Bellman equation for quantum control driven by quantum noises. These noises are annhihilation, creation and gauge processes. We shall consider the solutions of Hamilton-Jacobi-Bellman equation via the Hamiltonian system measurable in time. JONAMP Vol. 11 2007: pp.
Crystal Phase Quantum Well Emission with Digital Control
Assali, S.; Lähnemann, J.; Vu, TTT; Jöns, K.D.; Gagliano, L; Verheijen, M. A.; Akopian, N.; Bakkers, E.P.A.M.; Haverkort, J. E.M.
2017-01-01
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the
Quantum control of vibrational excitations in a heteronuclear ...
Indian Academy of Sciences (India)
WINTEC
Quantum control of vibrational excitations in a heteronuclear diatomic molecule. SITANSH SHARMA, PURSHOTAM SHARMA and HARJINDER SINGH* ... electric field is calculated and used for the subsequent quantum dynamics, within the dipole approxima- tion. ... properties of interference of dynamical paths to regulate ...
Experimental bath engineering for quantitative studies of quantum control
CSIR Research Space (South Africa)
Soare, A
2014-04-01
Full Text Available We develop and demonstrate a technique to engineer universal unitary baths in quantum systems. Using the correspondence between unitary decoherence due to ambient environmental noise and errors in a control system for quantum bits, we show how a...
Quantum measurements without Schroedinger cat states
Energy Technology Data Exchange (ETDEWEB)
Spehner, D [Institut Fourier, 100 rue des Maths, 38402 Saint-Martin d' Heres (France); Haake, F [Fachbereich Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)
2007-10-15
We report and give an alternative derivation of some results on a model for a quantum measurement studied in [1]. The measured microscopic system is coupled to the position of a macroscopic pointer, which itself interacts with its environment via its momentum. The entanglement between the system and the pointer produced by their mutual interaction is simultaneous with the decoherence of distinct pointer readings resulting from leakage of information to the environment. After a discussion on the various time scales in the model we calculate the matrix elements of the system-pointer density operator between eigenstates of the measured observable with distinct eigenvalues. In general, the decay with time of these coherences is neither exponential nor gaussian. We determine the decoherence (decay) time in terms of the strength of the system-pointer and pointer-environment couplings. This decoherence time does not depend upon the details of the pointer-bath coupling as soon as it is smaller than the bath correlation time (non-Markov regime). In contrast, in the Markov regime it depends strongly on whether this coupling is Ohmic or super-Ohmic.
Experimental demonstration of squeezed-state quantum averaging
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Madsen, Lars Skovgaard; Sabuncu, Metin
2010-01-01
We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The averaged variances are prepared probabilistically by means of linear optical interference and measurement-induced conditioning. We verify that the implemented...... harmonic mean yields a lower value than the corresponding value obtained for the standard arithmetic-mean strategy. The effect of quantum averaging is experimentally tested for squeezed and thermal states as well as for uncorrelated and partially correlated noise sources. The harmonic-mean protocol can...
Quantum Private Comparison Based on χ-Type Entangled States
Hong-Ming, Pan
2017-10-01
A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.
On the reduction criterion for random quantum states
Energy Technology Data Exchange (ETDEWEB)
Jivulescu, Maria Anastasia, E-mail: maria.jivulescu@upt.ro; Lupa, Nicolae, E-mail: nicolae.lupa@upt.ro [Department of Mathematics, Politehnica University of Timişoara, Victoriei Square 2, 300006 Timişoara (Romania); Nechita, Ion, E-mail: nechita@irsamc.ups-tlse.fr [CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse (France)
2014-11-15
In this paper, we study the reduction criterion for detecting entanglement of large dimensional bipartite quantum systems. We first obtain an explicit formula for the moments of a random quantum state to which the reduction criterion has been applied. We show that the empirical eigenvalue distribution of this random matrix converges strongly to a limit that we compute, in three different asymptotic regimes. We then employ tools from free probability theory to study the asymptotic positivity of the reduction operators. Finally, we compare the reduction criterion with other entanglement criteria, via thresholds.
