WorldWideScience

Sample records for control point systems

  1. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  2. Space Telescope Pointing Control System software

    Science.gov (United States)

    Dougherty, H.; Rodoni, C.; Rossini, R.; Tompetrini, K.; Nakashima, A.; Bradley, A.

    1982-01-01

    The Space Telescope Pointing Control System software is in the advanced development stage, having been tested on both the airbearing and the static simulator. The overall structure of the software is discussed, along with timing and sizing evaluations. The interaction between the controls analysts and software designer is described.

  3. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control... Transmitter Control Internal Transmitter Control Systems § 90.473 Operation of internal transmitter control systems through licensed fixed control points. An internal transmitter control system may be operated...

  4. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  5. Stabilizing Planar Inverted Pendulum System Based on Fuzzy Nine-point Controller

    OpenAIRE

    Qi Qian; Liu Feng; Tang Yong-chuan; Yang Yang

    2013-01-01

    In order to stabilize planar inverted pendulum, after analyzing the physical characteristics of the planar inverted pendulum system, a pendulum nine-point controller and a car nine-point controller for X-axis and Y-axis were designed respectively. Then a fuzzy coordinator was designed using the fuzzy control theory based on the priority of those two controllers, and the priority level of the pendulum is higher than the car. Thus, the control tasks of each controller in each axis were harmoniz...

  6. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Science.gov (United States)

    2010-10-01

    ...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of operation in internal transmitter control systems. The... licensee for internal communications and transmitter control purposes. Operating positions in internal...

  7. Washing and chilling as critical control points in pork slaughter hazard analysis and critical control point (HACCP) systems.

    Science.gov (United States)

    Bolton, D J; Pearce, R A; Sheridan, J J; Blair, I S; McDowell, D A; Harrington, D

    2002-01-01

    The aim of this research was to examine the effects of preslaughter washing, pre-evisceration washing, final carcass washing and chilling on final carcass quality and to evaluate these operations as possible critical control points (CCPs) within a pork slaughter hazard analysis and critical control point (HACCP) system. This study estimated bacterial numbers (total viable counts) and the incidence of Salmonella at three surface locations (ham, belly and neck) on 60 animals/carcasses processed through a small commercial pork abattoir (80 pigs d(-1)). Significant reductions (P HACCP in pork slaughter plants. This research will provide a sound scientific basis on which to develop and implement effective HACCP in pork abattoirs.

  8. Maximum power point tracking controller for PV systems using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bahgat, A.B.G. [Cairo Univ. (Egypt). Faculty of Engineering; Helwa, N.H.; Ahmad, G.E.; El Shenawy, E.T. [National Research Center, Dokki, Cairo (Egypt). Solar Energy Dept.

    2005-07-01

    This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating conditions, then the control action gives the driving signals to the MPPT. A PC is used for data acquisition, running the control algorithm, data storage, as well as data display and analysis. The system has been implemented and tested under various operating conditions. The experimental results showed that the PV system with MPPT always tracks the peak power point of the PV module under various operating conditions. The MPPT transmits about 97% of the actual maximum power generated by the PV module. The MPPT not only increases the power from the PV module to the load, but also maintains longer operating periods for the PV system. The air velocity and the air mass flow rate of the mechanical load are increased considerably, due to the increase of the PV system power. It is also found that the increase in the output energy due to using the MPPT is about 45.2% for a clear sunny day. (Author)

  9. Analysis on Single Point Vulnerabilities of Plant Control System

    International Nuclear Information System (INIS)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung

    2011-01-01

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities

  10. Analysis on Single Point Vulnerabilities of Plant Control System

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-08-15

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities.

  11. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Syafaruddin; Hiyama, Takashi [Department of Computer Science and Electrical Engineering of Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Karatepe, Engin [Department of Electrical and Electronics Engineering of Ege University, 35100 Bornova-Izmir (Turkey)

    2009-12-15

    It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. (author)

  12. Application of point system in the project control of Ling'ao Nuclear Power Station

    International Nuclear Information System (INIS)

    Xie ahai

    2005-01-01

    Schedule control and cost control are very complicated issues even we set up the detail schedules and engineering measurements requirements for erection of a nuclear power project. In order to solve these problems, a Point System is used in Ling Ao (LA) Nuclear Power Project. This paper introduces the method. The Point System is a measurement system of workload. The measurement unit of any erection works is a Point only. A Point of workload is defined as the equivalent measurement quantities, which could be completed by a relevant skill worker within an hour. A set of procedure manuals for different installations has been set up. The calculation models of equipment installation, piping, cabling are addressed for example in the paper. The application of the Point System in the schedule control is shown in the paper. The following issues are highlighted: to define the duration of a piping activity in the Project Level 2 Schedule, to draught the curves of Point Schedules for different erection fields, to analyze the productive efficiency, to define erection quota of each month for different erection teams, to follow up the erection progress on site. The application of the Point System in the payment of erection contract is outlined. The calculation formula of a monthly payment is given. The advantage of the payment calculation method is discussed, for example, more accurate, very easy and clearly to check the measurement quantities completed on site, to control lump-sum cost. (authors)

  13. Modeling of Maximum Power Point Tracking Controller for Solar Power System

    Directory of Open Access Journals (Sweden)

    Aryuanto Soetedjo

    2012-09-01

    Full Text Available In this paper, a Maximum Power Point Tracking (MPPT controller for solar power system is modeled using MATLAB Simulink. The model consists of PV module, buck converter, and MPPT controller. The contribution of the work is in the modeling of buck converter that allowing the input voltage of the converter, i.e. output voltage of PV is changed by varying the duty cycle, so that the maximum power point could be tracked when the environmental changes. The simulation results show that the developed model performs well in tracking the maximum power point (MPP of the PV module using Perturb and Observe (P&O Algorithm.

  14. Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Paula Andrea Ortiz Valencia

    2015-11-01

    Full Text Available The maximum power point tracking (MPPT of photovoltaic systems must be as fast and accurate as possible to increase the power production, which eventually increases the PV system profitability. This paper proposes and mathematically analyses a sliding-mode controller to provide a fast and accurate maximum power point tracking in grid-connected photovoltaic systems using a single control stage. This approach avoids the circular dependency in the design of classical cascade controllers used to optimize the photovoltaic system operation, and at the same time, it reduces the number of controllers and avoids the use of linearized models to provide global stability in all the operation range. Such a compact solution also reduces the system cost and implementation complexity. To ensure the stability of the proposed solution, detailed mathematical analyses are performed to demonstrate the fulfillment of the transversality, reachability and equivalent control conditions. Finally, the performance of the proposed solution is validated using detailed simulations, executed in the power electronics simulator PSIM, accounting for both environmental and load perturbations.

  15. Critical control points for the management of microbial growth in HVAC systems

    NARCIS (Netherlands)

    Gommers, S; Franchimon, F.; Bronswijk, van J.E.M.H.; Strøm-Tejsen, P; Olesen, BW; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Office buildings with HVAC systems consistently report Sick Building Symptoms that are derived from microbial growth. We used the HACCP methodology to find the main critical control points (CCPs) for microbial management of HVAC systems in temperate climates. Desk research revealed relative humidity

  16. Comparison of Extremum-Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Chen-Han Wu

    2011-12-01

    Full Text Available Due to Japan’s recent nuclear crisis and petroleum price hikes, the search for renewable energy sources has become an issue of immediate concern. A promising candidate attracting much global attention is solar energy, as it is green and also inexhaustible. A maximum power point tracking (MPPT controller is employed in such a way that the output power provided by a photovoltaic (PV system is boosted to its maximum level. However, in the context of abrupt changes in irradiance, conventional MPPT controller approaches suffer from insufficient robustness against ambient variation, inferior transient response and a loss of output power as a consequence of the long duration required of tracking procedures. Accordingly, in this work the maximum power point tracking is carried out successfully using a sliding mode extremum-seeking control (SMESC method, and the tracking performances of three controllers are compared by simulations, that is, an extremum-seeking controller, a sinusoidal extremum-seeking controller and a sliding mode extremum-seeking controller. Being able to track the maximum power point promptly in the case of an abrupt change in irradiance, the SMESC approach is proven by simulations to be superior in terms of system dynamic and steady state responses, and an excellent robustness along with system stability is demonstrated as well.

  17. Device for dynamic switching of robot control points

    DEFF Research Database (Denmark)

    2015-01-01

    The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom.......The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom....

  18. An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems

    International Nuclear Information System (INIS)

    Huang, Yanjun; Khajepour, Amir; Ding, Haitao; Bagheri, Farshid; Bahrami, Majid

    2017-01-01

    Highlights: • A novel two-layer energy-saving controller for automotive A/C-R system is developed. • A set-point optimizer at the outer loop is designed based on the steady state model. • A sliding mode controller in the inner loop is built. • Extensively experiments studies show that about 9% energy can be saving by this controller. - Abstract: This paper presents an energy-saving controller for automotive air-conditioning/refrigeration (A/C-R) systems. With their extensive application in homes, industry, and vehicles, A/C-R systems are consuming considerable amounts of energy. The proposed controller consists of two different time-scale layers. The outer or the slow time-scale layer called a set-point optimizer is used to find the set points related to energy efficiency by using the steady state model; whereas, the inner or the fast time-scale layer is used to track the obtained set points. In the inner loop, thanks to its robustness, a sliding mode controller (SMC) is utilized to track the set point of the cargo temperature. The currently used on/off controller is presented and employed as a basis for comparison to the proposed controller. More importantly, the real experimental results under several disturbed scenarios are analysed to demonstrate how the proposed controller can improve performance while reducing the energy consumption by 9% comparing with the on/off controller. The controller is suitable for any type of A/C-R system even though it is applied to an automotive A/C-R system in this paper.

  19. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Science.gov (United States)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  20. Geodetic Control Points - Multi-State Control Point Database

    Data.gov (United States)

    NSGIC State | GIS Inventory — The Multi-State Control Point Database (MCPD) is a database of geodetic and mapping control covering Idaho and Montana. The control were submitted by registered land...

  1. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2012-12-01

    Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  2. A Riccati-Based Interior Point Method for Efficient Model Predictive Control of SISO Systems

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Johansson, Rolf; Bagterp Jørgensen, John

    2017-01-01

    model parts separate. The controller is designed based on the deterministic model, while the Kalman filter results from the stochastic part. The controller is implemented as a primal-dual interior point (IP) method using Riccati recursion and the computational savings possible for SISO systems...

  3. Stabilization at almost arbitrary points for chaotic systems

    International Nuclear Information System (INIS)

    Huang, C.-S.; Lian, K.-Y.; Su, C.-H.; Wu, J.-W.

    2008-01-01

    We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low

  4. Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Suliang Ma

    2016-11-01

    Full Text Available Photovoltaic (PV systems have non-linear characteristics that generate maximum power at one particular operating point. Environmental factors such as irradiance and temperature variations greatly affect the maximum power point (MPP. Diverse offline and online techniques have been introduced for tracking the MPP. Here, to track the MPP, an augmented-state feedback linearized (AFL non-linear controller combined with an artificial neural network (ANN is proposed. This approach linearizes the non-linear characteristics in PV systems and DC/DC converters, for tracking and optimizing the PV system operation. It also reduces the dependency of the designed controller on linearized models, to provide global stability. A complete model of the PV system is simulated. The existing maximum power-point tracking (MPPT and DC/DC boost-converter controller techniques are compared with the proposed ANN method. Two case studies, which simulate realistic circumstances, are presented to demonstrate the effectiveness and superiority of the proposed method. The AFL with ANN controller can provide good dynamic operation, faster convergence speed, and fewer operating-point oscillations around the MPP. It also tracks the global maxima under different conditions, especially irradiance-mutating situations, more effectively than the conventional methods. Detailed mathematical models and a control approach for a three-phase grid-connected intelligent hybrid system are proposed using MATLAB/Simulink.

  5. Evaluation of a proper controller performance for maximum-power point tracking of a stand-alone PV system

    Energy Technology Data Exchange (ETDEWEB)

    Nafeh, A.E.-S.A.; Fahmy, F.H. [Electronics Research Institute, Cairo (Egypt); El-Zahab, E.M.A. [Cairo University, Giza (Egypt). Faculty of Engineering

    2003-02-01

    In this paper the implementation of a suggested stand-alone PV system, for maximum-power point tracking (MPPT), is carried out. Also, this paper presents a comparative study, through experimental work, between the conventional PI controller and the fuzzy logic controller (FLC) under different atmospheric conditions. The implemented system with both the PI controller and the FLC gives a good maximum-power operation of the PV array, but the tracking capability for different optimum operating points is better and faster for the case of using the FLC compared to the case of using the PI controller. (author)

  6. Thermoplastic fusion bonding using a pressure-assisted boiling point control system.

    Science.gov (United States)

    Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C

    2012-08-21

    A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.

  7. Engineering to Control Noise, Loading, and Optimal Operating Points

    International Nuclear Information System (INIS)

    Mitchell R. Swartz

    2000-01-01

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems

  8. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio [Kogakuin University, Tokyo 163-8677 (Japan)

    2006-11-23

    A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current-voltage (I-V) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current-power (I-P) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. (author)

  9. A Study of a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions

    Science.gov (United States)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio

    A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.

  10. L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wi......) is used to carry out case studies using Matlab/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodeled dynamics and in the presence of parameter uncertainties and unknown disturbances.......This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind...

  11. Pointing and control system performance and improvement strategies for the SOFIA Airborne Telescope

    Science.gov (United States)

    Graf, Friederike; Reinacher, Andreas; Jakob, Holger; Lampater, Ulrich; Pfueller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Fasoulas, Stefanos

    2016-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has already successfully conducted over 300 flights. In its early science phase, SOFIA's pointing requirements and especially the image jitter requirements of less than 1 arcsec rms have driven the design of the control system. Since the first observation flights, the image jitter has been gradually reduced by various control mechanisms. During smooth flight conditions, the current pointing and control system allows us to achieve the standards set for early science on SOFIA. However, the increasing demands on the image size require an image jitter of less than 0.4 arcsec rms during light turbulence to reach SOFIA's scientific goals. The major portion of the remaining image motion is caused by deformation and excitation of the telescope structure in a wide range of frequencies due to aircraft motion and aerodynamic and aeroacoustic effects. Therefore the so-called Flexible Body Compensation system (FBC) is used, a set of fixed-gain filters to counteract the structural bending and deformation. Thorough testing of the current system under various flight conditions has revealed a variety of opportunities for further improvements. The currently applied filters have solely been developed based on a FEM analysis. By implementing the inflight measurements in a simulation and optimization, an improved fixed-gain compensation method was identified. This paper will discuss promising results from various jitter measurements recorded with sampling frequencies of up to 400 Hz using the fast imaging tracking camera.

  12. Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems

    International Nuclear Information System (INIS)

    Khaki-Sedigh, A.; Yazdanpanah-Goharrizi, A.

    2006-01-01

    A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology

  13. Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaki-Sedigh, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran 16314 (Iran, Islamic Republic of)]. E-mail: sedigh@kntu.ac.ir; Yazdanpanah-Goharrizi, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran 16314 (Iran, Islamic Republic of)]. E-mail: yazdanpanah@ee.kntu.ac.ir

    2006-09-15

    A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology.

  14. Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system

    Directory of Open Access Journals (Sweden)

    Sabah Miqoi

    2017-03-01

    Full Text Available In this paper a new maximum power point tracking method based on fuzzy sliding mode control is proposed, and employed in a PV water pumping system based on a DC-DC boost converter, to produce maximum power from the solar panel hence more speed in the DC motor and more water quantity. This method combines two different tracking techniques sliding mode control and fuzzy logic; our controller is based on sliding mode control, then to give better stability and enhance the power production a fuzzy logic technique was added. System modeling, sliding method definition and the new control method presentation are represented in this paper. The results of the simulation that are compared to both sliding mode controller and perturbation and observation method demonstrate effectiveness and robustness of the proposed controller.

  15. Comparative Analysis of Maximum Power Point Tracking Controllers under Partial Shaded Conditions in a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    R. Ramaprabha

    2015-06-01

    Full Text Available Mismatching effects due to partial shaded conditions are the major drawbacks existing in today’s photovoltaic (PV systems. These mismatch effects are greatly reduced in distributed PV system architecture where each panel is effectively decoupled from its neighboring panel. To obtain the optimal operation of the PV panels, maximum power point tracking (MPPT techniques are used. In partial shaded conditions, detecting the maximum operating point is difficult as the characteristic curves are complex with multiple peaks. In this paper, a neural network control technique is employed for MPPT. Detailed analyses were carried out on MPPT controllers in centralized and distributed architecture under partial shaded environments. The efficiency of the MPPT controllers and the effectiveness of the proposed control technique under partial shaded environments was examined using MATLAB software. The results were validated through experimentation.

  16. System implementation of hazard analysis and critical control points (HACCP) in a nitrogen production plant

    International Nuclear Information System (INIS)

    Barrantes Salazar, Alexandra

    2014-01-01

    System of hazard analysis and critical control points are deployed in a production plant of liquid nitrogen. The fact that the nitrogen has become a complement to food packaging to increase shelf life, or provide a surface that protect it from manipulation, has been the main objective. Analysis of critical control points for the nitrogen production plant has been the adapted methodology. The knowledge of both the standard and the production process, as well as the on site verification process, have been necessary. In addition, all materials and/or processing units that are found in contact with the raw material or the product under study were evaluated. Such a way that the intrinsic risks of each were detected, from the physical, chemical and biological points of view according to the origin or pollution source. For each found risk was evaluated the probability of occurrence according to the frequency and gravity of it, with these variables determined was achieved the definition of the type of risk detected. In the cases that was presented a greater risk or critical, these were subjected decision tree; with which is concluded the non determination of critical control points. However, for each one of them were established the maximum permitted limits. To generate each of the results it has literature or scientific reference of reliable provenance, where is indicated properly the support of the evaluated matter. In a general way, the material matrix and the process matrix are found without critical control points; so that the project is concluded in the analysis, and it has to generate without the monitoring system and verification. To increase this project is suggested in order to cover the packaging system of gaseous nitrogen, due to it was delimited to liquid nitrogen. Furthermore, the liquid nitrogen is a 100% automated and closed process so the introduction of contaminants is very reduced, unlike the gaseous nitrogen process. (author) [es

  17. PointCom: semi-autonomous UGV control with intuitive interface

    Science.gov (United States)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  18. Robust maximum power point tracker using sliding mode controller for the three-phase grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Song [LG Chem. Ltd./Research park, Mobile Energy R and D, 104-1 Moonji-Dong, Yuseong-Gu, Daejeon 305-380 (Korea)

    2007-03-15

    A robust maximum power point tracker (MPPT) using sliding mode controller for the three-phase grid-connected photovoltaic system has been proposed in this paper. Contrary to the previous controller, the proposed system consists of MPPT controller and current controller for tight regulation of the current. The proposed MPPT controller generates current reference directly from the solar array power information and the current controller uses the integral sliding mode for the tight control of current. The proposed system can prevent the current overshoot and provide optimal design for the system components. The structure of the proposed system is simple, and it shows robust tracking property against modeling uncertainties and parameter variations. Mathematical modeling is developed and the experimental results verify the validity of the proposed controller. (author)

  19. Fuzzy Controller Design Using FPGA for Photovoltaic Maximum Power Point Tracking

    OpenAIRE

    Basil M Hamed; Mohammed S. El-Moghany

    2012-01-01

    The cell has optimum operating point to be able to get maximum power. To obtain Maximum Power from photovoltaic array, photovoltaic power system usually requires Maximum Power Point Tracking (MPPT) controller. This paper provides a small power photovoltaic control system based on fuzzy control with FPGA technology design and implementation for MPPT. The system composed of photovoltaic module, buck converter and the fuzzy logic controller implemented on FPGA for controlling on/off time of MOSF...

  20. Word Length Selection Method for Controller Implementation on FPGAs Using the VHDL-2008 Fixed-Point and Floating-Point Packages

    Directory of Open Access Journals (Sweden)

    Urriza I

    2010-01-01

    Full Text Available Abstract This paper presents a word length selection method for the implementation of digital controllers in both fixed-point and floating-point hardware on FPGAs. This method uses the new types defined in the VHDL-2008 fixed-point and floating-point packages. These packages allow customizing the word length of fixed and floating point representations and shorten the design cycle simplifying the design of arithmetic operations. The method performs bit-true simulations in order to determine the word length to represent the constant coefficients and the internal signals of the digital controller while maintaining the control system specifications. A mixed-signal simulation tool is used to simulate the closed loop system as a whole in order to analyze the impact of the quantization effects and loop delays on the control system performance. The method is applied to implement a digital controller for a switching power converter. The digital circuit is implemented on an FPGA, and the simulations are experimentally verified.

  1. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

    Science.gov (United States)

    Thomas, N. L.; Chisel, D. M.

    1976-01-01

    The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

  2. Introduction of the system of hazard analysis critical control point to ensure the safety of irradiated food

    International Nuclear Information System (INIS)

    Sajet, A.S.

    2014-01-01

    Hazard Analysis Critical Control Point (HACCP) is a preventive system for food safety. It identifies safety risks faced by food. Identified points are controlled ensuring product safety. Because of presence of many of the pathogenic microorganisms and parasites in food which caused cases of food poisoning and many diseases transmitted through food, the current methods of food production could not prevent food contamination or prevent the growth of these pathogens completely because of being a part of the normal flora in the environment. Irradiation technology helped to control diseases transmitted through food, caused by pathological microorganisms and parasites present in food. The application of a system based on risk analysis as a means of risk management in food chain, demonstrated the importance of food irradiation. (author)

  3. Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Ou, Ting-Chia; Lu, Kai-Hung

    2013-01-01

    A hybrid power control system is proposed in the paper, consisting of solar power, wind power, and a diesel-engine. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of the Wilcoxon (radial basis function network) RBFN and the improved (Elman neural network) ENN for (maximum power point tracking) MPPT. The pitch angle control of wind power uses improved ENN controller, and the output is fed to the wind turbine to achieve the MPPT. The solar array is integrated with an RBFN control algorithm to track the maximum power. MATLAB (MATrix LABoratory)/Simulink was used to build the dynamic model and simulate the solar and diesel-wind hybrid power system. - Highlights: ► To achieve a fast and stable response for the real power control. ► The pitch control of wind power uses improved ENN (Elman neural network) controller to achieve the MPPT (maximum power point tracking). ► The RBFN (radial basis function network) can quickly and accurately track the maximum power output for PV (photovoltaic) array. ► MATLAB was used to build the dynamic model and simulate the hybrid power system. ► This method can reach the desired performance even under different load conditions

  4. Photovoltaic System with Smart Tracking of the Optimal Working Point

    Directory of Open Access Journals (Sweden)

    PATARAU, T.

    2010-08-01

    Full Text Available A photovoltaic (PV system, based on a Maximum Power Point Tracking (MPPT controller that extracts the maximum possible output power from the solar panel is described. Output efficiency of a PV energy system can be achieved only if the system working point is brought near the maximum power point (MPP. The proposed system, making use of several MPPT control algorithms (Perturb and Observe, Incremental conductance, Fuzzy Logic, demonstrates in simulations as well as in real experiments good tracking of the optimal working point.

  5. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    Science.gov (United States)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  6. The timing of control signals underlying fast point-to-point arm movements.

    Science.gov (United States)

    Ghafouri, M; Feldman, A G

    2001-04-01

    It is known that proprioceptive feedback induces muscle activation when the facilitation of appropriate motoneurons exceeds their threshold. In the suprathreshold range, the muscle-reflex system produces torques depending on the position and velocity of the joint segment(s) that the muscle spans. The static component of the torque-position relationship is referred to as the invariant characteristic (IC). According to the equilibrium-point (EP) hypothesis, control systems produce movements by changing the activation thresholds and thus shifting the IC of the appropriate muscles in joint space. This control process upsets the balance between muscle and external torques at the initial limb configuration and, to regain the balance, the limb is forced to establish a new configuration or, if the movement is prevented, a new level of static torques. Taken together, the joint angles and the muscle torques generated at an equilibrium configuration define a single variable called the EP. Thus by shifting the IC, control systems reset the EP. Muscle activation and movement emerge following the EP resetting because of the natural physical tendency of the system to reach equilibrium. Empirical and simulation studies support the notion that the control IC shifts and the resulting EP shifts underlying fast point-to-point arm movements are gradual rather than step-like. However, controversies exist about the duration of these shifts. Some studies suggest that the IC shifts cease with the movement offset. Other studies propose that the IC shifts end early in comparison to the movement duration (approximately, at peak velocity). The purpose of this study was to evaluate the duration of the IC shifts underlying fast point-to-point arm movements. Subjects made fast (hand peak velocity about 1.3 m/s) planar arm movements toward different targets while grasping a handle. Hand forces applied to the handle and shoulder/elbow torques were, respectively, measured from a force sensor placed

  7. Maximum Power Point Tracking Control of a Thermoelectric Generation System Using the Extremum Seeking Control Method

    Directory of Open Access Journals (Sweden)

    Ssennoga Twaha

    2017-12-01

    Full Text Available This study proposes and implements maximum power Point Tracking (MPPT control on thermoelectric generation system using an extremum seeking control (ESC algorithm. The MPPT is applied to guarantee maximum power extraction from the TEG system. The work has been carried out through modelling of thermoelectric generator/dc-dc converter system using Matlab/Simulink. The effectiveness of ESC technique has been assessed by comparing the results with those of the Perturb and Observe (P&O MPPT method under the same operating conditions. Results indicate that ESC MPPT method extracts more power than the P&O technique, where the output power of ESC technique is higher than that of P&O by 0.47 W or 6.1% at a hot side temperature of 200 °C. It is also noted that the ESC MPPT based model is almost fourfold faster than the P&O method. This is attributed to smaller MPPT circuit of ESC compared to that of P&O, hence we conclude that the ESC MPPT method outperforms the P&O technique.

  8. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    Science.gov (United States)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  9. [Preliminary studies on critical control point of traceability system in wolfberry].

    Science.gov (United States)

    Liu, Sai; Xu, Chang-Qing; Li, Jian-Ling; Lin, Chen; Xu, Rong; Qiao, Hai-Li; Guo, Kun; Chen, Jun

    2016-07-01

    As a traditional Chinese medicine, wolfberry (Lycium barbarum) has a long cultivation history and a good industrial development foundation. With the development of wolfberry production, the expansion of cultivation area and the increased attention of governments and consumers on food safety, the quality and safety requirement of wolfberry is higher demanded. The quality tracing and traceability system of production entire processes is the important technology tools to protect the wolfberry safety, and to maintain sustained and healthy development of the wolfberry industry. Thus, this article analyzed the wolfberry quality management from the actual situation, the safety hazard sources were discussed according to the HACCP (hazard analysis and critical control point) and GAP (good agricultural practice for Chinese crude drugs), and to provide a reference for the traceability system of wolfberry. Copyright© by the Chinese Pharmaceutical Association.

  10. Inherently safe SNR shutdown system with Curie point controlled sensor/switch unit

    International Nuclear Information System (INIS)

    Mueller, K.; Norajitra, P.; Reiser, H.

    1987-02-01

    Inherent shutdown due to increase in the sodium temperature at the core outlet is triggered by interruption of the current supply to the electromagnet coupling of absorber elements via curie point controlled sensor/switch units. These switches are arranged above suitable fuel element positions and spatially independent of the shutdown elements. Compared with other similar systems very short response times are achieved. A prototype switch unit has already undergone extensive testing. These tests have confirmed that switching takes place in a very narrow temperature range. (orig./HP) [de

  11. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard Analysis and Critical Control Point (HACCP... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.8 Hazard Analysis and Critical Control Point (HACCP) plan. (a) HACCP plan. Each...

  12. Strike Point Control on EAST Using an Isoflux Control Method

    International Nuclear Information System (INIS)

    Xing Zhe; Xiao Bingjia; Luo Zhengping; Walker, M. L.; Humphreys, D. A.

    2015-01-01

    For the advanced tokamak, the particle deposition and thermal load on the divertor is a big challenge. By moving the strike points on divertor target plates, the position of particle deposition and thermal load can be shifted. We could adjust the Poloidal Field (PF) coil current to achieve the strike point position feedback control. Using isoflux control method, the strike point position can be controlled by controlling the X point position. On the basis of experimental data, we establish relational expressions between X point position and strike point position. Benchmark experiments are carried out to validate the correctness and robustness of the control methods. The strike point position is successfully controlled following our command in the EAST operation. (paper)

  13. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  14. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...

  15. Demerit points systems.

    NARCIS (Netherlands)

    2006-01-01

    In 2012, 21 of the 27 EU Member States had some form of demerit points system. In theory, demerit points systems contribute to road safety through three mechanisms: 1) prevention of unsafe behaviour through the risk of receiving penalty points, 2) selection and suspension of the most frequent

  16. Gain scheduling controller for pitch control of a TRMS system

    Science.gov (United States)

    Bhagyalakshmi, R.; Rashmi, GP; Jaganatha Pandian, B.

    2017-11-01

    Gain scheduling is a control technique which is applied for the control of non-linear systems by using a family of linear controllers at different operating points so as to increase the range of operation of the process. The dynamics of any nonlinear system changes with respect to operating points. These operating points are characterized by one or more variables known as scheduling variables. In such cases, we linearize the system at different equilibrium points. Due to the high amount of non-linearities and complexity in the aerodynamic design, modelling of other unmanned aerial vehicles have been replaced here with twin rotor system. The linearized system is then controlled by using PID controllers which are designed with respect to the obtained operating points. Linearizing of the non-linear system, designing and tuning of PID are being implemented using different MATLAB functions.

  17. Evaluation of maximum power point tracking in hydrokinetic energy conversion systems

    Directory of Open Access Journals (Sweden)

    Jahangir Khan

    2015-11-01

    Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.

  18. Design and Implementation of Photovoltaic Maximum Power Point Tracking Controller

    Directory of Open Access Journals (Sweden)

    Fawaz S. Abdullah

    2018-03-01

    Full Text Available  The power supplied by any solar array depends upon the environmental conditions as weather conditions (temperature and radiation intensity and the incident angle of the radiant source. The work aims to study the maximum power tracking schemes that used to compare the system performance without and with different types of controllers. The maximum power points of the solar panel under test studied and compared with two controller's types.  The first controller is the proportional- integral - derivative controller type and the second is the perturbation and observation algorithm controller. The associated converter system is a microcontroller based type, whereas the results studied and compared of greatest power point of the Photovoltaic panels under the different two controllers. The experimental tests results compared with simulation results to verify accurate performance.

  19. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant

    Directory of Open Access Journals (Sweden)

    Yu-Ting Hung

    2015-09-01

    Full Text Available To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management.

  20. Intelligent Photovoltaic Maximum Power Point Tracking Controller for Energy Enhancement in Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Subiyanto

    2013-01-01

    Full Text Available Photovoltaic (PV system is one of the promising renewable energy technologies. Although the energy conversion efficiency of the system is still low, but it has the advantage that the operating cost is free, very low maintenance and pollution-free. Maximum power point tracking (MPPT is a significant part of PV systems. This paper presents a novel intelligent MPPT controller for PV systems. For the MPPT algorithm, an optimized fuzzy logic controller (FLC using the Hopfield neural network is proposed. It utilizes an automatically tuned FLC membership function instead of the trial-and-error approach. The MPPT algorithm is implemented in a new variant of coupled inductor soft switching boost converter with high voltage gain to increase the converter output from the PV panel. The applied switching technique, which includes passive and active regenerative snubber circuits, reduces the insulated gate bipolar transistor switching losses. The proposed MPPT algorithm is implemented using the dSPACE DS1104 platform software on a DS1104 board controller. The prototype MPPT controller is tested using an agilent solar array simulator together with a 3 kW real PV panel. Experimental test results show that the proposed boost converter produces higher output voltages and gives better efficiency (90% than the conventional boost converter with an RCD snubber, which gives 81% efficiency. The prototype MPPT controller is also found to be capable of tracking power from the 3 kW PV array about 2.4 times more than that without using the MPPT controller.