Spectrum of localized states in graphene quantum dots and wires
Energy Technology Data Exchange (ETDEWEB)
Zalipaev, V.V. [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Maksimov, D.N. [LV Kirensky Institute of Physics, Krasnoyarsk 660036 (Russian Federation); Linton, C.M. [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kusmartsev, F.V., E-mail: F.Kusmartsev@lboro.ac.uk [Department of Physics, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)
2013-01-03
We developed semiclassical method and show that any smooth potential in graphene describing elongated a quantum dot or wire may behave as a barrier or as a trapping well or as a double barrier potential, Fabry–Perot structure, for 1D Schrödinger equation. The energy spectrum of quantum wires has been found and compared with numerical simulations. We found that there are two types of localized states, stable and metastable, having finite life time. These life times are calculated, as is the form of the localized wave functions which are exponentially decaying away from the wire in the perpendicular direction.
Ab initio quantum-enhanced optical phase estimation using real-time feedback control
DEFF Research Database (Denmark)
Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt
2015-01-01
as demonstrated in a variety of different optical systems(3-8). Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown(9-12). Here, we report on the realization...... of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...... noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing....
Control of entanglement dynamics in a system of three coupled quantum oscillators.
Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Meucci, R; Roversi, J A; Arecchi, F T
2017-08-30
Dynamical control of entanglement and its connection with the classical concept of instability is an intriguing matter which deserves accurate investigation for its important role in information processing, cryptography and quantum computing. Here we consider a tripartite quantum system made of three coupled quantum parametric oscillators in equilibrium with a common heat bath. The introduced parametrization consists of a pulse train with adjustable amplitude and duty cycle representing a more general case for the perturbation. From the experimental observation of the instability in the classical system we are able to predict the parameter values for which the entangled states exist. A different amount of entanglement and different onset times emerge when comparing two and three quantum oscillators. The system and the parametrization considered here open new perspectives for manipulating quantum features at high temperatures.
Experimental entanglement distillation of mesoscopic quantum states
DEFF Research Database (Denmark)
Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel
2008-01-01
channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...
Use of dynamical coupling for improved quantum state transfer
Lyakhov, A. O.; Bruder, C.
2006-12-01
We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.
Use of dynamical coupling for improved quantum state transfer
Lyakhov, A. O.; Bruder, C.
2006-01-01
We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line, by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban
2017-12-01
Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.
Final Technical Report of the project "Controlling Quantum Information by Quantum Correlations"
Energy Technology Data Exchange (ETDEWEB)
Girolami, Davide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-17
The report describes hypotheses, aims, methods and results of the project 20170675PRD2, “Controlling Quantum Information by Quantum Correlations”, which has been run from July 31, 2017 to January 7, 2018. The technical work has been performed by Director’s Fellow Davide Girolami of the T-4 Division, Physics of Condensed Matter and Complex Systems, under the supervision of Wojciech Zurek (T-4), Lukasz Cincio (T-4), and Marcus Daniels (CCS-7). The project ended as Davide Girolami has been converted to J. R. Oppenheimer Fellow to work on the project 20180702PRD1, “Optimal Control of Quantum Machines”, started on January 8, 2018.
Discrimination of mixed quantum states. Reversible maps and unambiguous strategies
Energy Technology Data Exchange (ETDEWEB)
Kleinmann, Matthias
2008-06-30
The discrimination of two mixed quantum states is a fundamental task in quantum state estimation and quantum information theory. In quantum state discrimination a quantum system is assumed to be in one of two possible - in general mixed - non-orthogonal quantum states. The discrimination then consists of a measurement strategy that allows to decide in which state the system was before the measurement. In unambiguous state discrimination the aim is to make this decision without errors, but it is allowed to give an inconclusive answer. Especially interesting are measurement strategies that minimize the probability of an inconclusive answer. A starting point for the analysis of this optimization problem was a result by Eldar et al. [Phys. Rev. A 69, 062318 (2004)], which provides non-operational necessary and sufficient conditions for a given measurement strategy to be optimal. These conditions are reconsidered and simplified in such a way that they become operational. The simplified conditions are the basis for further central results: It is shown that the optimal measurement strategy is unique, a statement that is e.g. of importance for the complexity analysis of optimal measurement devices. The optimal measurement strategy is derived for the case, where one of the possible input states has at most rank two, which was an open problem for many years. Furthermore, using the optimality criterion it is shown that there always exists a threshold probability for each state, such that below this probability it is optimal to exclude this state from the discrimination strategy. If the two states subject to discrimination can be brought to a diagonal structure with (2 x 2)-dimensional blocks, then the unambiguous discrimination of these states can be reduced to the unambiguous discrimination of pure states. A criterion is presented that allows to identify the presence of such a structure for two self-adjoint operators. This criterion consists of the evaluation of three
A Quantum Kalman Filter-Based PID Controller
Gough, John E.
2017-01-01
We give a concrete description of a controlled quantum stochastic dynamical model corresponding to a quantum system (a cavity mode) under going continual quadrature measurements, with a PID controller acting on the filtered estimate for the mode operator. Central use is made of the input and output pictures when constructing the model: these unitarily equivalent pictures are presented in the paper, and used to transfer concepts relating to the controlled internal dynamics to those relating to...
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2017-04-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states.
Bonet-Luz, Esther; Tronci, Cesare
2016-05-01
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature.
Niu, X. Y.; Huang, X. L.; Shang, Y. F.; Wang, X. Y.
2015-04-01
Superposition principle plays a crucial role in quantum mechanics, thus its effects on thermodynamics is an interesting topic. Here, the effects of superpositions of quantum states on isoenergetic cycle are studied. We find superposition can improve the heat engine efficiency and release the positive work condition in general case. In the finite time process, we find the efficiency at maximum power output in superposition case is lower than the nonsuperposition case. This efficiency depends on one index of the energy spectrum of the working substance. This result does not mean the superposition discourages the heat engine performance. For fixed efficiency or fixed power, the superposition improves the power or efficiency respectively. These results show how quantum mechanical properties affect the thermodynamical cycle.
Metal-to-insulator switching in quantum anomalous Hall states
Pan, Lei; Kou, Xufeng; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Shao, Qiming; Zhang, Shou Cheng; Wang, Kang Lung
Quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films as a form of dissipationless transport without external magnetic field. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2 Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. The universal QAHE phase diagram is further confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different.
Reconstructing quantum states from single-party information
Schilling, Christian; Benavides-Riveros, Carlos L.; Vrana, Péter
2017-11-01
The possible compatibility of density matrices for single-party subsystems is described by linear constraints on their respective spectra. Whenever some of those quantum marginal constraints are saturated, the total quantum state has a specific, simplified structure. We prove that these remarkable global implications of extremal local information are stable; i.e., they hold approximately for spectra close to the boundary of the allowed region. Application of this general result to fermionic quantum systems allows us to characterize natural extensions of the Hartree-Fock ansatz and to quantify their accuracy by resorting to one-particle information, only: The fraction of the correlation energy not recovered by such an ansatz can be estimated from above by a simple geometric quantity in the occupation number picture.
Quantum secret sharing based on Smolin states alone
Energy Technology Data Exchange (ETDEWEB)
He Guangping [School of Physics and Engineering and Advanced Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Z D; Bai, Yankui [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China)], E-mail: hegp@mail.sysu.edu.cn, E-mail: zwang@hkucc.hku.hk, E-mail: ykbai@semi.ac.cn
2008-10-17
It was indicated (Yu 2007 Phys. Rev. A 75 066301) that a previously proposed quantum secret sharing (QSS) protocol based on Smolin states (Augusiak 2006 Phys. Rev. A 73 012318) is insecure against an internal cheater. Here we build a different QSS protocol with Smolin states alone, and prove it to be secure against known cheating strategies. Thus we open a promising venue for building secure QSS using merely Smolin states, which is a typical kind of bound entangled states. We also propose a feasible scheme to implement the protocol experimentally.