  1. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller

    Energy Technology Data Exchange (ETDEWEB)

    Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)

    2003-02-01

    Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)

  2. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. [Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique, Departement d' Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200 (Algeria)

    2009-10-15

    This paper presents an intelligent control method for the maximum power point tracking (MPPT) of a photovoltaic system under variable temperature and irradiance conditions. First, for the purpose of comparison and because of its proven and good performances, the perturbation and observation (P and O) technique is briefly introduced. A fuzzy logic controller based MPPT (FLC) is then proposed which has shown better performances compared to the P and O MPPT based approach. The proposed FLC has been also improved using genetic algorithms (GA) for optimisation. Different development stages are presented and the optimized fuzzy logic MPPT controller (OFLC) is then simulated and evaluated, which has shown better performances. (author)

  3. Critical Control Points in the Processing of Cassava Tuber for Ighu ...

    African Journals Online (AJOL)

    Determination of the critical control points in the processing of cassava tuber into Ighu was carried out. The critical control points were determined according to the Codex guidelines for the application of the HACCP system by conducting hazard analysis. Hazard analysis involved proper examination of each processing step ...

  4. Design of the control system for fixed-point keeping in FPSO (Floating Production Storage and Offloading); FPSO no teiten hoji no tame no seigyokei no sekkei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kijima, K; Murata, W; Furukawa, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    The control system for keeping the fixed-point of ships against disturbance was designed by applying an ILQ (Inverse Linear Quadratic) control (possible to specify the response of controlled systems with time constant) theory, to study the effect of different time constants as design parameter on a fixed-point keeping performance. It was assumed that the controlled ship is equipped with two bow thrusters and one stern thruster of 30ton in output to generate a control force. For fixed-point keeping control, the state equation was derived to slave the controlled system to a target input. The ILQ design method uses the result of the inverse problem of optimum regulators. For designing control systems by using the ILQ control theory, the smallest time constant should be selected according to the most severe disturbance condition considering the response performance of controllers, to achieve fixed-point keeping of ships. In fixed-point keeping, it is also essential to put the initial position as close as possible to the target point. 2 refs., 6 figs., 2 tabs.

  5. [Incorporation of the Hazard Analysis and Critical Control Point system (HACCP) in food legislation].

    Science.gov (United States)

    Castellanos Rey, Liliana C; Villamil Jiménez, Luis C; Romero Prada, Jaime R

    2004-01-01

    The Hazard Analysis and Critical Control Point system (HACCP), recommended by different international organizations as the Codex Alimentarius Commission, the World Trade Organization (WTO), the International Office of Epizootics (OIE) and the International Convention for Vegetables Protection (ICPV) amongst others, contributes to ensuring the innocuity of food along the agro-alimentary chain and requires of Good Manufacturing Practices (GMP) for its implementation, GMP's which are legislated in most countries. Since 1997, Colombia has set rules and legislation for application of HACCP system in agreement with international standards. This paper discusses the potential and difficulties of the legislation enforcement and suggests some policy implications towards food safety.

  6. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant.

    Science.gov (United States)

    Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen

    2015-09-01

    To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.

  7. A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2018-01-01

    Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.

  8. First Results of a Tandem Terrestrial-Unmanned Aerial mapKITE System with Kinematic Ground Control Points for Corridor Mapping

    Directory of Open Access Journals (Sweden)

    Pere Molina

    2017-01-01

    Full Text Available In this article, we report about the first results of the mapKITE system, a tandem terrestrial-aerial concept for geodata acquisition and processing, obtained in corridor mapping missions. The system combines an Unmanned Aerial System (UAS and a Terrestrial Mobile Mapping System (TMMS operated in a singular way: real-time waypoints are computed from the TMMS platform and sent to the UAS in a follow-me scheme. This approach leads to a simultaneous acquisition of aerial-plus-ground geodata and, moreover, opens the door to an advanced post-processing approach for sensor orientation. The current contribution focuses on analysing the impact of the new, dynamic Kinematic Ground Control Points (KGCPs, which arise inherently from the mapKITE paradigm, as an alternative to conventional, costly Ground Control Points (GCPs. In the frame of a mapKITE campaign carried out in June 2016, we present results entailing sensor orientation and calibration accuracy assessment through ground check points, and precision and correlation analysis of self-calibration parameters’ estimation. Conclusions indicate that the mapKITE concept eliminates the need for GCPs when using only KGCPs plus a couple of GCPs at each corridor end, achieving check point horizontal accuracy of μ E , N ≈ 1.7 px (3.4 cm and μ h ≈ 4.3 px (8.6 cm. Since obtained from a simplified version of the system, these preliminary results are encouraging from a future perspective.

  9. Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Chen, Chiung-Hsing; Tu, Chia-Sheng

    2013-01-01

    Highlights: ► This paper presents MPPT based control for optimal wind energy capture using RBFN. ► MPSO is adopted to adjust the learning rates to improve the learning capability. ► This technique can maintain the system stability and reach the desired performance. ► The EMF in the rotating reference frame is utilized in order to estimate speed. - Abstract: This paper presents maximum-power-point-tracking (MPPT) based control algorithms for optimal wind energy capture using radial basis function network (RBFN) and a proposed torque observer MPPT algorithm. The design of a high-performance on-line training RBFN using back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller for the sensorless control of a permanent magnet synchronous generator (PMSG). The MPSO is adopted in this study to adapt the learning rates in the back-propagation process of the RBFN to improve the learning capability. The PMSG is controlled by the loss-minimization control with MPPT below the base speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. Then the observed disturbance torque is feed-forward to increase the robustness of the PMSG system

  10. Vibration isolation and dual-stage actuation pointing system for space precision payloads

    Science.gov (United States)

    Kong, Yongfang; Huang, Hai

    2018-02-01

    Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.

  11. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    Science.gov (United States)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  12. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  13. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)

    2010-06-15

    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  14. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her; Wang, Jiunn-Cherng

    2012-01-01

    was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI

  15. Controllable resonant tunnelling through single-point potentials: A point triode

    International Nuclear Information System (INIS)

    Zolotaryuk, A.V.; Zolotaryuk, Yaroslav

    2015-01-01

    A zero-thickness limit of three-layer heterostructures under two bias voltages applied externally, where one of which is supposed to be a gate parameter, is studied. As a result, an effect of controllable resonant tunnelling of electrons through single-point potentials is shown to exist. Therefore the limiting structure may be termed a “point triode” and considered in the theory of point interactions as a new object. The simple limiting analytical expressions adequately describe the resonant behaviour in the transistor with realistic parameter values and thus one can conclude that the zero-range limit of multi-layer structures may be used in fabricating nanodevices. The difference between the resonant tunnelling across single-point potentials and the Fabry–Pérot interference effect is also emphasized. - Highlights: • The zero-thickness limit of three-layer heterostructures is described in terms of point interactions. • The effect of resonant tunnelling through these single-point potentials is established. • The resonant tunnelling is shown to be controlled by a gate voltage

  16. Maximum Power Point Tracking Control of Photovoltaic Systems: A Polynomial Fuzzy Model-Based Approach

    DEFF Research Database (Denmark)

    Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan

    2018-01-01

    This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...

  17. Hazard analysis and critical control point (HACCP) history and conceptual overview.

    Science.gov (United States)

    Hulebak, Karen L; Schlosser, Wayne

    2002-06-01

    The concept of Hazard Analysis and Critical Control Point (HACCP) is a system that enables the production of safe meat and poultry products through the thorough analysis of production processes, identification of all hazards that are likely to occur in the production establishment, the identification of critical points in the process at which these hazards may be introduced into product and therefore should be controlled, the establishment of critical limits for control at those points, the verification of these prescribed steps, and the methods by which the processing establishment and the regulatory authority can monitor how well process control through the HACCP plan is working. The history of the development of HACCP is reviewed, and examples of practical applications of HACCP are described.

  18. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...

  19. D0 Cryo System Control System Autodialer

    Energy Technology Data Exchange (ETDEWEB)

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  20. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...

  1. Tautological control systems

    CERN Document Server

    Lewis, Andrew D

    2014-01-01

    This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be—and shown to be—feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research.

  2. Fuzzy Logic Based Set-Point Weighting Controller Tuning for an Internal Model Control Based PID Controller

    Directory of Open Access Journals (Sweden)

    Maruthai Suresh

    2009-10-01

    Full Text Available Controller tuning is the process of adjusting the parameters of the selected controller to achieve optimum response for the controlled process. For many of the control problems, a satisfactory performance is obtained by using PID controllers. One of the main problems with mathematical models of physical systems is that the parameters used in the models cannot be determined with absolute accuracy. The values of the parameters may change with time or various effects. In these cases, conventional controller tuning methods suffer when trying a lot to produce optimum response. In order to overcome these difficulties a fuzzy logic based Set- Point weighting controller tuning method is proposed. The effectiveness of the proposed scheme is analyzed through computer simulation using SIMULINK software and the results are presented. The fuzzy logic based simulation results are compared with Cohen-Coon (CC, Ziegler- Nichols (ZN, Ziegler – Nichols with Set- Point weighting (ZN-SPW, Internal Model Control (IMC and Internal model based PID controller responses (IMC-PID. The effects of process modeling errors and the importance of controller tuning have been brought out using the proposed control scheme.

  3. Dynamics of Multibody Systems Near Lagrangian Points

    Science.gov (United States)

    Wong, Brian

    dynamics of two sample rigid bodies when they are in different periodic orbits around a collinear point, and the tether librations of a two-tether system in the same orbits. The results show that the rigid satellites and the tethered system experience greater attitude motions when they are in larger periodic orbits. The dynamics of variable length systems are also studied in order to determine the control cost associated with moving the end bodies in a gapless spiral to cover the area spanned by the system. The control cost is relatively low during tether deployment, and negligible effort is required to maintain the angular velocity of the tethered system after deployment. A set of recommendations for the applications of Lagrangian-point physically-connected systems are presented as well as some future research directions are suggested.

  4. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.

  5. Control Strategy of Two Capacitor Voltages for Separate MPPTs in Photovoltaic Systems Using Neutral-Point-Clamped Inverters

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Blaabjerg, Frede; Lee, Kyo-Beum

    2015-01-01

    The centralized topology with three-level inverters are widely used in photovoltaic (PV) systems due to their less installation costs and complexity. However, the common maximum power point tracking (MPPT) is a disadvantage of the centralized topology particularly under the partial shading...... and panel mismatch conditions. In this system, if PV modules are separately connected to the split capacitor voltage, the MPPT efficiency can be improved by the proposed control strategy. By the proposed method, the two capacitor voltages can be controlled asymmetrically to perform the separate MPPTs...... of each PV module connected to separate capacitors. The outputs can be generated without distortion even if two capacitors are asymmetrically regulated. Simulation and experimental results verify the validity and feasibility of the proposed methods....

  6. Sliding Mode Extremum Seeking Control Scheme Based on PSO for Maximum Power Point Tracking in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available An extremum seeking control (ESC scheme is proposed for maximum power point tracking (MPPT in photovoltaic power generation systems. The robustness of the proposed scheme toward irradiance changes is enhanced by implementing the ESC scheme using a sliding mode control (SMC law. In the proposed approach, the chattering phenomenon caused by high frequency switching is suppressed by means of a sliding layer concept. Moreover, in implementing the proposed controller, the optimal value of the gain constant is determined using a particle swarm optimization (PSO algorithm. The experimental and simulation results show that the proposed PSO-based sliding mode ESC (SMESC control scheme yields a better transient response, steady-state stability, and robustness than traditional MPPT schemes based on gradient detection methods.

  7. Development of self-actuated shutdown system using curie point electromagnet

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Park, Jin Ho

    1999-01-01

    An innovative concept for a passive reactor shutdown system, so called self-actuated shutdown system (SASS), is inevitably required for the inherent safety in liquid metal reactor, which is designed with the totally different concept from the usual reactor shutdown system in LWR. SASS using Curie point electromagnet (CPEM) was selected as the passive reactor shutdown system for KALIMER (Korea Advanced Liquid Metal Reactor). A mock-up of the SASS was designed, fabricated and tested. From the test it was confirmed that the mockup was self-actuated at the Curie point of the temperature sensing material used in the mockup. An articulated control rod was also fabricated and assembled with the CPEM to confirm that the control rod can be inserted into core even when the control rod guide tube is deformed due to earthquake. The operability of SASS in the actual sodium environment should be confirmed in the future. All the design and test data will be applied to the KALIMER design. (author)

  8. Pasteurised milk and implementation of HACCP (Hazard Analysis Critical Control Point

    Directory of Open Access Journals (Sweden)

    T.B Murdiati

    2004-10-01

    Full Text Available The purpose of pasteurisation is to destroy pathogen bacteria without affecting the taste, flavor, and nutritional value. A study on the implementation of HACCP (Hazard Analysis Critical Control Point in producing pasteurized milk was carried out in four processing unit of pasteurised milk, one in Jakarta, two in Bandung and one in Bogor. The critical control points in the production line were identified. Milk samples were collected from the critical points and were analysed for the total number of microbes. Antibiotic residues were detected on raw milks. The study indicated that one unit in Bandung dan one unit in Jakarta produced pasteurized milk with lower number of microbes than the other units, due to better management and control applied along the chain of production. Penisilin residues was detected in raw milk used by unit in Bogor. Six critical points and the hazard might arise in those points were identified, as well as how to prevent the hazards. Quality assurance system such as HACCP would be able to produce high quality and safety of pasteurised milk, and should be implemented gradually.

  9. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  10. Control and automation of the Pegasus multi-point Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  11. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around....... The proposed Optimal Power Point fix voltage control system is analyzed in comparison to other complex controls....... their maximum power point, with a fixed operating voltage value. The control circuit implementation is not only simple and cheap, but also robust and reliable. System protections and adjustments are also proposed. Simulations and hardware are reported in the paper for a 150W water pumping application system...

  12. Wärtsilä turbocharger wash and dew point controller integration

    OpenAIRE

    Perälä, Antti

    2013-01-01

    There are two separate control cabinets used in Wärtsilä marine solutions, Turbocharger Wash Control and the Dew Point Control. The cabinets contain similar PLCs with I/O-cards needed in the system and touch screen for monitoring and controlling purposes. The purpose of the thesis was to find and implement a solution for integration of the control cabinets. The advantages of the integration are savings in material, space in the engine room and amount of work. The aim of the project was to cre...

  13. Metal food packaging design based on hazard analysis critical control point (HACCP system in canned food safety

    Directory of Open Access Journals (Sweden)

    Li Xingyi

    2016-06-01

    Full Text Available This study aims to design metal food packaging with hazard analysis critical control point (HACCP. First, theory of HACCP was introduced in detail. Taking empty cans provided by Wuxi Huapeng Food Packaging Company as an example, we studied migration of bisphenol compounds in coating of food can to food stimulant. Moreover, packaging design of luncheon meat can was taken as an example to confirm whether HACCP system could effectively control migration of phenolic substance. Results demonstrated that, coating of such empty were more likely to contain multiple bisphenol compounds such as bisphenol A (BPA, and bisphenol A diglycidyl ether (BADGE was considered as the leading bisphenol pollutant; food stimulant of different types, storage temperature and time could all impact migration of bisphenol compounds. HACCP system was proved to be effective in controlling hazards of phenolic substance in luncheon meat can and could reduce various phenolic substance indexes to an acceptable range. Therefore, HACCP can control migration of phenolic substance and recontamination of food and thus ensure food safety.

  14. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing...... control is to let an optimization procedure take over the task of operating the refrigeration system and thereby replace the role of the operator in the traditional control structure. In the context of refrigeration systems, the idea is to divide the optimizing control structure into two parts: A part...... optimizing the steady state operation "set-point optimizing control" and a part optimizing dynamic behaviour of the system "dynamical optimizing control". A novel approach for set-point optimization will be presented. The general idea is to use a prediction of the steady state, for computation of the cost...

  15. Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls

    Directory of Open Access Journals (Sweden)

    M. de la Sen

    2010-01-01

    Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.

  16. High speed serial communications for control systems

    International Nuclear Information System (INIS)

    Mathieson, D.; Kalbfleisch, C.; Hunt, S.; Low, K.

    1993-01-01

    The Superconducting Super Collider Laboratory is a complex of accelerators being built in Ellis County, Texas. The SSCL control system consists of front-end processors and their associated control points remotely distributed from the Central and Regional control rooms. Control messages passing between these locations require timely (deterministic) distribution. A prototype network consisting of point-to-point links utilizing commercial T1 (1.544 Mb/s) communication boards has been implemented. These dedicated communication links will replace networking services traditionally provided for by shared medium networks like Ethernet(IEEE 802.3) and FDDI(IEEE 802.5). A seamless migration will be achieved by using packet encapsulation based on PPP(Point-to-Point Protocol, RFC 1171). All other networking functions including routing and reliable delivery are still being handled by the usual internet services. A distributed control system that currently uses Ethernet for communication is being re-implemented using these point-to-point links. The authors report on throughput measurements, timing constraints and ease of transition of a point-to-point network

  17. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  18. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  19. Chaos control for the family of Roessler systems using feedback controllers

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Yu Pei

    2006-01-01

    This paper presents a new method for controlling chaos in several classical chaotic Roessler systems using feedback control strategy. In particular, for an arbitrarily given equilibrium point of a Roessler system, we design explicit and simple feedback control laws by which the equilibrium point is globally and exponentially stabilized. Six typical Roessler systems are studied, and explicit formulas are derived for estimating the convergence rate of these systems. Numerical examples are presented to illustrate the theoretical results. A mistake has been found in the existing literature, and a correct result is given

  20. Octopuses use a human-like strategy to control precise point-to-point arm movements.

    Science.gov (United States)

    Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin

    2006-04-18

    One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.

  1. Calculation Method for Equilibrium Points in Dynamical Systems Based on Adaptive Sinchronization

    Directory of Open Access Journals (Sweden)

    Manuel Prian Rodríguez

    2017-12-01

    Full Text Available In this work, a control system is proposed as an equivalent numerical procedure whose aim is to obtain the natural equilibrium points of a dynamical system. These equilibrium points may be employed later as setpoint signal for different control techniques. The proposed procedure is based on the adaptive synchronization between an oscillator and a reference model driven by the oscillator state variables. A stability analysis is carried out and a simplified algorithm is proposed. Finally, satisfactory simulation results are shown.

  2. Space Telescope Control System science user operations

    Science.gov (United States)

    Dougherty, H. J.; Rossini, R.; Simcox, D.; Bennett, N.

    1984-01-01

    The Space Telescope science users will have a flexible and efficient means of accessing the capabilities provided by the ST Pointing Control System, particularly with respect to managing the overal acquisition and pointing functions. To permit user control of these system functions - such as vehicle scanning, tracking, offset pointing, high gain antenna pointing, solar array pointing and momentum management - a set of special instructions called 'constructs' is used in conjuction with command data packets. This paper discusses the user-vehicle interface and introduces typical operational scenarios.

  3. Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino

    Science.gov (United States)

    Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.

    2018-05-01

    the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.

  4. Operational limits of a three level neutral point clamped converter used for controlling a hybrid energy storage system

    International Nuclear Information System (INIS)

    Etxeberria, A.; Vechiu, I.; Camblong, H.; Kreckelbergh, S.; Bacha, S.

    2014-01-01

    Highlights: • The control of a hybrid storage system using a Three Level NPC converter is analysed. • A sinusoidal PWM with an offset injection is used to control the storage system. • The operation of the selected converter is analysed in its entire operation range. • The operational limits of the Three Level NPC converter are defined. - Abstract: This work analyses the use of a Three-Level Neutral Point Clamped (3LNPC) converter to control the power flow of a Hybrid Energy Storage System (HESS) and at the same time interconnect it with the common AC bus of a microgrid. Nowadays there is not any storage technology capable of offering a high energy storage capacity, a high power capacity and a fast response at the same time. Therefore, the necessity of hybridising more than one storage technology is a widely accepted idea in order to satisfy the mentioned requirements. This work shows how the operational limits of the 3LNPC converter can be calculated and integrated in a control structure to facilitate an optimal use of the HESS according to the rules fixed by the user

  5. Maximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    J. Ghazanfari

    2013-09-01

    Full Text Available In this paper, a robust Maximum Power Point Tracking (MPPT for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maximum Power Point (MPP system and the results obtained are given. The simulation results confirm the effectiveness of the proposed method in the presence of load variations and environment changes for different types of DC-DC converter topologies.

  6. Review of NJ point system.

    Science.gov (United States)

    2013-03-01

    The purpose of this study is to investigate the comparative effectiveness of point-based versus incident-based : negligent driver monitoring systems and to explore how certain changes to the existing point-based system used in : New Jersey might impr...

  7. An equilibrium point stabilization strategy for the Chen system

    International Nuclear Information System (INIS)

    Alvarez-Ramirez, Jose; Cevantes, Ilse; Femat, Ricardo

    2004-01-01

    The aim of this Letter is to address the equilibrium point stabilization problem of the Chen system by employing a simple linear feedback controller derived from time-scaling the dynamics of a single variable. The controller has the advantage of being easy to implement and a rigorous stability proof is provided based on singular perturbation arguments. Results are illustrated via numerical simulations

  8. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  9. Flights between a neighborhoods of unstable libration points of Sun-Earth system

    Science.gov (United States)

    Surkova, Valerya; Shmyrov, Vasily

    2018-05-01

    In this paper we study the problem of constructing impulse flights between neighborhoods of unstable collinear libration points of the Sun-Earth system [1]. Such maneuvering in near-Earth space may prove to be in demand in modern space navigation. For example, such a maneuvering was done by the space vehicle GENESIS. Three test points are chosen for the implementation of the impulse control, in order to move to a neighborhood of the libration point L2. It is shown that the earlier on the exit from the vicinity of the libration point L1 impulse control was realized, the sooner the neighborhood L2 was achieved. Separated from this problem, the problem of optimal control in the neighborhood of L2 was considered and a form of stabilizing control is presented.

  10. Evaluation of the leap motion controller as a new contact-free pointing device.

    Science.gov (United States)

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  11. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  12. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  13. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    Science.gov (United States)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  14. Automated entry control system for nuclear facilities

    International Nuclear Information System (INIS)

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized. 2 refs., 7 figs

  15. Microbiological performance of Hazard Analysis Critical Control Point (HACCP)-based food safety management systems: A case of Nile perch processing company

    NARCIS (Netherlands)

    Kussaga, J.B.; Luning, P.A.; Tiisekwa, B.P.M.; Jacxsens, L.

    2017-01-01

    This study aimed at giving insight into microbiological safety output of a Hazard Analysis Critical Control Point (HACCP)-based Food Safety Management System (FSMS) of a Nile perch exporting company by using a combined assessment, This study aimed at giving insight into microbiological safety output

  16. An optimising controller for Hinkley Point B AGR boilers

    International Nuclear Information System (INIS)

    Wells, C.

    1986-01-01

    The improvements to the control system at Hinkley Point 'B' Power Station has as one of its objectives the provision of a half unit valve controller. This will enable the asymmetry between the boiler half units, which is a feature of current operation, to be reduced. The use of an on-line boiler model in conjunction with this facility will allow the risk to the boilers from corrosion, creep, and vibration to be assessed and held at the minimum attainable value, thereby prolonging plant life whilst maximising output and efficiency. (author)

  17. Control Point Generated PLS - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Control Point Generated PLS layer contains line and polygon features to the 1/4 of 1/4 PLS section (approximately 40 acres) and government lot level. The layer...

  18. Control Point Generated PLS - polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Control Point Generated PLS layer contains line and polygon features to the 1/4 of 1/4 PLS section (approximately 40 acres) and government lot level. The layer...

  19. Maximun power point tracker of photovoltaic s panels for stand alone systems

    International Nuclear Information System (INIS)

    Stoll, R; Manno, R

    2005-01-01

    The low energetic efficiency of photovoltaic s panels is known, in addition, due to the use of linear regulators, which dissipate an important bit of the generated energy, the efficiency of the photovoltaic systems is still smaller.Also, the I-V characteristic curve of the photovoltaic modules depends on the solar radiation and the own temperature; consequently, the maximum power point (Wp) changes permanently.In conclusion, to produce electricity with photovoltaic panels is very expensive. However due to preserve the environment this technology is widely used.With the purpose of optimizing the amount of energy produced by the photovoltaic system, two complementary methods are used.One is the Maximum Power Point Tracker (MPPT) system and the other one is the Solar Tracker system.The objective of this project is to reduce that cost increasing the amount of energy produced by the solar panels using a Maximum Power Point Tracker system.This device consists of a DC/DC buck converter of high performance, controlled by a PIC 16F873 micro controller; which carries out the conversions of the analogical signals of the solar array to digital signals (ADC), the PIC output digital signals to the PWM control of the power FET (DAC), and calculates the Duty Cycle (D) for the point of I-V curve where this product becomes maximum.Measurements for different loads and battery charges were made.With the obtained results, the comparisons with a conventional system were made, a greater cession of energy to the load is observed.The main conclusion of this work is: Using a MPPT device to making work the PV module during the greater possible time near the maximum power point, the efficiency of the photovoltaic systems can be increased

  20. Focal points and principal solutions of linear Hamiltonian systems revisited

    Science.gov (United States)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  1. Model Predictive Control of Z-source Neutral Point Clamped Inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of Z-source Neutral Point Clamped (NPC) inverter. For illustration, current control of Z-source NPC grid-connected inverter is analyzed and simulated. With MPC’s advantage of easily including system constraints, load current, impedance network...... response are obtained at the same time with a formulated Z-source NPC inverter network model. Operation steady state and transient state simulation results of MPC are going to be presented, which shows good reference tracking ability of this method. It provides new control method for Z-source NPC inverter...

  2. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    Science.gov (United States)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  3. Remotely controlled repairs at Douglas Point NGS

    International Nuclear Information System (INIS)

    Broad, Les

    In September, 1977, leakage of heavy water at a rate of 125 kg/hr was detected in an area of the Douglas Point NGS reactor vault below the calandria known as the lower labyrinth. Radiation in the area ranges up to 5000 R/hr and the only ready access was through four 75 mm inspection ports that open into the moderator room. Remote-controlled equipment was designed and built to diagnose the problems and carry out repairs. All damaged piping was fixed, supports were replaced as needed, and system vibration was reduced. The work was done with no injuries and little radiation dose

  4. Geodetic Control Points - MO 2014 Springfield Benchmarks (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Points that show set benchmark or survey control locations in the City of Springfield. Many of these points are PLS section corners and quarter corners. These points...

  5. Does the nervous system use equilibrium-point control to guide single and multiple joint movements?

    Science.gov (United States)

    Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S

    1992-12-01

    The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.

  6. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  7. TIG source control system when welding point-by-point the elements of the collector

    International Nuclear Information System (INIS)

    Bica, I.

    1997-01-01

    The paper presents a control system designed to equip the mechanized welding installations of the collector winding. The logical function of the technological process is determined the synthesis of the electric current is made, too. The logical circuit is made in the TTL technique. It presents reliability and safety in service. (Author) 3 refs

  8. MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.

  9. Maintenance of equilibrium point control during an unexpectedly loaded rapid limb movement.

    Science.gov (United States)

    Simmons, R W; Richardson, C

    1984-06-08

    Two experiments investigated whether the equilibrium point hypothesis or the mass-spring model of motor control subserves positioning accuracy during spring loaded, rapid, bi-articulated movement. For intact preparations, the equilibrium point hypothesis predicts response accuracy to be determined by a mixture of afferent and efferent information, whereas the mass-spring model predicts positioning to be under a direct control system. Subjects completed a series of load-resisted training trials to a spatial target. The magnitude of a sustained spring load was unexpectedly increased on selected trials. Results indicated positioning accuracy and applied force varied with increases in load, which suggests that the original efferent commands are modified by afferent information during the movement as predicted by the equilibrium point hypothesis.

  10. The Automator: Intelligent control system monitoring

    International Nuclear Information System (INIS)

    M. Bickley; D.A. Bryan; K.S. White

    1999-01-01

    A large-scale control system may contain several hundred thousand control points which must be monitored to ensure smooth operation. Knowledge of the current state of such a system is often implicit in the values of these points and operators must be cognizant of the state while making decisions. Repetitive operators requiring human intervention lead to fatigue, which can in turn lead to mistakes. The authors propose a tool called the Automator based on a middleware software server. This tool would provide a user-configurable engine for monitoring control points. Based on the status of these control points, a specified action could be taken. The action could range from setting another control point, to triggering an alarm, to running an executable. Often the data presented by a system is meaningless without context information from other channels. Such a tool could be configured to present interpreted information based on values of other channels. Additionally, this tool could translate numerous values in a non-friendly form (such as numbers, bits, or return codes) into meaningful strings of information. Multiple instances of this server could be run, allowing individuals or groups to configure their own Automators. The configuration of the tool will be file-based. In the future, these files could be generated by graphical design tools, allowing for rapid development of new configurations. In addition, the server will be able to explicitly maintain information about the state of the control system. This state information can be used in decision-making processes and shared with other applications. A conceptual framework and software design for the tool are presented

  11. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  12. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    Science.gov (United States)

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

  13. Mathematic-Graphical Formalization of Switch Point Control Circuit Function

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2004-01-01

    Full Text Available This article describes authors designed method then enables mathematic – graphical formalization of system’s functional specification. The result of this method is algebraic system – finite automata that is written in transition table. This transition table is possible to overwrite to graphic form (state diagram or to mathematic form (transition and output function. This method is described by example of switch point control circuit.

  14. Pointing control for LDR

    Science.gov (United States)

    Yam, Y.; Briggs, C.

    1988-01-01

    One important aspect of the LDR control problem is the possible excitations of structural modes due to random disturbances, mirror chopping, and slewing maneuvers. An analysis was performed to yield a first order estimate of the effects of such dynamic excitations. The analysis involved a study of slewing jitters, chopping jitters, disturbance responses, and pointing errors, making use of a simplified planar LDR model which describes the LDR dynamics on a plane perpendicular to the primary reflector. Briefly, the results indicate that the command slewing profile plays an important role in minimizing the resultant jitter, even to a level acceptable without any control action. An optimal profile should therefore be studied.

  15. Distributed energy resources and control: A power system point of view

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, O.; Ropenus, S.; Venne, P.

    2007-05-15

    The power grid is currently facing tremendous changes in the way the energy is produced, transmitted and consumed. The increasing number of actors and the demand for more and more complex services to be provided by the grid exceed the capabilities of today's control systems. This paper gives an overview of the changes that the power system is undergoing and how these affect the aspects of communication, ancillary services, demand response, the role of the control room and market participation. (au)

  16. Adaptive fuzzy controller based MPPT for photovoltaic systems

    International Nuclear Information System (INIS)

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  17. [Introduction of hazard analysis and critical control points (HACCP) principles at the flight catering food production plant].

    Science.gov (United States)

    Popova, A Yu; Trukhina, G M; Mikailova, O M

    In the article there is considered the quality control and safety system implemented in the one of the largest flight catering food production plant for airline passengers and flying squad. The system for the control was based on the Hazard Analysis And Critical Control Points (HACCP) principles and developed hygienic and antiepidemic measures. There is considered the identification of hazard factors at stages of the technical process. There are presented results of the analysis data of monitoring for 6 critical control points over the five-year period. The quality control and safety system permit to decline food contamination risk during acceptance, preparation and supplying of in-flight meal. There was proved the efficiency of the implemented system. There are determined further ways of harmonization and implementation for HACCP principles in the plant.

  18. An automated entry control system for nuclear facilities

    International Nuclear Information System (INIS)

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized

  19. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  20. Novel electro-hydraulic position control system for primary mirror supporting system

    Directory of Open Access Journals (Sweden)

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  1. Control of the electrical operating point of an electric discharge by mean of its power supply; Controle du point de fonctionnement des decharges electriques par l'intermediaire de leur alimentation

    Energy Technology Data Exchange (ETDEWEB)

    Salanne, J.Ph.

    2005-11-15

    The operating points obtained by the coupling of the power supply with the electric discharge system can be unstable because of the dynamical behaviour of the discharge or because of a change in its length. In this work, the different possible couplings existing between the discharge and the characteristics of its power supply are analyzed in order to optimize the design and control of the power supply and to control the operating point. Analytical and numerical modeling of the system are proposed which allow to simulate the couplings between the power supply and the discharge. This approach is completed by experimental investigations allowing to consider the cases of peak/peak discharges, dielectric barrier discharges (DBD), and gliding arcs. (J.S.)

  2. Independent control strategy of two DC-link voltages for separate MPPTs in transformerless photovoltaic systems using neutral-point-clamped inverters

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Lee, Kyo-Beum

    2014-01-01

    To improve the efficiency of the photovoltaic (PV) system, the centralized topology using three-level inverters are widely used. In this system, PV modules are separately connected to the split DC-links. This causes a decrease of maximum power point tracking (MPPT) efficiency under the partial...... shading condition. This paper proposes an independent control of two DC-link voltages for separate MPPT of each PV module in three-level inverters. The proposed method is simply implemented by adding or subtracting the time-offset to the three-phase turn-on times and modifying the reference voltages...

  3. Remotely controlled repair of piping at Douglas Point

    International Nuclear Information System (INIS)

    Conrath, J.J.

    1983-06-01

    The 200 MWe Douglas Point Nuclear Generating Station which started operation in 1966 was Canada's first commercial nuclear power plant. In 1977, after 11 years of operation, leakage of heavy water was detected and traced to the Moderator Piping System (pipe sizes 19 mm to 76 mm) located in a vault below the reactor where the radiation fields during shutdown ranged up to 5000 R/Hr. Inspection using remotely operated TV cameras showed that a 'U' bolt clamp support had worn through the wall of one pipe and resulted in the leakage and also that wear was occurring on other pipes. An extensive repair plan was subsequently undertaken in the form of a joint venture of the designer-owner Atomic Energy of Canada Limited, and the builder-operator, Ontario Hydro. This paper describes the equipment and procedures used in remotely controlled repairs at Douglas Point

  4. Critical Points in Distance Learning System

    Directory of Open Access Journals (Sweden)

    Airina Savickaitė

    2013-08-01

    Full Text Available Purpose – This article presents the results of distance learning system analysis, i.e. the critical elements of the distance learning system. The critical points of distance learning are a part of distance education online environment interactivity/community process model. The most important is the fact that the critical point is associated with distance learning participants. Design/methodology/approach – Comparative review of articles and analysis of distance learning module. Findings – A modern man is a lifelong learner and distance learning is a way to be a modern person. The focus on a learner and feedback is the most important thing of learning distance system. Also, attention should be paid to the lecture-appropriate knowledge and ability to convey information. Distance system adaptation is the way to improve the learner’s learning outcomes. Research limitations/implications – Different learning disciplines and learning methods may have different critical points. Practical implications – The information of analysis could be important for both lecturers and students, who studies distance education systems. There are familiar critical points which may deteriorate the quality of learning. Originality/value – The study sought to develop remote systems for applications in order to improve the quality of knowledge. Keywords: distance learning, process model, critical points. Research type: review of literature and general overview.

  5. Colloid Microthruster Feed System Development for Fine Pointing and Drag-Free Control of Multi-Year Astronomical Observatories

    Science.gov (United States)

    Ziemer, John; Mueller, J.; Spence, D.; Hruby, V.

    2014-01-01

    A new Colloid Microthruster feed system, including a propellant tank and redundant Microvalves, is being developed for fine pointing and drag-free operations of multi-year astronomical observatories under the PCOS SAT program. Almost all Gravitational Wave Observatory (GWO) concepts require microthrusters to maintain a drag-free environment for the inertial sensor instrument to meet the mission science objectives. The current state-of-the-art microthruster in the US is the Busek Colloid Micro-Newton Thruster (CMNT) originally developed under the New Millennium Program for the Space Technology 7 (ST7) and ESA's LISA Pathfinder (LPF) technology demonstration mission. The ST7 CMNT design includes a bellows propellant storage tank that is sized to provide up to 90 days of maximum thrust (30 µN). The new propellant tank is based on a blow-down, metal-diaphragm spherical tank design with enough capacity for a 5-year GWO mission. The new feed system will also include the third generation of Busek’s Microvalve, currently being developed under a NASA Phase II SBIR. The Microvalve is responsible for the picoliter per second control of the propellant from the tank to the thruster head, demanding parts with micron-level tolerances, critical alignments, and challenging acceptance test protocols. This microthruster system could also be considered for replacement of reaction wheels for slewing and fine pointing of other astronomical observatories, including Exo-Planet Observatory concepts. The goal of the PCOS SAT effort is to raise the new system to TRL 5 with performance and environmental testing within the next two years.

  6. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  7. Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2014-01-01

    Highlights: • The Maximum Efficiency Point (MEP) is tracked based on air flow rate. • The proposed Extremum Seeking (ES) control assures high performances. • About 10 kW/s search speed and 99.99% stationary accuracy can be obtained. • The energy efficiency increases with 3–12%, according to the power losses. • The control strategy is robust based on self-optimizing ES scheme proposed. - Abstract: An advanced control of the air compressor for the Proton Exchange Membrane Fuel Cell (PEMFC) system is proposed in this paper based on Extremum Seeking (ES) control scheme. The FC net power is mainly depended on the air and hydrogen flow rate and pressure, and heat and water management. This paper proposes to compute the optimal value for the air flow rate based on the advanced ES control scheme in order to maximize the FC net power. In this way, the Maximum Efficiency Point (MEP) will be tracked in real time, with about 10 kW/s search speed and a stationary accuracy of 0.99. Thus, energy efficiency will be close to the maximum value that can be obtained for a given PEMFC stack and compressor group under dynamic load. It is shown that the MEP tracking allows an increasing of the FC net power with 3–12%, depending on the percentage of the FC power supplied to the compressor and the level of the load power. Simulations shows that the performances mentioned above are effective

  8. Individual Module Maximum Power Point Tracking for a Thermoelectric Generator Systems

    DEFF Research Database (Denmark)

    Vadstrup, Casper; Chen, Min; Schaltz, Erik

    Thermo Electric Generator (TEG) modules are often connected in a series and/or parallel system in order to match the TEG system voltage with the load voltage. However, in order to be able to control the power production of the TEG system a DC/DC converter is inserted between the TEG system...... and the load. The DC/DC converter is under the control of a Maximum Power Point Tracker (MPPT) which insures that the TEG system produces the maximum possible power to the load. However, if the conditions, e.g. temperature, health, etc., of the TEG modules are different each TEG module will not produce its...

  9. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    Directory of Open Access Journals (Sweden)

    Daniel Bachmann

    2014-12-01

    Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  10. Anti-Windup Scheme for Practical Control of Positioning Systems

    Directory of Open Access Journals (Sweden)

    Wahyudi Tarig Faisal and Abdulgani Albagul

    2012-10-01

    Full Text Available Positioning systems generally need a good controller to achieve high accuracy, fast response and robustness. In addition, ease of controller design and simplicity of controller structure are very important for practical application.  For satisfying these requirements, nominal characteristic trajectory following controller (NCTF has been proposed as a practical point-to-point (PTP positioning control. However, the effect of actuator saturation can not be completely compensated for due to the integrator windup as the plant parameters vary. This paper presents a method to improve the NCTF controller for overcoming the problem of integrator windup using simple and classical tracking anti-windup scheme. The improved NCTF controller is evaluated through simulation using a rotary positioning system. The results show that the improved NCTF controller is adequate to compensate for the effect of integrator windup. Keywords: Positioning, point-to-point, integrator windup, compensation, controller, robustness.

  11. Free-time and fixed end-point multi-target optimal control theory: Application to quantum computing

    International Nuclear Information System (INIS)

    Mishima, K.; Yamashita, K.

    2011-01-01

    Graphical abstract: The two-state Deutsch-Jozsa algortihm used to demonstrate the utility of free-time and fixed-end point multi-target optimal control theory. Research highlights: → Free-time and fixed-end point multi-target optimal control theory (FRFP-MTOCT) was constructed. → The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. → The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361 (2009) 106]. → The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. → The calculation examples show that our theory is useful for minor adjustment of the external fields. - Abstract: An extension of free-time and fixed end-point optimal control theory (FRFP-OCT) to monotonically convergent free-time and fixed end-point multi-target optimal control theory (FRFP-MTOCT) is presented. The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361, (2009), 106]. The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. The calculation examples show that our theory is useful for minor

  12. Active control system upgrade design for lower hybrid current drive system on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Kanojia, A.D., E-mail: akanojia@mit.edu [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, MA (United States); Wallace, G.M.; Terry, D.R.; Stillerman, J.A.; Burke, W.M.; MacGibbon, P.A.; Johnson, D.K. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, MA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initial tests of the Hittite microwave components show good or better control of phase and amplitude when compared to the vector modulators used in the current system. Black-Right-Pointing-Pointer With an analog based control component system the system complexity is dramatically reduced. Black-Right-Pointing-Pointer Historically, D-tAcq hardware/software has performed more reliably on DPCS and FFT controllers than the current lower hybrid control system Black-Right-Pointing-Pointer Cost and lead time of the Hittite microwave components is significantly small compared to vector modulators. - Abstract: As a part of the scheduled expansion of the Alcator C-Mod lower hybrid current drive (LHCD) system from 12 to 16 klystrons to accommodate installation of a second LH antenna, the active control system (ACS) is being redesigned to accommodate the additional klystrons. Digitizers and output modules will be cPCI modules provided by D-tAcq Solutions. The real-time application will run on a standard PC server running Linux. Initially, the new ACS system will be designed to control 8 klystrons on the second LH antenna and the existing ACS will control the remaining 8 klystrons on the existing LH antenna. Experience gained operating the existing LHCD system has given us insight into the design of a more robust, compact, efficient and simple system for the new ACS. The design upgrade will be patterned on the digital plasma control system (DPCS [1]) in use on C-Mod.

  13. Pressure Points: Preventing and Controlling Hypertension

    Science.gov (United States)

    ... Issue Past Issues Pressure Points: Preventing and Controlling Hypertension Past Issues / Summer 2006 Table of Contents For ... diagnosed with high blood pressure." Aditional Information On Hypertension MedlinePlus: High blood pressure: http://www.nlm.nih. ...

  14. Critical points in magnetic systems

    International Nuclear Information System (INIS)

    Bongaarts, A.L.M.

    1975-01-01

    The magnetical phase transitions of CsCoCl 3 .2H 2 O and CsCoCl 3 .2D 2 O are investigated by neutron diffraction techniques with special attention to the critical points in the phase diagrams. CsCoCl 3 .2H 2 O turned out to be a one-dimentional magnetic antiferromagnet with ferromagnetic and antiferromagnetic interactions. In the vicinity of the Neel point, the critical behavior in zero magnetic field could be described as a three-dimentional long range ordering, while the fluctuations in the system are one-dimensional. In the presence of a magnetic field, the behavior of the system in the critical region of the magnetic phase diagram between the Neel temperature at zero field (3.3degK) and 1.85degK, was in good agreement with the theory. Below 1.85degK, the phase transition in a magnetic field changes into a line of triple points whose end point could be identified as a tricritical point, i.e., an intersection of three critical lines. The parameters derived from observations in the neighborhood of this tricritical point obey the scaling laws but are not in numerical agreement with theoretical predictions

  15. Probabilistic safety assessment and optimal control of hazardous technological systems. A marked point process approach

    International Nuclear Information System (INIS)

    Holmberg, J.

    1997-04-01

    The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant

  16. Ground-based telescope pointing and tracking optimization using a neural controller.

    Science.gov (United States)

    Mancini, D; Brescia, M; Schipani, P

    2003-01-01

    Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and

  17. Pointing control using a moving base of support.

    Science.gov (United States)

    Hondzinski, Jan M; Kwon, Taegyong

    2009-07-01

    The purposes of this study were to determine whether gaze direction provides a control signal for movement direction for a pointing task requiring a step and to gain insight into why discrepancies previously identified in the literature for endpoint accuracy with gaze directed eccentrically exist. Straight arm pointing movements were performed to real and remembered target locations, either toward or 30 degrees eccentric to gaze direction. Pointing occurred in normal room lighting or darkness while subjects sat, stood still or side-stepped left or right. Trunk rotation contributed 22-65% to gaze orientations when it was not constrained. Error differences for different target locations explained discrepancies among previous experiments. Variable pointing errors were influenced by gaze direction, while mean systematic pointing errors and trunk orientations were influenced by step direction. These data support the use of a control strategy that relies on gaze direction and equilibrium inputs for whole-body goal-directed movements.

  18. Fuel fabrication instrumentation and control system overview

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.

    1980-10-01

    A process instrumentation and control system is being developed for automated fabrication of breeder reactor fuel at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The basic elements of the control system are a centralized computer system linked to distributed local computers, which direct individual process applications. The control philosophy developed for the equipment automation program stresses system flexibility and inherent levels of redundant control capabilities. Four different control points have been developed for each unit process operation

  19. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  20. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2013-07-01

    Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.

  1. The APS control system network

    International Nuclear Information System (INIS)

    Sidorowicz, K.V.; McDowell, W.P.

    1995-01-01

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the open-quotes Standard Model.close quotes The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions

  2. Model based control of refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Larsen, L.F.

    2005-11-15

    The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers a variety of different types of controls, that incorporates mathematical models. In this thesis the main subject therefore has been restricted to deal with system optimizing control. The optimizing control is divided into two layers, where the system oriented top layers deals with set-point optimizing control and the lower layer deals with dynamical optimizing control in the subsystems. The thesis has two main contributions, i.e. a novel approach for set-point optimization and a novel approach for desynchronization based on dynamical optimization. The focus in the development of the proposed set-point optimizing control has been on deriving a simple and general method, that with ease can be applied on various compositions of the same class of systems, such as refrigeration systems. The method is based on a set of parameter depended static equations describing the considered process. By adapting the parameters to the given process, predict the steady state and computing a steady state gradient of the cost function, the process can be driven continuously towards zero gradient, i.e. the optimum (if the cost function is convex). The method furthermore deals with system constrains by introducing barrier functions, hereby the best possible performance taking the given constrains in to account can be obtained, e.g. under extreme operational conditions. The proposed method has been applied on a test refrigeration system, placed at Aalborg University, for minimization of the energy consumption. Here it was proved that by using general static parameter depended system equations it was possible drive the set-points close to the optimum and thus reduce the power consumption with up to 20%. In the dynamical optimizing layer the idea is to optimize the operation of the subsystem or the groupings of subsystems, that limits the obtainable system performance. In systems

  3. The point of no return: A fundamental limit on the ability to control thought and action.

    Science.gov (United States)

    Logan, Gordon D

    2015-01-01

    Bartlett (1958. Thinking. New York: Basic Books) described the point of no return as a point of irrevocable commitment to action, which was preceded by a period of gradually increasing commitment. As such, the point of no return reflects a fundamental limit on the ability to control thought and action. I review the literature on the point of no return, taking three perspectives. First, I consider the point of no return from the perspective of the controlled act, as a locus in the architecture and anatomy of the underlying processes. I review experiments from the stop-signal paradigm that suggest that the point of no return is located late in the response system. Then I consider the point of no return from the perspective of the act of control that tries to change the controlled act before it becomes irrevocable. From this perspective, the point of no return is a point in time that provides enough "lead time" for the act of control to take effect. I review experiments that measure the response time to the stop signal as the lead time required for response inhibition in the stop-signal paradigm. Finally, I consider the point of no return in hierarchically controlled tasks, in which there may be many points of no return at different levels of the hierarchy. I review experiments on skilled typing that suggest different points of no return for the commands that determine what is typed and the countermands that inhibit typing, with increasing commitment to action the lower the level in the hierarchy. I end by considering the point of no return in perception and thought as well as action.

  4. Single axis control of ball position in magnetic levitation system using fuzzy logic control

    Science.gov (United States)

    Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan

    2018-03-01

    This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.

  5. Simplified model-based optimal control of VAV air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering

    2005-07-01

    The improvement of Variable Air Volume (VAV) system performance is one of several attempts being made to minimize the high energy use associated with the operation of heating, ventilation and air conditioning (HVAC) systems. A Simplified Optimization Process (SOP) comprised of controller set point strategies and a simplified VAV model was presented in this paper. The aim of the SOP was to determine supply set points. The advantage of the SOP over previous methods was that it did not require a detailed VAV model and optimization program. In addition, the monitored data for representative local-loop control can be checked on-line, after which controller set points can be updated in order to ensure proper operation by opting for real situations with minimum energy use. The SOP was validated using existing monitoring data and a model of an existing VAV system. Energy use simulations were compared to that of the existing VAV system. At each simulation step, 3 controller set point values were proposed and studied using the VAV model in order to select a value for each point which corresponded to the best performance of the VAV system. Simplified VAV component models were presented. Strategies for controller set points were described, including zone air temperature, duct static pressure set points; chilled water supply set points and supply air temperature set points. Simplified optimization process calculations were presented. Results indicated that the SOP provided significant energy savings when applied to specific AHU systems. In a comparison with a Detailed Optimization Process (DOP), the SOP was capable of determining set points close to those obtained by the DOP. However, it was noted that the controller set points determined by the SOP need a certain amount of time to reach optimal values when outdoor conditions or thermal loads are significantly changed. It was suggested that this disadvantage could be overcome by the use of a dynamic incremental value, which

  6. Testing of an End-Point Control Unit Designed to Enable Precision Control of Manipulator-Coupled Spacecraft

    Science.gov (United States)

    Montgomery, Raymond C.; Ghosh, Dave; Tobbe, Patrick A.; Weathers, John M.; Manouchehri, Davoud; Lindsay, Thomas S.

    1994-01-01

    This paper presents an end-point control concept designed to enable precision telerobotic control of manipulator-coupled spacecraft. The concept employs a hardware unit (end-point control unit EPCU) that is positioned between the end-effector of the Space Shuttle Remote Manipulator System and the payload. Features of the unit are active compliance (control of the displacement between the end-effector and the payload), to allow precision control of payload motions, and inertial load relief, to prevent the transmission of loads between the end-effector and the payload. This paper presents the concept and studies the active compliance feature using a simulation and hardware. Results of the simulation show the effectiveness of the EPCU in smoothing the motion of the payload. Results are presented from initial, limited tests of a laboratory hardware unit on a robotic arm testbed at the l Space Flight Center. Tracking performance of the arm in a constant speed automated retraction and extension maneuver of a heavy payload with and without the unit active is compared for the design speed and higher speeds. Simultaneous load reduction and tracking performance are demonstrated using the EPCU.

  7. Distributed process control system for remote control and monitoring of the TFTR tritium systems

    International Nuclear Information System (INIS)

    Schobert, G.; Arnold, N.; Bashore, D.; Mika, R.; Oliaro, G.

    1989-01-01

    This paper reviews the progress made in the application of a commercially available distributed process control system to support the requirements established for the Tritium REmote Control And Monitoring System (TRECAMS) of the Tokamak Fusion Test REactor (TFTR). The system that will discussed was purchased from Texas (TI) Instruments Automation Controls Division), previously marketed by Rexnord Automation. It consists of three, fully redundant, distributed process controllers interfaced to over 1800 analog and digital I/O points. The operator consoles located throughout the facility are supported by four Digital Equipment Corporation (DEC) PDP-11/73 computers. The PDP-11/73's and the three process controllers communicate over a fully redundant one megabaud fiber optic network. All system functionality is based on a set of completely integrated databases loaded to the process controllers and the PDP-11/73's. (author). 2 refs.; 2 figs

  8. Exceptional points in open quantum systems

    International Nuclear Information System (INIS)

    Mueller, Markus; Rotter, Ingrid

    2008-01-01

    Open quantum systems are embedded in the continuum of scattering wavefunctions and are naturally described by non-Hermitian Hamilton operators. In the complex energy plane, exceptional points appear at which two (or more) eigenvalues of the Hamilton operator coalesce. Although they are a countable set of single points in the complex energy plane and therefore of measure zero, they determine decisively the dynamics of open quantum systems. A powerful method for the description of open quantum systems is the Feshbach projection operator formalism. It is used in the present paper as a basic tool for the study of exceptional points and of the role they play for the dynamics of open quantum systems. Among others, the topological structure of the exceptional points, the rigidity of the phases of the eigenfunctions in their vicinity, the enhancement of observable values due to the reduced phase rigidity and the appearance of phase transitions are considered. The results are compared with existing experimental data on microwave cavities. In the last section, some questions being still unsolved, are considered

  9. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  10. Isolation, pointing, and suppression (IPS) system for high-performance spacecraft

    Science.gov (United States)

    Hindle, Tim; Davis, Torey; Fischer, Jim

    2007-04-01

    Passive mechanical isolation is often times the first step taken to remedy vibration issues on-board a spacecraft. In many cases, this is done with a hexapod of axial members or struts to obtain the desired passive isolation in all six degrees-of-freedom (DOF). In some instances, where the disturbance sources are excessive or the payload is particularly sensitive to vibration, additional steps are taken to improve the performance beyond that of passive isolation. Additional performance or functionality can be obtained with the addition of active control, using a hexapod of hybrid (passive/active) elements at the interface between the payload and the bus. This paper describes Honeywell's Isolation, Pointing, and Suppression (IPS) system. It is a hybrid isolation system designed to isolate a sensitive spacecraft payload with very low passive resonant break frequencies while affording agile independent payload pointing, on-board payload disturbance rejection, and active isolation augmentation. This system is an extension of the work done on Honeywell's previous Vibration Isolation, Steering, and Suppression (VISS) flight experiment. Besides being designed for a different size payload than VISS, the IPS strut includes a dual-stage voice coil design for improved dynamic range as well as improved low-noise drive electronics. In addition, the IPS struts include integral load cells, gap sensors, and payloadside accelerometers for control and telemetry purposes. The associated system-level control architecture to accomplish these tasks is also new for this program as compared to VISS. A summary of the IPS system, including analysis and hardware design, build, and single axis bipod testing will be reviewed.

  11. Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

    OpenAIRE

    P. Selvam; S. Senthil Kumar

    2016-01-01

    Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...

  12. Stabilizing unstable fixed points of chaotic maps via minimum entropy control

    Energy Technology Data Exchange (ETDEWEB)

    Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2008-08-15

    In this paper the problem of chaos control in nonlinear maps using minimization of entropy function is investigated. Invariant probability measure of a chaotic dynamics can be used to produce an entropy function in the sense of Shannon. In this paper it is shown that how the entropy control technique is utilized for chaos elimination. Using only the measured states of a chaotic map the probability measure of the system is numerically estimated and this estimated measure is used to obtain an estimation for the entropy of the chaotic map. The control variable of the chaotic system is determined in such a way that the entropy function descends until the chaotic trajectory of the map is replaced with a regular one. The proposed idea is applied for stabilizing the fixed points of the logistic and the Henon maps as some cases of study. Simulation results show the effectiveness of the method in chaos rejection when only the statistical information is available from the under-study systems.

  13. Design and implementation of a microcontroller-based maximum power point tracking fuzzy solar-charge controller

    Energy Technology Data Exchange (ETDEWEB)

    Qazalbash, A.A.; Iqbal, T.; Shafiq, M.Z. [National Univ. of Sciences and Technology, Rawalpindi (Pakistan). Dept. of Electrical Engineering

    2007-07-01

    Photovoltaic (PV) solar arrays are particularly useful for electrical power generation in remote, off-grid areas in developing countries. However, PV arrays offer a small power to area ratio, resulting in the need for more PV arrays which increases the cost of the system. In order to improve the profitability of PV arrays, the power extraction from available PV array systems must be maximized. This paper presented an analysis, modeling and implementation of an efficient solar charge controller. It was shown that the maximum power of a photovoltaic system depends largely on temperature and insolation. A perturb and observe algorithm was used for maximum power point tracking (MPPT). MPPT maximizes the efficiency of a solar PV system. A solar charge controller determines the optimal values of output current and voltage of converters to maximize power output for battery charging. In order to improve performance and implement the perturb and observe algorithm, the authors designed a fuzzy rule-based system in which a solar charge controller worked with a PWM controlled DC-DC converter for battery charging. The system was implemented on a low-cost PIC microcontroller. Results were better than conventional techniques in power efficiency. Swift maximum power point tracking was obtained. 13 refs., 1 tab., 11 figs.

  14. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    OpenAIRE

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...

  15. Passivity-Based Control of Multi-Terminal HVDC Systems under Control Saturation Constraints

    NARCIS (Netherlands)

    Doria-Cerezo, Arnau; Olm, Josep M.; Scherpen, Jacquelien M.A.

    2015-01-01

    This paper proposes a decentralized, passivity-based control design for power stations in a multi-terminal High Voltage Direct Current transmission system. The control algorithm is shown to asymptotically stabilize the closed-loop system when the voltage set points are appropriately selected. The

  16. Design of barrier bucket kicker control system

    Science.gov (United States)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  17. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  18. Readiness to implement Hazard Analysis and Critical Control Point (HACCP) systems in Iowa schools.

    Science.gov (United States)

    Henroid, Daniel; Sneed, Jeannie

    2004-02-01

    To evaluate current food-handling practices, food safety prerequisite programs, and employee knowledge and food safety attitudes and provide baseline data for implementing Hazard Analysis and Critical Control Point (HACCP) systems in school foodservice. One member of the research team visited each school to observe food-handling practices and assess prerequisite programs using a structured observation form. A questionnaire was used to determine employees' attitudes, knowledge, and demographic information. A convenience sample of 40 Iowa schools was recruited with input from the Iowa Department of Education. Descriptive statistics were used to summarize data. One-way analysis of variance was used to assess differences in attitudes and food safety knowledge among managers, cooks, and other foodservice employees. Multiple linear regression assessed the relationship between manager and school district demographics and the food safety practice score. Proper food-handling practices were not being followed in many schools and prerequisite food safety programs for HACCP were found to be inadequate for many school foodservice operations. School foodservice employees were found to have a significant amount of food safety knowledge (15.9+/-2.4 out of 20 possible points). School districts with managers (P=.019) and employees (P=.030) who had a food handler certificate were found to have higher food safety practice scores. Emphasis on implementing prerequisite programs in preparation for HACCP is needed in school foodservice. Training programs, both basic food safety such as ServSafe and HACCP, will support improvement of food-handling practices and implementation of prerequisite programs and HACCP.

  19. Vacuum control system of VEC

    International Nuclear Information System (INIS)

    Roy, Anindya; Bhole, R.B.; Bandopadhyay, D.L.; Mukhopadhyay, B.; Pal, Sarbajit; Sarkar, D.

    2009-01-01

    As a part of modernization of VEC (Variable Energy Cyclotron), the Vacuum Control System is being upgraded to PLC based automated system from initial Relay based Manual system. EPICS (Experimental Physics and Industrial Control System), a standard open source software tool for designing distributed control system, is chosen for developing the supervisory control software layer, leading towards a unified distributed control architecture of VEC Control System. A Modbus - TCP based IOC (I/O Controller) has been developed to communicate control data to PLC using Ethernet-TCP LAN. Keeping in mind, the operators' familiarity with MS-Windows, a MS-Windows based operator interface is developed using VB6. It is also used to test and evaluate EPICS compatibility to MS Windows. Several MS Windows ActiveX components e.g. text display, image display, alarm window, set-point input etc. have been developed incorporating Channel Access library of EPICS. Use of such components ease the programming complexity and reduce developmental time of the operator interface. The system is in the final phase of commissioning. (author)

  20. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    OpenAIRE

    Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda

    2013-01-01

    Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...

  1. Microbial profile and critical control points during processing of 'robo ...

    African Journals Online (AJOL)

    Microbial profile and critical control points during processing of 'robo' snack from ... the relevant critical control points especially in relation to raw materials and ... to the quality of the various raw ingredients used were the roasting using earthen

  2. Probabilistic safety assessment and optimal control of hazardous technological systems. A marked point process approach

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, J [VTT Automation, Espoo (Finland)

    1997-04-01

    The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. 62 refs. The thesis includes also five previous publications by author.

  3. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  4. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  5. Controllability of a multichannel system

    Science.gov (United States)

    Ivanov, Sergei A.; Wang, Jun Min

    2018-02-01

    We consider the system consisting of K coupled acoustic channels with the different sound velocities cj. Channels are interacting at any point via the pressure and its time derivatives. Using the moment approach and the theory of exponential families with vector coefficients we establish two controllability results: the system is exactly controllable if (i) the control uj in the jth channel acts longer than the double travel time of a wave from the start to the end of the j-th channel; (ii) all controls uj act more than or equal to the maximal double travel time.

  6. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  7. Distributed computer control system for reactor optimization

    International Nuclear Information System (INIS)

    Williams, A.H.

    1983-01-01

    At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management

  8. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kazuhiro eMatsui

    2014-06-01

    Full Text Available Functional electrical stimulation (FES is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly nonlinearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define theelectrical agonist-antagonist muscle ratio (EAA ratio and electrical agonist-antagonist muscle activity (EAA activity in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  9. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    Science.gov (United States)

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  10. Design and Simulation of a PID Controller for Motion Control Systems

    Science.gov (United States)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  11. MULTIPLE ECH LAUNCHER CONTROL SYSTEM

    International Nuclear Information System (INIS)

    GREEN, M.T.; PONCE, D.; GRUNLOH, H.J.; ELLIS, R.A.; GROSNICKLE, W.H.; HUMPHREY, R.L.

    2004-03-01

    OAK-B135 The addition of new, high power gyrotrons to the heating and current drive arsenal at DIII-D, required a system upgrade for control of fully steerable ECH Launchers. Each launcher contains two pointing mirrors with two degrees of mechanical freedom. The two flavors of motion are called facet and tilt. Therefore up to four channels of motion per launcher need to be controlled. The system utilizes absolute encoders to indicate mirror position and therefore direction of the microwave beam. The launcher movement is primarily controlled by PLC, but future iterations of design, may require this control to be accomplished by a CPU on fast bus such as Compact PCI. This will be necessary to accomplish real time position control. Safety of equipment and personnel is of primary importance when controlling a system of moving parts. Therefore multiple interlocks and fault status enunciators have been implemented. This paper addresses the design of a Multiple ECH Launcher Control System, and characterizes the flexibility needed to upgrade to a real time position control system in the future

  12. Fuzzy Logic Based MPPT Controller for a PV System

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2017-12-01

    Full Text Available The output power of a photovoltaic (PV module depends on the solar irradiance and the operating temperature; therefore, it is necessary to implement maximum power point tracking controllers (MPPT to obtain the maximum power of a PV system regardless of variations in climatic conditions. The traditional solution for MPPT controllers is the perturbation and observation (P&O algorithm, which presents oscillation problems around the operating point; the reason why improving the results obtained with this algorithm has become an important goal to reach for researchers. This paper presents the design and modeling of a fuzzy controller for tracking the maximum power point of a PV System. Matlab/Simulink (MathWorks, Natick, MA, USA was used for the modeling of the components of a 65 W PV system: PV module, buck converter and fuzzy controller; highlighting as main novelty the use of a mathematical model for the PV module, which, unlike diode based models, only needs to calculate the curve fitting parameter. A P&O controller to compare the results obtained with the fuzzy control was designed. The simulation results demonstrated the superiority of the fuzzy controller in terms of settling time, power loss and oscillations at the operating point.

  13. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  14. Efficiency of Photovoltaic Maximum Power Point Tracking Controller Based on a Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Ammar Al-Gizi

    2017-07-01

    Full Text Available This paper examines the efficiency of a fuzzy logic control (FLC based maximum power point tracking (MPPT of a photovoltaic (PV system under variable climate conditions and connected load requirements. The PV system including a PV module BP SX150S, buck-boost DC-DC converter, MPPT, and a resistive load is modeled and simulated using Matlab/Simulink package. In order to compare the performance of FLC-based MPPT controller with the conventional perturb and observe (P&O method at different irradiation (G, temperature (T and connected load (RL variations – rising time (tr, recovering time, total average power and MPPT efficiency topics are calculated. The simulation results show that the FLC-based MPPT method can quickly track the maximum power point (MPP of the PV module at the transient state and effectively eliminates the power oscillation around the MPP of the PV module at steady state, hence more average power can be extracted, in comparison with the conventional P&O method.

  15. Controlling chaos and synchronization for new chaotic system using linear feedback control

    International Nuclear Information System (INIS)

    Yassen, M.T.

    2005-01-01

    This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes

  16. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  17. Control and monitoring systems for electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Licki, J.; Mazurekc, J.; Nelskic, L.; Sobolewskic, L.

    2011-01-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO 2 and NO x removal efficiencies by control of amount of spray water at the spray cooler, amount of NH 3 injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO 2 and NO x removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  18. Control and monitoring systems for electron beam flue gas treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, J. [Institute of Atomic Energy, Otwock-Świerk (Poland); Mazurekc, J.; Nelskic, L.; Sobolewskic, L. [Dolna Odra Group, Pomorzany Power Plant, Szczecin (Poland)

    2011-07-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO{sub 2} and NO{sub x} removal efficiencies by control of amount of spray water at the spray cooler, amount of NH{sub 3} injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO{sub 2} and NO{sub x} removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  19. Development of safe mechanism for surgical robots using equilibrium point control method.

    Science.gov (United States)

    Park, Shinsuk; Lim, Hokjin; Kim, Byeong-sang; Song, Jae-bok

    2006-01-01

    This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs' equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.

  20. Isosbestic points in the quality control oF spectrophotometers

    International Nuclear Information System (INIS)

    Oliveira, E.M. de.

    1987-01-01

    The methodology and results of quality control of spectrophotometers are reported and the calibrating of the monochromator by isosbestic points is presented. Four colorimetric indicators are used. The absorption curves (in acid and alkaline media) and mathematic determination of the common junction point are used for indicated the isosbetic points. (M.A.C.) [pt

  1. Multi-Class Simultaneous Adaptive Segmentation and Quality Control of Point Cloud Data

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2016-01-01

    Full Text Available 3D modeling of a given site is an important activity for a wide range of applications including urban planning, as-built mapping of industrial sites, heritage documentation, military simulation, and outdoor/indoor analysis of airflow. Point clouds, which could be either derived from passive or active imaging systems, are an important source for 3D modeling. Such point clouds need to undergo a sequence of data processing steps to derive the necessary information for the 3D modeling process. Segmentation is usually the first step in the data processing chain. This paper presents a region-growing multi-class simultaneous segmentation procedure, where planar, pole-like, and rough regions are identified while considering the internal characteristics (i.e., local point density/spacing and noise level of the point cloud in question. The segmentation starts with point cloud organization into a kd-tree data structure and characterization process to estimate the local point density/spacing. Then, proceeding from randomly-distributed seed points, a set of seed regions is derived through distance-based region growing, which is followed by modeling of such seed regions into planar and pole-like features. Starting from optimally-selected seed regions, planar and pole-like features are then segmented. The paper also introduces a list of hypothesized artifacts/problems that might take place during the region-growing process. Finally, a quality control process is devised to detect, quantify, and mitigate instances of partially/fully misclassified planar and pole-like features. Experimental results from airborne and terrestrial laser scanning as well as image-based point clouds are presented to illustrate the performance of the proposed segmentation and quality control framework.

  2. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  3. A Combined Control Chart for Identifying Out–Of–Control Points in Multivariate Processes

    Directory of Open Access Journals (Sweden)

    Marroquín–Prado E.

    2010-10-01

    Full Text Available The Hotelling's T2 control chart is widely used to identify out–of–control signals in multivariate processes. However, this chart is not sensitive to small shifts in the process mean vec tor. In this work we propose a control chart to identify out–of–control signals. The proposed chart is a combination of Hotelling's T2 chart, M chart proposed by Hayter et al. (1994 and a new chart based on Principal Components. The combination of these charts identifies any type and size of change in the process mean vector. Us ing simulation and the Average Run Length (ARL, the performance of the proposed control chart is evaluated. The ARL means the average points within control before an out–of–control point is detected, The results of the simulation show that the proposed chart is more sensitive that each one of the three charts individually

  4. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  5. Optimal Model-Based Control in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2008-01-01

    is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....

  6. Numerical computation of inventory policies, based on the EOQ/sigma-x value for order-point systems

    DEFF Research Database (Denmark)

    Alstrøm, Poul

    2001-01-01

    This paper examines the numerical computation of two control parameters, order size and order point in the well-known inventory control model, an (s,Q)system with a beta safety strategy. The aim of the paper is to show that the EOQ/sigma-x value is both sufficient for controlling the system and e...

  7. Numerical computation of inventory policies, based on the EOQ/sigma-x value for order-point systems

    DEFF Research Database (Denmark)

    Alstrøm, Poul

    2000-01-01

    This paper examines the numerical computation of two control parameters, order size and order point in the well-known inventory control model, an (s,Q)system with a beta safety strategy. The aim of the paper is to show that the EOQ/sigma-x value is both sufficient for controlling the system and e...

  8. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    Science.gov (United States)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  9. The SSC field bus: A high-performance control system front end concentrator for 'slow' accelerator controls

    International Nuclear Information System (INIS)

    Haenni, D.R.; Saltmarsh, C.G.; Lue, H.C.; Hunt, S.M.

    1991-01-01

    The SSC control system must support a large number of 'slow' or industrial type control points. A front-end system is described which could serve as both a data concentrator and a distributed process controller for these points. Unlike many distributed control systems, this front end is designed to provide strong support for centralized controls. The live parameter data base in the central system can be updated at a rate which is fast compared to that usually needed for process control loops. Portions of this data base can be optionally replicated in regional computers to provide both local control stations and distributed control loops. In addition to the global and regional levels the system also allows the distribution of loops to the local I/O crate level. A possible implementation of this system is under development which is based on industrial standard STD-Bus for accelerator hardware interfacing, time domain multiplexing (TDM) for communications transport, and a form of reflective memory for the back-end interface to the rest of the control system

  10. Commutated automatic gain control system

    Science.gov (United States)

    Yost, S. R.

    1982-01-01

    A commutated automatic gain control (AGC) system was designed and built for a prototype Loran C receiver. The receiver uses a microcomputer to control a memory aided phase-locked loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The circuit designed for the AGC is described, and bench and flight test results are presented. The AGC circuit described actually samples starting at a point 40 microseconds after a zero crossing determined by the software lock pulse ultimately generated by a 30 microsecond delay and add network in the receiver front end envelope detector.

  11. Designing a Secure Point-of-Sale System

    DEFF Research Database (Denmark)

    Sharp, Robin; Pedersen, Allan; Hedegaard, Anders

    2006-01-01

    This paper describes some experiences with using the ''Common Criteria for Information Security Evaluation'' as the basis for a design methodology when designing secure systems. As an example, the design process for a Point-of-Sale (POS) system is described.......This paper describes some experiences with using the ''Common Criteria for Information Security Evaluation'' as the basis for a design methodology when designing secure systems. As an example, the design process for a Point-of-Sale (POS) system is described....

  12. CRITICAL CONTROL POINTS ON THE TECHNOLOGICAL FLOW OF PANIFICATION

    Directory of Open Access Journals (Sweden)

    Gigel PARASCHIV

    2013-05-01

    Full Text Available Bread and panification products are intended for direct human consumption and underlying nutritional pyramid, it can affect the consumers health in case of biological, chemical or physical contamination, immediate or delayed, by noxious accumulation in the human organism. Only by rigorous compliance of the production rules throughout the technological process can ensure the quality and food safety of these products. If the risk can be prevented, eliminated or reduce to an acceptable level, as a result of a control actions made at that stage, it is considered a Critical Control Point (CCP. There can be checkpoints where it can exert a control action. Thus, the checkpoint is represented by any stage in which the risk factors, biological, chemical or physical, can be controlled in order to prevent, disrupt or reduce them to an acceptable level. This paper is referring to the control points on the technological flow of the bread fabrication, in all phases of this technological flow, laying stress on that points (or phases which can affect security and food safety, through the influence of parameters of any kind on the quality of finished products.

  13. Adaptive double-integral-sliding-mode-maximum-power-point tracker for a photovoltaic system

    Directory of Open Access Journals (Sweden)

    Bidyadhar Subudhi

    2015-10-01

    Full Text Available This study proposed an adaptive double-integral-sliding-mode-controller-maximum-power-point tracker (DISMC-MPPT for maximum-power-point (MPP tracking of a photovoltaic (PV system. The objective of this study is to design a DISMC-MPPT with a new adaptive double-integral-sliding surface in order that MPP tracking is achieved with reduced chattering and steady-state error in the output voltage or current. The proposed adaptive DISMC-MPPT possesses a very simple and efficient PWM-based control structure that keeps switching frequency constant. The controller is designed considering the reaching and stability conditions to provide robustness and stability. The performance of the proposed adaptive DISMC-MPPT is verified through both MATLAB/Simulink simulation and experiment using a 0.2 kW prototype PV system. From the obtained results, it is found out that this DISMC-MPPT is found to be more efficient compared with that of Tan's and Jiao's DISMC-MPPTs.

  14. RBAC Driven Least Privilege Architecture For Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Julie [Honeywell International Inc., Golden Valley, MN (United States); Markham, Mark [Honeywell International Inc., Golden Valley, MN (United States)

    2014-01-25

    The concept of role based access control (RBAC) within the IT environment has been studied by researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of RBAC which include reduced administrative workload and policies which are easier to analyze and apply. The goals of this research were to expand the application of RBAC in the following ways. Apply RBAC to the control systems environment: The typical RBAC model within the IT environment is used to control a user’s access to files. Within the control system environment files are replaced with measurement (e.g., temperature) and control (e.g. valve) points organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC model is extended to support access to points and their parameters based upon roles while at the same time allowing permissions for the points to be defined at the asset level or point level directly. In addition, centralized policy administration with distributed access enforcement mechanisms was developed to support the distributed architecture of distributed control systems and SCADA; Extend the RBAC model to include access control for software and devices: The established RBAC approach is to assign users to roles. This work extends that notion by first breaking the control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is then created for each of these three layers. The result is that RBAC can be used to define machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the potential to use RBAC for machine-to-machine connectivity within the internet of things; and Enable dynamic policy based upon the operating mode of the system: The IT environment is generally static with respect to policy. However, large cyber physical systems such as industrial controls have various

  15. Modernization of control systems of primary and secondary hydroenergetic sources of electricity from the point of view of their fulfillment of important functions in operation of a power engineering system in the Slovak Republic

    Energy Technology Data Exchange (ETDEWEB)

    Seewald, V [Slovenske elektrarne, a.s., Vodne elektrarne Trencin (Slovakia)

    1997-12-01

    In this paper the solution of problems of automatic control systems of hydroelectric power plants and pumped storage power plants are discussed. The main goal of this entry was to provide a complex mathematical description of a system in which a conversion of a potential energy of a water into a kinetic energy, a kinetic energy into a mechanical one and mechanical one into an electrical one takes place in two closely related phases. The automatic control system of a hydroelectric generating set and the mathematical description of a synchronous generator of a hydroelectric generating set from the point of view of its control in a large capacity engineering system are discussed. 8 refs.

  16. Modernization of control systems of primary and secondary hydroenergetic sources of electricity from the point of view of their fulfillment of important functions in operation of a power engineering system in the Slovak Republic

    International Nuclear Information System (INIS)

    Seewald, V.

    1997-01-01

    In this paper the solution of problems of automatic control systems of hydroelectric power plants and pumped storage power plants are discussed. The main goal of this entry was to provide a complex mathematical description of a system in which a conversion of a potential energy of a water into a kinetic energy, a kinetic energy into a mechanical one and mechanical one into an electrical one takes place in two closely related phases. The automatic control system of a hydroelectric generating set and the mathematical description of a synchronous generator of a hydroelectric generating set from the point of view of its control in a large capacity engineering system are discussed. 8 refs

  17. Feedback control strategies for the Liu chaotic system

    International Nuclear Information System (INIS)

    Zhu Congxu; Chen Zhigang

    2008-01-01

    This Letter proposed three strategies of the dislocated feedback control, enhancing feedback control and speed feedback control of the Liu chaotic system to its unstable equilibrium points. It is found that the coefficients of enhancing feedback control and speed feedback control are smaller than those of ordinary feedback control, so, the complexity and cost of the system control are reduced. Theoretical analysis and numerical simulation are given, revealing the effectiveness of these strategies

  18. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  19. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  20. Nova laser alignment control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-01-01

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  1. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  2. Control system for an artificial heart

    Science.gov (United States)

    Gebben, V. D.; Webb, J. A., Jr.

    1970-01-01

    Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.

  3. Control system modelling for superconducting accelerator

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.; Romaniuk, R.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  4. Controllability of nonlinear delay oscillating systems

    Directory of Open Access Journals (Sweden)

    Chengbin Liang

    2017-05-01

    Full Text Available In this paper, we study the controllability of a system governed by second order delay differential equations. We introduce a delay Gramian matrix involving the delayed matrix sine, which is used to establish sufficient and necessary conditions of controllability for the linear problem. In addition, we also construct a specific control function for controllability. For the nonlinear problem, we construct a control function and transfer the controllability problem to a fixed point problem for a suitable operator. We give a sufficient condition to guarantee the nonlinear delay system is controllable. Two examples are given to illustrate our theoretical results by calculating a specific control function and inverse of a delay Gramian matrix.

  5. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  6. Communication for command and control systems

    CERN Document Server

    Morris, D J

    1983-01-01

    Communication for Command and Control Systems provides a thorough exposition of the basic theoretical and practical features involved in the design of communication networks for command and control systems. This book focuses primarily on the practical side of computer-controlled communication. This text concentrates on the communication sides of the subject by surveying the means of transferring data between the various processing points and by appraising their potential advantages and possible defects in implementation. In this respect, this book should prove useful for the practicing enginee

  7. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  8. Simulation of process identification and controller tuning for flow control system

    Science.gov (United States)

    Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.

    2017-06-01

    PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.

  9. A Flexible VHDL Floating Point Module for Control Algorithm Implementation in Space Applications

    Science.gov (United States)

    Padierna, A.; Nicoleau, C.; Sanchez, J.; Hidalgo, I.; Elvira, S.

    2012-08-01

    The implementation of control loops for space applications is an area with great potential. However, the characteristics of this kind of systems, such as its wide dynamic range of numeric values, make inadequate the use of fixed-point algorithms.However, because the generic chips available for the treatment of floating point data are, in general, not qualified to operate in space environments and the possibility of using an IP module in a FPGA/ASIC qualified for space is not viable due to the low amount of logic cells available for these type of devices, it is necessary to find a viable alternative.For these reasons, in this paper a VHDL Floating Point Module is presented. This proposal allows the design and execution of floating point algorithms with acceptable occupancy to be implemented in FPGAs/ASICs qualified for space environments.

  10. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  11. RFID-Based Monitoring And Access Control System For Parliamentary Campus

    Directory of Open Access Journals (Sweden)

    Sai Thu Rein Htun

    2015-08-01

    Full Text Available This paper is to implement monitoring and access control system based on RFID and Zigbee technology which can be used at Parliamentary Campus. Nowadays RFID technology is widely used for access control system because it is cheap waterproof and easy to use as well as it contains unique EPC electronic protect code .In addition Zigbee wireless module is cost-effective and can be reliable for security. Sothis system consists of RFID tag RFID reader Arduino Uno and Zigbee. This system can also be used for industrial amp commercial and security HVAC closures. This paper describes the results of point-to-point connection and point-to-multipoint connection using Zigbee and RFID technology.

  12. Critical Infrastructure: Control Systems and the Terrorist Threat

    National Research Council Canada - National Science Library

    Shea, Dana A

    2003-01-01

    .... Industrial control computer systems involved in this infrastructure are specific points of vulnerability, as cyber-security for these systems has not been previously perceived as a high priority...

  13. Critical Infrastructure: Control Systems and the Terrorist Threat

    National Research Council Canada - National Science Library

    Shea, Dana A

    2004-01-01

    .... Industrial control computer systems involved in this infrastructure are specific points of vulnerability, as cyber-security for these systems has not been previously perceived as a high priority...

  14. IT Security Aspects of Industrial Control Systems

    Directory of Open Access Journals (Sweden)

    Peter Holecko

    2006-01-01

    Full Text Available This paper discusses a set of general network system architectures for industrial process control systems as well as vulnerabilities related to these systems and the IT threats these systems are exposed to from the point of view of Common Criteria methodology and ITU-T recommendation X.805.

  15. Once more on the equilibrium-point hypothesis (lambda model) for motor control.

    Science.gov (United States)

    Feldman, A G

    1986-03-01

    The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.

  16. Configurating computer-controlled bar system

    OpenAIRE

    Šuštaršič, Nejc

    2010-01-01

    The principal goal of my diploma thesis is creating an application for configurating computer-controlled beverages dispensing systems. In the preamble of my thesis I present the theoretical platform for point of sale systems and beverages dispensing systems, which are required for the understanding of the target problematics. As with many other fields, computer tehnologies entered the field of managing bars and restaurants quite some time ago. Basic components of every bar or restaurant a...

  17. Accuracy Constraint Determination in Fixed-Point System Design

    Directory of Open Access Journals (Sweden)

    Serizel R

    2008-01-01

    Full Text Available Most of digital signal processing applications are specified and designed with floatingpoint arithmetic but are finally implemented using fixed-point architectures. Thus, the design flow requires a floating-point to fixed-point conversion stage which optimizes the implementation cost under execution time and accuracy constraints. This accuracy constraint is linked to the application performances and the determination of this constraint is one of the key issues of the conversion process. In this paper, a method is proposed to determine the accuracy constraint from the application performance. The fixed-point system is modeled with an infinite precision version of the system and a single noise source located at the system output. Then, an iterative approach for optimizing the fixed-point specification under the application performance constraint is defined and detailed. Finally the efficiency of our approach is demonstrated by experiments on an MP3 encoder.

  18. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  19. Upgrade of the RFX-mod real time control system

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127 (Italy); Barbalace, A.; Luchetta, A.; Soppelsa, A.; Taliercio, C.; Zampiva, E. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127 (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The paper describes the experience in running the real-time control system of RFX-mod. Black-Right-Pointing-Pointer It proposes a new architecture based multicore technology. Black-Right-Pointing-Pointer It analyzes two different solutions for data acquisition. Black-Right-Pointing-Pointer It discusses the effect of non simultaneous sampling in acquisition. Black-Right-Pointing-Pointer It provides some preliminary performance measurements. - Abstract: The real-time control system of RFX-mod, in operation since 2005, has been successful and has allowed several important achievements in the RFX physics research program. As a consequence of this fact, new control algorithms are under investigation, which are more demanding in terms of both enhanced computing power and reduced system latency, currently around 1.5 ms. For this reason, a major upgrade of the system is being considered, and a new architecture has been proposed, taking advantage of the rapid evolution of computer technology in the last years. The central component of the new architecture is a Linux-based multicore server, where individual cores replace the VME computers. The server is connected to the I/O via PCI-e based bus extenders, and every PCI-e connection is managed by a separate core. The system is supervised by MARTe, a software framework for real-time applications written in C++ and developed at JET and currently used for the JET vertical stabilization and in other fusion devices.

  20. Control of Grid Connected Photovoltaic Systems with Microinverters

    DEFF Research Database (Denmark)

    Yahya, Abdelhafid; El Fadil, Hassan; Oulcaid, Mustapha

    2018-01-01

    This paper addresses the problem of controlling grid connected photovoltaic (PV) systems that are driven with microinverters. The systems to be controlled consist of a solar panel, a boost dc–dc converter, a DC link capacitor, a single-phase full-bridge inverter, a filter inductor, and an isolation...... transformer. We seek controllers that are able to simultaneously achieve four control objectives, namely: (i) asymptotic stability of the closed loop control system; (ii) maximum power point tracking (MPPT) of the PV module; (iii) tight regulation of the DC bus voltage; and (iv) unity power factor (PF...

  1. Space construction base control system

    Science.gov (United States)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  2. Arctic tipping points in an Earth system perspective.

    Science.gov (United States)

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  3. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  4. Controlling chaotic and hyperchaotic systems via energy regulation

    International Nuclear Information System (INIS)

    Laval, L.; M'Sirdi, N.K.

    2003-01-01

    This paper focuses on a new control approach to steer trajectories of chaotic or hyperchaotic systems towards stable periodic orbits or stationary points of interest. This approach mainly consists in a variable structure control (VSC) that we extend by explicitly considering the system energy as basis for both controller design and system stabilization. In this paper, we present some theoretical results for a class of nonlinear (possibly chaotic or hyperchaotic) systems. Then some capabilities of the proposed approach are illustrated through examples related to a four-dimensional hyperchaotic system

  5. Heating systems with PLC and frequency control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Abu-Mallouh, Riyad

    2008-01-01

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 deg. C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was

  6. End-Point Contact Force Control with Quantitative Feedback Theory for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2012-12-01

    Full Text Available Robot force control is an important issue for intelligent mobile robotics. The end-point stiffness of a robot is a key and open problem in the research community. The control strategies are mostly dependent on both the specifications of the task and the environment of the robot. Due to the limited stiffness of the end-effector, we may adopt inherent torque to feedback the oscillations of the controlled force. This paper proposes an effective control strategy which contains a controller using quantitative feedback theory. The nested loop controllers take into account the physical limitation of the system's inner variables and harmful interference. The biggest advantage of the method is its simplicity in both the design process and the implementation of the control algorithm in engineering practice. Taking the one-link manipulator as an example, numerical experiments are carried out to verify the proposed control method. The results show the satisfactory performance.

  7. A decentralized control method for direct smart grid control of refrigeration systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    . No model information is required in this method. The temperature limits/constraints are respected. A novel adaptive saturation filter is also proposed to increase the system flexibility in storing and delivering the energy. The proposed control strategy is applied to a simulation benchmark that fairly......A decentralized control method is proposed to govern the electrical power consumption of supermarket refrigeration systems (SRS) for demand-side management in the smart grid. The control structure is designed in a supervisory level to provide desired set-points for distributed level controllers...

  8. Modeling and simulation of control system response to temperature disturbances in a coupled heat exchangers-AHTR system

    International Nuclear Information System (INIS)

    Skavdahl, I.; Utgikar, V.P.; Christensen, R.; Sabharwall, P.; Chen, M.; Sun, X.

    2016-01-01

    Highlights: • Control architecture defined for nuclear reactor-coupled heat exchangers system. • MATLAB code developed for simulation of system response for various temperature disturbances in the system. • Control system effective in maintaining controlled variables at desired set points. • New equilibrium steady state established using controllers. • Adaptive control system capable of switching manipulated variables based on system constraints. - Abstract: An effective control strategy is essential for maintaining optimum operational efficiency of the Advanced High Temperature Reactor (AHTR)-intermediate heat exchanger (IHX)-secondary heat exchanger (SHX) system for power conversion or process heat applications. A control system design is presented in this paper for the control of the coupled intermediate and secondary heat exchangers. The cold side outlet temperature of the SHX (T_c_o) and the hot side outlet temperature of the IHX (T_h_o_2) were identified as the controlled variables that were maintained at their set points by manipulating the flow rates of heat exchange media. Transfer functions describing the relationships between the controlled variables and the manipulated and load variables were developed and the system response to various temperature disturbances was simulated using a custom-developed MATLAB program. It was found that a step disturbance of ±10 °C in the process loop changed the thermal duty by ±650 kW, equal to 6.5% of the initial duty. Similar disturbances in the primary loop had a higher impact on the system. The control system design included a provision for the switching of manipulated variables to limit the adjustment in the magnitudes of the primary manipulated variables. Simulation results indicate that the controlled variables are maintained successfully at their desired points by the control system.

  9. Modeling and simulation of control system response to temperature disturbances in a coupled heat exchangers-AHTR system

    Energy Technology Data Exchange (ETDEWEB)

    Skavdahl, I. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Utgikar, V.P., E-mail: vutgikar@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Christensen, R. [Nuclear Engineering Program, University of Idaho, Idaho Falls, ID 83402 (United States); Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Chen, M.; Sun, X. [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2016-04-15

    Highlights: • Control architecture defined for nuclear reactor-coupled heat exchangers system. • MATLAB code developed for simulation of system response for various temperature disturbances in the system. • Control system effective in maintaining controlled variables at desired set points. • New equilibrium steady state established using controllers. • Adaptive control system capable of switching manipulated variables based on system constraints. - Abstract: An effective control strategy is essential for maintaining optimum operational efficiency of the Advanced High Temperature Reactor (AHTR)-intermediate heat exchanger (IHX)-secondary heat exchanger (SHX) system for power conversion or process heat applications. A control system design is presented in this paper for the control of the coupled intermediate and secondary heat exchangers. The cold side outlet temperature of the SHX (T{sub co}) and the hot side outlet temperature of the IHX (T{sub ho2}) were identified as the controlled variables that were maintained at their set points by manipulating the flow rates of heat exchange media. Transfer functions describing the relationships between the controlled variables and the manipulated and load variables were developed and the system response to various temperature disturbances was simulated using a custom-developed MATLAB program. It was found that a step disturbance of ±10 °C in the process loop changed the thermal duty by ±650 kW, equal to 6.5% of the initial duty. Similar disturbances in the primary loop had a higher impact on the system. The control system design included a provision for the switching of manipulated variables to limit the adjustment in the magnitudes of the primary manipulated variables. Simulation results indicate that the controlled variables are maintained successfully at their desired points by the control system.

  10. CRITICAL CONTROL POINT IDENTIFICATION THROUGH TROPHOLOGICAL MEAT PRODUCTION CHAINFROM FIELD TO FORK

    Directory of Open Access Journals (Sweden)

    A. V. Borodin

    2017-01-01

    Full Text Available  Competitive production management is impossible without comprehensive hazard monitoring and critical parameters control at every stage of food production from raw material and auxiliary materials delivery to ready product realization, which is difficult without modern IT-support. The HACCP (Hazard Analysis and Critical Control Points approach to product safety differs from ready product testing for compliance with NaTD requirements (Normative and Technical Documentation and emphasizes the importance of the process approach to monitoring at every stage of food production. Critical control points (CCP identification is a stage, where the presence of a risk of manufacturing products that are unsafe for human health is recognized and it is possible to take action to its elimination, prevention or reduction to an acceptable level. The use of soſtware package significantly increases the enterprise HACCP system efficiency. The article describes methodological bases for IT-approach to the CCP identification in the trophological meat production chain from field to fork. The algorithmic support and soſtware for the «Decision tree», which allows detecting existing hazards, identifying risks, determining CCPs and describing them, has been developed.

  11. I/O subnets for the APS control system

    International Nuclear Information System (INIS)

    Arnold, N.D.; Nawrocki, G.J.; Daly, R.T.; Kraimer, M.R.; McDowell, W.P.

    1991-01-01

    Although the Advanced Photon Source Control System allows for microprocessor-based Input/Output Controllers (IOCs) to be distributed throughout the facility, it is not always cost effective to provide such capability at every location where an interface to the Control System is required. I/O subnets implemented via message passing network protocols are used to interface points and/or equipment to a somewhat distant IOC, thereby reducing the number of required IOC's and minimizing the field wiring from the equipment to the Control System. For greatest flexibility, the subnets must support connections to equipment that requires several discrete I/O points, connections to GPIB and RS232 instruments, and a network connection to custom designed intelligent equipment. This paper describes an approach that supports all of these interfaces with one subnet implementation, BITBUS trademark. In addition to accommodating several different interfaces on a single subnet, this approach also circumvents several limitations of GPIB and RS232 which would otherwise restrict their use in a harsh, industrial environment

  12. Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros

    Science.gov (United States)

    Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.

    1973-01-01

    Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.

  13. Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems

    Science.gov (United States)

    Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka

    2018-06-01

    One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.

  14. Control system reliability at Jefferson Lab

    International Nuclear Information System (INIS)

    White, K.S.; Areti, H.; Garza, O.

    1997-01-01

    At Thomas Jefferson National Accelerator Facility (Jefferson Lab), the availability of the control system is crucial to the operation of the accelerator for experimental programs. Jefferson Lab's control system, uses 68040 based microprocessors running VxWorks, Unix workstations, and a variety of VME, CAMAC. GPIB, and serial devices. The software consists of control system toolkit software, commercial packages, and over 200 custom and generic applications, some of which are highly complex. The challenge is to keep this highly diverse and still growing system, with over 162,000 control points, operating reliably, while managing changes and upgrades to both the hardware and software. Downtime attributable to the control system includes the time to troubleshoot and repair problems and the time to restore the machine to operation of the scheduled program. This paper describes the availability of the control system during the last year, the heaviest contributors to downtime and the response to problems. Strategies for improving the robustness of the control system am detailed and include changes in hardware, software, procedures and processes. The improvements range from the routine preventive hardware maintenance, to improving their ability to detect, predict and prevent problems. This paper also describes the software tools used to assist in control system troubleshooting, maintenance and failure recovery processes

  15. Implementation of hazard analysis and critical control point (HACCP) system in a food service unit serving immuno-suppressed patient diets / E.E. Vermeulen

    OpenAIRE

    Vermeulen, Emma Emmerenza

    2006-01-01

    Main aim: To supply recommendations to implement a Hazard Analysis of Critical Control Points (HACCP) system in a hospital food service unit serving low bacterial diets in order to prevent or decrease the infection rates in Hematopoietic Stem Cell Transplant (HSCT) patients. Objectives: Firstly, to investigate the current food safety and hygiene status in a hospital food service unit, serving low bacterial diets, by means of a questionnaire and bacterial swabs taken from the...

  16. DC Grid Control Concept for Expandable Multi-terminal HVDC Transmission Systems

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2018-01-01

    In areas where there are already several HVDC links in operation or under construction, it is more likely that a DC grid emerges as a gradual process. Although the DC grid control concept has been widely discussed, the implementation in the expandable multi-terminal HVDC (MTDC) transmission systems...... still faces challenges. The existing converter control system needs to be adjusted when a point-to-point (PtP) link is operated into MTDC system, or when an additional converter is interconnected with an existing MTDC system, or even when a new DC grid control strategy is applied. In this paper, a new...... DC grid control concept is proposed that conserves and uses the existing converter control when an existing PtP link is extended into MTDC system or the existing MTDC system is expanded. An interface is proposed to decouple the DC grid secondary with converter control structures. By using...

  17. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  18. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  19. Wireless power charging using point of load controlled high frequency power converters

    Science.gov (United States)

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  20. Control system design and analysis using the INteractive Controls Analysis (INCA) program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.

  1. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  2. Method of nuclear reactor control using a variable temperature load dependent set point

    International Nuclear Information System (INIS)

    Kelly, J.J.; Rambo, G.E.

    1982-01-01

    A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow

  3. Improved energy performance of ammonia recycling system using floating condensing temperature control

    International Nuclear Information System (INIS)

    Lu, Wei; Meng, Zhuo; Sun, Yize; Zhong, Qianwen; Zhu, Helei

    2016-01-01

    Highlights: • Thermodynamic models for the compressor and evaporative condenser were developed. • An evaluation index was proposed to determine the optimal set point. • An algorithm was presented to compute the optimal set point. • Strategies for operating ammonia recycling system were proposed. - Abstract: Aiming at reducing the energy-consumption of ammonia recycling system, we presented floating condensing temperature control to maximize the coefficient of performance (COP) of the system. Firstly, thermodynamic models for the compressor and evaporative condenser were developed respectively. Then, an evaluation index and a solution scheme were proposed to determine the optimal set point of condensing temperature and the corresponding compressor speed. It is found that the system COP can be maximized by controlling the compressor speed to adjust the set point based on any given operating conditions. When the wet-bulb temperature is 22 °C, the system COP could be improved by 19.2–27.6% under floating condensing temperature control.

  4. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously existing unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and it is compared with them. One of its most attractive features is that it should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations modelling the coupling of two self-oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters

  5. TFTR control and monitoring system (CICADA)

    International Nuclear Information System (INIS)

    Daniels, R.E.

    1981-01-01

    The TFTR Central Instrumentation, Control and Data Acquisition System (CICADA) is described. This is a computer based system, supporting three types of user interfaces and supporting real time, terminal, and batch operations. Over one hundred graphic display generators will be supported by the system, four array processors will greatly increase the analysis capabilities, and closed circuit television will distribute performance data throughout the facility. Approximately twenty thousand points wll be interfaced to the system

  6. Compound Tension Control of an Optical-Fiber Coil System: A Cyber-Physical System View

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2014-03-01

    Full Text Available The full-automatic optical-fiber coil winding equipment is a complex electromechanical system which contains signal acquisition, data processing, communications, and motor control. In the complex electromechanical system, the subsystems rely on wired or wireless network technology to complete the real-time perception, coordinate, accurate, and dynamitic control, and information exchange services. The paper points to the full-automatic optical-fiber coil winding equipment with the characteristics of cyber-physical system to research its numerical design. We present a novel compound tension control system based on the experimental platform dSPACE to achieve semiphysical simulation of compound tension control system and examine the functions of control system.

  7. Analysis and control of underactuated mechanical systems

    CERN Document Server

    Choukchou-Braham, Amal; Djemaï, Mohamed; Busawon, Krishna

    2014-01-01

    This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen—chain, tree, and isolated vertex—and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATL...

  8. Design of sewage treatment system by applying fuzzy adaptive PID controller

    Science.gov (United States)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  9. Accuracy assessment of minimum control points for UAV photography and georeferencing

    Science.gov (United States)

    Skarlatos, D.; Procopiou, E.; Stavrou, G.; Gregoriou, M.

    2013-08-01

    In recent years, Autonomous Unmanned Aerial Vehicles (AUAV) became popular among researchers across disciplines because they combine many advantages. One major application is monitoring and mapping. Their ability to fly beyond eye sight autonomously, collecting data over large areas whenever, wherever, makes them excellent platform for monitoring hazardous areas or disasters. In both cases rapid mapping is needed while human access isn't always a given. Indeed, current automatic processing of aerial photos using photogrammetry and computer vision algorithms allows for rapid orthophomap production and Digital Surface Model (DSM) generation, as tools for monitoring and damage assessment. In such cases, control point measurement using GPS is either impossible, or time consuming or costly. This work investigates accuracies that can be attained using few or none control points over areas of one square kilometer, in two test sites; a typical block and a corridor survey. On board GPS data logged during AUAV's flight are being used for direct georeferencing, while ground check points are being used for evaluation. In addition various control point layouts are being tested using bundle adjustment for accuracy evaluation. Results indicate that it is possible to use on board single frequency GPS for direct georeferencing in cases of disaster management or areas without easy access, or even over featureless areas. Due to large numbers of tie points in the bundle adjustment, horizontal accuracy can be fulfilled with a rather small number of control points, but vertical accuracy may not.

  10. Factors influencing the profitability of optimizing control systems

    International Nuclear Information System (INIS)

    Broussaud, A.; Guyot, O.

    1999-01-01

    Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)

  11. Optimal Set-Point Synthesis in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2007-01-01

    This paper presents optimal set-point synthesis for a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger and a water-to-air heat exchanger. The objective function is composed of the electrical power for different...... components, encompassing fans, primary/secondary pump, tertiary pump, and air-to-air heat exchanger wheel; and a fraction of thermal power used by the HVAC system. The goals that have to be achieved by the HVAC system appear as constraints in the optimization problem. To solve the optimization problem......, a steady state model of the HVAC system is derived while different supplying hydronic circuits are studied for the water-to-air heat exchanger. Finally, the optimal set-points and the optimal supplying hydronic circuit are resulted....

  12. Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons

    Science.gov (United States)

    Midya, Bikashkali; Konotop, Vladimir V.

    2017-07-01

    We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.

  13. Relative controllability of nonlinear neutral systems with distributed ...

    African Journals Online (AJOL)

    In this paper we study the relative controllability of nonlinear neutral system with distributed and multiple lumped time varying delays in control. Using Schauder's fixed point theorem sufficient conditions for relative controllability in a given time interval are formulated and proved. Journal of the Nigerian Association of ...

  14. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  15. Role of rural solid waste management in non-point source pollution control of Dianchi Lake catchments, China

    Institute of Scientific and Technical Information of China (English)

    Wenjing LU; Hongtao WANG

    2008-01-01

    In recent years, with control of the main municipal and industrial point pollution sources and implementation of cleaning for some inner pollution sources in the water body, the discharge of point source pollution decreased gradually, while non-point source pollution has become increasingly distressing in Dianchi Lake catchments. As one of the major targets in non-point source pollution control, an integrated solid waste controlling strategy combined with a technological solution and management system was proposed and implemented based on the waste disposal situation and characteristics of rural solid waste in the demonstration area. As the key technoogy in rural solid waste treatment, both centralized plantscale composting and a dispersed farmer-operated waste treating system showed promise in rendering timely benefits in efficiency, large handling capacity, high quality of the end product, as well as good economic return. Problems encountered during multi-substrates co-com-posting such as pathogens, high moisture content, asyn-chronism in the decomposition of different substrates, and low quality of the end product can all be tackled. 92.5% of solid waste was collected in the demonstration area, while the treating and recycling ratio reached 87.9%, which pre-vented 32.2 t nitrogen and 3.9 t phosphorus per year from entering the water body of Dianchi Lake after imple-mentation of the project.

  16. Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking.

    Science.gov (United States)

    Maimon-Dror, Roni O; Fernandez-Quesada, Jorge; Zito, Giuseppe A; Konnaris, Charalambos; Dziemian, Sabine; Faisal, A Aldo

    2017-07-01

    Eye-movements are the only directly observable behavioural signals that are highly correlated with actions at the task level, and proactive of body movements and thus reflect action intentions. Moreover, eye movements are preserved in many movement disorders leading to paralysis (or amputees) from stroke, spinal cord injury, Parkinson's disease, multiple sclerosis, and muscular dystrophy among others. Despite this benefit, eye tracking is not widely used as control interface for robotic interfaces in movement impaired patients due to poor human-robot interfaces. We demonstrate here how combining 3D gaze tracking using our GT3D binocular eye tracker with custom designed 3D head tracking system and calibration method enables continuous 3D end-point control of a robotic arm support system. The users can move their own hand to any location of the workspace by simple looking at the target and winking once. This purely eye tracking based system enables the end-user to retain free head movement and yet achieves high spatial end point accuracy in the order of 6 cm RMSE error in each dimension and standard deviation of 4 cm. 3D calibration is achieved by moving the robot along a 3 dimensional space filling Peano curve while the user is tracking it with their eyes. This results in a fully automated calibration procedure that yields several thousand calibration points versus standard approaches using a dozen points, resulting in beyond state-of-the-art 3D accuracy and precision.

  17. An autobias control system for the electro—optic modulator used in a quantum key distribution system

    International Nuclear Information System (INIS)

    Chen Wen-Fen; Wei Zheng-Jun; Guo Li; Hou Li-Yan; Wang Geng; Wang Jin-Dong; Zhang Zhi-Ming; Guo Jian-Ping; Liu Song-Hao

    2014-01-01

    In a quantum key distribution system, it is crucial to keep the extinction ratio of the coherent pulses stable. This means that the direct current bias point of the electro—optic modulator (EOM) used for generating coherent pulses must be locked. In this paper, an autobias control system based on a lock-in-amplifier for the EOM is introduced. Its drift information extracting theory and control method are analyzed comprehensively. The long term drift of the extinction ratio of the coherent pulses is measured by a single photon detector, which indicates that the autobias control system is effective for stabilizing the bias point of the EOM. (general)

  18. Screen-Capturing System with Two-Layer Display for PowerPoint Presentation to Enhance Classroom Education

    Science.gov (United States)

    Lai, Yen-Shou; Tsai, Hung-Hsu; Yu, Pao-Ta

    2011-01-01

    This paper proposes a new presentation system integrating a Microsoft PowerPoint presentation in a two-layer method, called the TL system, to promote learning in a physical classroom. With the TL system, teachers can readily control hints or annotations as a way of making them visible or invisible to students so as to reduce information load. In…

  19. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  20. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  1. Post-operative endophthalmitis: the application of hazard analysis critical control points (HACCP) to an infection control problem.

    Science.gov (United States)

    Baird, D R; Henry, M; Liddell, K G; Mitchell, C M; Sneddon, J G

    2001-09-01

    Hazard analysis critical control points (HACCP) is a quality assurance system widely used in the food industry to ensure safety. We adopted the HACCP approach when conventional infection control measures had failed to solve an ongoing problem with an increased incidence of postoperative endophthalmitis, and our ophthalmology unit was threatened with permanent cessation of intraocular surgery. Although time-consuming, the result was an entirely new set of protocols for the care of patients undergoing intraocular surgery, the development of an integrated care pathway, and a comprehensive and robust audit programme, which enabled intraocular surgery to continue in a new spirit of confidence. HACCP methodology has so far been little used in healthcare, but it might be usefully applied to a variety of apparently intractable infection control problems. Copyright 2001 The Hospital Infection Society.

  2. Application of the DTC control in the photovoltaic pumping system

    International Nuclear Information System (INIS)

    Moulay-Idriss, Chergui; Mohamed, Bourahla

    2013-01-01

    Highlights: ► To improve the efficiency of PV systems, under different temperature and irradiance conditions. ► The MPPT and different control method for the induction motor were applied. ► The DTC in PV pumping system introduced and performance studied. ► The introductions of DTC in PV systems are very promising. ► Optimizing the water pumping system speed response characteristic by DTC. - Abstract: We aim to find a better control and optimization among the different functions of a solar pumping system. The photovoltaic panel can provide a maximum power only for defined output voltage and current. In addition, the operation to get the maximum power depends on the terminals of load, mostly a non-linear load like induction motor. In this work, we propose an intelligent control method for the maximum power point tracking of a photovoltaic system under variable temperature and irradiance conditions. The system was tested without maximum power point tracking, with the use of Scalar-Based control motor, but we cannot maintain the speed optimal. Next, we developed several methods for the control. Finally, we have chosen the Direct Torque Control.

  3. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  4. DC-link Voltage Coordinative-Proportional Control in Cascaded Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2015-01-01

    PI controllers are frequently implemented in cascaded converter system to control the DC-link voltage, because they can achieve zero steady state error. However the PI controller adds a pole at the origin point and a zero on the left half plane, and it increases the control system type number......, and then the system is more difficult to control. This paper proposed a DC-link control method for the two stages cascaded converter, and it uses proportional controller for the DC-link voltage control. This control method can achieve zero steady state error on the DC-link voltage; reduce the control system type...

  5. Hyporheic Interfaces Serve as Ecological Control Points for Mountainous Landscape Biological Productivity

    Science.gov (United States)

    Newcomer, M. E.; Dwivedi, D.; Raberg, J.; Fox, P. M.; Nico, P. S.; Wainwright, H. M.; Conrad, M. E.; Bill, M.; Bouskill, N.; Williams, K. H.; Hubbard, S.; Steefel, C. I.

    2017-12-01

    Riverine systems in snow-dominated mountainous regions often express complex biogeochemistry and river nutrient indicators as a function of hydrologic variability. In early spring, meltwater infiltration from a ripened snowpack creates a hydrological gradient through hillslopes, floodplains, and hyporheic zones. During this time, these systems are more-or-less a passive filter that allows the rising limb of the hydrograph to display chemo-dynamic relationships (inversely proportional) with solutes and nutrients. During the growing season, temperatures, plants, microbes, and hydrologic gradients shift dramatically and activate hyporheic-zone biogeochemistry as a major control on water nutrient degradation. Hyporheic biogeochemical reliance on the timing of meltwater infiltration and the possibility of a longer vernal window under future climate change indicates the importance of hyporheic cycling as the dominant ecological control point on carbon and nitrogen fluxes and transformations. The objective of our study is to develop a predictive understanding of the subsurface and surface controls on hyporheic biogeochemical behavior through data-model integration. Data from our 2017 field campaign in the East River, Colorado, a pristine, mountainous watershed, were taken at key times during the rising, peak, falling, and dry limb of the hydrograph. Throughout multiple locations across this spatial and temporal gradient, we measured surface and subsurface gases, geochemistry, isotopes, and hydrological flow conditions and used this data to constrain a numerical flow and reactive transport model of the hyporheic zone that included microbial and flow feedback dynamics. Our data coupled with the predictive power of our numerical model reveal that the hyporheic zone serves dual roles throughout the year—as a net source of nutrients and solutes during the early vernal phase, shifting to a net sink of nutrients during the summer dry season. The possibility of a future

  6. The renewed HT-7 plasma control system based on real-time Linux cluster

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J.; Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Walker, M.L.; Penaflor, B.G.; Piglowski, D.A.; Johnson, R.D. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The hardware and software structure of the new HT-7 plasma control system (HT-7 PCS) is reported. Black-Right-Pointing-Pointer All original systems were integrated in the new HT-7 PCS. And the implementation details of the control algorithms are given in the paper. Black-Right-Pointing-Pointer Different from EAST PCS, the AC operation mode is realized in HT-7 PCS. Black-Right-Pointing-Pointer The experiment results are discussed. Good control performance has been obtained. - Abstract: In order to improve the synchronization, flexibility and expansibility of the plasma control on HT-7, a new plasma control system (HT-7 PCS) was constructed. The HT-7 PCS was based on a real-time Linux cluster with a well-defined, robust and flexible software infrastructure which was adapted from DIII-D PCS. In this paper, the hardware structure and system customization details for HT-7 PCS are reported. The plasma position and current control, plasma density control and off-normal event detection, which were realized in separated systems originally, have been integrated and implemented in such HT-7 PCS. All these control algorithms have been successfully validated in the last several HT-7 experiment campaigns. Good control performance has been achieved and the experiment results are discussed in the paper.

  7. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  8. Microprocessor Controlled Maximum Power Point Tracker for Photovoltaic Application

    International Nuclear Information System (INIS)

    Jiya, J. D.; Tahirou, G.

    2002-01-01

    This paper presents a microprocessor controlled maximum power point tracker for photovoltaic module. Input current and voltage are measured and multiplied within the microprocessor, which contains an algorithm to seek the maximum power point. The duly cycle of the DC-DC converter, at which the maximum power occurs is obtained, noted and adjusted. The microprocessor constantly seeks for improvement of obtained power by varying the duty cycle

  9. Power supply control system for experimental physical facilities

    International Nuclear Information System (INIS)

    Zelepukin, S.A.; Osipov, Eh.V.; Petrov, V.S.; Sergeev, V.A.; Uglekov, V.Ya.

    1979-01-01

    A multichannel (to 1024 channels) system for control of power supply voltage is descrited. The system consists of an analog commulator, a digital voltmeter and a special controller. The controller serves at the same time as an interface for connecting the system as a ''unit'' of the VECTOR and SUMMA unified electronic systems. The system has been realized for control of the photomultiplier power supply voltage of the MARK multipurpose experimental device (256 channels, the measurement accuracy is 0.2%, the measuring time is 500 ms per point). Software devised for the HP-2100 computer permits automatical comparison of photomultiplier power supply voltages with sample ones in the mode of continuous control of a single voltage or in the mode of programmed selection of voltages to provide the control in arbitrary order or automatic scanning

  10. Program computes single-point failures in critical system designs

    Science.gov (United States)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  11. Photovoltaic System Equipped with Digital Command Control and Acquisition

    Directory of Open Access Journals (Sweden)

    Khalil Kassmi

    2013-07-01

    Full Text Available In this paper, we present results concerning the design, the realization and the characterization of a photovoltaic system (PV, equipped with a digital controls: Power Point Tracking (MPPT, charge/discharge lead acid batteries, sun tracker and supervision. These different functions are performed with a microcontroller that has capabilities and functions to the reliability of PV systems (signal generation Pulses Width Modulation (PWM, speed etc.. Concerning the MPPT control operation, we improved the accuracy and reliability of research by improving the search algorithm “Hill Climbing” taking into account the optimal operation of PV panels depending on weather conditions (temperature and light.The experiment of each block shows that the MPPT control converges instantly the operating point of the PV panels around the maximum power point, independently of sudden changes of the illumination or the load. The control blocks charge/discharge battery and sun tracking show good control of charge/discharge lead acid batteries and the need of sun tracker to increase the power supplied by the PV panel. By using the improved MPPT control, loss of power supplied by the PV panels are very low (below 5%.

  12. Developing control points for halal slaughtering of poultry.

    Science.gov (United States)

    Shahdan, I A; Regenstein, J M; Shahabuddin, A S M; Rahman, M T

    2016-07-01

    Halal (permissible or lawful) poultry meat production must meet industry, economic, and production needs, and government health requirements without compromising the Islamic religious requirements derived from the Qur'an and the Hadiths (the actions and sayings of the Prophet Muhammad, peace and blessings be upon him). Halal certification authorities may vary in their interpretation of these teachings, which leads to differences in halal slaughter requirements. The current study proposes 6 control points (CP) for halal poultry meat production based on the most commonly used halal production systems. CP 1 describes what is allowed and prohibited, such as blood and animal manure, and feed ingredients for halal poultry meat production. CP 2 describes the requirements for humane handling during lairage. CP 3 describes different methods for immobilizing poultry, when immobilization is used, such as water bath stunning. CP 4 describes the importance of intention, details of the halal slaughter, and the equipment permitted. CP 5 and CP 6 describe the requirements after the neck cut has been made such as the time needed before the carcasses can enter the scalding tank, and the potential for meat adulteration with fecal residues and blood. It is important to note that the proposed halal CP program is presented as a starting point for any individual halal certifying body to improve its practices. © 2016 Poultry Science Association Inc.

  13. Chaotic dynamics and chaos control in nonlinear laser systems

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    2001-01-01

    Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally

  14. Neutral-point current modeling and control for Neutral-Point Clamped three-level converter drive with small DC-link capacitors

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, Sergio

    2011-01-01

    A Neutral-Point-Clamped (NPC) three-level inverter with small DC-link capacitors is presented in this paper. This inverter requires zero average neutral-point current for stable neutral-point potential. A simple carrier based modulation strategy is proposed for achieving zero average neutral...... drive with only 14 μF DC-link capacitors. A fast and stable performance of the neutral-point voltage controller is achieved and verified by experiments....

  15. Two-point method uncertainty during control and measurement of cylindrical element diameters

    Science.gov (United States)

    Glukhov, V. I.; Shalay, V. V.; Radev, H.

    2018-04-01

    The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.

  16. [The different point of view about the sanitary control of importation of psychotropic substances in Brazil].

    Science.gov (United States)

    Sebastião, Patrícia Cristina Antunes; Lucchese, Geraldo

    2010-11-01

    The purpose of this work is to analyze the process of importation, that is a part of the sanitary control of psychotropic substances, made by Brazilian National Health Surveillance Agency's ports, airports and borders. For this work, psychotropic substances are defined as active pharmaceutical raw materials present in the list B1 of Portaria nº 344/98; which need Anvisa's permission to be imported. For this purpose we used semistructured interviews with key informers and participant observation. The information were collected and systematized through the content analysis, thematic modality. The results show a very complex control which involves an intense bureaucratic process. The main identified critical points of the process were: the information system precariousness; the absence of human resources; deficiency of laboratorial support and infra-structure at customs. Anvisa's web page and the specific law are strong points of the process, but still needing improvements. We understood that despite of the progress made, there are many things to do for giving the country an efficient health control system to the importation of these substances.

  17. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  18. I/O subnets for the APS control system

    International Nuclear Information System (INIS)

    Arnold, N.D.; Nawrocki, G.J.; Daly, R.T.; Kraimer, M.R.; McDowell, W.P.

    1991-01-01

    Although the Advanced Photon Source Control System allows for microprocessor -- based Input/Output Controllers (IOCs) to be distributed throughout the facility, it is not always cost effective to provide such capability at every location where an interface to the Control System is required. I/O subnets implemented via message passing network protocols are used to interface points and/or equipment to a somewhat distant IOC, thereby reducing the number of required IOC's and minimizing the field wiring from the equipment to the Control System. For greatest flexibility, the subnets must support connections to equipment that requires several discrete I/O points, connections to GPIB and RS232 instruments, and a network connection to custom designed intelligent equipment. This paper describes an approach that supports all of the interfaces with one subnet implementation, BITBUS. In addition to accommodating several different interfaces on a single subnet, this approach also circumvents several limitations of GPIB and RS232 which would otherwise restrict their use in a harsh, industrial environment. 1 ref., 1 fig

  19. Gain Scheduling Control based on Closed-Loop System Identification

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    the first and a second operating point is identified in closed-loop using system identification methods with open-loop properties. Next, a linear controller is designed for this linearised model, and gain scheduling control can subsequently be achieved by interpolating between each controller...

  20. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  1. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  2. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  3. Robust multi-model control of an autonomous wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, Nicolas Antonio; Hansen, Anca Daniela; Soerensen, Poul [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Ceanga, Emil [' Dunarea de Jos' Univ., Faculty of Electrical Engineering, Galati (Romania)

    2006-07-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. (Author)

  4. Robust multi-model control of an autonomous wind power system

    Science.gov (United States)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  5. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salah, Chokri; Ouali, Mohamed [Research Unit on Intelligent Control, Optimization, Design and Optimization of Complex Systems (ICOS), Department of Electrical Engineering, National School of Engineers of Sfax, BP. W, 3038, Sfax (Tunisia)

    2011-01-15

    This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural network controllers for photovoltaic systems. The two maximum power point tracking controllers receive solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle corresponding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power operation of any photovoltaic array under different conditions such as changing solar radiation and PV cell temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more power than the neural network controller and can give more power than other different methods in literature. (author)

  6. Feedback control of Zero Moment Point for stable bipedal walking

    NARCIS (Netherlands)

    Looij, van de R.M.A.; Nijmeijer, H.; Kostic, D.

    2014-01-01

    In order to prevent the humanoid robot TUlip from falling a start has been made with a Zero Moment Point (ZMP) based controller. The chosen controller, which is called the Linear Inverted Pendulum Tracker (LIPT) controller, is based upon a lag between the real and reference ZMP and is used in

  7. Temperature Control System for Mushroom Dryer

    Science.gov (United States)

    Wibowo, I. A.; Indah, Nur; Sebayang, D.; Adam, N. H.

    2018-03-01

    The main problem in mushroom cultivation is the handling after the harvest. Drying is one technique to preserve the mushrooms. Traditionally, mushrooms are dried by sunshine which depends on the weather. This affects the quality of the dried mushrooms. Therefore, this paper proposes a system to provide an artificial drying for mushrooms in order to maintain their quality. The objective of the system is to control the mushroom drying process to be faster compared to the natural drying at an accurate and right temperature. A model of the mushroom dryer has been designed, built, and tested. The system comprises a chamber, heater, blower, temperature sensor and electronic control circuit. A microcontroller is used as the controller which is programmed to implement a bang-bang control that regulates the temperature of the chamber. A desired temperature is inputted as a set point of the control system. Temperature of 45 °C is chosen as the operational drying temperature. Several tests have been carried out to examine the performance of the system including drying speed, the effects of ambient conditions, and the effects of mushroom size. The results show that the system can satisfy the objective.

  8. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.

    Science.gov (United States)

    Suzuki, Masataka; Yamazaki, Yoshihiko

    2005-01-01

    According to the equilibrium point hypothesis of voluntary motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction between moving equilibrium position, current kinematics and stiffness of the joint. This approach is attractive as it obviates the need to explicitly specify the forces controlling limb movements. However, many debatable aspects of this hypothesis remain in the manner of specification of the equilibrium point trajectory and muscle activation (or its stiffness), which elicits a restoring force toward the planned equilibrium trajectory. In this study, we expanded the framework of this hypothesis by assuming that the control system uses the velocity measure as the origin of subordinate variables scaling descending commands. The velocity command is translated into muscle control inputs by second order pattern generators, which yield reciprocal command and coactivation commands, and create alternating activation of the antagonistic muscles during movement and coactivation in the post-movement phase, respectively. The velocity command is also integrated to give a position command specifying a moving equilibrium point. This model is purely kinematics-dependent, since the descending commands needed to modulate the visco-elasticity of muscles are implicitly given by simple parametric specifications of the velocity command alone. The simulated movements of fast elbow single-joint movements corresponded well with measured data performed over a wide range of movement distances, in terms of both muscle excitations and kinematics. Our proposal on a synthesis for the equilibrium point approach and velocity command, may offer some insights into the control scheme of the single-joint arm movements.

  9. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously oxi sting unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and i t is compared with them. One of its most attractive features is that is should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations model ling the coupling of two se If - oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the no possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters. (Author) 28 refs

  10. Controlling a Chaotic System through Control Parameter Self-Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, I

    1994-07-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously oxi sting unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and i t is compared with them. One of its most attractive features is that is should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations model ling the coupling of two se If - oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the no possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters. (Author) 28 refs.

  11. PSO Based PI Controller Design for a Solar Charger System

    OpenAIRE

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously....

  12. Final report on the FMIT Control System

    International Nuclear Information System (INIS)

    Johnson, J.A.

    1985-01-01

    The computer control system for the Fusion Materials Irradiation Test Facility (FMIT) prototype accelerator was designed using distributed intelligence driven by a distributed database. The system consists of two minicomputers in the central control room and four microcomputers residing in CAMAC crates located near appropriate subsystems of the accelerator. The system uses single vendor hardware as much as practical in an attempt to minimize the maintenance problems. Local control consoles are an integral part of each node computer to provide subsystem check-out. The main console is located in the central control room and permits one-point operation of the complete control system. Automatic surveillance is provided for each data channel by the node computer with out-of-bounds alarms sent to the main console. Report by exception is used for data logging. This control system has been operational for two years. The computers are too heavily loaded and the operator response is slower than desired. A system upgrade to a faster local-area network has been undertaken and is scheduled to be operational by conference time

  13. Design and implementation of a new fuzzy PID controller for networked control systems.

    Science.gov (United States)

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  14. EPICS based low-level radio frequency control system in LIPAc

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Julio, E-mail: julio.calvo@ciemat.es [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain); Rivers, Mark L. [Department of Geophysical Sciences and Center for Advanced Radiation Sources, The University of Chicago (United States); Patricio, Miguel A. [Departamento de Informatica, Universidad Carlos III de Madrid (Spain); Ibarra, Angel [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The system proposed can control amplitude and phase of each cavity. Black-Right-Pointing-Pointer Rapid diagnostics are refreshed in milliseconds. Black-Right-Pointing-Pointer Increasing control parameters will not increase consumed time neither complexity. Black-Right-Pointing-Pointer IQ demodulation can be achieved thanks to the transformed values at driver level. - Abstract: The IFMIF-EVEDA (International Fusion Materials Irradiation Facility - Engineering Validation and Engineering Design Activity) linear accelerator, known as Linear IFMIF Prototype Accelerator (LIPAc), will be a 9 MeV, 125 mA continuous wave (CW) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor to prepare for the design, construction, licensing and safe operation of a fusion demonstration reactor (DEMO). The radio frequency (RF) power system of IFMIF-EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The low-level radio frequency (LLRF) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial compact peripheral component interconnect (cPCI) field programmable gate array (FPGA) board, provided by Lyrtech and controlled by a Windows host PC. For this purpose, it is mandatory to communicate the cPCI FPGA board from EPICS Channel Access [1]. A software architecture on EPICS framework in order to control and monitor the LLRF system is presented.

  15. Discrete-time control system design with applications

    CERN Document Server

    Rabbath, C A

    2014-01-01

    This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...

  16. Experimental consideration for realizing image based visual servo control system

    International Nuclear Information System (INIS)

    Ishikawa, N.; Suzuki, K.; Fujii, Y.; Usui, H.

    1995-01-01

    In this study, we consider the experimental aspect of image based visual servo control system. The items considered are the following; 1) Inertial parameter estimation, 2) Focal point estimation, 3) Controller performance for the system with delay. From the experimental result of visual control, it is found that the system is very sensitive to the controller gain because of the computational delay of vision. In order to establish a satisfactory delay compensation, more investigations on controller design are required. (author)

  17. Intelligent color recognition system using micro-controller

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid; Khairiah Yazid; Nur Aira Abd Rahman; Azaman Ahmad

    2006-01-01

    Color is widely used in categorizing the quality of products as well as a marker for automatic selection and discrimination of products. Most of color recognizing process is done manually and due to the fact that human perceived color differently, different of opinion frequently occur. This paper deals with the development of an intelligent color recognition system used for discriminating the ripeness of oil palm fruits into three categories namely ripe, under-ripe and un-ripe. In deciding the categories of fruit a sample belong, a technique of decision making similar to human thinking called neural network has been implemented. Implementation of neural network using a micro-controller is not so common, due to a limited capability in floating point calculation. To overcome the problem, a floating-point co-processor specially designed for micro-controller is used. The paper will report the system design and the network training and implementation methods. The effectiveness of the system compared to human decision method is also reported. (Author)

  18. Stationary point of the radiometric control of cesium contamination of agricultural animals

    International Nuclear Information System (INIS)

    1997-01-01

    Stationary point of the radiometric control of cesium contamination of an agricultural animals. Is intended for vital measurements of the contents of radiocesium in muscular tissue of a cattle. Can be used on cattle-breeding farms, providing points, in meat factories and personal facilities. As a base means for accommodation of the control point the motor-car is used. Design of the car allows to automate operations on deployment of the control point on a place and translation of one to a transport mode. Limits of measured specific activity of cesium contamination of a cattle is up 5*10 -9 to 5*10 -6 Ci/kg. The basic error on the bottom limit of measurement at confidence coefficient 0,95 is no more than 30%. Measurement time for the bottom limit of determined specific activity is no more than 30 s. There is automatic measurement mode. Type of a power is 220 V, 50 Hz. Range of working temperatures is up -15 to +35 centigrade. Relative humidity is no more than 98% at 25 centigrade. External gamma background is till 0.035 mR/h. Time of installation and dismantle of stationary control point is no more than 1,5 hours. The direct radiometric control in divo allows to fulfil and to use biotechnological process of removing of cesium isotopes from body of animals for decrease of levels of radioactive contamination

  19. Bonus Point System for Refuse Classification and Sustainable Development: A Study in China

    Directory of Open Access Journals (Sweden)

    Shijie Guo

    2017-09-01

    Full Text Available The rapid growth of household waste not only endangers the environment and people’s health, but also limits social and economic development. The effective sorting and recycling of garbage can control this problem. Adopting a semi-quantitative case study method, our researchers investigated the effect of a bonus point system for refuse classification that improves the accuracy of refuse classification and the residents’ environment awareness. In the system, residents will receive some gifts after sorting the garbage correctly. We also investigated the attitudes of residents and companies towards this novel system. Our researchers employed various methods to analyze garbage-sorting data, questionnaires completed by residents, and interview records. The results show that use of a bonus point system affects the management of domestic waste by improving the accuracy and enhancing the awareness of garbage sorting. Overall, residents support the system and benefit from it, which increases participation and consciousness of environmental protection. However, continuous publicity and coordination of various policies are required to promote the wide-range implementation and sustainable development of this system.

  20. An improved maximum power point tracking method for a photovoltaic system

    Science.gov (United States)

    Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes

    2016-06-01

    In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.

  1. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  2. A general digital computer procedure for synthesizing linear automatic control systems

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1961-10-01

    The fundamental concepts required for synthesizing a linear automatic control system are considered. A generalized procedure for synthesizing automatic control systems is demonstrated. This procedure has been programmed for the Ferranti Mercury and the IBM 7090 computers. Details of the programmes are given. The procedure uses the linearized set of equations which describe the plant to be controlled as the starting point. Subsequent computations determine the transfer functions between any desired variables. The programmes also compute the root and phase loci for any linear (and some non-linear) configurations in the complex plane, the open loop and closed loop frequency responses of a system, the residues of a function of the complex variable 's' and the time response corresponding to these residues. With these general programmes available the design of 'one point' automatic control systems becomes a routine scientific procedure. Also dynamic assessments of plant may be carried out. Certain classes of multipoint automatic control problems may also be solved with these procedures. Autonomous systems, invariant systems and orthogonal systems may also be studied. (author)

  3. A Riccati Based Homogeneous and Self-Dual Interior-Point Method for Linear Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Edlund, Kristian

    2013-01-01

    In this paper, we develop an efficient interior-point method (IPM) for the linear programs arising in economic model predictive control of linear systems. The novelty of our algorithm is that it combines a homogeneous and self-dual model, and a specialized Riccati iteration procedure. We test...

  4. Acid dew point measurements in combustion gases using the dew point measuring system AH 85100

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, D.

    1984-01-01

    Measuring system for continuous monitoring of the SO/sub 2//SO/sub 3/ dew point in the flue gas, characterized by a low failure rate, applicability inside the flue gas duct, maintenance-free continuous operation, and self-cleaning. The measuring principle is the cooling of the sensor element down to the 'onset condensation' message. Sensor surface temperatures are listed and evaluated as flue gas dew point temperatures. The measuring system is described. (DOMA).

  5. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  6. Effect Through Broadcasting System Access Point For Video Transmission

    Directory of Open Access Journals (Sweden)

    Leni Marlina

    2015-08-01

    Full Text Available Most universities are already implementing wired and wireless network that is used to access integrated information systems and the Internet. At present it is important to do research on the influence of the broadcasting system through the access point for video transmitter learning in the university area. At every university computer network through the access point must also use the cable in its implementation. These networks require cables that will connect and transmit data from one computer to another computer. While wireless networks of computers connected through radio waves. This research will be a test or assessment of how the influence of the network using the WLAN access point for video broadcasting means learning from the server to the client. Instructional video broadcasting from the server to the client via the access point will be used for video broadcasting means of learning. This study aims to understand how to build a wireless network by using an access point. It also builds a computer server as instructional videos supporting software that can be used for video server that will be emitted by broadcasting via the access point and establish a system of transmitting video from the server to the client via the access point.

  7. Optimal robust control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  8. Chaos Control and Synchronization of a Hyperchaotic Zhou System by Integral Sliding Mode control

    Directory of Open Access Journals (Sweden)

    Yashar Toopchi

    2014-12-01

    Full Text Available In this paper, an adaptive integral sliding mode control scheme is proposed for synchronization of hyperchaotic Zhou systems. In the proposed scheme, an integral sliding mode control is designed to stabilize a hyperchaotic Zhou system with known parameters to its unstable equilibrium at the origin. The control is then applied to the synchronization of two identical systems, i.e., a slave and a master hyperchaotic Zhou system with unknown parameters. The adaptive control mechanism introduced synchronizes the systems by estimating the unknown parameters. Simulation results have shown that the proposed method has an excellent convergence from both speed and accuracy points of view, and it outperforms Vaidyanathan’s scheme, which is a well-recognized scheme in this area.

  9. Controller Design and Evaluation of Lane-Keeping-Assistance System for Motorcycles

    Science.gov (United States)

    Katagiri, Nozomi; Marumo, Yoshitaka; Tsunashima, Hitoshi

    This study seeks to design a lane keeping controller for motorcycles and to evaluate it by computer simulation with a four-degree-of-freedom model and a rider control model. We applied the optimal control theory to the lane keeping controller as a model-based control. By examining the computer simulation with the rider-in-the-loop system consisting of the motorcycle, the controller, and the rider control model, good lane following performance is achieved without interference between the control input and the rider's input. In addition, the virtual point regulator, which compensates the lateral displacement at the virtual point ahead of the vehicle, corresponds to not only the steering torque disturbance but also the lateral force disturbance by choosing the distance to the virtual point.

  10. Employing expert systems for process control

    International Nuclear Information System (INIS)

    Ahrens, W.

    1987-01-01

    The characteristic features of expert systems are explained in detail, and the systems' application in process control engineering. Four points of main interest are there, namely: Applications for diagnostic tasks, for safety analyses, planning, and training and expert training. For the modelling of the technical systems involved in all four task fields mentioned above, an object-centred approach has shown to be the suitable method, as process control techniques are determined by technical objects that in principle are specified by data sheets, schematic representations, flow charts, and plans. The graphical surface allows these data to be taken into account, so that the object can be displayed in the way best suited to the individual purposes. (orig./GL) [de

  11. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.

  12. Boundary Controllability of Nonlinear Fractional Integrodifferential Systems

    Directory of Open Access Journals (Sweden)

    Ahmed HamdyM

    2010-01-01

    Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.

  13. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  14. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  15. Assessment of hygiene standards and Hazard Analysis Critical Control Points implementation on passenger ships.

    Science.gov (United States)

    Mouchtouri, Varavara; Malissiova, Eleni; Zisis, Panagiotis; Paparizou, Evina; Hadjichristodoulou, Christos

    2013-01-01

    The level of hygiene on ferries can have impact on travellers' health. The aim of this study was to assess the hygiene standards of ferries in Greece and to investigate whether Hazard Analysis Critical Control Points (HACCP) implementation contributes to the hygiene status and particularly food safety aboard passenger ships. Hygiene inspections on 17 ferries in Greece were performed using a standardized inspection form, with a 135-point scale. Thirty-four water and 17 food samples were collected and analysed. About 65% (11/17) of ferries were scored with >100 points. Ferries with HACCP received higher scores during inspection compared to those without HACCP (p value food samples, only one was found positive for Salmonella spp. Implementation of management systems including HACCP principles can help to raise the level of hygiene aboard passenger ships.

  16. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  17. Automatic dew-point hygrometer making use of US -ray backscattering and controlled at the constant amount of dew

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Shigeaki; Kobayashi, Hisanobu

    1988-08-01

    A control system which consists of proportional and integral control to maintain the constant amount of dew was developed in this hygrometer. The dew points were measured within an accuracy of +-1 deg C in the ranging from -4 to 32 deg C. The response time for suddenly changing humidity was about 8 min.

  18. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    Science.gov (United States)

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  19. On delta-modulated control: A simple system with complex dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Xia Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)]. E-mail: xxia@postino.up.ac.za; Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: gchen@ee.cityu.edu.hk

    2007-08-15

    In this paper, we investigate some interesting properties of a scalar system controlled by {delta}-modulated feedback. We show that there are three different cases. In the first case, there is a minimal global attractor which consists of only two points. The two points form either one 2-periodic orbit or two 1-periodic orbits (fixed points). We also characterize the attracting region for each of these two points. In the second case, the maximal stabilizable region is bounded, and there is a minimal local attractor inside this stabilizable region. In the third case, the maximal stabilizable set is a Cantor set, which is a repeller of the system, and the system is chaotic on the Cantor set.

  20. Geometric Correction of PHI Hyperspectral Image without Ground Control Points

    International Nuclear Information System (INIS)

    Luan, Kuifeng; Tong, Xiaohua; Liu, Xiangfeng; Ma, Yanhua; Shu, Rong; Xu, Weiming

    2014-01-01

    Geometric correction without ground control points (GCPs) is a very important topic. Conventional airborne photogrammetry is difficult to implement in areas where the installation of GCPs is not available. The technical of integrated GPS/INS systems providing the positioning and attitude of airborne systems is a potential solution in such areas. This paper first states the principle of geometric correction based on a combination of GPS and INS then the error of the geometric correction of Pushbroom Hyperspectral Imager (PHI) without GCP was analysed, then a flight test was carried out in an area of Damxung, Tibet. The experiment result showed that the error at straight track was small, generally less than 1 pixel, while the maximum error at cross track direction, was close to 2 pixels. The results show that geometric correction of PHI without GCP enables a variety of mapping products to be generated from airborne navigation and imagery data

  1. Floating-point-based hardware accelerator of a beam phase-magnitude detector and filter for a beam phase control system in a heavy-ion synchrotron application

    International Nuclear Information System (INIS)

    Samman, F.A.; Pongyupinpanich Surapong; Spies, C.; Glesner, M.

    2012-01-01

    A hardware implementation of an adaptive phase and magnitude detector and filter of a beam-phase control system in a heavy ion synchrotron application is presented in this paper. The main components of the hardware are adaptive LMS (Least-Mean-Square) filters and phase and magnitude detectors. The phase detectors are implemented by using a CORDIC (Coordinate Rotation Digital Computer) algorithm based on 32-bit binary floating-point arithmetic data formats. The floating-point-based hardware is designed to improve the precision of the past hardware implementation that were based on fixed-point arithmetics. The hardware of the detector and the adaptive LMS filter have been implemented on a programmable logic device (FPGA) for hardware acceleration purpose. The ideal Matlab/Simulink model of the hardware and the VHDL model of the adaptive LMS filter and the phase and magnitude detector are compared. The comparison result shows that the output signal of the floating-point based adaptive FIR filter as well as the phase and magnitude detector agree with the expected output signal of the ideal Matlab/Simulink model. (authors)

  2. Track and mode controller (TMC): a software executive for a high-altitude pointing and tracking experiment

    Science.gov (United States)

    Michnovicz, Michael R.

    1997-06-01

    A real-time executive has been implemented to control a high altitude pointing and tracking experiment. The track and mode controller (TMC) implements a table driven design, in which the track mode logic for a tracking mission is defined within a state transition diagram (STD). THe STD is implemented as a state transition table in the TMC software. Status Events trigger the state transitions in the STD. Each state, as it is entered, causes a number of processes to be activated within the system. As these processes propagate through the system, the status of key processes are monitored by the TMC, allowing further transitions within the STD. This architecture is implemented in real-time, using the vxWorks operating system. VxWorks message queues allow communication of status events from the Event Monitor task to the STD task. Process commands are propagated to the rest of the system processors by means of the SCRAMNet shared memory network. The system mode logic contained in the STD will autonomously sequence in acquisition, tracking and pointing system through an entire engagement sequence, starting with target detection and ending with aimpoint maintenance. Simulation results and lab test results will be presented to verify the mode controller. In addition to implementing the system mode logic with the STD, the TMC can process prerecorded time sequences of commands required during startup operations. It can also process single commands from the system operator. In this paper, the author presents (1) an overview, in which he describes the TMC architecture, the relationship of an end-to-end simulation to the flight software and the laboratory testing environment, (2) implementation details, including information on the vxWorks message queues and the SCRAMNet shared memory network, (3) simulation results and lab test results which verify the mode controller, and (4) plans for the future, specifically as to how this executive will expedite transition to a fully

  3. Control electronic platform based on floating-point DSP and FPGA for a NPC multilevel back-to-back converter

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Francisco J.; Cobreces, Santiago; Bueno, Emilio J.; Hernandez, Alvaro; Mateos, Raul; Espinosa, Felipe [Department of Electronics, University of Alcala, Alcala de Henares, Madrid (Spain)

    2008-09-15

    Modern energy concepts as Distributed Power Generation are changing the appearance of electric distribution and transmission and challenging power electronics researchers, which try to develop new solutions of electronic controllers. The aim is to enable the implementation of new and more complex control algorithms to verify the last standards related to the grid energy quality for new power converters, and, also, for equipments which nowadays are operating. This paper presents the design, implementation and test of a novel real-time controller for a Neutral Point Clamped (NPC) (three-level) multilevel converter based on a floating-point Digital Signal Processor (DSP) and on a Field-Programmable Gate Array (FPGA), by operating in a cooperative way. Although the proposed system can be readily applied to any power electronic application, in this work, it is focused on the next system: a 150 kVA back-to-back three-level NPC Voltage Source Converter (VSC) for wind power applications. (author)

  4. PSO based PI controller design for a solar charger system.

    Science.gov (United States)

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  5. PSO Based PI Controller Design for a Solar Charger System

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available Due to global energy crisis and severe environmental pollution, the photovoltaic (PV system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs.

  6. Control of Future Air Traffic Systems via Complexity Bound Management

    Science.gov (United States)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  7. Analysis and research on Maximum Power Point Tracking of Photovoltaic Array with Fuzzy Logic Control and Three-point Weight Comparison Method

    Institute of Scientific and Technical Information of China (English)

    LIN; Kuang-Jang; LIN; Chii-Ruey

    2010-01-01

    The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.

  8. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  9. How to Deal with Revolutions in Train Control Systems

    Directory of Open Access Journals (Sweden)

    Hideo Nakamura

    2016-09-01

    Full Text Available Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS is proposed that is effective in enhancing the robustness and competitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a processing method of the UTCS is discussed.

  10. 32 CFR 634.45 - Point system application.

    Science.gov (United States)

    2010-07-01

    ... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System...: Failure to obey traffic signals or traffic instructions of an enforcement officer or traffic warden; or... to all operators of U.S. Government motor vehicles, on or off Federal property. The system also...

  11. Point systems in Games for Health: A bibliometric scoping study

    OpenAIRE

    Kokol, Peter

    2018-01-01

    Very few details about point systems used in games for health are reported in scientific literature. To shed some light on this topic a bibliometric study, analyzing the papers containing terms related to games for health and point systems was performed and a mini taxonomy was derived. The search string game* AND health AND (point* OR score) AND system* in a Scopus bibliographic database was used to produce the corpus. We limited the search to articles, reviews and conference papers written i...

  12. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  13. Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors

    International Nuclear Information System (INIS)

    Daili, Yacine; Gaubert, Jean-Paul; Rahmani, Lazhar

    2015-01-01

    Highlights: • A new maximum power point tracking algorithm for small wind turbines is proposed. • This algorithm resolves the problems of the classical perturb and observe method. • The proposed method has been tested under several wind speed profiles. • The validity of the new algorithm has been confirmed by the experimental results. - Abstract: This paper proposes a modified perturbation and observation maximum power point tracking algorithm for small wind energy conversion systems to overcome the problems of the conventional perturbation and observation technique, namely rapidity/efficiency trade-off and the divergence from peak power under a fast variation of the wind speed. Two modes of operation are used by this algorithm, the normal perturbation and observation mode and the predictive mode. The normal perturbation and observation mode with small step-size is switched under a slow wind speed variation to track the true maximum power point with fewer fluctuations in steady state. When a rapid change of wind speed is detected, the algorithm tracks the new maximum power point in two phases: in the first stage, the algorithm switches to the predictive mode in which the step-size is auto-adjusted according to the distance between the operating point and the estimated optimum point to move the operating point near to the maximum power point rapidly, and then the normal perturbation and observation mode is used to track the true peak power in the second stage. The dc-link voltage variation is used to detect rapid wind changes. The proposed algorithm does not require either knowledge of system parameters or of mechanical sensors. The experimental results confirm that the proposed algorithm has a better performance in terms of dynamic response and efficiency compared with the conventional perturbation and observation algorithm

  14. Hazard analysis and critical control point (HACCP) for an ultrasound food processing operation.

    Science.gov (United States)

    Chemat, Farid; Hoarau, Nicolas

    2004-05-01

    Emerging technologies, such as ultrasound (US), used for food and drink production often cause hazards for product safety. Classical quality control methods are inadequate to control these hazards. Hazard analysis of critical control points (HACCP) is the most secure and cost-effective method for controlling possible product contamination or cross-contamination, due to physical or chemical hazard during production. The following case study on the application of HACCP to an US food-processing operation demonstrates how the hazards at the critical control points of the process are effectively controlled through the implementation of HACCP.

  15. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki; Im, Ki Hong

    2013-01-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  16. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    Science.gov (United States)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  17. Distribution control centers in the Croatian power system with particular consideration on ZAgreb distribution control center

    International Nuclear Information System (INIS)

    Cupin, N.

    2000-01-01

    Discussion about control of Croatian Power system in the view of forthcoming free electricity market did not included do far distribution level. With this article we would like to clarify the role of distribution control centers pointing out importance of Zagreb Distribution control center, with controls one third of Croatian (HEP) consumption. (author)

  18. Increasing radiographer productivity by an incentive point system.

    Science.gov (United States)

    Williams, B; Chacko, P T

    1983-01-01

    Because of a very low technologist productivity in their Radiology Department, the authors describe a Productive Point System they developed and implemented to solve this personnel problem. After establishing the average time required to perform all exams, point credits (one point for every ten minutes utilized) were assigned to each exam performed, thereby determining an index of production. A Productive Index of 80% was considered realistic and was the equivalent of 192 points for a 40-hour work week. From 1975 to 1978 personal productivity increased from 79% to 113%. This resulted in an average yearly fiscal savings of over $20,000.00 for this three-year period. There was also a significant improvement in exam efficiency and quality, job attitude, personnel morale, and public relations. This program was highly successful because technologist acceptance and cooperation was complete, and this occurred mainly because the system supports the normal occupational goals and expectations of technologists.

  19. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Science.gov (United States)

    2010-02-24

    ... (HACCP); Approval of Information Collection Request AGENCY: Food and Nutrition Service, USDA. ACTION... Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP) was published on... must be based on the (HACCP) system established by the Secretary of Agriculture. The food safety...

  20. Uses of ORACLE in the Nova Laser Control System

    International Nuclear Information System (INIS)

    McGuigan, D.L.

    1983-01-01

    The Nova Laser System is a large-scale fusion experiment being constructed at the Lawrence Livermore National Laboratory. Modern control system technology is required to efficiently manage the thousands of devices needed to operate the system. In order to reduce the requirements on the operations staff, much of the system is being automated. This requires a significant knowledge base including frequently used system configurations and device parameters. We will be using ORACLE to provide this information to the control system. To insure the control-system integrity, ORACLE will be used to maintain information about the control-system software. This information will be used to document the system as well as help track down problems. ORACLE will also be used to maintain data on the system performance. This data will be analyzed to optimize the laser performance and point out when maintenance is required

  1. Siemens: Smart Technologies for Large Control Systems

    CERN Multimedia

    CERN. Geneva; BAKANY, Elisabeth

    2015-01-01

    The CERN Large Hadron Collider (LHC) is known to be one of the most complex scientific machines ever built by mankind. Its correct functioning relies on the integration of a multitude of interdependent industrial control systems, which provide different and essential services to run and protect the accelerators and experiments. These systems have to deal with several millions of data points (e.g. sensors, actuators, configuration parameters, etc…) which need to be acquired, processed, archived and analysed. Since more than 20 years, CERN and Siemens have developed a strong collaboration to deal with the challenges for these large systems. The presentation will cover the current work on the SCADA (Supervisory Control and Data Acquisition) systems and Data Analytics Frameworks.

  2. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    Science.gov (United States)

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  3. Application of Hazard Analysis and Critical Control Points (HACCP) to the Cultivation Line of Mushroom and Other Cultivated Edible Fungi.

    Science.gov (United States)

    Pardo, José E; de Figueirêdo, Vinícius Reis; Alvarez-Ortí, Manuel; Zied, Diego C; Peñaranda, Jesús A; Dias, Eustáquio Souza; Pardo-Giménez, Arturo

    2013-09-01

    The Hazard analysis and critical control points (HACCP) is a preventive system which seeks to ensure food safety and security. It allows product protection and correction of errors, improves the costs derived from quality defects and reduces the final overcontrol. In this paper, the system is applied to the line of cultivation of mushrooms and other edible cultivated fungi. From all stages of the process, only the reception of covering materials (stage 1) and compost (stage 3), the pre-fruiting and induction (step 6) and the harvest (stage 7) have been considered as critical control point (CCP). The main hazards found were the presence of unauthorized phytosanitary products or above the permitted dose (stages 6 and 7), and the presence of pathogenic bacteria (stages 1 and 3) and/or heavy metals (stage 3). The implementation of this knowledge will allow the self-control of their productions based on the system HACCP to any plant dedicated to mushroom or other edible fungi cultivation.

  4. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  5. Acupuncture-Point Stimulation for Postoperative Pain Control: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Xian-Liang Liu

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of Acupuncture-point stimulation (APS in postoperative pain control compared with sham/placebo acupuncture or standard treatments (usual care or no treatment. Only randomized controlled trials (RCTs were included. Meta-analysis results indicated that APS interventions improved VAS scores significantly and also reduced total morphine consumption. No serious APS-related adverse effects (AEs were reported. There is Level I evidence for the effectiveness of body points plaster therapy and Level II evidence for body points electroacupuncture (EA, body points acupressure, body points APS for abdominal surgery patients, auricular points seed embedding, manual auricular acupuncture, and auricular EA. We obtained Level III evidence for body points APS in patients who underwent cardiac surgery and cesarean section and for auricular-point stimulation in patients who underwent abdominal surgery. There is insufficient evidence to conclude that APS is an effective postoperative pain therapy in surgical patients, although the evidence does support the conclusion that APS can reduce analgesic requirements without AEs. The best level of evidence was not adequate in most subgroups. Some limitations of this study may have affected the results, possibly leading to an overestimation of APS effects.

  6. The KSTAR integrated control system based on EPICS

    International Nuclear Information System (INIS)

    Kim, K.H.; Ju, C.J.; Kim, M.K.; Park, M.K.; Choi, J.W.; Kyum, M.C.; Kwon, M.

    2006-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) control system will be developed with several subsystems, which consist of the central control system (e.g. plasma control, machine control, diagnostic control, time synchronization, and interlock systems) and local control systems for various subsystems. We are planning to connect the entire system with several networks, viz. a reflective-memory-based real-time network, an optical timing network, a gigabit Ethernet network for generic machine control, and a storage network. Then it will evolve into a network-based, distributed real-time control system. Thus, we have to consider the standard communication protocols among the subsystems and how to handle the various kinds of hardware in a homogeneous way. To satisfy these requirements, EPICS has been chosen for the KSTAR control. The EPICS framework provides network-based real-time distributed control, operating system independent programming tools, operator interface tools, archiving tools, and interface tools with other commercial and non-commercial software. The most important advantage of the use of the EPICS framework is in providing homogeneity of the system for the control system developer. The developer does not have to be concerned about the specifics of the local system, but can concentrate on the implementation of the control logic with EPICS tools. We will present the details of the integration issues and also will give a brief summary of the entire KSTAR control system from an integration point of view

  7. EXCEPTIONAL POINTS IN OPEN AND PT-SYMMETRIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Hichem Eleuch

    2014-04-01

    Full Text Available Exceptional points (EPs determine the dynamics of open quantum systems and cause also PT symmetry breaking in PT symmetric systems. From a mathematical point of view, this is caused by the fact that the phases of the wavefunctions (eigenfunctions of a non-Hermitian Hamiltonian relative to one another are not rigid when an EP is approached. The system is therefore able to align with the environment to which it is coupled and, consequently, rigorous changes of the system properties may occur. We compare analytically as well as numerically the eigenvalues and eigenfunctions of a 2 × 2 matrix that is characteristic either of open quantum systems at high level density or of PT symmetric optical lattices. In both cases, the results show clearly the influence of the environment on the system in the neighborhood of EPs. Although the systems are very different from one another, the eigenvalues and eigenfunctions indicate the same characteristic features.

  8. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    Science.gov (United States)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  9. Semantic Linkage of Control Systems

    Directory of Open Access Journals (Sweden)

    Rolf Andreas Rasenack

    2006-01-01

    Full Text Available Control systems are sets of interconnected hardware and software components which regulate the behaviour of processes. The software of modern control systems rises for some years by requirements regarding the flexibility and functionality. Thus the force of innovation grows on enterprises, since ever newer products in ever shorter time intervals must be made available. Associated hereby is the crucial shortening of the product life cycle, whose effects show up in reduced care of the software and the spares inventory. The aim, the concept presented here and developed in a modeling environment, is proved and ensures a minimum functionality of software components. Replacing software components of a control system verified for functionality by a framework at run-time and if necessary the software conditions will become adapted. Quintessential point of this implementation is the usage of an abstract syntax tree. Within its hierarchical structure meta information is attached to nodes and processed by the framework. With the development of the concept for semantic proving of software components the lifetime of software-based products is increased.

  10. Remote control of a cooling system; Regelen en controleren op afstand

    Energy Technology Data Exchange (ETDEWEB)

    Bassa, E [ed.

    1996-10-01

    The renovation of a supermarket building in Nieuw-Lekkerland, Netherlands, included the replacement of the existing refrigerating facility. One of the arguments to choose a new unit was the introduction of the Hazard Analysis Critical Control Points (HACCP) quality control system. The new unit is equipped with a remote control system, using the most up-to-date instruments

  11. Adaptive Control of Electromagnetic Suspension System by HOPF Bifurcation

    Directory of Open Access Journals (Sweden)

    Aming Hao

    2013-01-01

    Full Text Available EMS-type maglev system is essentially nonlinear and unstable. It is complicated to design a stable controller for maglev system which is under large-scale disturbance and parameter variance. Theory analysis expresses that this phenomenon corresponds to a HOPF bifurcation in mathematical model. An adaptive control law which adjusts the PID control parameters is given in this paper according to HOPF bifurcation theory. Through identification of the levitated mass, the controller adjusts the feedback coefficient to make the system far from the HOPF bifurcation point and maintain the stability of the maglev system. Simulation result indicates that adjusting proportion gain parameter using this method can extend the state stability range of maglev system and avoid the self-excited vibration efficiently.

  12. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  13. Online evaluation of point-of-interest recommendation systems

    NARCIS (Netherlands)

    Dean-Hall, A.; Clarke, C.L.A.; Kamps, J.; Kiseleva, J.

    2015-01-01

    In this work we describe a system to evaluate multiple point- of-interest recommendation systems. In this system each recommendation service will be exposed online and crowd-sourced assessors will interact with merged results from multiple services, which are responding to suggestion requests live,

  14. Efficient control of mechatronic systems in dynamic motion tasks

    Directory of Open Access Journals (Sweden)

    Despotova Desislava

    2018-01-01

    Full Text Available Robots and powered exoskeletons have often complex and non-linear dynamics due to friction, elasticity, and changing load. The proposed study addresses various-type robots that have to perform dynamic point-to-point motion tasks (PTPMT. The performance demands are for faster motion, higher positioning accuracy, and lower energy consumption. With given motion task, it is of primary importance to study the structure and controllability of the corresponding controlled system. The following natural decentralized controllability condition is assumed: the signs of any control input and the corresponding output (the acceleration are the same, at least when the control input is at its maximum absolute value. Then we find explicit necessary and sufficient conditions on the control transfer matrix that can guarantee robust controllability in the face of arbitrary, but bounded disturbances. Further on, we propose a generic optimisation approach for control learning synthesis of various type robotic systems in PTPMT. Our procedure for iterative learning control (LC has the following main steps: (1 choose a set of appropriate test control functions; (2 define the most relevant input-output pairs; and (3 solve shooting equations and perform control parameter optimisation. We will give several examples to explain our controllability and optimisation concepts.

  15. A users view of the SPS and LEP control systems

    International Nuclear Information System (INIS)

    Bailey, R.

    1992-01-01

    Every accelerator has a control system; at present the SPS has two, both of which are needed to run the machine. Consequently a user of the SPS/LEP complex has to be concurrently familiar with three control systems. While this situation brings problems it allows, even forces, comparison between the different systems, which in turn enriches the user viewpoint. This paper assesses the SPS and LEP control systems from the point of view of the user, who may be an equipment specialist, operator, accelerator physicist or combinations thereof. (author)

  16. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Science.gov (United States)

    2010-04-01

    ... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Provisions § 123.6 Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. (a) Hazard... fish or fishery product being processed in the absence of those controls. (b) The HACCP plan. Every...

  17. Photovoltaic System Regulation Based on a PID Fuzzy Controller to Ensure a Fixed Settling Time

    Directory of Open Access Journals (Sweden)

    Paula A. Ortiz-Valencia

    2013-11-01

    Full Text Available The main objective of the controllers in photovoltaic systems (PV is to ensure the maximum extraction of the available power. Those controllers usually combine the action of a maximum power point tracking algorithm (MPPT with a voltage regulator, which has the function of rejecting disturbances at the panel terminals. Such controllers are commonly based on PI and PID structures, it requiring linearized models at an operating point. But, due to disturbances generated by the environment and the load, the operating point of the system changes drastically, which hinder to obtain the desired system performance. This paper proposes to regulate the PV system using a Fuzzy PID controller, which adapts to changes in solar irradiance and load oscillations. This characteristic guarantees a constant settling time, which is required to precisely define the period of the MPPT algorithm. In the case of classical linear controllers, the period of the MPPT algorithm is set to the worst case (longest period which generates additional power losses by slowing down the tracking of the optimal operating point. Therefore, the solution proposed in this paper improves the overall system efficiency. Finally, such a solution is validated through simulations in Matlab®.

  18. Control and dynamic systems v.42 advances in theory and applications

    CERN Document Server

    Leonides, CT

    1991-01-01

    Control and Dynamic Systems: Advances in Theory and Applications, Volume 42: Analysis and Control System Techniques for Electric Power Systems, Part 2 of 4 covers the research studies on the significant advances in areas including economic operation of power systems and voltage and power control techniques.This book is composed of eight chapters and begins with a survey of the application of parallel processing to power system analysis as motivated by the requirement for faster computation. The next chapters deal with the issues of power system protection from a system point of view, t

  19. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  20. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  1. Chaos control for a class of chaotic systems using PI-type state observer approach

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing

    2004-01-01

    In this paper, by using the PI-type state observer design approach and the characteristic of ergodicity of chaos, a new method is presented for controlling chaos, including the stabilization of unstable equilibrium points and set-point tracking, for a class of chaotic systems. Based on the theory of nonlinear ordinary differential equations, a simple criterion is derived for designing the controller gains for stabilization and tracking, in which control parameters can be selected via the pole placement technique of linear control theory. More importantly, this control method has a simple controller structure, high robustness against system parametric variations, and strong rejection of external constant disturbances. The method is applied to the chaotic Lorenz system for demonstration

  2. Point cloud processing for smart systems

    Directory of Open Access Journals (Sweden)

    Jaromír Landa

    2013-01-01

    Full Text Available High population as well as the economical tension emphasises the necessity of effective city management – from land use planning to urban green maintenance. The management effectiveness is based on precise knowledge of the city environment. Point clouds generated by mobile and terrestrial laser scanners provide precise data about objects in the scanner vicinity. From these data pieces the state of the roads, buildings, trees and other objects important for this decision-making process can be obtained. Generally, they can support the idea of “smart” or at least “smarter” cities.Unfortunately the point clouds do not provide this type of information automatically. It has to be extracted. This extraction is done by expert personnel or by object recognition software. As the point clouds can represent large areas (streets or even cities, usage of expert personnel to identify the required objects can be very time-consuming, therefore cost ineffective. Object recognition software allows us to detect and identify required objects semi-automatically or automatically.The first part of the article reviews and analyses the state of current art point cloud object recognition techniques. The following part presents common formats used for point cloud storage and frequently used software tools for point cloud processing. Further, a method for extraction of geospatial information about detected objects is proposed. Therefore, the method can be used not only to recognize the existence and shape of certain objects, but also to retrieve their geospatial properties. These objects can be later directly used in various GIS systems for further analyses.

  3. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  4. Relative controllability of nonlinear systems with delays in state and ...

    African Journals Online (AJOL)

    In this work, sufficient conditions are developed for the relative controllability of perturbed nonlinear systems with time varying multiple delays in control with the perturbation function having implicit derivative with delays depending on both state and control variable, using Darbo's fixed points theorem. Journal of the Nigerian ...

  5. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  6. Stability Analysis of Periodic Systems by Truncated Point Mappings

    Science.gov (United States)

    Guttalu, R. S.; Flashner, H.

    1996-01-01

    An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the "exact solution". It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.

  7. Optimal boundary control and boundary stabilization of hyperbolic systems

    CERN Document Server

    Gugat, Martin

    2015-01-01

    This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

  8. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    Science.gov (United States)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  9. Computer Based Dose Control System on Linear Accelerator

    International Nuclear Information System (INIS)

    Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna

    2000-01-01

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  10. A Homogeneous and Self-Dual Interior-Point Linear Programming Algorithm for Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Skajaa, Anders

    2015-01-01

    We develop an efficient homogeneous and self-dual interior-point method (IPM) for the linear programs arising in economic model predictive control of constrained linear systems with linear objective functions. The algorithm is based on a Riccati iteration procedure, which is adapted to the linear...... system of equations solved in homogeneous and self-dual IPMs. Fast convergence is further achieved using a warm-start strategy. We implement the algorithm in MATLAB and C. Its performance is tested using a conceptual power management case study. Closed loop simulations show that 1) the proposed algorithm...

  11. Investigation of relation between singular points and number of limit cycles for a rotor-AMBs system

    International Nuclear Information System (INIS)

    Li, J.; Tian, Y.; Zhang, W.

    2009-01-01

    The relation between singular points and the number of limit cycles is investigated for a rotor-active magnetic bearings system with time-varying stiffness and single-degree-of-freedom. The averaged equation of the system is a perturbed polynomial Hamiltonian system of degree 5. The dynamic characteristics of the unperturbed system are first analyzed for a certain parameter group. The number of limit cycles and their configurations of the perturbed system under eight different parametric groups are obtained and the influence of eight control conditions on the number of limit cycles is studied. The results obtained here will play an important leading role in the study of the properties of nonlinear dynamics and control of the rotor-active magnetic bearings system with time-varying stiffness.

  12. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  13. On-line ultrasonic inside-diameter control system for Zircaloy

    International Nuclear Information System (INIS)

    Tanaka, Y.; Fujii, N.; Komatsu, M.; Kubota, H.

    1984-01-01

    An ultrasonic inside-diameter (ID) control system was used during the final etching process for producing Zircaloy nuclear fuel cladding tubes. This results in establishing automatic inside-diameter control during etching with an automatic etching system. In this system, the inside-diameter at the center point in the length of each tube is continuously measured with the ultrasonic inside-diameter measuring equipment during the etching process and the etching is automatically stopped by a signal from the control equipment when the inside-diameter reaches the target value. This made the final etching process economical and suitable for large-scale production, having an equal or better level at the inside-diameter of tubes etched with this system than those made by a process controlled by an air-micrometer

  14. Hybrid control of bifurcation and chaos in stroboscopic model of Internet congestion control system

    International Nuclear Information System (INIS)

    Ding Dawei; Zhu Jie; Luo Xiaoshu

    2008-01-01

    Interaction between transmission control protocol (TCP) and random early detection (RED) gateway in the Internet congestion control system has been modelled as a discrete-time dynamic system which exhibits complex bifurcating and chaotic behaviours. In this paper, a hybrid control strategy using both state feedback and parameter perturbation is employed to control the bifurcation and stabilize the chaotic orbits embedded in this discrete-time dynamic system of TCP/RED. Theoretical analysis and numerical simulations show that the bifurcation is delayed and the chaotic orbits are stabilized to a fixed point, which reliably achieves a stable average queue size in an extended range of parameters and even completely eliminates the chaotic behaviour in a particular range of parameters. Therefore it is possible to decrease the sensitivity of RED to parameters. By using the hybrid strategy, we may improve the stability and performance of TCP/RED congestion control system significantly

  15. Control Reconfiguration of LPV Systems Using Virtual Sensor and Virtual Actuator

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Stoustrup, Jakob; Bak, Thomas

    2012-01-01

    the plant and the nominal controller such that the fault tolerant goal is achieved without re-designing the nominal controller. The role of the reconfiguration block is to transform the signals from the faulty system such that its behavior is similar to the nominal system from the point of view...

  16. An automatic dew-point hygrometer making use of β-ray backscattering and controlled at the constant amount of dew

    International Nuclear Information System (INIS)

    Matsumoto, Shigeaki; Kobayashi, Hisanobu

    1988-01-01

    A control system which consists of proportional and integral control to maintain the constant amount of dew was developed in this hygrometer. The dew points were measured within an accuracy of ±1 deg C in the ranging from -4 to 32 deg C. The response time for suddenly changing humidity was about 8 min. (author)

  17. Lighting system with thermal management system having point contact synthetic jets

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  18. Pressure-Point Strategy: Leverages for Urban Systemic Transformation

    Directory of Open Access Journals (Sweden)

    Katleen De Flander

    2017-01-01

    Full Text Available Sustainability can be understood as a specific kind of problem framing that emphasizes the interconnectedness of different problems and scales and calls for new forms of problem handling that are much more process-oriented, reflexive and iterative in nature. Closely related with the notion of reflexive governance, we propose such an alternative strategy for societal problem handling and change management in the urban context. The strategy starts from stress states in the urban system(s and uses their initial momentum to encourage systemic change through intraventions—rather than interventions—at selected pressure points. This paper highlights the potential to evolve what has often been an intuitive practice, led by community or elected leaders with unique wisdom about functions and pressure points in their urban system, into a more accessible strategy for shaping socio-ecological transformation in urban practice.

  19. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    Science.gov (United States)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  20. Closed-Loop and Robust Control of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Chunlin Chen

    2013-01-01

    Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  1. Closed-loop and robust control of quantum systems.

    Science.gov (United States)

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  2. LANSCE personnel access control system (PACS)

    International Nuclear Information System (INIS)

    Sturrock, J.C.; Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. The Personnel Access Control System (PACS) is a component of the RSS that is designed to prevent personnel access to areas where prompt radiation is a hazard. PACS was designed to replace several older personnel safety systems (PSS) with a single modem unified design. Lessons learned from the operation over the last 20 years were incorporated into a redundant sensor, single-point failure safe, fault tolerant, and tamper-resistant system that prevents access to the beam areas by controlling the access keys and beam stoppers. PACS uses a layered philosophy to the physical and electronic design. The most critical assemblies are battery backed up, relay logic circuits; less critical devices use Programmable Logic Controllers (PLCs) for timing functions and communications. Outside reviewers have reviewed the operational safety of the design. The design philosophy, lessons learned, hardware design, software design, operation, and limitations of the device are described

  3. Artificial Neural Network In Maximum Power Point Tracking Algorithm Of Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Modestas Pikutis

    2014-05-01

    Full Text Available Scientists are looking for ways to improve the efficiency of solar cells all the time. The efficiency of solar cells which are available to the general public is up to 20%. Part of the solar energy is unused and a capacity of solar power plant is significantly reduced – if slow controller or controller which cannot stay at maximum power point of solar modules is used. Various algorithms of maximum power point tracking were created, but mostly algorithms are slow or make mistakes. In the literature more and more oftenartificial neural networks (ANN in maximum power point tracking process are mentioned, in order to improve performance of the controller. Self-learner artificial neural network and IncCond algorithm were used for maximum power point tracking in created solar power plant model. The algorithm for control was created. Solar power plant model is implemented in Matlab/Simulink environment.

  4. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    Science.gov (United States)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  5. Remotely controlled repair at Douglas Point

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The Douglas Point nuclear generating station, completed in 1966, was Canada's first venture in commercial nuclear power. The discovery, 11 years later, of two perforations in auxiliary piping in a high radiation area led Atomic Energy of Canada Ltd and Ontario Hydro to develop new approaches to remotely controlled repair that will have much wider applications. Eddy current and ultrasonic testing were used to determine the pattern and extent of wear in a pipe encircled by a U-bolt, without first removing the U-bolt. Progress was monitored using remote TV cameras. Welding tools were designed and fabricated for the repairs, and a manipulator was also designed to transport the tool into its place of work. (author)

  6. DIRECT GEOREFERENCING ON SMALL UNMANNED AERIAL PLATFORMS FOR IMPROVED RELIABILITY AND ACCURACY OF MAPPING WITHOUT THE NEED FOR GROUND CONTROL POINTS

    Directory of Open Access Journals (Sweden)

    O. Mian

    2015-08-01

    Full Text Available This paper presents results from a Direct Mapping Solution (DMS comprised of an Applanix APX-15 UAV GNSS-Inertial system integrated with a Sony a7R camera to produce highly accurate ortho-rectified imagery without Ground Control Points on a Microdrones md4-1000 platform. A 55 millimeter Nikkor f/1.8 lens was mounted on the Sony a7R and the camera was then focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 UAV GNSS-Inertial system using a custom mount specifically designed for UAV applications. In July 2015, Applanix and Avyon carried out a test flight of this system. The goal of the test flight was to assess the performance of DMS APX-15 UAV direct georeferencing system on the md4-1000. The area mapped during the test was a 250 x 300 meter block in a rural setting in Ontario, Canada. Several ground control points are distributed within the test area. The test included 8 North-South lines and 1 cross strip flown at 80 meters AGL, resulting in a ~1 centimeter Ground Sample Distance (GSD. Map products were generated from the test flight using Direct Georeferencing, and then compared for accuracy against the known positions of ground control points in the test area. The GNSS-Inertial data collected by the APX-15 UAV was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. The base-station’s position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. The ground control points were surveyed in using differential GNSS post-processing techniques with respect to the base-station.

  7. Power converter with maximum power point tracking MPPT for small wind-electric pumping systems

    International Nuclear Information System (INIS)

    Lara, David; Merino, Gabriel; Salazar, Lautaro

    2015-01-01

    Highlights: • We implement a wind electric pumping system of small power. • The power converter allowed to change the operating point of the electro pump. • Two control techniques were implemented in the power converter. • The control V/f variable allowed to increase the power generated by the permanent magnet generator. - Abstract: In this work, an AC–DC–AC direct-drive power converter was implemented for a wind electric pumping system consisting of a permanent magnet generator (PMG) of 1.3 kW and a peripheral single phase pump of 0.74 kW. In addition, the inverter linear V/f control scheme and the maximum power point tracking (MPPT) algorithm with variable V/f were developed. MPPT algorithm seeks to extract water in a wide range of power input using the maximum amount of wind power available. Experimental trials at different pump pressures were conducted. With a MPPT tracking system with variable V/f, a power value of 1.3 kW was obtained at a speed of 350 rpm and a maximum operating hydraulic head of 50 m. At lower operating heads pressures (between 10 and 40 m), variable V/f control increases the power generated by the PMG compared to the linear V/f control. This increase ranged between 4% and 23% depending on the operating pressure, with an average of 13%, getting close to the maximum electrical power curve of the PMG. The pump was driven at variable frequency reaching a minimum speed of 0.5 times the rated speed. Efficiency of the power converter ranges between 70% and 95% with a power factor between 0.4 and 0.85, depending on the operating pressure

  8. A simple method of chaos control for a class of chaotic discrete-time systems

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing

    2005-01-01

    In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called 'odd eigenvalues number limitation' of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system

  9. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  10. Studi Eksperimental Pengontrolan Air Conditioning System Dengan Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Sudirman -

    2012-11-01

    Full Text Available Electrical energy available in Indonesia at this time is not yet sufficient for all existing activities, this can be proved byfrequent occurrence of blackouts in several areas in Indonesia. It is necessary for a saving in electrical energy consumptionin all sectors, it is one of the refrigeration system. Research was conducted by testing AC (3 HP / 3 phase using 2 differentcontrol systems, namely conventional control and FLC. Testing is done by placing the indoor units in cold storage room.Each test performed with varying load in the test room, ie no light burden, lamp 1000 Watt, and lamp 2000 Watt. Testingusing a conventional control system set point temperature 26 ° C and 3 variations of the differential is 1 , 2 and 3 , the FLCusing the temperature setting point 26 ° C. From this research we can conclude that the application of FLC system produceselectric energy consumption of the lowest compared to conventional control in this case is the differential 1. FLC applicationof electrical energy consumption at load 1000 Watt lower 11% and the load 2000 Watt 4% lower compared withconventional control in diffrensial 1.

  11. Pneumatic control system for rapid vertical rectangular movements of heavy loads

    Energy Technology Data Exchange (ETDEWEB)

    Huettel, G; Krause, H [Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic)

    1975-01-01

    A new control system has been developed in order to realize the physically necessary short transition times between the dead points of a pneumatic oscillator even for heavy loads and high working speeds. Integral element of this system is the external control of braking process provided for in addition to the end position brake installed in the working cylinder. This control system is applicable not only to pile oscillators, but also universally applicable to pneumatic apparatuses.

  12. Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Hansen, Michael Rygaard; Ballebye, Morten

    2010-01-01

    This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme...... is developed for the specific crane, considering the saturation phenomena of the system and practical implementation....

  13. Assessment of the operating conditions of coordinated Q-V controller within secondary voltage control system

    Directory of Open Access Journals (Sweden)

    Arnautović Dušan

    2014-01-01

    Full Text Available The paper, discusses the possibility to use coordinated Q-V controller (CQVC to perform secondary voltage control at the power plant level. The CQVC performs the coordination of the synchronous generators' (SG reactive power outputs in order to maintain the same total reactive power delivered by the steam power plant (SPP, while at the same time maintaining a constant voltage with programmed reactive droop characteristic at the SPP HV busbar. This busbar is the natural pilot node for secondary voltage control at HV level as the node with maximum power production and maximum power consumption. In addition to voltage control, the CQVC maintains the uniform allocation of reactive power reserves at all SGs in the power plant. This is accomplished by setting the reactive power of each SG at given operating point in accordance to the available reactive power of the same SG at that point. Different limitations imposed by unit's and plant equipment are superimposed on original SG operating chart (provided by the manufacturer in order to establish realistic limits of SG operation at given operating point. The CQVC facilitates: i practical implementation of secondary voltage control in power system, as it is capable of ensuring delivery of reactive power as requested by regional/voltage control while maintaining voltage at system pilot node, ii the full deployment of available reactive power of SGs which in turn contributes to system stability, iii assessment of the reactive power impact/contribution of each generator in providing voltage control as ancillary service. Furthermore, it is also possible to use CQVC to pricing reactive power production cost at each SG involved and to design reactive power bidding structure for transmission network devices by using recorded data. Practical exploitation experience acquired during CQVC continuous operation for over two years enabled implementation of the optimal setting of reference voltage and droop on daily

  14. Building HVAC control knowledge data schema – Towards a unified representation of control system knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Treado, Stephen J.; Messner, John I.

    2016-12-01

    Building control systems for Heating, Ventilation, and Air Conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building Control Knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control module name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats.

  15. Morphological control in polymer solar cells using low-boiling-point solvent additives

    Science.gov (United States)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  16. Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A. Pati

    2017-02-01

    Full Text Available This work proposes a systematic two-degree freedom control scheme to improve the reference input tracking and load disturbance rejection for an unstable magnetic levitation system. The proposed control strategy is a two-step design process. Firstly, a proportional derivative controller is introduced purposely to get the desired set-point response of the magnetic levitation system and then, an integral square error (ISE performance specification is used for designing a set-point tracking controller. Secondly, a disturbance estimator is designed using the desired closed loop complimentary sensitivity function for the rejection of load disturbances. This leads to the decoupling of the nominal set-point response from the load disturbance response similar to an open loop control manner. Thus, it is convenient to optimize both controllers simultaneously as well as separately. The effectiveness of the proposed control strategy is validated through simulation.

  17. MPPT for Photovoltaic System Using Nonlinear Controller

    Directory of Open Access Journals (Sweden)

    Ramsha Iftikhar

    2018-01-01

    Full Text Available Photovoltaic (PV system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP, which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O and fuzzy logic-based controller (FLBC under abrupt changes in environmental conditions.

  18. Controlling open quantum systems: tools, achievements, and limitations

    International Nuclear Information System (INIS)

    Koch, Christiane P

    2016-01-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions. (topical review)

  19. A time domain inverse dynamic method for the end point tracking control of a flexible manipulator

    Science.gov (United States)

    Kwon, Dong-Soo; Book, Wayne J.

    1991-01-01

    The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.

  20. Point-of-purchase health information encourages customers to purchase vegetables: objective analysis by using a point-of-sales system.

    Science.gov (United States)

    Ogawa, Yoshiko; Tanabe, Naohito; Honda, Akiko; Azuma, Tomoko; Seki, Nao; Suzuki, Tsubasa; Suzuki, Hiroshi

    2011-07-01

    Point-of-purchase (POP) information at food stores could help promote healthy dietary habits. However, it has been difficult to evaluate the effects of such intervention on customers' behavior. We objectively evaluated the usefulness of POP health information for vegetables in the modification of customers' purchasing behavior by using the database of a point-of-sales (POS) system. Two supermarket stores belonging to the same chain were assigned as the intervention store (store I) and control store (store C). POP health information for vegetables was presented in store I for 60 days. The percent increase in daily sales of vegetables over the sales on the same date of the previous year was compared between the stores by using the database of the POS system, adjusting for the change in monthly visitors from the previous year (adjusted ∆sales). The adjusted ∆sales significantly increased during the intervention period (Spearman's ρ = 0.258, P for trend = 0.006) at store I but did not increase at store C (ρ = -0.037, P for trend = 0.728). The growth of the mean adjusted ∆sales of total vegetables from 30 days before the intervention period through the latter half of the intervention period was estimated to be greater at store I than at store C by 18.7 percentage points (95% confidence interval 1.6-35.9). Health-related POP information for vegetables in supermarkets can encourage customers to purchase and, probably, consume vegetables.

  1. PID control of second-order systems with hysteresis

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Logemann, Hartmut; Ryan, Eugene P.

    2008-01-01

    The efficacy of proportional, integral and derivative (PID) control for set point regulation and disturbance rejection is investigated in a context of second-order systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the

  2. PID control of second-order system with hysteresis

    NARCIS (Netherlands)

    Jayawardhana, B.; Logemann, H.; Ryan, E.P.

    2007-01-01

    The efficacy of proportional, derivative and integral (PID) control for set point regulation and disturbance rejection is investigated in a context of mechanical systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the

  3. Dependability analysis of the data communication system in train control system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Communication based train control (CBTC) system is based on mobile communication and overcomes fixed blocks in order to increase track utilization and train safety. The data communication system (DCS) between trains and wayside equipment is a crucial factor for the safe and efficient operation of CBTC system. The dependability under various transmission conditions needs to be modeled and evaluated. In this paper,a stochastic reward net (SRN) model for DCS based IEEE 802.11 standard was developed,which captures all relevant failure and failure recovery behavior system aspects in a concise way. We compared the reliability,availability for DCS with and without access point (AP) and antenna redundant configuration. We also quantitatively evaluated and compared the frame loss probability for three DCS configurations with different train velocities and train numbers in one radio cell. Fixed-point iteration was adopted to simplify the analysis. Numerical results showed the significant improvement of the reliability,availability and the frame loss probability index for the full redundant configuration.

  4. MIMO H∞ control of three-axis ship-mounted mobile antenna systems

    Science.gov (United States)

    Kuseyri, İ. Sina

    2018-02-01

    The need for on-line information in any environment has led to the development of mobile satellite communication terminals. These high data-rate terminals require inertial antenna pointing error tolerance within fractions of a degree. However, the base motion of the antenna platform in mobile applications complicates this pointing problem and must be accounted for. Gimbaled motorised pedestals are used to eliminate the effect of disturbance and maintain uninterrupted communication. In this paper, a three-axis ship-mounted antenna on a pedestal gimbal system is studied. Based on the derived dynamic model of the antenna pedestal multi input-multi output PID and H∞ linear controllers are designed to stabilise the antenna to keep its orientation unaltered towards the satellite while the sea waves disturb the antenna. Simulation results are presented to show the stabilisation performance of the system with the synthesised controllers. It is shown through performance comparison and analysis that the proposed H∞ control structure is preferable over PID controlled system in terms of system stability and the disturbance rejection.

  5. Workshop on materials control and accounting system design

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1989-01-01

    The chapter describes the workshop aimed at reinforcing, through participation in the design exercise, the concepts of nuclear materials control and accountability. Topics include: workshop format; key elements of a materials management and accounting (MC and A) system; and MC and A system design including safeguards organization and management, material access areas, key measurement points, nuclear materials measurements, physical inventory, material balance closings, and internal controls. Appended to this chapter is a detailed description of a facility that produces metallic plutonium and the safeguards requirements for this facility

  6. A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis

    OpenAIRE

    Masataka, SUZUKI; Yoshihiko, YAMAZAKI; Yumiko, TANIGUCHI; Department of Psychology, Kinjo Gakuin University; Department of Health and Physical Education, Nagoya Institute of Technology; College of Human Life and Environment, Kinjo Gakuin University

    2003-01-01

    SUZUKI,M., YAMAZAKI,Y. and TANIGUCHI,Y., A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis. Adv. Exerc. Sports Physiol., Vol.9, No.1 pp.7-25, 2003. According to the equilibrium point hypothesis of motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction among moving equilibrium point, reflex feedback and muscle mechanical properties. This approach is attractive as it obviates the n...

  7. Upgrade of the Los Alamos Plutonium Facility control system

    International Nuclear Information System (INIS)

    Pope, N.G.; Turner, W.J.; Brown, R.E.; Bibeau, R.A.; Davis, R.R.; Hogan, K.

    1996-01-01

    After 20 yrs service, the Los Alamos Plutonium Facility is undergoing an upgrade to its aging Facility Control System. The new system design includes a network of redundantly-paired programmable logic controllers that will interface with about 2200 field data points. The data communications network that has been designed includes a redundant, self-healing fiber optic data highway as well as a fiber optic ethernet. Commercially available human-machine interface software running on a UNIX-based system displays facility subsystem status operator X-terminals. Project design features, methods, costs, and schedule are discussed

  8. Study and simulation of a MPPT controller based on fuzzy logic controller for photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Belaidi, R.; Chikouche, A.; Fathi, M.; Mohand Kaci, G.; Smara, Z. [Unite de Developpement des Equipements Solaires (Algeria); Haddouche, A. [Universite Badji Mokhtar (Algeria)], E-mail: rachidi3434@yahoo.fr

    2011-07-01

    With the depletion of fossil fuels and the increasing concerns about the environment, renewable energies have become more and more attractive. Photovoltaic systems convert solar energy into electric energy through the use of photovoltaic cells. The aim of this paper is to compare the capacity of fuzzy logic and perturb and observe controllers in optimizing the control performance of photovoltaic systems. Simulations were performed using Matlab and Simulink and were analyzed to determine the effectiveness of both controllers and compare them. Results showed that the fuzzy controller has a better dynamic performance than the perturb and observe controller in terms of response time and damping characteristics. In addition, the fuzzy controller was found to better follow the maximum power point and to provide faster convergence and lower statistical error. This study demonstrated that the fuzzy controller gives a better performance than traditional controllers in optimizing the performance of photovoltaic systems.

  9. Grade Point Average System of Assessment: the Implementation Peculiarities in Russia

    Directory of Open Access Journals (Sweden)

    B. A. Sazonov

    2012-01-01

    Full Text Available The paper analyzes the specificity, as well as flaws and faults of implementing the Grade Point Average (GPA system of students’ personal assessment in Russian higher schools. Nowadays, the above system is regarded as the basic functional element of educational process organization at the world’s leading universities. The author summarizes the foreign experience and demonstrates the advantages of the GPA system in comparison with the traditional domestic scale of assessment: full records of student’s assessment, objectivity, activation of responsibility for the results achieved, and self-control motivation. The standard GPA model is demonstrated, its application systemizing both the Russian and European requirements to the higher school graduates. The author suggests his own version of the assessment scale estimating and comparing the quality of education in Russian universities and worldwide. The research findings can be of interest to the specialists in the sphere of quality measurement and educational management. 

  10. On the systems of automatic non-destructive control of NPP metallic structures

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.

    1980-01-01

    The main stages of developing automatic systems of non- destructive control (NC) of NPP metallic structures are pointed out. The main requirements for automatic NC systems are formulated. Recommendations on the use of the developed experimental automatic facilities for control of certain NPP components are given. It is noted that the present facilities may be used in the future in development of modular sets of non-destructive control systems [ru

  11. Study of Globus-M Tokamak Poloidal System and Plasma Position Control

    Science.gov (United States)

    Dokuka, V. N.; Korenev, P. S.; Mitrishkin, Yu. V.; Pavlova, E. A.; Patrov, M. I.; Khayrutdinov, R. R.

    2017-12-01

    In order to provide efficient performance of tokamaks with vertically elongated plasma position, control systems for limited and diverted plasma configuration are required. The accuracy, stability, speed of response, and reliability of plasma position control as well as plasma shape and current control depend on the performance of the control system. Therefore, the problem of the development of such systems is an important and actual task in modern tokamaks. In this study, the measured signals from the magnetic loops and Rogowski coils are used to reconstruct the plasma equilibrium, for which linear models in small deviations are constructed. We apply methods of the H∞-optimization theory to the synthesize control system for vertical and horizontal position of plasma capable to working with structural uncertainty of the models of the plant. These systems are applied to the plasma-physical DINA code which is configured for the tokamak Globus-M plasma. The testing of the developed systems applied to the DINA code with Heaviside step functions have revealed the complex dynamics of plasma magnetic configurations. Being close to the bifurcation point in the parameter space of unstable plasma has made it possible to detect an abrupt change in the X-point position from the top to the bottom and vice versa. Development of the methods for reconstruction of plasma magnetic configurations and experience in designing plasma control systems with feedback for tokamaks provided an opportunity to synthesize new digital controllers for plasma vertical and horizontal position stabilization. It also allowed us to test the synthesized digital controllers in the closed loop of the control system with the DINA code as a nonlinear model of plasma.

  12. On a multi-channel transportation loss system with controlled input and controlled service

    Directory of Open Access Journals (Sweden)

    Jewgeni Dshalalow

    1987-01-01

    Full Text Available A multi-channel loss queueing system is investigated. The input stream is a controlled point process. The service in each of m parallel channels depends on the state of the system at certain moments of time when input and service may be controlled. To obtain explicitly the limiting distribution of the main process (Zt (the number of busy channels in equilibrium, an auxiliary three dimensional process with two additional components (one of them is a semi-Markov process is treated as semi-regenerative process. An optimization problem is discussed. Simple expressions for an objective function are derived.

  13. The elettra beam line control system

    International Nuclear Information System (INIS)

    Mignacco, M.; Abrami, A.; Dequal, Z.

    1994-01-01

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  14. MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System

    Science.gov (United States)

    Mason, James Paul; Baumgart, Matt; Rogler, Bryan; Downs, Chloe; Williams, Margaret; Woods, Thomas N.; Palo, Scott; Chamberlin, Phillip C.; Solomon, Stanley; Jones, Andrew; Li, Xinlin; Kohnert, Rick; Caspi, Amir

    2017-12-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a three-unit (3U) CubeSat designed for a three-month mission to study solar soft X-ray spectral irradiance. The first of the two flight models was deployed from the International Space Station in May 2016, and operated for one year before its natural deorbiting. This was the first flight of the Blue Canyon Technologies XACT 3-axis attitude determination and control system - a commercially available, high-precision pointing system. The performance of the pointing system on orbit was characterized, including performance at low altitudes where drag torque builds up. It was found that the pointing accuracy was 0.0042° - 0.0117° (15" - 42", 3σ, axis dependent) consistently from 190 km - 410 km, slightly better than the specification sheet states. Peak-to-peak jitter was estimated to be 0.0073° (10 s^-1) - 0.0183° (10 s^-1) (26" (10 s^-1) - 66" (10 s^-1), 3σ). The system was capable of dumping mome ntum until an altitude of 185 km. Small amounts of sensor degradation were found in the star tracker and coarse sun sensor. The mission profile did not require high-agility maneuvers, so it was not possible to characterize this metric. Without a GPS receiver, it was necessary to periodically upload ephemeris information to update the orbit propagation model and maintain pointing. At 400 km, these uploads were required once every other week; at ˜270 km, they were required every day. The power performance of the electric power system was also characterized, including use of a novel pseudo-peak power tracker - a resistor that limited the current draw from the battery on the solar panels. With 19 30% efficient solar cells and an 8 W system load, the power balance had 65% of margin on orbit. The current paper presents several recommendations to other CubeSat programs throughout.

  15. State Analysis: A Control Architecture View of Systems Engineering

    Science.gov (United States)

    Rasmussen, Robert D.

    2005-01-01

    A viewgraph presentation on the state analysis process is shown. The topics include: 1) Issues with growing complexity; 2) Limits of common practice; 3) Exploiting a control point of view; 4) A glimpse at the State Analysis process; 5) Synergy with model-based systems engineering; and 6) Bridging the systems to software gap.

  16. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  17. The development of a control system for a small high speed steam microturbine generator system

    Science.gov (United States)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  18. Natural Preconditioning and Iterative Methods for Saddle Point Systems

    KAUST Repository

    Pestana, Jennifer

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness - in terms of rapidity of convergence - is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends.

  19. Optimal control strategy to reduce the temporal wavefront error in AO systems

    NARCIS (Netherlands)

    Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.

    2004-01-01

    An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of

  20. A scanning point source for quality control of FOV uniformity in GC-PET imaging

    International Nuclear Information System (INIS)

    Bergmann, H.; Minear, G.; Dobrozemsky, G.; Nowotny, R.; Koenig, B.

    2002-01-01

    Aim: PET imaging with coincidence cameras (GC-PET) requires additional quality control procedures to check the function of coincidence circuitry and detector zoning. In particular, the uniformity response over the field of view needs special attention since it is known that coincidence counting mode may suffer from non-uniformity effects not present in single photon mode. Materials and methods: An inexpensive linear scanner with a stepper motor and a digital interface to a PC with software allowing versatile scanning modes was developed. The scanner is used with a source holder containing a Sodium-22 point source. While moving the source along the axis of rotation of the GC-PET system, a tomographic acquisition takes place. The scan covers the full axial field of view of the 2-D or 3-D scatter frame. Depending on the acquisition software, point source scanning takes place continuously while only one projection is acquired or is done in step-and-shoot mode with the number of positions equal to the number of gantry steps. Special software was developed to analyse the resulting list mode acquisition files and to produce an image of the recorded coincidence events of each head. Results: Uniformity images of coincidence events were obtained after further correction for systematic sensitivity variations caused by acquisition geometry. The resulting images are analysed visually and by calculating NEMA uniformity indices as for a planar flood field. The method has been applied successfully to two different brands of GC-PET capable gamma cameras. Conclusion: Uniformity of GC-PET can be tested quickly and accurately with a routine QC procedure, using a Sodium-22 scanning point source and an inexpensive mechanical scanning device. The method can be used for both 2-D and 3-D acquisition modes and fills an important gap in the quality control system for GC-PET

  1. Novel TPPO Based Maximum Power Point Method for Photovoltaic System

    Directory of Open Access Journals (Sweden)

    ABBASI, M. A.

    2017-08-01

    Full Text Available Photovoltaic (PV system has a great potential and it is installed more when compared with other renewable energy sources nowadays. However, the PV system cannot perform optimally due to its solid reliance on climate conditions. Due to this dependency, PV system does not operate at its maximum power point (MPP. Many MPP tracking methods have been proposed for this purpose. One of these is the Perturb and Observe Method (P&O which is the most famous due to its simplicity, less cost and fast track. But it deviates from MPP in continuously changing weather conditions, especially in rapidly changing irradiance conditions. A new Maximum Power Point Tracking (MPPT method, Tetra Point Perturb and Observe (TPPO, has been proposed to improve PV system performance in changing irradiance conditions and the effects on characteristic curves of PV array module due to varying irradiance are delineated. The Proposed MPPT method has shown better results in increasing the efficiency of a PV system.

  2. National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J. LLNL

    1998-01-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance

  3. Neuro-PID tracking control of a discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    In this paper, the problem of improving the performance of a discharge air temperature (DAT) system using a PID controller and augmenting it with neural network based tuning and tracking functions is explored. The DAT system is modeled as a SISO (single input single output) system. The architecture of the real time neuro-PID controller and simulation results obtained under realistic operating conditions are presented. The neural network assisted PID tuning method is simple to implement. Results show that the network assisted PID controller is able to track both constant and variable set point trajectories efficiently in the presence of disturbances acting on the DAT system

  4. Process Control/SCADA system vendor security awareness and security posture.

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Lüders, S.

    2009-01-01

    A starting point for the adequate security of process control/SCADA systems is the security awareness and security posture by the manufacturers, vendors, system integrators, and service organisations. The results of a short set of questions indicate that major security improvements are required in

  5. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    Butner, D.N.

    1979-01-01

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  6. Transient performance of integrated SOFC system including spatial temperature control

    OpenAIRE

    Mueller, F; Fardadi, M; Shaffer, B; Brouwer, J; Jabbari, F

    2010-01-01

    Spatial temperature feedback control has been developed for a simulated integrated non-pressurized simple cycle solid oxide fuel cell (SOFC) system. The fuel cell spatial temperature feedback controller is based on (1) feed-forward set-points that minimize temperature variation in the fuel cell electrode-electrolyte solid temperature profile for the system operating power range, and (2) decentralized proportional-integral based feedback to maintain the fuel cell spatial temperature profile du...

  7. MIMIC: An Innovative Methodology for Determining Mobile Laser Scanning System Point Density

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2014-08-01

    Full Text Available Understanding how various Mobile Mapping System (MMS laser hardware configurations and operating parameters exercise different influence on point density is important for assessing system performance, which in turn facilitates system design and MMS benchmarking. Point density also influences data processing, as objects that can be recognised using automated algorithms generally require a minimum point density. Although obtaining the necessary point density impacts on hardware costs, survey time and data storage requirements, a method for accurately and rapidly assessing MMS performance is lacking for generic MMSs. We have developed a method for quantifying point clouds collected by an MMS with respect to known objects at specified distances using 3D surface normals, 2D geometric formulae and line drawing algorithms. These algorithms were combined in a system called the Mobile Mapping Point Density Calculator (MIMIC and were validated using point clouds captured by both a single scanner and a dual scanner MMS. Results from MIMIC were promising: when considering the number of scan profiles striking the target, the average error equated to less than 1 point per scan profile. These tests highlight that MIMIC is capable of accurately calculating point density for both single and dual scanner MMSs.

  8. Robust digital controllers for uncertain chaotic systems: A digital redesign approach

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, Mohammad [Department of Controls, FMC Kongsberg Subsea, FMC Energy Systems, Houston, TX 77067 (United States); Barajas-Ramirez, Juan-Gonzalo [CICESE, Depto. De Electronica y Telecomunicaciones, Ensenada, BC, 22860 (Mexico); Chen Guanrong [Centre for Chaos Control and Synchronization, Department of Electronic Engineering, City University of Hong Kong (China); Shieh, Leang S. [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 (United States)

    2007-03-15

    In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems--chaotic systems.

  9. Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm

    Directory of Open Access Journals (Sweden)

    Hasan Mahamudul

    2013-01-01

    Full Text Available This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.

  10. A Comparative Study of Applying Active-Set and Interior Point Methods in MPC for Controlling Nonlinear pH Process

    Directory of Open Access Journals (Sweden)

    Syam Syafiie

    2014-06-01

    Full Text Available A comparative study of Model Predictive Control (MPC using active-set method and interior point methods is proposed as a control technique for highly non-linear pH process. The process is a strong acid-strong base system. A strong acid of hydrochloric acid (HCl and a strong base of sodium hydroxide (NaOH with the presence of buffer solution sodium bicarbonate (NaHCO3 are used in a neutralization process flowing into reactor. The non-linear pH neutralization model governed in this process is presented by multi-linear models. Performance of both controllers is studied by evaluating its ability of set-point tracking and disturbance-rejection. Besides, the optimization time is compared between these two methods; both MPC shows the similar performance with no overshoot, offset, and oscillation. However, the conventional active-set method gives a shorter control action time for small scale optimization problem compared to MPC using IPM method for pH control.

  11. Generalized transmissibilities for corner point rids in reservoir simulation; Transmissibilidades generalizadas em malhas corner point na simulacao de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Mauricio P.; Silva, Antonio Fabio C. da; Maliska, Clovis R. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Simulacao Numerica em Mecanica dos Fluidos e Transferencia de Calor (SINMEC)

    2008-07-01

    It is common to use five points schemes in reservoir simulation, since it simplifies the computational implementation and takes the linear resultant system simplest to be solved, giving more process velocity and robust to simulator. However, the use of these schemes may introduce significant errors solutions as function of volume's non orthogonality and medium anisotropy. These errors do not disappear with grid refinement since they are not truncate errors, it is a flux calculus approximation in the control volume faces. In order to get a correct solution and with no errors of these kind, it must be used a nine point scheme based on the correct flux calculus. The objective of this work is to present a new methodology to calculate the transmissibility on simulation reservoir that use a five and nine points scheme with corner-points grids. This mode considers full tensor anisotropy and the heterogeneity. The transmissibility presented are derivative of the discrete flux expression through control volume faces, where a generalized curvilinear coordinate system, located inner to the control volume, it is adopted. The transmissibility is then written on vector form and may to be used for any coordinate system. (author)

  12. Control of a Vanadium Redox Battery and supercapacitor using a Three-Level Neutral Point Clamped converter

    Science.gov (United States)

    Etxeberria, A.; Vechiu, I.; Baudoin, S.; Camblong, H.; Kreckelbergh, S.

    2014-02-01

    The increasing use of distributed generators, which are mainly based on renewable sources, can create several issues in the operation of the electric grid. The microgrid is being analysed as a solution to the integration in the grid of the renewable sources at a high penetration level in a controlled way. The storage systems play a vital role in order to keep the energy and power balance of the microgrid. Due to the technical limitations of the currently available storage systems, it is necessary to use more than one storage technology to satisfy the requirements of the microgrid application. This work validates in simulations and experimentally the use of a Three-Level Neutral Point Clamped converter to control the power flow of a hybrid storage system formed by a SuperCapacitor and a Vanadium Redox Battery. The operation of the system is validated in two case studies in the experimental platform installed in ESTIA. The experimental results prove the validity of the proposed system as well as the designed control algorithm. The good agreement among experimental and simulation results also validates the simulation model, that can therefore be used to analyse the operation of the system in different case studies.

  13. Area law for fixed points of rapidly mixing dissipative quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandão, Fernando G. S. L. [Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052 (United States); Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); Cubitt, Toby S. [Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom); Lucia, Angelo, E-mail: anlucia@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Madrid (Spain); Michalakis, Spyridon [Institute for Quantum Information and Matter, Caltech, California 91125 (United States); Perez-Garcia, David [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Madrid (Spain); IMI, Universidad Complutense de Madrid, Madrid (Spain); ICMAT, C/Nicolás Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free.

  14. 2-regularity and 2-normality conditions for systems with impulsive controls

    Directory of Open Access Journals (Sweden)

    Pavlova Natal'ya

    2007-01-01

    Full Text Available In this paper a controlled system with impulsive controls in the neighborhood of an abnormal point is investigated. The set of pairs (u,μ is considered as a class of admissible controls, where u is a measurable essentially bounded function and μ is a finite-dimensional Borel measure, such that for any Borel set B, μ(B is a subset of the given convex closed pointed cone. In this article the concepts of 2-regularity and 2-normality for the abstract mapping Ф, operating from the given Banach space into a finite-dimensional space, are introduced. The concepts of 2-regularity and 2-normality play a great role in the course of derivation of the first and the second order necessary conditions for the optimal control problem, consisting of the minimization of a certain functional on the set of the admissible processes. These concepts are also important for obtaining the sufficient conditions for the local controllability of the nonlinear systems. The convenient criterion for 2-regularity along the prescribed direction and necessary conditions for 2-normality of systems, linear in control, are introduced in this article as well.

  15. Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map

    International Nuclear Information System (INIS)

    Bonakdar, Mohammad; Samadi, Mostafa; Salarieh, Hassan; Alasty, Aria

    2008-01-01

    In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed

  16. Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map

    Energy Technology Data Exchange (ETDEWEB)

    Bonakdar, Mohammad; Samadi, Mostafa [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of); Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)

    2008-05-15

    In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed.

  17. Integrated tools for control-system analysis

    Science.gov (United States)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  18. A miniaturised image based fluorescence detection system for point-of-care-testing of cocaine abuse

    Science.gov (United States)

    Walczak, Rafał; Krüger, Jan; Moynihan, Shane

    2015-08-01

    In this paper, we describe a miniaturised image-based fluorescence detection system and demonstrate its viability as a highly sensitive tool for point-of-care-analysis of drugs of abuse in human sweat with a focus on monitor individuals for drugs of abuse. Investigations of miniaturised and low power optoelectronic configurations and methodologies for real-time image analysis were successfully carried out. The miniaturised fluorescence detection system was validated against a reference detection system under controlled laboratory conditions by analysing spiked sweat samples in dip stick and then strip with sample pad. As a result of the validation studies, a 1 ng mL-1 limit of detection of cocaine in sweat and full agreement of test results with the reference detection system can be reported. Results of the investigations open the way towards a detection system that integrates a hand-held fluorescence reader and a wearable skinpatch, and which can collect and in situ analyse sweat for the presence of cocaine at any point for up to tenths hours.

  19. A Novel Smart Meter Controlling System with Dynamic IP Addresses

    DEFF Research Database (Denmark)

    Manembu, Pinrolinvic; Welang, Brammy; Kalua Lapu, Aditya

    2017-01-01

    Smart meters are the electronic devices for measuring energy consumption in real time. Usually, static public IP addresses are allocated to realize the point-to-point (P2P) communication and remote controlling for smart metering systems. This, however, restricts the wide deployment of smart meters......, due to the deficiency of public IP resources. This paper proposes a novel subscription-based communication architecture for the support of dynamic IP addresses and group controlling of smart meters. The paper evaluates the proposed architecture by comparing the traditional P2P architecture...

  20. System Dynamics and Feedforward Control for Tether-Net Space Robot System

    Directory of Open Access Journals (Sweden)

    Guang Zhai

    2009-06-01

    Full Text Available A new concept using flexible tether-net system to capture space debris is presented in this paper. With a mass point assumption the tether-net system dynamic model is established in orbital frame by applying Lagrange Equations. In order to investigate the net in-plane trajectories during after cast, the non-control R-bar and V-bar captures are simulated with ignoring the out-of-plane libration, the effect of in-plane libration on the trajectories of the capture net is demonstrated by simulation results. With an effort to damp the in-plane libration, the control scheme based on tether tension is investigated firstly, after that an integrated control scheme is proposed by introduced the thrusters into the system, the nonlinear close-loop dynamics is linearised by feedforward strategy, the simulation results show that feedforward controllor is effective for in-plane libration damping and enable the capture net to track an expected trajectory.

  1. ATLAS Point-1 System Administration Group

    CERN Multimedia

    Marc Dobson

    2007-01-01

    Hello, my name is Joe Blog and I am about to go on shift at ATLAS. When I enter the control room shown below with my CERN ID card, I go to the subsystem desk for which I am responsible. This is the first shift of the run period and there is a login window displayed on the screens. I just need to hit return and the control room desktop is started. Before I can do anything I must give my credentials in the shifter window which is then synchronised with the shift plan. After that I have access to all the allowed commands and can start preparing for the run. In order not to forget any steps I consult the documentation on how to prepare for a run on the Point-1 web. I can also check what the general status is for the ATLAS online computing farm, the sub-detectors and the LHC by using the utilities provided. ATLAS Control Room. The situation described is made up but the conditions are real. But the control room that the shifters and general public see is only the tip of the iceberg. Behind these tools lie the...

  2. Control of tongue movements in speech: The Equilibrium point Hypothesis perspective

    OpenAIRE

    Perrier , Pascal; Loevenbruck , Hélène; Payan , Yohan

    1996-01-01

    In this paper , the application of the Equilibrium Point Hypothesis— originally proposed by Feldman for the control of limb movements— to speech control is analysed . In the first part , physiological data published in the literature which argue in favour of such control for the tongue are presented and the possible role of this motor process in a global control model of the tongue is explicated . In the second part , using the example of the acoustic variability associated with vowel reducti...

  3. An Improved Inventory Control Model for the Brazilian Navy Supply System

    Science.gov (United States)

    2001-12-01

    Portuguese Centro de Controle de Inventario da Marinha, the Brazilian Navy Inventory Control Point (ICP) developed an empirical model called SPAADA...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS Approved for public release; distribution is unlimited AN IMPROVED INVENTORY CONTROL ...AN IMPROVED INVENTORY CONTROL MODEL FOR THE BRAZILIAN NAVY SUPPLY SYSTEM Contract Number Grant Number Program Element Number Author(s) Moreira

  4. [Evaluation of a new blood gas analysis system: RapidPoint 500(®)].

    Science.gov (United States)

    Nicolas, Thierry; Cabrolier, Nadège; Bardonnet, Karine; Davani, Siamak

    2013-01-01

    We present here evaluation of a new blood gas analysis system, RapidPoint 500(®) (Siemens Healthcare Diagnostics). The aim of this research was to compare the ergonomics and analytical performances of this analyser with those of the RapidLab 1265 for the following parameters: pH, partial oxygen pressure, partial carbon dioxide pressure, sodium, potassium, ionized calcium, lactate and the CO-oximetry parameters: hemoglobin, oxyhemoglobin, carboxyhemoglobin, methemoglobin, reduced hemoglobin, neonatal bilirubin; as well as with the Dimension Vista 500 results for chloride and glucose. The Valtec protocol, recommended by the French Society of Clinical Biology (SFBC), was used to analyze the study results. The experiment was carried out over a period of one month in the Department of medical biochemistry. One hundred sixty five samples from adult patients admitted to the ER or hospitalized in intensive care were tested. The RapidPoint 500(®) was highly satisfactory from an ergonomic point of view. Intra-and inter- assay coefficients of variation (CV) with the three control levels were below those recommended by the SFBC for all parameters, and the comparative study gave coefficients of determination higher than 0.91. Taken together, the RapidPoint 500(®) appears fully satisfactory in terms of ergonomics and analytical performance.

  5. [Analysis and research on cleaning points of HVAC systems in public places].

    Science.gov (United States)

    Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu

    2010-03-01

    To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.

  6. Correlations in quantum systems and branch points in the complex plane

    OpenAIRE

    Rotter, I.

    2001-01-01

    Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.

  7. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  8. Shot noise in systems with semi-Dirac points

    International Nuclear Information System (INIS)

    Zhai, Feng; Wang, Juan

    2014-01-01

    We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L 1∕2 . Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points

  9. CRA Control Logic Realization for MARS 1-D/MASTER coupled Code System

    International Nuclear Information System (INIS)

    Han, Soonkyoo; Jeong, Sungsu; Lee, Suyong

    2013-01-01

    Both Multi-dimensional Analysis Reactor Safety (MARS) code and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) code, developed by Korea Atomic Energy Research Institute (KAERI), can be coupled for various simulations of nuclear reactor system. In the MARS 1-D/MASTER coupled code system, MARS is used for the thermal hydraulic calculations and MASTER is used for reactor core calculations. In case of using this coupled code system, the movements of control rod assembly (CRA) are controlled by MASTER. MASTER, however, has a CRA control function which is inputted by user as a form of time dependent table. When simulations related to sequential CRA insertion or withdrawal which are not ejection or drop are performed, this CRA control function is not sufficient to demonstrate the process of CRA movements. Therefore an alternative way is proposed for realization of CRA control logic in MASTER. In this study, the manually realized CRA control logic was applied by inputting the time dependent CRA positions into MASTER. And the points of CRA movements were decided by iterations. At the end of CRA movement, the reactor power difference and the average coolant temperature difference were not out of the range of their dead bands. Therefore it means that this manually realized CRA control logic works appropriately in the dead bands of the logic. Therefore the proper CRA movement points could be decided by using this manually realized CRA control logic. Based on these results, it is verified that the proper CRA movement points can be chosen by using the proposed CRA control logic in this article. In conclusion, it is expected that this proposed CRA control logic in MASTER can be used to properly demonstrate the process related to CRA sequential movements in the MARS 1-D/MASTER coupled code system

  10. Comparison of Failure Analysis and Operating Experiences of Digital Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chan; Shin, Tae Young [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-08-15

    This study focuses on digital control systems that have the same functions but different designs. Some differences and common points between these two digital control systems are analyzed in terms of vulnerabilities in plant operation. In addition, this study confirms why unexpected outcomes can occur through a comparison of the system failure experiences with the analytic results of FMEA and FTA. This evaluation demonstrates that the digital system may have vulnerable components whose single failures can cause plant transients even if the system has a redundant structure according to its system design.

  11. Optimization criteria for control and instrumentation systems in nuclear power plants

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1978-01-01

    The system of dose limitation recently recommended by the International Commission on Radiation Protection includes, as a base for deciding what is reasonably achievable in dose reduction, the optimization of radioprotection systems. This paper, after compiling relevant points in the new system, discusses the application of optimization to control and instrumentation of radioprotection systems in nuclear power plants. Furthermore, an extension of the optimization criterion to nuclear safety systems is also presented and its application to control and instrumentation is discussed; systems including majority logics are particularly scrutinized. Finally, eventual regulatory implications are described. (author)

  12. Application of IFT and SPSA to servo system control.

    Science.gov (United States)

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  13. Modernization of the Mayall Telescope control system: design, implementation, and performance

    Science.gov (United States)

    Sprayberry, David; Dunlop, Patrick; Evatt, Matthew; Reddell, Larry; Gott, Shelby; George, James R.; Donaldson, John; Stupak, Robert J.; Marshall, Robert; Abareshi, Behzad; Stover, Deanna; Warner, Michael; Cantarutti, Rolando E.; Probst, Ronald G.

    2016-08-01

    Motivated by a desire to improve the KPNO Mayall 4m telescope's pointing and tracking performance prior to the start of the DESI installation and by a need to improve the maintainability of its telescope control system (TCS), we recently completed a major modernization of that system based heavily on recent changes made at the CTIO Blanco 4m, as described by Warner et al (2012). We describe here the things we did differently from the Blanco upgrade. We also present results from the as-built performance of the new servo and pointing systems.

  14. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    Science.gov (United States)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty

  15. Development of autonomous controller system of high speed UAV from simulation to ready to fly condition

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-02-01

    The development of autonomous controller system that is specially used in our high speed UAV, it’s call RKX-200EDF/TJ controlled vehicle needs to be continued as a step to mastery and to developt control system of LAPAN’s satellite launching rocket. The weakness of the existing control system in this high speed UAV needs to be repaired and replaced using the autonomous controller system. Conversion steps for ready-to-fly system involved controlling X tail fin, adjusting auto take off procedure by adding X axis sensor, procedure of way points reading and process of measuring distance and heading to the nearest way point, developing user-friendly ground station, and adding tools for safety landing. The development of this autonomous controller system also covered a real flying test in Pandanwangi, Lumajang in November 2016. Unfortunately, the flying test was not successful because the booster rocket was blown right after burning. However, the system could record the event and demonstrated that the controller system had worked according to plan.

  16. Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2015-04-01

    Full Text Available The power production of the linear generator wave energy converter developed at Uppsala University is affected by variations of mean sea level. The reason is that these variations change the distance between the point absorber located on the surface and the linear generator located on the seabed. This shifts the average position of the translator with respect to the center of the stator, thereby reducing the generator output power. A device mounted on the point absorber that compensates for tides of small range by regulating the length of the connection line between the buoy at the surface and the linear generator has been constructed and tested. This paper describes the electro-mechanical, measurement, communication and control systems installed on the buoy and shows the results obtained before its connection to the generator. The adjustment of the line was achieved through a linear actuator, which shortens the line during low tides and vice versa. The motor that drives the mechanical device was activated remotely via SMS. The measurement system that was mounted on the buoy consisted of current and voltage sensors, accelerometers, strain gauges and inductive and laser sensors. The data collected were transferred via Internet to a Dropbox server. As described within the paper, after the calibration of the sensors, the buoy was assembled and tested in the waters of Lysekil harbor, a few kilometers from the Uppsala University research site. Moreover, the performance of the sensors, the motion of the mechanical device, the power consumption, the current control strategy and the communication system are discussed.

  17. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  18. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  19. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Sedigh, Ali Khaki

    2009-01-01

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  20. A hybrid system for beam steering and wavefront control

    Science.gov (United States)

    Nikulin, Vladimir V.

    2004-06-01

    Performance of long-range mobile laser systems operating within Earth's atmosphere is generally limited by several factors. Movement of the communicating platforms, such as aircraft, terrain vehicles, etc., complemented by mechanical vibrations, is the main cause of pointing errors. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path that lead to phase distortions (aberrations), thus creating random redistribution of optical energy in the spatial domain. The combined effect of these factors leads to an increased bit-error probability under adverse operation conditions. While traditional approaches provide separate treatment of these problems, suggesting the development of high-bandwidth beam steering systems to perform tracking and jitter rejection, and wavefront control for the mitigation of atmospheric effects, the two tasks could be integrated. In this paper we present a hybrid laser beam steering/wavefront control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount platform. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while the purpose of the SLM is twofold: it performs wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using the decentralized approach that provides independent access to the azimuth and declination channels, while the algorithm for calculating the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the both systems and the simulation results.

  1. On the Use of Information Quality in Stochastic Networked Control Systems

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Madsen, Jacob Theilgaard; Rasmussen, Jakob Gulddahl

    2017-01-01

    Networked control is challenged by stochastic delays that are caused by the communication networks as well as by the approach taken to exchange information about system state and set-points. Combined with stochastic changing information, there is a probability that information at the controller....... This is first analyzed in simulation models for the example system of a wind-farm controller. As simulation analysis is subject to stochastic variability and requires large computational effort, the paper develops a Markov model of a simplified networked control system and uses numerical results from the Markov...... is not matching the true system observation, which we call mismatch probability (mmPr). The hypothesis is that the optimization of certain parameters of networked control systems targeting mmPr is equivalent to the optimization targeting control performance, while the former is practically much easier to conduct...

  2. Impact of target point deviations on control and complication probabilities in stereotactic radiosurgery of AVMs and metastases

    International Nuclear Information System (INIS)

    Treuer, Harald; Kocher, Martin; Hoevels, Moritz; Hunsche, Stefan; Luyken, Klaus; Maarouf, Mohammad; Voges, Juergen; Mueller, Rolf-Peter; Sturm, Volker

    2006-01-01

    Objective: Determination of the impact of inaccuracies in the determination and setup of the target point in stereotactic radiosurgery (SRS) on the expectable complication and control probabilities. Methods: Two randomized samples of patients with arteriovenous malformation (AVM) (n = 20) and with brain metastases (n = 20) treated with SRS were formed, and the probability for complete obliteration (COP) or complete remission (CRP), the size of the 10 Gy-volume in the brain tissue (VOI10), and the probability for radiation necrosis (NTCP) were calculated. The dose-effect relations for COP and CRP were fitted to clinical data. Target point deviations were simulated through random vectors and the resulting probabilities and volumes were calculated and compared with the values of the treatment plan. Results: The decrease of the relative value of the control probabilities at 1 mm target point deviation was up to 4% for AVMs and up to 10% for metastases. At 2 mm the median decrease was 5% for AVMs and 9% for metastases. The value for the target point deviation, at which COP and CRP decreased about 0.05 in 90% of the cases, was 1.3 mm. The increase of NTCP was maximally 0.0025 per mm target point deviation for AVMs and 0.0035/mm for metastases. The maximal increase of VOI10 was 0.7 cm 3 /mm target point deviation in both patient groups. Conclusions: The upper limit for tolerable target point deviations is at 1.3 mm. If this value cannot be achieved during the system test, a supplementary safety margin should be applied for the definition of the target volume. A better accuracy level is desirable, in order to ensure optimal chances for the success of the treatment. The target point precision is less important for the minimization of the probability of radiation necroses

  3. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  4. Control Architecture Modeling for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    electricity exchange. However, at the same time, it seems that the overall system design cannot keep up by simply adapting in response to changes, but that also new strategies have to be designed in anticipation. Changes to the electricity markets have been suggested to adapt to the limited predictability...... of wind power, and several new control strategies have been proposed, in particular to enable the control of distributed energy resources, including for example, distributed generation or electric vehicles. Market designs addressing the procurement of balancing resources are highly dependent...... on the operation strategies specifying the resource requirements. How should one decide which control strategy and market configuration is best for a future power system? Most research up to this point has addressed single isolated aspects of this design problem. Those of the ideas that fit with current markets...

  5. A pneumatic control system for rapid vertical rectangular movements of heavy loads

    International Nuclear Information System (INIS)

    Huettel, G.; Krause, H.

    1975-01-01

    A new control system has been developed in order to realize the physically necessary short transition times between the dead points of a pneumatic oscillator even for heavy loads and high working speeds. Integral element of this system is the external control of braking process provided for in addition to the end position brake installed in the working cylinder. This control system is applicable not only to pile oscillators, but also universally applicable to pneumatic apparatuses working like that. (author)

  6. The tandem Tritron control system, a status report

    International Nuclear Information System (INIS)

    Rohrer, L.; Schnitter, H.; Cazan, A.; Jakubowska, E.; Walchshaeusl, B.

    1994-01-01

    The control system for the tandem accelerator and the Tritron was put into operation in 1988 and has been developed further continuously. It consists of many Z280 microcomputer crates, equipped with I/O-boards to control accelerator devices, personal computers serving as control desks, a file server, an address server, and an error logger. All computers are interconnected by an ARCnet local area network. The program language in every computer and the communication language is FORTH. Every node contains a multitasking FORTH system with floating point arithmetic from the beginning and interprets or compiles the data stream coming from the ARCnet. Each node is programmed with its special program so that it can perform its specific control or monitor task. The system is very flexible. Every node may be changed or replaced by a better one, if necessary. The only condition is that it can be connected to the ARCnet and can be programmed in FORTH. ((orig.))

  7. Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method

    Science.gov (United States)

    Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.

    2018-01-01

    Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.

  8. Building up the control system for the superconducting cyclotron

    International Nuclear Information System (INIS)

    Dasgupta, S.

    2005-01-01

    Using a distributed processing system, connected through a responsive network was a starting point decision. Such a system has contributed a great deal towards reduction of cabling, independence from real time s/w and simpler and more group-wise distributed s/w development, The top of the 3 tiers is the layer made of a number of workstation PC's to work as consoles, which are connected in a dedicated ethernet control LAN. The virtual middle tier is made of a large no. of industrial PC's which are also hooked to the control LAN. The lowest level is made up of assorted intelligent and smart controllers both commercial and laboratory made. (author)

  9. Inventory Control System by Using Vendor Managed Inventory (VMI)

    Science.gov (United States)

    Sabila, Alzena Dona; Mustafid; Suryono

    2018-02-01

    The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI) method on inventory control system provides transparency of sales data and inventory of goods at retailer level to supplier. Inventory control is performed by calculating safety stock and reorder point of goods based on sales data received by the system. Rule-based reasoning is provided on the system to facilitate the monitoring of inventory status information, thereby helping the process of inventory updates appropriately. Utilization of SMS technology is also considered as a medium of collecting sales data in real-time due to the ease of use. The results of this study indicate that inventory control using VMI ensures the availability of goods ± 70% and can reduce the accumulation of goods ± 30% at the retail level.

  10. Can the Hazard Assessment and Critical Control Points (HACCP) system be used to design process-based hygiene concepts?

    Science.gov (United States)

    Hübner, N-O; Fleßa, S; Haak, J; Wilke, F; Hübner, C; Dahms, C; Hoffmann, W; Kramer, A

    2011-01-01

    Recently, the HACCP (Hazard Analysis and Critical Control Points) concept was proposed as possible way to implement process-based hygiene concepts in clinical practice, but the extent to which this food safety concept can be transferred into the health care setting is unclear. We therefore discuss possible ways for a translation of the principles of the HACCP for health care settings. While a direct implementation of food processing concepts into health care is not very likely to be feasible and will probably not readily yield the intended results, the underlying principles of process-orientation, in-process safety control and hazard analysis based counter measures are transferable to clinical settings. In model projects the proposed concepts should be implemented, monitored, and evaluated under real world conditions.

  11. Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation

    Science.gov (United States)

    Orfiz, Gerardo G.; Lee, Shinhak

    2006-01-01

    A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.

  12. Software development for the PBX-M plasma control system

    International Nuclear Information System (INIS)

    Lagin, L.; Bell, R.; Chu, J.; Hatcher, R.; Hirsch, J.; Okabayashi, M.; Sichta, P.

    1995-01-01

    This paper describes the software development effort for the PBX-M plasma control system. The algorithms being developed for the system will serve to test advanced control concepts for TPX and ITER. This will include real-time algorithms for shaping control, vertical position control, current and density profile control and MHD avoidance. The control system consists of an interactive Host Processor (SPARC-10) interfaced through VME with four real-time Computer Processors (i860) which run at a maximum computational speed of 320 MFLOPs. Plasma shaping programs are being tested to duplicate the present PBX-M analog control system. Advanced algorithms for vertical control and x-point control will then be developed. Interactive graphical user interface programs running on the Host Processor will allow operators to control and monitor shot parameters. A waveform edit program will be used to download pre-programmed waveforms into the Compute Processor memory. Post-shot display programs will be used to interactively display data after the shot. Automatic pre-shot arming and data acquisition programs will run on the Host Processor. Event system programs will process interrupts and activate programs on the Host and Compute Processors. These programs are being written in C and Fortran and use system service routines to communicate with the Compute Processors and its memory. IDL and IDL widgets are being used to build the graphical user interfaces

  13. Full impact of laboratory information system requires direct use by clinical staff: cluster randomized controlled trial.

    Science.gov (United States)

    Blaya, Joaquín A; Shin, Sonya; Contreras, Carmen; Yale, Gloria; Suarez, Carmen; Asencios, Luis; Kim, Jihoon; Rodriguez, Pablo; Cegielski, Peter; Fraser, Hamish S F

    2011-01-01

    To evaluate the time to communicate laboratory results to health centers (HCs) between the e-Chasqui web-based information system and the pre-existing paper-based system. Cluster randomized controlled trial in 78 HCs in Peru. In the intervention group, 12 HCs had web access to results via e-Chasqui (point-of-care HCs) and forwarded results to 17 peripheral HCs. In the control group, 22 point-of-care HCs received paper results directly and forwarded them to 27 peripheral HCs. Baseline data were collected for 15 months. Post-randomization data were collected for at least 2 years. Comparisons were made between intervention and control groups, stratified by point-of-care versus peripheral HCs. For point-of-care HCs, the intervention group took less time to receive drug susceptibility tests (DSTs) (median 9 vs 16 days, p60 days to arrive (pChasqui information system had reduced communication times and fewer results with delays of >2 months. Peripheral HCs had no benefits from the system. This suggests that health establishments should have point-of-care access to reap the benefits of electronic laboratory reporting.

  14. Microbial profile and critical control points during processing of 'robo ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... frying, surface fat draining, open-air cooling, and holding/packaging in polyethylene films during sales and distribution. The product was, however, classified under category III with respect to risk and the significance of monitoring and evaluation of quality using the hazard analysis critical control point.

  15. Management of complex data flows in the ASDEX Upgrade plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Neu, Gregor; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Cole, Richard; Lueddecke, Klaus [Unlimited Computer Systems, Iffeldorf (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Control system architectures with data-driven workflows are efficient, flexible and maintainable. Black-Right-Pointing-Pointer Signal groups provide coherence of interrelated signals and increase the efficiency of process synchronisation. Black-Right-Pointing-Pointer Sample tags indicating sample quality form the fundament of a local event handling strategy. Black-Right-Pointing-Pointer A self-organising workflow benefits from sample tags consisting of time stamp and stream activity. - Abstract: Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals

  16. On nonlinear control design for autonomous chaotic systems of integer and fractional orders

    International Nuclear Information System (INIS)

    Ahmad, Wajdi M.; Harb, Ahmad M.

    2003-01-01

    In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations

  17. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  18. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz

    2015-11-12

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  19. Cardea: Dynamic Access Control in Distributed Systems

    Science.gov (United States)

    Lepro, Rebekah

    2004-01-01

    Modern authorization systems span domains of administration, rely on many different authentication sources, and manage complex attributes as part of the authorization process. This . paper presents Cardea, a distributed system that facilitates dynamic access control, as a valuable piece of an inter-operable authorization framework. First, the authorization model employed in Cardea and its functionality goals are examined. Next, critical features of the system architecture and its handling of the authorization process are then examined. Then the S A M L and XACML standards, as incorporated into the system, are analyzed. Finally, the future directions of this project are outlined and connection points with general components of an authorization system are highlighted.

  20. From the conceptual design to the first simulation of the new WEST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Nouailletas, R., E-mail: remy.nouailletas@cea.fr [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Ravenel, N.; Signoret, J. [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Treutterer, W. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Spring, A.; Lewerentz, M. [Max Planck Institute for Plasma Physics, Wendeksteinstr. 1, 17491 Greifswald (Germany); Rapson, C.J. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Masand, H.; Dhongde, J. [Institute for Plasma Research (IPR), Near Indira Bridge, Bhat, Gandhinagar 382 428, Gujarat (India); Moreau, P.; Guillerminet, B.; Brémond, S.; Allegretti, L. [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Raupp, G. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Werner, A. [Max Planck Institute for Plasma Physics, Wendeksteinstr. 1, 17491 Greifswald (Germany); Saint Laurent, F.; Nardon, E. [IRFM, CEA, F-13108 Saint Paul lez Durance (France); Bhandarkar, M. [Institute for Plasma Research (IPR), Near Indira Bridge, Bhat, Gandhinagar 382 428, Gujarat (India)

    2015-10-15

    Highlights: • We propose an overview of the future control system of the Tore Supra in WEST configuration. • The control system will be based on DCS (Discharge Control System) of ASDEX Upgrade. • The Pulse Schedule Editor will be based on the experiment program editor of the future W7X facility. • The operation of this new system is illustrated by an example based on a simple plasma current/loop voltage control. - Abstract: The configuration of the Tore Supra WEST project leads to control challenges and event handling close to those of ITER from a plasma scenario point of view (X-point configuration, H mode, long duration pulse) and from a machine protection point of view (metallic environment). Based on previous conceptual studies and to meet the WEST requirements, a sub-project will implement a new plasma control system (PCS) and a new pulse schedule editor (PSE). The main idea is to use a segment approach to describe the pulse scheduling with a full integration of event handling both on the PCS and on the PSE. After detailed specification work, it has been shown that the real-time framework called DCS (Discharge Control System) which is currently used on ASDEX upgrade fulfills the requirements and could be integrated into the WEST global control infrastructure. For the PSE, the Xedit tool, developed for the future W7X facility, has been chosen. This contribution will begin by a short explanation of the concepts proposed for the control of the plasma and the handling of events during the plasma discharge. Then it will focus on the new centralized architecture of the new Tore Supra PCS and an operating principle example showing the efficiency of the approach to handle normal and off-normal events. This later point will illustrate the required modifications of DCS and Xedit to fit with the Tore Supra Control infrastructure.