Multiconfigurational quantum propagation with trajectory-guided generalized coherent states.
Grigolo, Adriano; Viscondi, Thiago F; de Aguiar, Marcus A M
2016-03-07
A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.
Quantum state readout of individual quantum dots by electrostatic force detection.
Miyahara, Yoichi; Roy-Gobeil, Antoine; Grutter, Peter
2017-02-10
Electric charge detection by atomic force microscopy (AFM) with single-electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QDs). The oscillating AFM tip modulates the energy of the QDs, causing single electrons to tunnel between QDs and an electrode. The resulting oscillating electrostatic force changes the resonant frequency and damping of the AFM cantilever, enabling electrometry with a single-electron sensitivity. Quantitative electronic level spectroscopy is possible by sweeping the bias voltage. Charge stability diagram can be obtained by scanning the AFM tip around the QD. e-EFM technique enables to investigate individual colloidal nanoparticles and self-assembled QDs without nanoscale electrodes. e-EFM is a quantum electromechanical system where the back-action of a tunneling electron is detected by AFM; it can also be considered as a mechanical analog of admittance spectroscopy with a radio frequency resonator, which is emerging as a promising tool for quantum state readout for quantum computing. In combination with the topography imaging capability of the AFM, e-EFM is a powerful tool for investigating new nanoscale material systems which can be used as quantum bits.
Small-scale quantum computers: current state of the art and applications
Lloyd, Seth
This talk discusses the various applications of small scale quantum computers consisting of a few hundred qubits and capable of performing a few thousand quantum logic operations reliably without error corrections. Such small scale quantum computers could perform useful quantum simulations of many-body quantum systems, including processes of many body localization and scrambling. I will show that such small scale quantum computers could also be useful for quantum machine learning, revealing patterns in quantum states and in classical data that could not be revealed by even the most powerful classical supercomputer.
Minimal-excitation states for electron quantum optics using levitons.
Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C
2013-10-31
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the
Controlled Dense Coding with the W State
Yang, Xue; Bai, Ming-qiang; Mo, Zhi-wen
2017-11-01
The average amount of information is an important factor in implementing dense coding. Based on this, we propose two schemes for controlled dense coding by using the three-qubit entangled W state as the quantum channel in this paper. In these schemes, the controller (Charlie) can adjust the local measurement angle 𝜃 to modulate the entanglement, and consequently the average amount of information transmitted from the sender (Alice) to the receiver (Bob). Although the results for the average amounts of information are the same from the different two schemes, the second scheme has advantage over the first scheme.
Investigating Anisotropic Quantum Hall States with Bimetric Geometry
Gromov, Andrey; Geraedts, Scott D.; Bradlyn, Barry
2017-10-01
We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states. We develop a formalism similar to that used in the bimetric approach to massive gravity, and apply it to describe Abelian anisotropic FQH states in the presence of external electromagnetic and geometric backgrounds. We derive a relationship between the shift, the Hall viscosity, and a new quantized coupling to anisotropy, which we term anisospin. We verify this relationship by numerically computing the Hall viscosity for a variety of anisotropic quantum Hall states using the density matrix renormalization group. Finally, we apply these techniques to the problem of nematic order and clarify certain disagreements that exist in the literature about the meaning of the coefficient of the Berry phase term in the nematic effective action.
Efficient steady-state solver for hierarchical quantum master equations.
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-28
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Statistical tests for quantum state reconstruction I: Theory
Energy Technology Data Exchange (ETDEWEB)
Kleinmann, Matthias; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen (Germany); Moroder, Tobias [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen (Germany); Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Monz, Thomas; Schindler, Philipp [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Blatt, Rainer [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik
2012-07-01
In quantum state tomography and similar schemes, the measured data is usually not used directly but rather becomes subject of a sophisticated reconstruction procedure that squeezes the data into a quantum state. In general such techniques are only admissible if the statistical error - as due to low sampling - dominates over the systematical errors, such as misaligned measurement bases. We here present tests that allow to detect situations in which a state reconstruction will become statistically inadmissible. In particular, the positivity of the density operator and the linear dependencies that occur in overcomplete tomography lead to strong conditions on the measured data. Furthermore, we argue, that certain unphysical properties of naive reconstruction schemes are merely statistical effects and hence can be safely ignored in many situations.
Yuen, H. P.; Shapiro, J. H.
1978-01-01
To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.
Microwave quantum logic spectroscopy and control of molecular ions
DEFF Research Database (Denmark)
Shi, M.; F. Herskind, P.; Drewsen, M.
2013-01-01
the rotational state of a molecular ion and the electronic state of an atomic ion. In this setting, the atomic ion is used for read-out of the molecular ion state, in a manner analogous to quantum logic spectroscopy based on Raman transitions. In addition to high-precision spectroscopy, this setting allows...
Unitary equilibration after a quantum quench of a thermal state
Jacobson, N. Tobias; Venuti, Lorenzo Campos; Zanardi, Paolo
2011-08-01
In this work we investigate the equilibration dynamics after a sudden Hamiltonian quench of a quantum spin system initially prepared in a thermal state. To characterize the equilibration we evaluate the Loschmidt echo, a global measure for the degree of distinguishability between the initial and time-evolved quenched states. We present general results valid for small quenches and detailed analysis of the quantum XY chain. The result is that quantum criticality manifests, even at small but finite temperatures, in a universal double-peaked form of the echo statistics and poor equilibration for sufficiently relevant perturbations. In addition, for this model we find a tight lower bound on the Loschmidt echo in terms of the purity of the initial state and the more easily evaluated Hilbert-Schmidt inner product between initial and time-evolved quenched states. This bound allows us to relate the time-averaged Loschmidt echo with the purity of the time-averaged state, a quantity that has been shown to provide an upper bound on the variance of observables.
Unitary equilibration after a quantum quench of a thermal state
Energy Technology Data Exchange (ETDEWEB)
Jacobson, N. Tobias [Department of Physics and Astronomy and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089-0484 (United States); Venuti, Lorenzo Campos [Institute for Scientific Interchange (ISI), Viale Settimio Severo 65, I-10133 Torino (Italy); Zanardi, Paolo [Department of Physics and Astronomy and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089-0484 (United States); Institute for Scientific Interchange (ISI), Viale Settimio Severo 65, I-10133 Torino (Italy)
2011-08-15
In this work we investigate the equilibration dynamics after a sudden Hamiltonian quench of a quantum spin system initially prepared in a thermal state. To characterize the equilibration we evaluate the Loschmidt echo, a global measure for the degree of distinguishability between the initial and time-evolved quenched states. We present general results valid for small quenches and detailed analysis of the quantum XY chain. The result is that quantum criticality manifests, even at small but finite temperatures, in a universal double-peaked form of the echo statistics and poor equilibration for sufficiently relevant perturbations. In addition, for this model we find a tight lower bound on the Loschmidt echo in terms of the purity of the initial state and the more easily evaluated Hilbert-Schmidt inner product between initial and time-evolved quenched states. This bound allows us to relate the time-averaged Loschmidt echo with the purity of the time-averaged state, a quantity that has been shown to provide an upper bound on the variance of observables.
DEFF Research Database (Denmark)
Filsinger, Frank; Küpper, Jochen; Meijer, Gerard
2009-01-01
Supersonic beams of polar molecules are deflected using inhomogeneous electric fields. The quantum-state selectivity of the deflection is used to spatially separate molecules according to their quantum state. A detailed analysis of the deflection and the obtained quantum-state selection...
Deterministic quantum state transfer between remote qubits in cavities
Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.
2017-12-01
Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
Energy Technology Data Exchange (ETDEWEB)
Muender, Wolfgang
2011-09-28
This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption